umem.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197
  1. /*
  2. * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
  3. *
  4. * (C) 2001 San Mehat <nettwerk@valinux.com>
  5. * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
  6. * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
  7. *
  8. * This driver for the Micro Memory PCI Memory Module with Battery Backup
  9. * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
  10. *
  11. * This driver is released to the public under the terms of the
  12. * GNU GENERAL PUBLIC LICENSE version 2
  13. * See the file COPYING for details.
  14. *
  15. * This driver provides a standard block device interface for Micro Memory(tm)
  16. * PCI based RAM boards.
  17. * 10/05/01: Phap Nguyen - Rebuilt the driver
  18. * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19. * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
  20. * - use stand disk partitioning (so fdisk works).
  21. * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
  22. * - incorporate into main kernel
  23. * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
  24. * - use spin_lock_bh instead of _irq
  25. * - Never block on make_request. queue
  26. * bh's instead.
  27. * - unregister umem from devfs at mod unload
  28. * - Change version to 2.3
  29. * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30. * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
  31. * 15May2002:NeilBrown - convert to bio for 2.5
  32. * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
  33. * - a sequence of writes that cover the card, and
  34. * - set initialised bit then.
  35. */
  36. //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
  37. #include <linux/fs.h>
  38. #include <linux/bio.h>
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/mman.h>
  42. #include <linux/ioctl.h>
  43. #include <linux/module.h>
  44. #include <linux/init.h>
  45. #include <linux/interrupt.h>
  46. #include <linux/timer.h>
  47. #include <linux/pci.h>
  48. #include <linux/slab.h>
  49. #include <linux/dma-mapping.h>
  50. #include <linux/fcntl.h> /* O_ACCMODE */
  51. #include <linux/hdreg.h> /* HDIO_GETGEO */
  52. #include <linux/umem.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/io.h>
  55. #define MM_MAXCARDS 4
  56. #define MM_RAHEAD 2 /* two sectors */
  57. #define MM_BLKSIZE 1024 /* 1k blocks */
  58. #define MM_HARDSECT 512 /* 512-byte hardware sectors */
  59. #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
  60. /*
  61. * Version Information
  62. */
  63. #define DRIVER_VERSION "v2.3"
  64. #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
  65. #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
  66. static int debug;
  67. /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  68. #define HW_TRACE(x)
  69. #define DEBUG_LED_ON_TRANSFER 0x01
  70. #define DEBUG_BATTERY_POLLING 0x02
  71. module_param(debug, int, 0644);
  72. MODULE_PARM_DESC(debug, "Debug bitmask");
  73. static int pci_read_cmd = 0x0C; /* Read Multiple */
  74. module_param(pci_read_cmd, int, 0);
  75. MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  76. static int pci_write_cmd = 0x0F; /* Write and Invalidate */
  77. module_param(pci_write_cmd, int, 0);
  78. MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  79. static int pci_cmds;
  80. static int major_nr;
  81. #include <linux/blkdev.h>
  82. #include <linux/blkpg.h>
  83. struct cardinfo {
  84. int card_number;
  85. struct pci_dev *dev;
  86. int irq;
  87. unsigned long csr_base;
  88. unsigned char __iomem *csr_remap;
  89. unsigned long csr_len;
  90. unsigned int win_size; /* PCI window size */
  91. unsigned int mm_size; /* size in kbytes */
  92. unsigned int init_size; /* initial segment, in sectors,
  93. * that we know to
  94. * have been written
  95. */
  96. struct bio *bio, *currentbio, **biotail;
  97. request_queue_t *queue;
  98. struct mm_page {
  99. dma_addr_t page_dma;
  100. struct mm_dma_desc *desc;
  101. int cnt, headcnt;
  102. struct bio *bio, **biotail;
  103. } mm_pages[2];
  104. #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
  105. int Active, Ready;
  106. struct tasklet_struct tasklet;
  107. unsigned int dma_status;
  108. struct {
  109. int good;
  110. int warned;
  111. unsigned long last_change;
  112. } battery[2];
  113. spinlock_t lock;
  114. int check_batteries;
  115. int flags;
  116. };
  117. static struct cardinfo cards[MM_MAXCARDS];
  118. static struct block_device_operations mm_fops;
  119. static struct timer_list battery_timer;
  120. static int num_cards = 0;
  121. static struct gendisk *mm_gendisk[MM_MAXCARDS];
  122. static void check_batteries(struct cardinfo *card);
  123. /*
  124. -----------------------------------------------------------------------------------
  125. -- get_userbit
  126. -----------------------------------------------------------------------------------
  127. */
  128. static int get_userbit(struct cardinfo *card, int bit)
  129. {
  130. unsigned char led;
  131. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  132. return led & bit;
  133. }
  134. /*
  135. -----------------------------------------------------------------------------------
  136. -- set_userbit
  137. -----------------------------------------------------------------------------------
  138. */
  139. static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
  140. {
  141. unsigned char led;
  142. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  143. if (state)
  144. led |= bit;
  145. else
  146. led &= ~bit;
  147. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  148. return 0;
  149. }
  150. /*
  151. -----------------------------------------------------------------------------------
  152. -- set_led
  153. -----------------------------------------------------------------------------------
  154. */
  155. /*
  156. * NOTE: For the power LED, use the LED_POWER_* macros since they differ
  157. */
  158. static void set_led(struct cardinfo *card, int shift, unsigned char state)
  159. {
  160. unsigned char led;
  161. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  162. if (state == LED_FLIP)
  163. led ^= (1<<shift);
  164. else {
  165. led &= ~(0x03 << shift);
  166. led |= (state << shift);
  167. }
  168. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  169. }
  170. #ifdef MM_DIAG
  171. /*
  172. -----------------------------------------------------------------------------------
  173. -- dump_regs
  174. -----------------------------------------------------------------------------------
  175. */
  176. static void dump_regs(struct cardinfo *card)
  177. {
  178. unsigned char *p;
  179. int i, i1;
  180. p = card->csr_remap;
  181. for (i = 0; i < 8; i++) {
  182. printk(KERN_DEBUG "%p ", p);
  183. for (i1 = 0; i1 < 16; i1++)
  184. printk("%02x ", *p++);
  185. printk("\n");
  186. }
  187. }
  188. #endif
  189. /*
  190. -----------------------------------------------------------------------------------
  191. -- dump_dmastat
  192. -----------------------------------------------------------------------------------
  193. */
  194. static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
  195. {
  196. printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
  197. if (dmastat & DMASCR_ANY_ERR)
  198. printk("ANY_ERR ");
  199. if (dmastat & DMASCR_MBE_ERR)
  200. printk("MBE_ERR ");
  201. if (dmastat & DMASCR_PARITY_ERR_REP)
  202. printk("PARITY_ERR_REP ");
  203. if (dmastat & DMASCR_PARITY_ERR_DET)
  204. printk("PARITY_ERR_DET ");
  205. if (dmastat & DMASCR_SYSTEM_ERR_SIG)
  206. printk("SYSTEM_ERR_SIG ");
  207. if (dmastat & DMASCR_TARGET_ABT)
  208. printk("TARGET_ABT ");
  209. if (dmastat & DMASCR_MASTER_ABT)
  210. printk("MASTER_ABT ");
  211. if (dmastat & DMASCR_CHAIN_COMPLETE)
  212. printk("CHAIN_COMPLETE ");
  213. if (dmastat & DMASCR_DMA_COMPLETE)
  214. printk("DMA_COMPLETE ");
  215. printk("\n");
  216. }
  217. /*
  218. * Theory of request handling
  219. *
  220. * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
  221. * We have two pages of mm_dma_desc, holding about 64 descriptors
  222. * each. These are allocated at init time.
  223. * One page is "Ready" and is either full, or can have request added.
  224. * The other page might be "Active", which DMA is happening on it.
  225. *
  226. * Whenever IO on the active page completes, the Ready page is activated
  227. * and the ex-Active page is clean out and made Ready.
  228. * Otherwise the Ready page is only activated when it becomes full, or
  229. * when mm_unplug_device is called via the unplug_io_fn.
  230. *
  231. * If a request arrives while both pages a full, it is queued, and b_rdev is
  232. * overloaded to record whether it was a read or a write.
  233. *
  234. * The interrupt handler only polls the device to clear the interrupt.
  235. * The processing of the result is done in a tasklet.
  236. */
  237. static void mm_start_io(struct cardinfo *card)
  238. {
  239. /* we have the lock, we know there is
  240. * no IO active, and we know that card->Active
  241. * is set
  242. */
  243. struct mm_dma_desc *desc;
  244. struct mm_page *page;
  245. int offset;
  246. /* make the last descriptor end the chain */
  247. page = &card->mm_pages[card->Active];
  248. pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
  249. desc = &page->desc[page->cnt-1];
  250. desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
  251. desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
  252. desc->sem_control_bits = desc->control_bits;
  253. if (debug & DEBUG_LED_ON_TRANSFER)
  254. set_led(card, LED_REMOVE, LED_ON);
  255. desc = &page->desc[page->headcnt];
  256. writel(0, card->csr_remap + DMA_PCI_ADDR);
  257. writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
  258. writel(0, card->csr_remap + DMA_LOCAL_ADDR);
  259. writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
  260. writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
  261. writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
  262. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
  263. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
  264. offset = ((char*)desc) - ((char*)page->desc);
  265. writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
  266. card->csr_remap + DMA_DESCRIPTOR_ADDR);
  267. /* Force the value to u64 before shifting otherwise >> 32 is undefined C
  268. * and on some ports will do nothing ! */
  269. writel(cpu_to_le32(((u64)page->page_dma)>>32),
  270. card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
  271. /* Go, go, go */
  272. writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
  273. card->csr_remap + DMA_STATUS_CTRL);
  274. }
  275. static int add_bio(struct cardinfo *card);
  276. static void activate(struct cardinfo *card)
  277. {
  278. /* if No page is Active, and Ready is
  279. * not empty, then switch Ready page
  280. * to active and start IO.
  281. * Then add any bh's that are available to Ready
  282. */
  283. do {
  284. while (add_bio(card))
  285. ;
  286. if (card->Active == -1 &&
  287. card->mm_pages[card->Ready].cnt > 0) {
  288. card->Active = card->Ready;
  289. card->Ready = 1-card->Ready;
  290. mm_start_io(card);
  291. }
  292. } while (card->Active == -1 && add_bio(card));
  293. }
  294. static inline void reset_page(struct mm_page *page)
  295. {
  296. page->cnt = 0;
  297. page->headcnt = 0;
  298. page->bio = NULL;
  299. page->biotail = & page->bio;
  300. }
  301. static void mm_unplug_device(request_queue_t *q)
  302. {
  303. struct cardinfo *card = q->queuedata;
  304. unsigned long flags;
  305. spin_lock_irqsave(&card->lock, flags);
  306. if (blk_remove_plug(q))
  307. activate(card);
  308. spin_unlock_irqrestore(&card->lock, flags);
  309. }
  310. /*
  311. * If there is room on Ready page, take
  312. * one bh off list and add it.
  313. * return 1 if there was room, else 0.
  314. */
  315. static int add_bio(struct cardinfo *card)
  316. {
  317. struct mm_page *p;
  318. struct mm_dma_desc *desc;
  319. dma_addr_t dma_handle;
  320. int offset;
  321. struct bio *bio;
  322. int rw;
  323. int len;
  324. bio = card->currentbio;
  325. if (!bio && card->bio) {
  326. card->currentbio = card->bio;
  327. card->bio = card->bio->bi_next;
  328. if (card->bio == NULL)
  329. card->biotail = &card->bio;
  330. card->currentbio->bi_next = NULL;
  331. return 1;
  332. }
  333. if (!bio)
  334. return 0;
  335. rw = bio_rw(bio);
  336. if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
  337. return 0;
  338. len = bio_iovec(bio)->bv_len;
  339. dma_handle = pci_map_page(card->dev,
  340. bio_page(bio),
  341. bio_offset(bio),
  342. len,
  343. (rw==READ) ?
  344. PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
  345. p = &card->mm_pages[card->Ready];
  346. desc = &p->desc[p->cnt];
  347. p->cnt++;
  348. if ((p->biotail) != &bio->bi_next) {
  349. *(p->biotail) = bio;
  350. p->biotail = &(bio->bi_next);
  351. bio->bi_next = NULL;
  352. }
  353. desc->data_dma_handle = dma_handle;
  354. desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
  355. desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
  356. desc->transfer_size = cpu_to_le32(len);
  357. offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
  358. desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
  359. desc->zero1 = desc->zero2 = 0;
  360. offset = ( ((char*)(desc+1)) - ((char*)p->desc));
  361. desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
  362. desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
  363. DMASCR_PARITY_INT_EN|
  364. DMASCR_CHAIN_EN |
  365. DMASCR_SEM_EN |
  366. pci_cmds);
  367. if (rw == WRITE)
  368. desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
  369. desc->sem_control_bits = desc->control_bits;
  370. bio->bi_sector += (len>>9);
  371. bio->bi_size -= len;
  372. bio->bi_idx++;
  373. if (bio->bi_idx >= bio->bi_vcnt)
  374. card->currentbio = NULL;
  375. return 1;
  376. }
  377. static void process_page(unsigned long data)
  378. {
  379. /* check if any of the requests in the page are DMA_COMPLETE,
  380. * and deal with them appropriately.
  381. * If we find a descriptor without DMA_COMPLETE in the semaphore, then
  382. * dma must have hit an error on that descriptor, so use dma_status instead
  383. * and assume that all following descriptors must be re-tried.
  384. */
  385. struct mm_page *page;
  386. struct bio *return_bio=NULL;
  387. struct cardinfo *card = (struct cardinfo *)data;
  388. unsigned int dma_status = card->dma_status;
  389. spin_lock_bh(&card->lock);
  390. if (card->Active < 0)
  391. goto out_unlock;
  392. page = &card->mm_pages[card->Active];
  393. while (page->headcnt < page->cnt) {
  394. struct bio *bio = page->bio;
  395. struct mm_dma_desc *desc = &page->desc[page->headcnt];
  396. int control = le32_to_cpu(desc->sem_control_bits);
  397. int last=0;
  398. int idx;
  399. if (!(control & DMASCR_DMA_COMPLETE)) {
  400. control = dma_status;
  401. last=1;
  402. }
  403. page->headcnt++;
  404. idx = bio->bi_phys_segments;
  405. bio->bi_phys_segments++;
  406. if (bio->bi_phys_segments >= bio->bi_vcnt)
  407. page->bio = bio->bi_next;
  408. pci_unmap_page(card->dev, desc->data_dma_handle,
  409. bio_iovec_idx(bio,idx)->bv_len,
  410. (control& DMASCR_TRANSFER_READ) ?
  411. PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
  412. if (control & DMASCR_HARD_ERROR) {
  413. /* error */
  414. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  415. printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
  416. card->card_number,
  417. le32_to_cpu(desc->local_addr)>>9,
  418. le32_to_cpu(desc->transfer_size));
  419. dump_dmastat(card, control);
  420. } else if (test_bit(BIO_RW, &bio->bi_rw) &&
  421. le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
  422. card->init_size += le32_to_cpu(desc->transfer_size)>>9;
  423. if (card->init_size>>1 >= card->mm_size) {
  424. printk(KERN_INFO "MM%d: memory now initialised\n",
  425. card->card_number);
  426. set_userbit(card, MEMORY_INITIALIZED, 1);
  427. }
  428. }
  429. if (bio != page->bio) {
  430. bio->bi_next = return_bio;
  431. return_bio = bio;
  432. }
  433. if (last) break;
  434. }
  435. if (debug & DEBUG_LED_ON_TRANSFER)
  436. set_led(card, LED_REMOVE, LED_OFF);
  437. if (card->check_batteries) {
  438. card->check_batteries = 0;
  439. check_batteries(card);
  440. }
  441. if (page->headcnt >= page->cnt) {
  442. reset_page(page);
  443. card->Active = -1;
  444. activate(card);
  445. } else {
  446. /* haven't finished with this one yet */
  447. pr_debug("do some more\n");
  448. mm_start_io(card);
  449. }
  450. out_unlock:
  451. spin_unlock_bh(&card->lock);
  452. while(return_bio) {
  453. struct bio *bio = return_bio;
  454. return_bio = bio->bi_next;
  455. bio->bi_next = NULL;
  456. bio_endio(bio, bio->bi_size, 0);
  457. }
  458. }
  459. /*
  460. -----------------------------------------------------------------------------------
  461. -- mm_make_request
  462. -----------------------------------------------------------------------------------
  463. */
  464. static int mm_make_request(request_queue_t *q, struct bio *bio)
  465. {
  466. struct cardinfo *card = q->queuedata;
  467. pr_debug("mm_make_request %llu %u\n",
  468. (unsigned long long)bio->bi_sector, bio->bi_size);
  469. bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
  470. spin_lock_irq(&card->lock);
  471. *card->biotail = bio;
  472. bio->bi_next = NULL;
  473. card->biotail = &bio->bi_next;
  474. blk_plug_device(q);
  475. spin_unlock_irq(&card->lock);
  476. return 0;
  477. }
  478. /*
  479. -----------------------------------------------------------------------------------
  480. -- mm_interrupt
  481. -----------------------------------------------------------------------------------
  482. */
  483. static irqreturn_t mm_interrupt(int irq, void *__card)
  484. {
  485. struct cardinfo *card = (struct cardinfo *) __card;
  486. unsigned int dma_status;
  487. unsigned short cfg_status;
  488. HW_TRACE(0x30);
  489. dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
  490. if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
  491. /* interrupt wasn't for me ... */
  492. return IRQ_NONE;
  493. }
  494. /* clear COMPLETION interrupts */
  495. if (card->flags & UM_FLAG_NO_BYTE_STATUS)
  496. writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
  497. card->csr_remap+ DMA_STATUS_CTRL);
  498. else
  499. writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
  500. card->csr_remap+ DMA_STATUS_CTRL + 2);
  501. /* log errors and clear interrupt status */
  502. if (dma_status & DMASCR_ANY_ERR) {
  503. unsigned int data_log1, data_log2;
  504. unsigned int addr_log1, addr_log2;
  505. unsigned char stat, count, syndrome, check;
  506. stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
  507. data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
  508. data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
  509. addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
  510. addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
  511. count = readb(card->csr_remap + ERROR_COUNT);
  512. syndrome = readb(card->csr_remap + ERROR_SYNDROME);
  513. check = readb(card->csr_remap + ERROR_CHECK);
  514. dump_dmastat(card, dma_status);
  515. if (stat & 0x01)
  516. printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
  517. card->card_number, count);
  518. if (stat & 0x02)
  519. printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
  520. card->card_number);
  521. printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
  522. card->card_number, addr_log2, addr_log1, data_log2, data_log1);
  523. printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
  524. card->card_number, check, syndrome);
  525. writeb(0, card->csr_remap + ERROR_COUNT);
  526. }
  527. if (dma_status & DMASCR_PARITY_ERR_REP) {
  528. printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
  529. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  530. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  531. }
  532. if (dma_status & DMASCR_PARITY_ERR_DET) {
  533. printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
  534. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  535. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  536. }
  537. if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
  538. printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
  539. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  540. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  541. }
  542. if (dma_status & DMASCR_TARGET_ABT) {
  543. printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
  544. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  545. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  546. }
  547. if (dma_status & DMASCR_MASTER_ABT) {
  548. printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
  549. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  550. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  551. }
  552. /* and process the DMA descriptors */
  553. card->dma_status = dma_status;
  554. tasklet_schedule(&card->tasklet);
  555. HW_TRACE(0x36);
  556. return IRQ_HANDLED;
  557. }
  558. /*
  559. -----------------------------------------------------------------------------------
  560. -- set_fault_to_battery_status
  561. -----------------------------------------------------------------------------------
  562. */
  563. /*
  564. * If both batteries are good, no LED
  565. * If either battery has been warned, solid LED
  566. * If both batteries are bad, flash the LED quickly
  567. * If either battery is bad, flash the LED semi quickly
  568. */
  569. static void set_fault_to_battery_status(struct cardinfo *card)
  570. {
  571. if (card->battery[0].good && card->battery[1].good)
  572. set_led(card, LED_FAULT, LED_OFF);
  573. else if (card->battery[0].warned || card->battery[1].warned)
  574. set_led(card, LED_FAULT, LED_ON);
  575. else if (!card->battery[0].good && !card->battery[1].good)
  576. set_led(card, LED_FAULT, LED_FLASH_7_0);
  577. else
  578. set_led(card, LED_FAULT, LED_FLASH_3_5);
  579. }
  580. static void init_battery_timer(void);
  581. /*
  582. -----------------------------------------------------------------------------------
  583. -- check_battery
  584. -----------------------------------------------------------------------------------
  585. */
  586. static int check_battery(struct cardinfo *card, int battery, int status)
  587. {
  588. if (status != card->battery[battery].good) {
  589. card->battery[battery].good = !card->battery[battery].good;
  590. card->battery[battery].last_change = jiffies;
  591. if (card->battery[battery].good) {
  592. printk(KERN_ERR "MM%d: Battery %d now good\n",
  593. card->card_number, battery + 1);
  594. card->battery[battery].warned = 0;
  595. } else
  596. printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
  597. card->card_number, battery + 1);
  598. return 1;
  599. } else if (!card->battery[battery].good &&
  600. !card->battery[battery].warned &&
  601. time_after_eq(jiffies, card->battery[battery].last_change +
  602. (HZ * 60 * 60 * 5))) {
  603. printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
  604. card->card_number, battery + 1);
  605. card->battery[battery].warned = 1;
  606. return 1;
  607. }
  608. return 0;
  609. }
  610. /*
  611. -----------------------------------------------------------------------------------
  612. -- check_batteries
  613. -----------------------------------------------------------------------------------
  614. */
  615. static void check_batteries(struct cardinfo *card)
  616. {
  617. /* NOTE: this must *never* be called while the card
  618. * is doing (bus-to-card) DMA, or you will need the
  619. * reset switch
  620. */
  621. unsigned char status;
  622. int ret1, ret2;
  623. status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  624. if (debug & DEBUG_BATTERY_POLLING)
  625. printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
  626. card->card_number,
  627. (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
  628. (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
  629. ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
  630. ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
  631. if (ret1 || ret2)
  632. set_fault_to_battery_status(card);
  633. }
  634. static void check_all_batteries(unsigned long ptr)
  635. {
  636. int i;
  637. for (i = 0; i < num_cards; i++)
  638. if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
  639. struct cardinfo *card = &cards[i];
  640. spin_lock_bh(&card->lock);
  641. if (card->Active >= 0)
  642. card->check_batteries = 1;
  643. else
  644. check_batteries(card);
  645. spin_unlock_bh(&card->lock);
  646. }
  647. init_battery_timer();
  648. }
  649. /*
  650. -----------------------------------------------------------------------------------
  651. -- init_battery_timer
  652. -----------------------------------------------------------------------------------
  653. */
  654. static void init_battery_timer(void)
  655. {
  656. init_timer(&battery_timer);
  657. battery_timer.function = check_all_batteries;
  658. battery_timer.expires = jiffies + (HZ * 60);
  659. add_timer(&battery_timer);
  660. }
  661. /*
  662. -----------------------------------------------------------------------------------
  663. -- del_battery_timer
  664. -----------------------------------------------------------------------------------
  665. */
  666. static void del_battery_timer(void)
  667. {
  668. del_timer(&battery_timer);
  669. }
  670. /*
  671. -----------------------------------------------------------------------------------
  672. -- mm_revalidate
  673. -----------------------------------------------------------------------------------
  674. */
  675. /*
  676. * Note no locks taken out here. In a worst case scenario, we could drop
  677. * a chunk of system memory. But that should never happen, since validation
  678. * happens at open or mount time, when locks are held.
  679. *
  680. * That's crap, since doing that while some partitions are opened
  681. * or mounted will give you really nasty results.
  682. */
  683. static int mm_revalidate(struct gendisk *disk)
  684. {
  685. struct cardinfo *card = disk->private_data;
  686. set_capacity(disk, card->mm_size << 1);
  687. return 0;
  688. }
  689. static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  690. {
  691. struct cardinfo *card = bdev->bd_disk->private_data;
  692. int size = card->mm_size * (1024 / MM_HARDSECT);
  693. /*
  694. * get geometry: we have to fake one... trim the size to a
  695. * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
  696. * whatever cylinders.
  697. */
  698. geo->heads = 64;
  699. geo->sectors = 32;
  700. geo->cylinders = size / (geo->heads * geo->sectors);
  701. return 0;
  702. }
  703. /*
  704. -----------------------------------------------------------------------------------
  705. -- mm_check_change
  706. -----------------------------------------------------------------------------------
  707. Future support for removable devices
  708. */
  709. static int mm_check_change(struct gendisk *disk)
  710. {
  711. /* struct cardinfo *dev = disk->private_data; */
  712. return 0;
  713. }
  714. /*
  715. -----------------------------------------------------------------------------------
  716. -- mm_fops
  717. -----------------------------------------------------------------------------------
  718. */
  719. static struct block_device_operations mm_fops = {
  720. .owner = THIS_MODULE,
  721. .getgeo = mm_getgeo,
  722. .revalidate_disk= mm_revalidate,
  723. .media_changed = mm_check_change,
  724. };
  725. /*
  726. -----------------------------------------------------------------------------------
  727. -- mm_pci_probe
  728. -----------------------------------------------------------------------------------
  729. */
  730. static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
  731. {
  732. int ret = -ENODEV;
  733. struct cardinfo *card = &cards[num_cards];
  734. unsigned char mem_present;
  735. unsigned char batt_status;
  736. unsigned int saved_bar, data;
  737. int magic_number;
  738. if (pci_enable_device(dev) < 0)
  739. return -ENODEV;
  740. pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
  741. pci_set_master(dev);
  742. card->dev = dev;
  743. card->card_number = num_cards;
  744. card->csr_base = pci_resource_start(dev, 0);
  745. card->csr_len = pci_resource_len(dev, 0);
  746. printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
  747. card->card_number, dev->bus->number, dev->devfn);
  748. if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
  749. pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
  750. printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
  751. return -ENOMEM;
  752. }
  753. if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
  754. printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
  755. ret = -ENOMEM;
  756. goto failed_req_csr;
  757. }
  758. card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
  759. if (!card->csr_remap) {
  760. printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
  761. ret = -ENOMEM;
  762. goto failed_remap_csr;
  763. }
  764. printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
  765. card->csr_base, card->csr_remap, card->csr_len);
  766. switch(card->dev->device) {
  767. case 0x5415:
  768. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
  769. magic_number = 0x59;
  770. break;
  771. case 0x5425:
  772. card->flags |= UM_FLAG_NO_BYTE_STATUS;
  773. magic_number = 0x5C;
  774. break;
  775. case 0x6155:
  776. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
  777. magic_number = 0x99;
  778. break;
  779. default:
  780. magic_number = 0x100;
  781. break;
  782. }
  783. if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
  784. printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
  785. ret = -ENOMEM;
  786. goto failed_magic;
  787. }
  788. card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
  789. PAGE_SIZE*2,
  790. &card->mm_pages[0].page_dma);
  791. card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
  792. PAGE_SIZE*2,
  793. &card->mm_pages[1].page_dma);
  794. if (card->mm_pages[0].desc == NULL ||
  795. card->mm_pages[1].desc == NULL) {
  796. printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
  797. goto failed_alloc;
  798. }
  799. reset_page(&card->mm_pages[0]);
  800. reset_page(&card->mm_pages[1]);
  801. card->Ready = 0; /* page 0 is ready */
  802. card->Active = -1; /* no page is active */
  803. card->bio = NULL;
  804. card->biotail = &card->bio;
  805. card->queue = blk_alloc_queue(GFP_KERNEL);
  806. if (!card->queue)
  807. goto failed_alloc;
  808. blk_queue_make_request(card->queue, mm_make_request);
  809. card->queue->queuedata = card;
  810. card->queue->unplug_fn = mm_unplug_device;
  811. tasklet_init(&card->tasklet, process_page, (unsigned long)card);
  812. card->check_batteries = 0;
  813. mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
  814. switch (mem_present) {
  815. case MEM_128_MB:
  816. card->mm_size = 1024 * 128;
  817. break;
  818. case MEM_256_MB:
  819. card->mm_size = 1024 * 256;
  820. break;
  821. case MEM_512_MB:
  822. card->mm_size = 1024 * 512;
  823. break;
  824. case MEM_1_GB:
  825. card->mm_size = 1024 * 1024;
  826. break;
  827. case MEM_2_GB:
  828. card->mm_size = 1024 * 2048;
  829. break;
  830. default:
  831. card->mm_size = 0;
  832. break;
  833. }
  834. /* Clear the LED's we control */
  835. set_led(card, LED_REMOVE, LED_OFF);
  836. set_led(card, LED_FAULT, LED_OFF);
  837. batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  838. card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
  839. card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
  840. card->battery[0].last_change = card->battery[1].last_change = jiffies;
  841. if (card->flags & UM_FLAG_NO_BATT)
  842. printk(KERN_INFO "MM%d: Size %d KB\n",
  843. card->card_number, card->mm_size);
  844. else {
  845. printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
  846. card->card_number, card->mm_size,
  847. (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
  848. card->battery[0].good ? "OK" : "FAILURE",
  849. (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
  850. card->battery[1].good ? "OK" : "FAILURE");
  851. set_fault_to_battery_status(card);
  852. }
  853. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
  854. data = 0xffffffff;
  855. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
  856. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
  857. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
  858. data &= 0xfffffff0;
  859. data = ~data;
  860. data += 1;
  861. card->win_size = data;
  862. if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
  863. printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
  864. ret = -ENODEV;
  865. goto failed_req_irq;
  866. }
  867. card->irq = dev->irq;
  868. printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
  869. card->win_size, card->irq);
  870. spin_lock_init(&card->lock);
  871. pci_set_drvdata(dev, card);
  872. if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
  873. pci_write_cmd = 0x07; /* then Memory Write command */
  874. if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
  875. unsigned short cfg_command;
  876. pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
  877. cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
  878. pci_write_config_word(dev, PCI_COMMAND, cfg_command);
  879. }
  880. pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
  881. num_cards++;
  882. if (!get_userbit(card, MEMORY_INITIALIZED)) {
  883. printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
  884. card->init_size = 0;
  885. } else {
  886. printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
  887. card->init_size = card->mm_size;
  888. }
  889. /* Enable ECC */
  890. writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
  891. return 0;
  892. failed_req_irq:
  893. failed_alloc:
  894. if (card->mm_pages[0].desc)
  895. pci_free_consistent(card->dev, PAGE_SIZE*2,
  896. card->mm_pages[0].desc,
  897. card->mm_pages[0].page_dma);
  898. if (card->mm_pages[1].desc)
  899. pci_free_consistent(card->dev, PAGE_SIZE*2,
  900. card->mm_pages[1].desc,
  901. card->mm_pages[1].page_dma);
  902. failed_magic:
  903. iounmap(card->csr_remap);
  904. failed_remap_csr:
  905. release_mem_region(card->csr_base, card->csr_len);
  906. failed_req_csr:
  907. return ret;
  908. }
  909. /*
  910. -----------------------------------------------------------------------------------
  911. -- mm_pci_remove
  912. -----------------------------------------------------------------------------------
  913. */
  914. static void mm_pci_remove(struct pci_dev *dev)
  915. {
  916. struct cardinfo *card = pci_get_drvdata(dev);
  917. tasklet_kill(&card->tasklet);
  918. iounmap(card->csr_remap);
  919. release_mem_region(card->csr_base, card->csr_len);
  920. free_irq(card->irq, card);
  921. if (card->mm_pages[0].desc)
  922. pci_free_consistent(card->dev, PAGE_SIZE*2,
  923. card->mm_pages[0].desc,
  924. card->mm_pages[0].page_dma);
  925. if (card->mm_pages[1].desc)
  926. pci_free_consistent(card->dev, PAGE_SIZE*2,
  927. card->mm_pages[1].desc,
  928. card->mm_pages[1].page_dma);
  929. blk_cleanup_queue(card->queue);
  930. }
  931. static const struct pci_device_id mm_pci_ids[] = {
  932. {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
  933. {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
  934. {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_6155)},
  935. {
  936. .vendor = 0x8086,
  937. .device = 0xB555,
  938. .subvendor= 0x1332,
  939. .subdevice= 0x5460,
  940. .class = 0x050000,
  941. .class_mask= 0,
  942. }, { /* end: all zeroes */ }
  943. };
  944. MODULE_DEVICE_TABLE(pci, mm_pci_ids);
  945. static struct pci_driver mm_pci_driver = {
  946. .name = "umem",
  947. .id_table = mm_pci_ids,
  948. .probe = mm_pci_probe,
  949. .remove = mm_pci_remove,
  950. };
  951. /*
  952. -----------------------------------------------------------------------------------
  953. -- mm_init
  954. -----------------------------------------------------------------------------------
  955. */
  956. static int __init mm_init(void)
  957. {
  958. int retval, i;
  959. int err;
  960. printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
  961. retval = pci_register_driver(&mm_pci_driver);
  962. if (retval)
  963. return -ENOMEM;
  964. err = major_nr = register_blkdev(0, "umem");
  965. if (err < 0) {
  966. pci_unregister_driver(&mm_pci_driver);
  967. return -EIO;
  968. }
  969. for (i = 0; i < num_cards; i++) {
  970. mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
  971. if (!mm_gendisk[i])
  972. goto out;
  973. }
  974. for (i = 0; i < num_cards; i++) {
  975. struct gendisk *disk = mm_gendisk[i];
  976. sprintf(disk->disk_name, "umem%c", 'a'+i);
  977. spin_lock_init(&cards[i].lock);
  978. disk->major = major_nr;
  979. disk->first_minor = i << MM_SHIFT;
  980. disk->fops = &mm_fops;
  981. disk->private_data = &cards[i];
  982. disk->queue = cards[i].queue;
  983. set_capacity(disk, cards[i].mm_size << 1);
  984. add_disk(disk);
  985. }
  986. init_battery_timer();
  987. printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
  988. /* printk("mm_init: Done. 10-19-01 9:00\n"); */
  989. return 0;
  990. out:
  991. pci_unregister_driver(&mm_pci_driver);
  992. unregister_blkdev(major_nr, "umem");
  993. while (i--)
  994. put_disk(mm_gendisk[i]);
  995. return -ENOMEM;
  996. }
  997. /*
  998. -----------------------------------------------------------------------------------
  999. -- mm_cleanup
  1000. -----------------------------------------------------------------------------------
  1001. */
  1002. static void __exit mm_cleanup(void)
  1003. {
  1004. int i;
  1005. del_battery_timer();
  1006. for (i=0; i < num_cards ; i++) {
  1007. del_gendisk(mm_gendisk[i]);
  1008. put_disk(mm_gendisk[i]);
  1009. }
  1010. pci_unregister_driver(&mm_pci_driver);
  1011. unregister_blkdev(major_nr, "umem");
  1012. }
  1013. module_init(mm_init);
  1014. module_exit(mm_cleanup);
  1015. MODULE_AUTHOR(DRIVER_AUTHOR);
  1016. MODULE_DESCRIPTION(DRIVER_DESC);
  1017. MODULE_LICENSE("GPL");