page_alloc.c 129 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <linux/kmemleak.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/div64.h>
  51. #include "internal.h"
  52. /*
  53. * Array of node states.
  54. */
  55. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  56. [N_POSSIBLE] = NODE_MASK_ALL,
  57. [N_ONLINE] = { { [0] = 1UL } },
  58. #ifndef CONFIG_NUMA
  59. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  60. #ifdef CONFIG_HIGHMEM
  61. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  62. #endif
  63. [N_CPU] = { { [0] = 1UL } },
  64. #endif /* NUMA */
  65. };
  66. EXPORT_SYMBOL(node_states);
  67. unsigned long totalram_pages __read_mostly;
  68. unsigned long totalreserve_pages __read_mostly;
  69. unsigned long highest_memmap_pfn __read_mostly;
  70. int percpu_pagelist_fraction;
  71. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  72. int pageblock_order __read_mostly;
  73. #endif
  74. static void __free_pages_ok(struct page *page, unsigned int order);
  75. /*
  76. * results with 256, 32 in the lowmem_reserve sysctl:
  77. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  78. * 1G machine -> (16M dma, 784M normal, 224M high)
  79. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  80. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  81. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  82. *
  83. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  84. * don't need any ZONE_NORMAL reservation
  85. */
  86. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  87. #ifdef CONFIG_ZONE_DMA
  88. 256,
  89. #endif
  90. #ifdef CONFIG_ZONE_DMA32
  91. 256,
  92. #endif
  93. #ifdef CONFIG_HIGHMEM
  94. 32,
  95. #endif
  96. 32,
  97. };
  98. EXPORT_SYMBOL(totalram_pages);
  99. static char * const zone_names[MAX_NR_ZONES] = {
  100. #ifdef CONFIG_ZONE_DMA
  101. "DMA",
  102. #endif
  103. #ifdef CONFIG_ZONE_DMA32
  104. "DMA32",
  105. #endif
  106. "Normal",
  107. #ifdef CONFIG_HIGHMEM
  108. "HighMem",
  109. #endif
  110. "Movable",
  111. };
  112. int min_free_kbytes = 1024;
  113. unsigned long __meminitdata nr_kernel_pages;
  114. unsigned long __meminitdata nr_all_pages;
  115. static unsigned long __meminitdata dma_reserve;
  116. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  117. /*
  118. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  119. * ranges of memory (RAM) that may be registered with add_active_range().
  120. * Ranges passed to add_active_range() will be merged if possible
  121. * so the number of times add_active_range() can be called is
  122. * related to the number of nodes and the number of holes
  123. */
  124. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  125. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  126. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  127. #else
  128. #if MAX_NUMNODES >= 32
  129. /* If there can be many nodes, allow up to 50 holes per node */
  130. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  131. #else
  132. /* By default, allow up to 256 distinct regions */
  133. #define MAX_ACTIVE_REGIONS 256
  134. #endif
  135. #endif
  136. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  137. static int __meminitdata nr_nodemap_entries;
  138. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  139. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  140. static unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. EXPORT_SYMBOL(nr_node_ids);
  150. #endif
  151. int page_group_by_mobility_disabled __read_mostly;
  152. static void set_pageblock_migratetype(struct page *page, int migratetype)
  153. {
  154. set_pageblock_flags_group(page, (unsigned long)migratetype,
  155. PB_migrate, PB_migrate_end);
  156. }
  157. #ifdef CONFIG_DEBUG_VM
  158. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  159. {
  160. int ret = 0;
  161. unsigned seq;
  162. unsigned long pfn = page_to_pfn(page);
  163. do {
  164. seq = zone_span_seqbegin(zone);
  165. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  166. ret = 1;
  167. else if (pfn < zone->zone_start_pfn)
  168. ret = 1;
  169. } while (zone_span_seqretry(zone, seq));
  170. return ret;
  171. }
  172. static int page_is_consistent(struct zone *zone, struct page *page)
  173. {
  174. if (!pfn_valid_within(page_to_pfn(page)))
  175. return 0;
  176. if (zone != page_zone(page))
  177. return 0;
  178. return 1;
  179. }
  180. /*
  181. * Temporary debugging check for pages not lying within a given zone.
  182. */
  183. static int bad_range(struct zone *zone, struct page *page)
  184. {
  185. if (page_outside_zone_boundaries(zone, page))
  186. return 1;
  187. if (!page_is_consistent(zone, page))
  188. return 1;
  189. return 0;
  190. }
  191. #else
  192. static inline int bad_range(struct zone *zone, struct page *page)
  193. {
  194. return 0;
  195. }
  196. #endif
  197. static void bad_page(struct page *page)
  198. {
  199. static unsigned long resume;
  200. static unsigned long nr_shown;
  201. static unsigned long nr_unshown;
  202. /*
  203. * Allow a burst of 60 reports, then keep quiet for that minute;
  204. * or allow a steady drip of one report per second.
  205. */
  206. if (nr_shown == 60) {
  207. if (time_before(jiffies, resume)) {
  208. nr_unshown++;
  209. goto out;
  210. }
  211. if (nr_unshown) {
  212. printk(KERN_ALERT
  213. "BUG: Bad page state: %lu messages suppressed\n",
  214. nr_unshown);
  215. nr_unshown = 0;
  216. }
  217. nr_shown = 0;
  218. }
  219. if (nr_shown++ == 0)
  220. resume = jiffies + 60 * HZ;
  221. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  222. current->comm, page_to_pfn(page));
  223. printk(KERN_ALERT
  224. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  225. page, (void *)page->flags, page_count(page),
  226. page_mapcount(page), page->mapping, page->index);
  227. dump_stack();
  228. out:
  229. /* Leave bad fields for debug, except PageBuddy could make trouble */
  230. __ClearPageBuddy(page);
  231. add_taint(TAINT_BAD_PAGE);
  232. }
  233. /*
  234. * Higher-order pages are called "compound pages". They are structured thusly:
  235. *
  236. * The first PAGE_SIZE page is called the "head page".
  237. *
  238. * The remaining PAGE_SIZE pages are called "tail pages".
  239. *
  240. * All pages have PG_compound set. All pages have their ->private pointing at
  241. * the head page (even the head page has this).
  242. *
  243. * The first tail page's ->lru.next holds the address of the compound page's
  244. * put_page() function. Its ->lru.prev holds the order of allocation.
  245. * This usage means that zero-order pages may not be compound.
  246. */
  247. static void free_compound_page(struct page *page)
  248. {
  249. __free_pages_ok(page, compound_order(page));
  250. }
  251. void prep_compound_page(struct page *page, unsigned long order)
  252. {
  253. int i;
  254. int nr_pages = 1 << order;
  255. set_compound_page_dtor(page, free_compound_page);
  256. set_compound_order(page, order);
  257. __SetPageHead(page);
  258. for (i = 1; i < nr_pages; i++) {
  259. struct page *p = page + i;
  260. __SetPageTail(p);
  261. p->first_page = page;
  262. }
  263. }
  264. #ifdef CONFIG_HUGETLBFS
  265. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  266. {
  267. int i;
  268. int nr_pages = 1 << order;
  269. struct page *p = page + 1;
  270. set_compound_page_dtor(page, free_compound_page);
  271. set_compound_order(page, order);
  272. __SetPageHead(page);
  273. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  274. __SetPageTail(p);
  275. p->first_page = page;
  276. }
  277. }
  278. #endif
  279. static int destroy_compound_page(struct page *page, unsigned long order)
  280. {
  281. int i;
  282. int nr_pages = 1 << order;
  283. int bad = 0;
  284. if (unlikely(compound_order(page) != order) ||
  285. unlikely(!PageHead(page))) {
  286. bad_page(page);
  287. bad++;
  288. }
  289. __ClearPageHead(page);
  290. for (i = 1; i < nr_pages; i++) {
  291. struct page *p = page + i;
  292. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  293. bad_page(page);
  294. bad++;
  295. }
  296. __ClearPageTail(p);
  297. }
  298. return bad;
  299. }
  300. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  301. {
  302. int i;
  303. /*
  304. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  305. * and __GFP_HIGHMEM from hard or soft interrupt context.
  306. */
  307. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  308. for (i = 0; i < (1 << order); i++)
  309. clear_highpage(page + i);
  310. }
  311. static inline void set_page_order(struct page *page, int order)
  312. {
  313. set_page_private(page, order);
  314. __SetPageBuddy(page);
  315. }
  316. static inline void rmv_page_order(struct page *page)
  317. {
  318. __ClearPageBuddy(page);
  319. set_page_private(page, 0);
  320. }
  321. /*
  322. * Locate the struct page for both the matching buddy in our
  323. * pair (buddy1) and the combined O(n+1) page they form (page).
  324. *
  325. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  326. * the following equation:
  327. * B2 = B1 ^ (1 << O)
  328. * For example, if the starting buddy (buddy2) is #8 its order
  329. * 1 buddy is #10:
  330. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  331. *
  332. * 2) Any buddy B will have an order O+1 parent P which
  333. * satisfies the following equation:
  334. * P = B & ~(1 << O)
  335. *
  336. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  337. */
  338. static inline struct page *
  339. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  340. {
  341. unsigned long buddy_idx = page_idx ^ (1 << order);
  342. return page + (buddy_idx - page_idx);
  343. }
  344. static inline unsigned long
  345. __find_combined_index(unsigned long page_idx, unsigned int order)
  346. {
  347. return (page_idx & ~(1 << order));
  348. }
  349. /*
  350. * This function checks whether a page is free && is the buddy
  351. * we can do coalesce a page and its buddy if
  352. * (a) the buddy is not in a hole &&
  353. * (b) the buddy is in the buddy system &&
  354. * (c) a page and its buddy have the same order &&
  355. * (d) a page and its buddy are in the same zone.
  356. *
  357. * For recording whether a page is in the buddy system, we use PG_buddy.
  358. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  359. *
  360. * For recording page's order, we use page_private(page).
  361. */
  362. static inline int page_is_buddy(struct page *page, struct page *buddy,
  363. int order)
  364. {
  365. if (!pfn_valid_within(page_to_pfn(buddy)))
  366. return 0;
  367. if (page_zone_id(page) != page_zone_id(buddy))
  368. return 0;
  369. if (PageBuddy(buddy) && page_order(buddy) == order) {
  370. BUG_ON(page_count(buddy) != 0);
  371. return 1;
  372. }
  373. return 0;
  374. }
  375. /*
  376. * Freeing function for a buddy system allocator.
  377. *
  378. * The concept of a buddy system is to maintain direct-mapped table
  379. * (containing bit values) for memory blocks of various "orders".
  380. * The bottom level table contains the map for the smallest allocatable
  381. * units of memory (here, pages), and each level above it describes
  382. * pairs of units from the levels below, hence, "buddies".
  383. * At a high level, all that happens here is marking the table entry
  384. * at the bottom level available, and propagating the changes upward
  385. * as necessary, plus some accounting needed to play nicely with other
  386. * parts of the VM system.
  387. * At each level, we keep a list of pages, which are heads of continuous
  388. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  389. * order is recorded in page_private(page) field.
  390. * So when we are allocating or freeing one, we can derive the state of the
  391. * other. That is, if we allocate a small block, and both were
  392. * free, the remainder of the region must be split into blocks.
  393. * If a block is freed, and its buddy is also free, then this
  394. * triggers coalescing into a block of larger size.
  395. *
  396. * -- wli
  397. */
  398. static inline void __free_one_page(struct page *page,
  399. struct zone *zone, unsigned int order)
  400. {
  401. unsigned long page_idx;
  402. int order_size = 1 << order;
  403. int migratetype = get_pageblock_migratetype(page);
  404. if (unlikely(PageCompound(page)))
  405. if (unlikely(destroy_compound_page(page, order)))
  406. return;
  407. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  408. VM_BUG_ON(page_idx & (order_size - 1));
  409. VM_BUG_ON(bad_range(zone, page));
  410. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  411. while (order < MAX_ORDER-1) {
  412. unsigned long combined_idx;
  413. struct page *buddy;
  414. buddy = __page_find_buddy(page, page_idx, order);
  415. if (!page_is_buddy(page, buddy, order))
  416. break;
  417. /* Our buddy is free, merge with it and move up one order. */
  418. list_del(&buddy->lru);
  419. zone->free_area[order].nr_free--;
  420. rmv_page_order(buddy);
  421. combined_idx = __find_combined_index(page_idx, order);
  422. page = page + (combined_idx - page_idx);
  423. page_idx = combined_idx;
  424. order++;
  425. }
  426. set_page_order(page, order);
  427. list_add(&page->lru,
  428. &zone->free_area[order].free_list[migratetype]);
  429. zone->free_area[order].nr_free++;
  430. }
  431. static inline int free_pages_check(struct page *page)
  432. {
  433. free_page_mlock(page);
  434. if (unlikely(page_mapcount(page) |
  435. (page->mapping != NULL) |
  436. (page_count(page) != 0) |
  437. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  438. bad_page(page);
  439. return 1;
  440. }
  441. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  442. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  443. return 0;
  444. }
  445. /*
  446. * Frees a list of pages.
  447. * Assumes all pages on list are in same zone, and of same order.
  448. * count is the number of pages to free.
  449. *
  450. * If the zone was previously in an "all pages pinned" state then look to
  451. * see if this freeing clears that state.
  452. *
  453. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  454. * pinned" detection logic.
  455. */
  456. static void free_pages_bulk(struct zone *zone, int count,
  457. struct list_head *list, int order)
  458. {
  459. spin_lock(&zone->lock);
  460. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  461. zone->pages_scanned = 0;
  462. while (count--) {
  463. struct page *page;
  464. VM_BUG_ON(list_empty(list));
  465. page = list_entry(list->prev, struct page, lru);
  466. /* have to delete it as __free_one_page list manipulates */
  467. list_del(&page->lru);
  468. __free_one_page(page, zone, order);
  469. }
  470. spin_unlock(&zone->lock);
  471. }
  472. static void free_one_page(struct zone *zone, struct page *page, int order)
  473. {
  474. spin_lock(&zone->lock);
  475. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  476. zone->pages_scanned = 0;
  477. __free_one_page(page, zone, order);
  478. spin_unlock(&zone->lock);
  479. }
  480. static void __free_pages_ok(struct page *page, unsigned int order)
  481. {
  482. unsigned long flags;
  483. int i;
  484. int bad = 0;
  485. for (i = 0 ; i < (1 << order) ; ++i)
  486. bad += free_pages_check(page + i);
  487. if (bad)
  488. return;
  489. if (!PageHighMem(page)) {
  490. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  491. debug_check_no_obj_freed(page_address(page),
  492. PAGE_SIZE << order);
  493. }
  494. arch_free_page(page, order);
  495. kernel_map_pages(page, 1 << order, 0);
  496. local_irq_save(flags);
  497. __count_vm_events(PGFREE, 1 << order);
  498. free_one_page(page_zone(page), page, order);
  499. local_irq_restore(flags);
  500. }
  501. /*
  502. * permit the bootmem allocator to evade page validation on high-order frees
  503. */
  504. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  505. {
  506. if (order == 0) {
  507. __ClearPageReserved(page);
  508. set_page_count(page, 0);
  509. set_page_refcounted(page);
  510. __free_page(page);
  511. } else {
  512. int loop;
  513. prefetchw(page);
  514. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  515. struct page *p = &page[loop];
  516. if (loop + 1 < BITS_PER_LONG)
  517. prefetchw(p + 1);
  518. __ClearPageReserved(p);
  519. set_page_count(p, 0);
  520. }
  521. set_page_refcounted(page);
  522. __free_pages(page, order);
  523. }
  524. }
  525. /*
  526. * The order of subdivision here is critical for the IO subsystem.
  527. * Please do not alter this order without good reasons and regression
  528. * testing. Specifically, as large blocks of memory are subdivided,
  529. * the order in which smaller blocks are delivered depends on the order
  530. * they're subdivided in this function. This is the primary factor
  531. * influencing the order in which pages are delivered to the IO
  532. * subsystem according to empirical testing, and this is also justified
  533. * by considering the behavior of a buddy system containing a single
  534. * large block of memory acted on by a series of small allocations.
  535. * This behavior is a critical factor in sglist merging's success.
  536. *
  537. * -- wli
  538. */
  539. static inline void expand(struct zone *zone, struct page *page,
  540. int low, int high, struct free_area *area,
  541. int migratetype)
  542. {
  543. unsigned long size = 1 << high;
  544. while (high > low) {
  545. area--;
  546. high--;
  547. size >>= 1;
  548. VM_BUG_ON(bad_range(zone, &page[size]));
  549. list_add(&page[size].lru, &area->free_list[migratetype]);
  550. area->nr_free++;
  551. set_page_order(&page[size], high);
  552. }
  553. }
  554. /*
  555. * This page is about to be returned from the page allocator
  556. */
  557. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  558. {
  559. if (unlikely(page_mapcount(page) |
  560. (page->mapping != NULL) |
  561. (page_count(page) != 0) |
  562. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  563. bad_page(page);
  564. return 1;
  565. }
  566. set_page_private(page, 0);
  567. set_page_refcounted(page);
  568. arch_alloc_page(page, order);
  569. kernel_map_pages(page, 1 << order, 1);
  570. if (gfp_flags & __GFP_ZERO)
  571. prep_zero_page(page, order, gfp_flags);
  572. if (order && (gfp_flags & __GFP_COMP))
  573. prep_compound_page(page, order);
  574. return 0;
  575. }
  576. /*
  577. * Go through the free lists for the given migratetype and remove
  578. * the smallest available page from the freelists
  579. */
  580. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  581. int migratetype)
  582. {
  583. unsigned int current_order;
  584. struct free_area * area;
  585. struct page *page;
  586. /* Find a page of the appropriate size in the preferred list */
  587. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  588. area = &(zone->free_area[current_order]);
  589. if (list_empty(&area->free_list[migratetype]))
  590. continue;
  591. page = list_entry(area->free_list[migratetype].next,
  592. struct page, lru);
  593. list_del(&page->lru);
  594. rmv_page_order(page);
  595. area->nr_free--;
  596. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  597. expand(zone, page, order, current_order, area, migratetype);
  598. return page;
  599. }
  600. return NULL;
  601. }
  602. /*
  603. * This array describes the order lists are fallen back to when
  604. * the free lists for the desirable migrate type are depleted
  605. */
  606. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  607. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  608. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  609. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  610. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  611. };
  612. /*
  613. * Move the free pages in a range to the free lists of the requested type.
  614. * Note that start_page and end_pages are not aligned on a pageblock
  615. * boundary. If alignment is required, use move_freepages_block()
  616. */
  617. static int move_freepages(struct zone *zone,
  618. struct page *start_page, struct page *end_page,
  619. int migratetype)
  620. {
  621. struct page *page;
  622. unsigned long order;
  623. int pages_moved = 0;
  624. #ifndef CONFIG_HOLES_IN_ZONE
  625. /*
  626. * page_zone is not safe to call in this context when
  627. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  628. * anyway as we check zone boundaries in move_freepages_block().
  629. * Remove at a later date when no bug reports exist related to
  630. * grouping pages by mobility
  631. */
  632. BUG_ON(page_zone(start_page) != page_zone(end_page));
  633. #endif
  634. for (page = start_page; page <= end_page;) {
  635. /* Make sure we are not inadvertently changing nodes */
  636. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  637. if (!pfn_valid_within(page_to_pfn(page))) {
  638. page++;
  639. continue;
  640. }
  641. if (!PageBuddy(page)) {
  642. page++;
  643. continue;
  644. }
  645. order = page_order(page);
  646. list_del(&page->lru);
  647. list_add(&page->lru,
  648. &zone->free_area[order].free_list[migratetype]);
  649. page += 1 << order;
  650. pages_moved += 1 << order;
  651. }
  652. return pages_moved;
  653. }
  654. static int move_freepages_block(struct zone *zone, struct page *page,
  655. int migratetype)
  656. {
  657. unsigned long start_pfn, end_pfn;
  658. struct page *start_page, *end_page;
  659. start_pfn = page_to_pfn(page);
  660. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  661. start_page = pfn_to_page(start_pfn);
  662. end_page = start_page + pageblock_nr_pages - 1;
  663. end_pfn = start_pfn + pageblock_nr_pages - 1;
  664. /* Do not cross zone boundaries */
  665. if (start_pfn < zone->zone_start_pfn)
  666. start_page = page;
  667. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  668. return 0;
  669. return move_freepages(zone, start_page, end_page, migratetype);
  670. }
  671. /* Remove an element from the buddy allocator from the fallback list */
  672. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  673. int start_migratetype)
  674. {
  675. struct free_area * area;
  676. int current_order;
  677. struct page *page;
  678. int migratetype, i;
  679. /* Find the largest possible block of pages in the other list */
  680. for (current_order = MAX_ORDER-1; current_order >= order;
  681. --current_order) {
  682. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  683. migratetype = fallbacks[start_migratetype][i];
  684. /* MIGRATE_RESERVE handled later if necessary */
  685. if (migratetype == MIGRATE_RESERVE)
  686. continue;
  687. area = &(zone->free_area[current_order]);
  688. if (list_empty(&area->free_list[migratetype]))
  689. continue;
  690. page = list_entry(area->free_list[migratetype].next,
  691. struct page, lru);
  692. area->nr_free--;
  693. /*
  694. * If breaking a large block of pages, move all free
  695. * pages to the preferred allocation list. If falling
  696. * back for a reclaimable kernel allocation, be more
  697. * agressive about taking ownership of free pages
  698. */
  699. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  700. start_migratetype == MIGRATE_RECLAIMABLE) {
  701. unsigned long pages;
  702. pages = move_freepages_block(zone, page,
  703. start_migratetype);
  704. /* Claim the whole block if over half of it is free */
  705. if (pages >= (1 << (pageblock_order-1)))
  706. set_pageblock_migratetype(page,
  707. start_migratetype);
  708. migratetype = start_migratetype;
  709. }
  710. /* Remove the page from the freelists */
  711. list_del(&page->lru);
  712. rmv_page_order(page);
  713. __mod_zone_page_state(zone, NR_FREE_PAGES,
  714. -(1UL << order));
  715. if (current_order == pageblock_order)
  716. set_pageblock_migratetype(page,
  717. start_migratetype);
  718. expand(zone, page, order, current_order, area, migratetype);
  719. return page;
  720. }
  721. }
  722. /* Use MIGRATE_RESERVE rather than fail an allocation */
  723. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  724. }
  725. /*
  726. * Do the hard work of removing an element from the buddy allocator.
  727. * Call me with the zone->lock already held.
  728. */
  729. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  730. int migratetype)
  731. {
  732. struct page *page;
  733. page = __rmqueue_smallest(zone, order, migratetype);
  734. if (unlikely(!page))
  735. page = __rmqueue_fallback(zone, order, migratetype);
  736. return page;
  737. }
  738. /*
  739. * Obtain a specified number of elements from the buddy allocator, all under
  740. * a single hold of the lock, for efficiency. Add them to the supplied list.
  741. * Returns the number of new pages which were placed at *list.
  742. */
  743. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  744. unsigned long count, struct list_head *list,
  745. int migratetype)
  746. {
  747. int i;
  748. spin_lock(&zone->lock);
  749. for (i = 0; i < count; ++i) {
  750. struct page *page = __rmqueue(zone, order, migratetype);
  751. if (unlikely(page == NULL))
  752. break;
  753. /*
  754. * Split buddy pages returned by expand() are received here
  755. * in physical page order. The page is added to the callers and
  756. * list and the list head then moves forward. From the callers
  757. * perspective, the linked list is ordered by page number in
  758. * some conditions. This is useful for IO devices that can
  759. * merge IO requests if the physical pages are ordered
  760. * properly.
  761. */
  762. list_add(&page->lru, list);
  763. set_page_private(page, migratetype);
  764. list = &page->lru;
  765. }
  766. spin_unlock(&zone->lock);
  767. return i;
  768. }
  769. #ifdef CONFIG_NUMA
  770. /*
  771. * Called from the vmstat counter updater to drain pagesets of this
  772. * currently executing processor on remote nodes after they have
  773. * expired.
  774. *
  775. * Note that this function must be called with the thread pinned to
  776. * a single processor.
  777. */
  778. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  779. {
  780. unsigned long flags;
  781. int to_drain;
  782. local_irq_save(flags);
  783. if (pcp->count >= pcp->batch)
  784. to_drain = pcp->batch;
  785. else
  786. to_drain = pcp->count;
  787. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  788. pcp->count -= to_drain;
  789. local_irq_restore(flags);
  790. }
  791. #endif
  792. /*
  793. * Drain pages of the indicated processor.
  794. *
  795. * The processor must either be the current processor and the
  796. * thread pinned to the current processor or a processor that
  797. * is not online.
  798. */
  799. static void drain_pages(unsigned int cpu)
  800. {
  801. unsigned long flags;
  802. struct zone *zone;
  803. for_each_populated_zone(zone) {
  804. struct per_cpu_pageset *pset;
  805. struct per_cpu_pages *pcp;
  806. pset = zone_pcp(zone, cpu);
  807. pcp = &pset->pcp;
  808. local_irq_save(flags);
  809. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  810. pcp->count = 0;
  811. local_irq_restore(flags);
  812. }
  813. }
  814. /*
  815. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  816. */
  817. void drain_local_pages(void *arg)
  818. {
  819. drain_pages(smp_processor_id());
  820. }
  821. /*
  822. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  823. */
  824. void drain_all_pages(void)
  825. {
  826. on_each_cpu(drain_local_pages, NULL, 1);
  827. }
  828. #ifdef CONFIG_HIBERNATION
  829. void mark_free_pages(struct zone *zone)
  830. {
  831. unsigned long pfn, max_zone_pfn;
  832. unsigned long flags;
  833. int order, t;
  834. struct list_head *curr;
  835. if (!zone->spanned_pages)
  836. return;
  837. spin_lock_irqsave(&zone->lock, flags);
  838. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  839. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  840. if (pfn_valid(pfn)) {
  841. struct page *page = pfn_to_page(pfn);
  842. if (!swsusp_page_is_forbidden(page))
  843. swsusp_unset_page_free(page);
  844. }
  845. for_each_migratetype_order(order, t) {
  846. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  847. unsigned long i;
  848. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  849. for (i = 0; i < (1UL << order); i++)
  850. swsusp_set_page_free(pfn_to_page(pfn + i));
  851. }
  852. }
  853. spin_unlock_irqrestore(&zone->lock, flags);
  854. }
  855. #endif /* CONFIG_PM */
  856. /*
  857. * Free a 0-order page
  858. */
  859. static void free_hot_cold_page(struct page *page, int cold)
  860. {
  861. struct zone *zone = page_zone(page);
  862. struct per_cpu_pages *pcp;
  863. unsigned long flags;
  864. if (PageAnon(page))
  865. page->mapping = NULL;
  866. if (free_pages_check(page))
  867. return;
  868. if (!PageHighMem(page)) {
  869. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  870. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  871. }
  872. arch_free_page(page, 0);
  873. kernel_map_pages(page, 1, 0);
  874. pcp = &zone_pcp(zone, get_cpu())->pcp;
  875. local_irq_save(flags);
  876. __count_vm_event(PGFREE);
  877. if (cold)
  878. list_add_tail(&page->lru, &pcp->list);
  879. else
  880. list_add(&page->lru, &pcp->list);
  881. set_page_private(page, get_pageblock_migratetype(page));
  882. pcp->count++;
  883. if (pcp->count >= pcp->high) {
  884. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  885. pcp->count -= pcp->batch;
  886. }
  887. local_irq_restore(flags);
  888. put_cpu();
  889. }
  890. void free_hot_page(struct page *page)
  891. {
  892. free_hot_cold_page(page, 0);
  893. }
  894. void free_cold_page(struct page *page)
  895. {
  896. free_hot_cold_page(page, 1);
  897. }
  898. /*
  899. * split_page takes a non-compound higher-order page, and splits it into
  900. * n (1<<order) sub-pages: page[0..n]
  901. * Each sub-page must be freed individually.
  902. *
  903. * Note: this is probably too low level an operation for use in drivers.
  904. * Please consult with lkml before using this in your driver.
  905. */
  906. void split_page(struct page *page, unsigned int order)
  907. {
  908. int i;
  909. VM_BUG_ON(PageCompound(page));
  910. VM_BUG_ON(!page_count(page));
  911. for (i = 1; i < (1 << order); i++)
  912. set_page_refcounted(page + i);
  913. }
  914. /*
  915. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  916. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  917. * or two.
  918. */
  919. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  920. struct zone *zone, int order, gfp_t gfp_flags)
  921. {
  922. unsigned long flags;
  923. struct page *page;
  924. int cold = !!(gfp_flags & __GFP_COLD);
  925. int cpu;
  926. int migratetype = allocflags_to_migratetype(gfp_flags);
  927. again:
  928. cpu = get_cpu();
  929. if (likely(order == 0)) {
  930. struct per_cpu_pages *pcp;
  931. pcp = &zone_pcp(zone, cpu)->pcp;
  932. local_irq_save(flags);
  933. if (!pcp->count) {
  934. pcp->count = rmqueue_bulk(zone, 0,
  935. pcp->batch, &pcp->list, migratetype);
  936. if (unlikely(!pcp->count))
  937. goto failed;
  938. }
  939. /* Find a page of the appropriate migrate type */
  940. if (cold) {
  941. list_for_each_entry_reverse(page, &pcp->list, lru)
  942. if (page_private(page) == migratetype)
  943. break;
  944. } else {
  945. list_for_each_entry(page, &pcp->list, lru)
  946. if (page_private(page) == migratetype)
  947. break;
  948. }
  949. /* Allocate more to the pcp list if necessary */
  950. if (unlikely(&page->lru == &pcp->list)) {
  951. pcp->count += rmqueue_bulk(zone, 0,
  952. pcp->batch, &pcp->list, migratetype);
  953. page = list_entry(pcp->list.next, struct page, lru);
  954. }
  955. list_del(&page->lru);
  956. pcp->count--;
  957. } else {
  958. spin_lock_irqsave(&zone->lock, flags);
  959. page = __rmqueue(zone, order, migratetype);
  960. spin_unlock(&zone->lock);
  961. if (!page)
  962. goto failed;
  963. }
  964. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  965. zone_statistics(preferred_zone, zone);
  966. local_irq_restore(flags);
  967. put_cpu();
  968. VM_BUG_ON(bad_range(zone, page));
  969. if (prep_new_page(page, order, gfp_flags))
  970. goto again;
  971. return page;
  972. failed:
  973. local_irq_restore(flags);
  974. put_cpu();
  975. return NULL;
  976. }
  977. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  978. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  979. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  980. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  981. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  982. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  983. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  984. #ifdef CONFIG_FAIL_PAGE_ALLOC
  985. static struct fail_page_alloc_attr {
  986. struct fault_attr attr;
  987. u32 ignore_gfp_highmem;
  988. u32 ignore_gfp_wait;
  989. u32 min_order;
  990. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  991. struct dentry *ignore_gfp_highmem_file;
  992. struct dentry *ignore_gfp_wait_file;
  993. struct dentry *min_order_file;
  994. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  995. } fail_page_alloc = {
  996. .attr = FAULT_ATTR_INITIALIZER,
  997. .ignore_gfp_wait = 1,
  998. .ignore_gfp_highmem = 1,
  999. .min_order = 1,
  1000. };
  1001. static int __init setup_fail_page_alloc(char *str)
  1002. {
  1003. return setup_fault_attr(&fail_page_alloc.attr, str);
  1004. }
  1005. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1006. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1007. {
  1008. if (order < fail_page_alloc.min_order)
  1009. return 0;
  1010. if (gfp_mask & __GFP_NOFAIL)
  1011. return 0;
  1012. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1013. return 0;
  1014. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1015. return 0;
  1016. return should_fail(&fail_page_alloc.attr, 1 << order);
  1017. }
  1018. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1019. static int __init fail_page_alloc_debugfs(void)
  1020. {
  1021. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1022. struct dentry *dir;
  1023. int err;
  1024. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1025. "fail_page_alloc");
  1026. if (err)
  1027. return err;
  1028. dir = fail_page_alloc.attr.dentries.dir;
  1029. fail_page_alloc.ignore_gfp_wait_file =
  1030. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1031. &fail_page_alloc.ignore_gfp_wait);
  1032. fail_page_alloc.ignore_gfp_highmem_file =
  1033. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1034. &fail_page_alloc.ignore_gfp_highmem);
  1035. fail_page_alloc.min_order_file =
  1036. debugfs_create_u32("min-order", mode, dir,
  1037. &fail_page_alloc.min_order);
  1038. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1039. !fail_page_alloc.ignore_gfp_highmem_file ||
  1040. !fail_page_alloc.min_order_file) {
  1041. err = -ENOMEM;
  1042. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1043. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1044. debugfs_remove(fail_page_alloc.min_order_file);
  1045. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1046. }
  1047. return err;
  1048. }
  1049. late_initcall(fail_page_alloc_debugfs);
  1050. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1051. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1052. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1053. {
  1054. return 0;
  1055. }
  1056. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1057. /*
  1058. * Return 1 if free pages are above 'mark'. This takes into account the order
  1059. * of the allocation.
  1060. */
  1061. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1062. int classzone_idx, int alloc_flags)
  1063. {
  1064. /* free_pages my go negative - that's OK */
  1065. long min = mark;
  1066. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1067. int o;
  1068. if (alloc_flags & ALLOC_HIGH)
  1069. min -= min / 2;
  1070. if (alloc_flags & ALLOC_HARDER)
  1071. min -= min / 4;
  1072. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1073. return 0;
  1074. for (o = 0; o < order; o++) {
  1075. /* At the next order, this order's pages become unavailable */
  1076. free_pages -= z->free_area[o].nr_free << o;
  1077. /* Require fewer higher order pages to be free */
  1078. min >>= 1;
  1079. if (free_pages <= min)
  1080. return 0;
  1081. }
  1082. return 1;
  1083. }
  1084. #ifdef CONFIG_NUMA
  1085. /*
  1086. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1087. * skip over zones that are not allowed by the cpuset, or that have
  1088. * been recently (in last second) found to be nearly full. See further
  1089. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1090. * that have to skip over a lot of full or unallowed zones.
  1091. *
  1092. * If the zonelist cache is present in the passed in zonelist, then
  1093. * returns a pointer to the allowed node mask (either the current
  1094. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1095. *
  1096. * If the zonelist cache is not available for this zonelist, does
  1097. * nothing and returns NULL.
  1098. *
  1099. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1100. * a second since last zap'd) then we zap it out (clear its bits.)
  1101. *
  1102. * We hold off even calling zlc_setup, until after we've checked the
  1103. * first zone in the zonelist, on the theory that most allocations will
  1104. * be satisfied from that first zone, so best to examine that zone as
  1105. * quickly as we can.
  1106. */
  1107. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1108. {
  1109. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1110. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1111. zlc = zonelist->zlcache_ptr;
  1112. if (!zlc)
  1113. return NULL;
  1114. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1115. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1116. zlc->last_full_zap = jiffies;
  1117. }
  1118. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1119. &cpuset_current_mems_allowed :
  1120. &node_states[N_HIGH_MEMORY];
  1121. return allowednodes;
  1122. }
  1123. /*
  1124. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1125. * if it is worth looking at further for free memory:
  1126. * 1) Check that the zone isn't thought to be full (doesn't have its
  1127. * bit set in the zonelist_cache fullzones BITMAP).
  1128. * 2) Check that the zones node (obtained from the zonelist_cache
  1129. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1130. * Return true (non-zero) if zone is worth looking at further, or
  1131. * else return false (zero) if it is not.
  1132. *
  1133. * This check -ignores- the distinction between various watermarks,
  1134. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1135. * found to be full for any variation of these watermarks, it will
  1136. * be considered full for up to one second by all requests, unless
  1137. * we are so low on memory on all allowed nodes that we are forced
  1138. * into the second scan of the zonelist.
  1139. *
  1140. * In the second scan we ignore this zonelist cache and exactly
  1141. * apply the watermarks to all zones, even it is slower to do so.
  1142. * We are low on memory in the second scan, and should leave no stone
  1143. * unturned looking for a free page.
  1144. */
  1145. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1146. nodemask_t *allowednodes)
  1147. {
  1148. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1149. int i; /* index of *z in zonelist zones */
  1150. int n; /* node that zone *z is on */
  1151. zlc = zonelist->zlcache_ptr;
  1152. if (!zlc)
  1153. return 1;
  1154. i = z - zonelist->_zonerefs;
  1155. n = zlc->z_to_n[i];
  1156. /* This zone is worth trying if it is allowed but not full */
  1157. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1158. }
  1159. /*
  1160. * Given 'z' scanning a zonelist, set the corresponding bit in
  1161. * zlc->fullzones, so that subsequent attempts to allocate a page
  1162. * from that zone don't waste time re-examining it.
  1163. */
  1164. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1165. {
  1166. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1167. int i; /* index of *z in zonelist zones */
  1168. zlc = zonelist->zlcache_ptr;
  1169. if (!zlc)
  1170. return;
  1171. i = z - zonelist->_zonerefs;
  1172. set_bit(i, zlc->fullzones);
  1173. }
  1174. #else /* CONFIG_NUMA */
  1175. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1176. {
  1177. return NULL;
  1178. }
  1179. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1180. nodemask_t *allowednodes)
  1181. {
  1182. return 1;
  1183. }
  1184. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1185. {
  1186. }
  1187. #endif /* CONFIG_NUMA */
  1188. /*
  1189. * get_page_from_freelist goes through the zonelist trying to allocate
  1190. * a page.
  1191. */
  1192. static struct page *
  1193. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1194. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1195. {
  1196. struct zoneref *z;
  1197. struct page *page = NULL;
  1198. int classzone_idx;
  1199. struct zone *zone, *preferred_zone;
  1200. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1201. int zlc_active = 0; /* set if using zonelist_cache */
  1202. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1203. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1204. &preferred_zone);
  1205. if (!preferred_zone)
  1206. return NULL;
  1207. classzone_idx = zone_idx(preferred_zone);
  1208. zonelist_scan:
  1209. /*
  1210. * Scan zonelist, looking for a zone with enough free.
  1211. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1212. */
  1213. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1214. high_zoneidx, nodemask) {
  1215. if (NUMA_BUILD && zlc_active &&
  1216. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1217. continue;
  1218. if ((alloc_flags & ALLOC_CPUSET) &&
  1219. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1220. goto try_next_zone;
  1221. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1222. unsigned long mark;
  1223. if (alloc_flags & ALLOC_WMARK_MIN)
  1224. mark = zone->pages_min;
  1225. else if (alloc_flags & ALLOC_WMARK_LOW)
  1226. mark = zone->pages_low;
  1227. else
  1228. mark = zone->pages_high;
  1229. if (!zone_watermark_ok(zone, order, mark,
  1230. classzone_idx, alloc_flags)) {
  1231. if (!zone_reclaim_mode ||
  1232. !zone_reclaim(zone, gfp_mask, order))
  1233. goto this_zone_full;
  1234. }
  1235. }
  1236. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1237. if (page)
  1238. break;
  1239. this_zone_full:
  1240. if (NUMA_BUILD)
  1241. zlc_mark_zone_full(zonelist, z);
  1242. try_next_zone:
  1243. if (NUMA_BUILD && !did_zlc_setup) {
  1244. /* we do zlc_setup after the first zone is tried */
  1245. allowednodes = zlc_setup(zonelist, alloc_flags);
  1246. zlc_active = 1;
  1247. did_zlc_setup = 1;
  1248. }
  1249. }
  1250. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1251. /* Disable zlc cache for second zonelist scan */
  1252. zlc_active = 0;
  1253. goto zonelist_scan;
  1254. }
  1255. return page;
  1256. }
  1257. /*
  1258. * This is the 'heart' of the zoned buddy allocator.
  1259. */
  1260. struct page *
  1261. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1262. struct zonelist *zonelist, nodemask_t *nodemask)
  1263. {
  1264. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1265. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1266. struct zoneref *z;
  1267. struct zone *zone;
  1268. struct page *page;
  1269. struct reclaim_state reclaim_state;
  1270. struct task_struct *p = current;
  1271. int do_retry;
  1272. int alloc_flags;
  1273. unsigned long did_some_progress;
  1274. unsigned long pages_reclaimed = 0;
  1275. lockdep_trace_alloc(gfp_mask);
  1276. might_sleep_if(wait);
  1277. if (should_fail_alloc_page(gfp_mask, order))
  1278. return NULL;
  1279. restart:
  1280. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1281. if (unlikely(!z->zone)) {
  1282. /*
  1283. * Happens if we have an empty zonelist as a result of
  1284. * GFP_THISNODE being used on a memoryless node
  1285. */
  1286. return NULL;
  1287. }
  1288. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1289. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1290. if (page)
  1291. goto got_pg;
  1292. /*
  1293. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1294. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1295. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1296. * using a larger set of nodes after it has established that the
  1297. * allowed per node queues are empty and that nodes are
  1298. * over allocated.
  1299. */
  1300. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1301. goto nopage;
  1302. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1303. wakeup_kswapd(zone, order);
  1304. /*
  1305. * OK, we're below the kswapd watermark and have kicked background
  1306. * reclaim. Now things get more complex, so set up alloc_flags according
  1307. * to how we want to proceed.
  1308. *
  1309. * The caller may dip into page reserves a bit more if the caller
  1310. * cannot run direct reclaim, or if the caller has realtime scheduling
  1311. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1312. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1313. */
  1314. alloc_flags = ALLOC_WMARK_MIN;
  1315. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1316. alloc_flags |= ALLOC_HARDER;
  1317. if (gfp_mask & __GFP_HIGH)
  1318. alloc_flags |= ALLOC_HIGH;
  1319. if (wait)
  1320. alloc_flags |= ALLOC_CPUSET;
  1321. /*
  1322. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1323. * coming from realtime tasks go deeper into reserves.
  1324. *
  1325. * This is the last chance, in general, before the goto nopage.
  1326. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1327. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1328. */
  1329. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1330. high_zoneidx, alloc_flags);
  1331. if (page)
  1332. goto got_pg;
  1333. /* This allocation should allow future memory freeing. */
  1334. rebalance:
  1335. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1336. && !in_interrupt()) {
  1337. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1338. nofail_alloc:
  1339. /* go through the zonelist yet again, ignoring mins */
  1340. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1341. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1342. if (page)
  1343. goto got_pg;
  1344. if (gfp_mask & __GFP_NOFAIL) {
  1345. congestion_wait(WRITE, HZ/50);
  1346. goto nofail_alloc;
  1347. }
  1348. }
  1349. goto nopage;
  1350. }
  1351. /* Atomic allocations - we can't balance anything */
  1352. if (!wait)
  1353. goto nopage;
  1354. cond_resched();
  1355. /* We now go into synchronous reclaim */
  1356. cpuset_memory_pressure_bump();
  1357. p->flags |= PF_MEMALLOC;
  1358. lockdep_set_current_reclaim_state(gfp_mask);
  1359. reclaim_state.reclaimed_slab = 0;
  1360. p->reclaim_state = &reclaim_state;
  1361. did_some_progress = try_to_free_pages(zonelist, order,
  1362. gfp_mask, nodemask);
  1363. p->reclaim_state = NULL;
  1364. lockdep_clear_current_reclaim_state();
  1365. p->flags &= ~PF_MEMALLOC;
  1366. cond_resched();
  1367. if (order != 0)
  1368. drain_all_pages();
  1369. if (likely(did_some_progress)) {
  1370. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1371. zonelist, high_zoneidx, alloc_flags);
  1372. if (page)
  1373. goto got_pg;
  1374. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1375. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1376. schedule_timeout_uninterruptible(1);
  1377. goto restart;
  1378. }
  1379. /*
  1380. * Go through the zonelist yet one more time, keep
  1381. * very high watermark here, this is only to catch
  1382. * a parallel oom killing, we must fail if we're still
  1383. * under heavy pressure.
  1384. */
  1385. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1386. order, zonelist, high_zoneidx,
  1387. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1388. if (page) {
  1389. clear_zonelist_oom(zonelist, gfp_mask);
  1390. goto got_pg;
  1391. }
  1392. /* The OOM killer will not help higher order allocs so fail */
  1393. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1394. clear_zonelist_oom(zonelist, gfp_mask);
  1395. goto nopage;
  1396. }
  1397. out_of_memory(zonelist, gfp_mask, order);
  1398. clear_zonelist_oom(zonelist, gfp_mask);
  1399. goto restart;
  1400. }
  1401. /*
  1402. * Don't let big-order allocations loop unless the caller explicitly
  1403. * requests that. Wait for some write requests to complete then retry.
  1404. *
  1405. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1406. * means __GFP_NOFAIL, but that may not be true in other
  1407. * implementations.
  1408. *
  1409. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1410. * specified, then we retry until we no longer reclaim any pages
  1411. * (above), or we've reclaimed an order of pages at least as
  1412. * large as the allocation's order. In both cases, if the
  1413. * allocation still fails, we stop retrying.
  1414. */
  1415. pages_reclaimed += did_some_progress;
  1416. do_retry = 0;
  1417. if (!(gfp_mask & __GFP_NORETRY)) {
  1418. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1419. do_retry = 1;
  1420. } else {
  1421. if (gfp_mask & __GFP_REPEAT &&
  1422. pages_reclaimed < (1 << order))
  1423. do_retry = 1;
  1424. }
  1425. if (gfp_mask & __GFP_NOFAIL)
  1426. do_retry = 1;
  1427. }
  1428. if (do_retry) {
  1429. congestion_wait(WRITE, HZ/50);
  1430. goto rebalance;
  1431. }
  1432. nopage:
  1433. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1434. printk(KERN_WARNING "%s: page allocation failure."
  1435. " order:%d, mode:0x%x\n",
  1436. p->comm, order, gfp_mask);
  1437. dump_stack();
  1438. show_mem();
  1439. }
  1440. got_pg:
  1441. return page;
  1442. }
  1443. EXPORT_SYMBOL(__alloc_pages_internal);
  1444. /*
  1445. * Common helper functions.
  1446. */
  1447. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1448. {
  1449. struct page * page;
  1450. page = alloc_pages(gfp_mask, order);
  1451. if (!page)
  1452. return 0;
  1453. return (unsigned long) page_address(page);
  1454. }
  1455. EXPORT_SYMBOL(__get_free_pages);
  1456. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1457. {
  1458. struct page * page;
  1459. /*
  1460. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1461. * a highmem page
  1462. */
  1463. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1464. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1465. if (page)
  1466. return (unsigned long) page_address(page);
  1467. return 0;
  1468. }
  1469. EXPORT_SYMBOL(get_zeroed_page);
  1470. void __pagevec_free(struct pagevec *pvec)
  1471. {
  1472. int i = pagevec_count(pvec);
  1473. while (--i >= 0)
  1474. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1475. }
  1476. void __free_pages(struct page *page, unsigned int order)
  1477. {
  1478. if (put_page_testzero(page)) {
  1479. if (order == 0)
  1480. free_hot_page(page);
  1481. else
  1482. __free_pages_ok(page, order);
  1483. }
  1484. }
  1485. EXPORT_SYMBOL(__free_pages);
  1486. void free_pages(unsigned long addr, unsigned int order)
  1487. {
  1488. if (addr != 0) {
  1489. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1490. __free_pages(virt_to_page((void *)addr), order);
  1491. }
  1492. }
  1493. EXPORT_SYMBOL(free_pages);
  1494. /**
  1495. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1496. * @size: the number of bytes to allocate
  1497. * @gfp_mask: GFP flags for the allocation
  1498. *
  1499. * This function is similar to alloc_pages(), except that it allocates the
  1500. * minimum number of pages to satisfy the request. alloc_pages() can only
  1501. * allocate memory in power-of-two pages.
  1502. *
  1503. * This function is also limited by MAX_ORDER.
  1504. *
  1505. * Memory allocated by this function must be released by free_pages_exact().
  1506. */
  1507. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1508. {
  1509. unsigned int order = get_order(size);
  1510. unsigned long addr;
  1511. addr = __get_free_pages(gfp_mask, order);
  1512. if (addr) {
  1513. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1514. unsigned long used = addr + PAGE_ALIGN(size);
  1515. split_page(virt_to_page(addr), order);
  1516. while (used < alloc_end) {
  1517. free_page(used);
  1518. used += PAGE_SIZE;
  1519. }
  1520. }
  1521. return (void *)addr;
  1522. }
  1523. EXPORT_SYMBOL(alloc_pages_exact);
  1524. /**
  1525. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1526. * @virt: the value returned by alloc_pages_exact.
  1527. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1528. *
  1529. * Release the memory allocated by a previous call to alloc_pages_exact.
  1530. */
  1531. void free_pages_exact(void *virt, size_t size)
  1532. {
  1533. unsigned long addr = (unsigned long)virt;
  1534. unsigned long end = addr + PAGE_ALIGN(size);
  1535. while (addr < end) {
  1536. free_page(addr);
  1537. addr += PAGE_SIZE;
  1538. }
  1539. }
  1540. EXPORT_SYMBOL(free_pages_exact);
  1541. static unsigned int nr_free_zone_pages(int offset)
  1542. {
  1543. struct zoneref *z;
  1544. struct zone *zone;
  1545. /* Just pick one node, since fallback list is circular */
  1546. unsigned int sum = 0;
  1547. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1548. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1549. unsigned long size = zone->present_pages;
  1550. unsigned long high = zone->pages_high;
  1551. if (size > high)
  1552. sum += size - high;
  1553. }
  1554. return sum;
  1555. }
  1556. /*
  1557. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1558. */
  1559. unsigned int nr_free_buffer_pages(void)
  1560. {
  1561. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1562. }
  1563. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1564. /*
  1565. * Amount of free RAM allocatable within all zones
  1566. */
  1567. unsigned int nr_free_pagecache_pages(void)
  1568. {
  1569. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1570. }
  1571. static inline void show_node(struct zone *zone)
  1572. {
  1573. if (NUMA_BUILD)
  1574. printk("Node %d ", zone_to_nid(zone));
  1575. }
  1576. void si_meminfo(struct sysinfo *val)
  1577. {
  1578. val->totalram = totalram_pages;
  1579. val->sharedram = 0;
  1580. val->freeram = global_page_state(NR_FREE_PAGES);
  1581. val->bufferram = nr_blockdev_pages();
  1582. val->totalhigh = totalhigh_pages;
  1583. val->freehigh = nr_free_highpages();
  1584. val->mem_unit = PAGE_SIZE;
  1585. }
  1586. EXPORT_SYMBOL(si_meminfo);
  1587. #ifdef CONFIG_NUMA
  1588. void si_meminfo_node(struct sysinfo *val, int nid)
  1589. {
  1590. pg_data_t *pgdat = NODE_DATA(nid);
  1591. val->totalram = pgdat->node_present_pages;
  1592. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1593. #ifdef CONFIG_HIGHMEM
  1594. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1595. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1596. NR_FREE_PAGES);
  1597. #else
  1598. val->totalhigh = 0;
  1599. val->freehigh = 0;
  1600. #endif
  1601. val->mem_unit = PAGE_SIZE;
  1602. }
  1603. #endif
  1604. #define K(x) ((x) << (PAGE_SHIFT-10))
  1605. /*
  1606. * Show free area list (used inside shift_scroll-lock stuff)
  1607. * We also calculate the percentage fragmentation. We do this by counting the
  1608. * memory on each free list with the exception of the first item on the list.
  1609. */
  1610. void show_free_areas(void)
  1611. {
  1612. int cpu;
  1613. struct zone *zone;
  1614. for_each_populated_zone(zone) {
  1615. show_node(zone);
  1616. printk("%s per-cpu:\n", zone->name);
  1617. for_each_online_cpu(cpu) {
  1618. struct per_cpu_pageset *pageset;
  1619. pageset = zone_pcp(zone, cpu);
  1620. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1621. cpu, pageset->pcp.high,
  1622. pageset->pcp.batch, pageset->pcp.count);
  1623. }
  1624. }
  1625. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1626. " inactive_file:%lu"
  1627. //TODO: check/adjust line lengths
  1628. #ifdef CONFIG_UNEVICTABLE_LRU
  1629. " unevictable:%lu"
  1630. #endif
  1631. " dirty:%lu writeback:%lu unstable:%lu\n"
  1632. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1633. global_page_state(NR_ACTIVE_ANON),
  1634. global_page_state(NR_ACTIVE_FILE),
  1635. global_page_state(NR_INACTIVE_ANON),
  1636. global_page_state(NR_INACTIVE_FILE),
  1637. #ifdef CONFIG_UNEVICTABLE_LRU
  1638. global_page_state(NR_UNEVICTABLE),
  1639. #endif
  1640. global_page_state(NR_FILE_DIRTY),
  1641. global_page_state(NR_WRITEBACK),
  1642. global_page_state(NR_UNSTABLE_NFS),
  1643. global_page_state(NR_FREE_PAGES),
  1644. global_page_state(NR_SLAB_RECLAIMABLE) +
  1645. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1646. global_page_state(NR_FILE_MAPPED),
  1647. global_page_state(NR_PAGETABLE),
  1648. global_page_state(NR_BOUNCE));
  1649. for_each_populated_zone(zone) {
  1650. int i;
  1651. show_node(zone);
  1652. printk("%s"
  1653. " free:%lukB"
  1654. " min:%lukB"
  1655. " low:%lukB"
  1656. " high:%lukB"
  1657. " active_anon:%lukB"
  1658. " inactive_anon:%lukB"
  1659. " active_file:%lukB"
  1660. " inactive_file:%lukB"
  1661. #ifdef CONFIG_UNEVICTABLE_LRU
  1662. " unevictable:%lukB"
  1663. #endif
  1664. " present:%lukB"
  1665. " pages_scanned:%lu"
  1666. " all_unreclaimable? %s"
  1667. "\n",
  1668. zone->name,
  1669. K(zone_page_state(zone, NR_FREE_PAGES)),
  1670. K(zone->pages_min),
  1671. K(zone->pages_low),
  1672. K(zone->pages_high),
  1673. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1674. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1675. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1676. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1677. #ifdef CONFIG_UNEVICTABLE_LRU
  1678. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1679. #endif
  1680. K(zone->present_pages),
  1681. zone->pages_scanned,
  1682. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1683. );
  1684. printk("lowmem_reserve[]:");
  1685. for (i = 0; i < MAX_NR_ZONES; i++)
  1686. printk(" %lu", zone->lowmem_reserve[i]);
  1687. printk("\n");
  1688. }
  1689. for_each_populated_zone(zone) {
  1690. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1691. show_node(zone);
  1692. printk("%s: ", zone->name);
  1693. spin_lock_irqsave(&zone->lock, flags);
  1694. for (order = 0; order < MAX_ORDER; order++) {
  1695. nr[order] = zone->free_area[order].nr_free;
  1696. total += nr[order] << order;
  1697. }
  1698. spin_unlock_irqrestore(&zone->lock, flags);
  1699. for (order = 0; order < MAX_ORDER; order++)
  1700. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1701. printk("= %lukB\n", K(total));
  1702. }
  1703. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1704. show_swap_cache_info();
  1705. }
  1706. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1707. {
  1708. zoneref->zone = zone;
  1709. zoneref->zone_idx = zone_idx(zone);
  1710. }
  1711. /*
  1712. * Builds allocation fallback zone lists.
  1713. *
  1714. * Add all populated zones of a node to the zonelist.
  1715. */
  1716. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1717. int nr_zones, enum zone_type zone_type)
  1718. {
  1719. struct zone *zone;
  1720. BUG_ON(zone_type >= MAX_NR_ZONES);
  1721. zone_type++;
  1722. do {
  1723. zone_type--;
  1724. zone = pgdat->node_zones + zone_type;
  1725. if (populated_zone(zone)) {
  1726. zoneref_set_zone(zone,
  1727. &zonelist->_zonerefs[nr_zones++]);
  1728. check_highest_zone(zone_type);
  1729. }
  1730. } while (zone_type);
  1731. return nr_zones;
  1732. }
  1733. /*
  1734. * zonelist_order:
  1735. * 0 = automatic detection of better ordering.
  1736. * 1 = order by ([node] distance, -zonetype)
  1737. * 2 = order by (-zonetype, [node] distance)
  1738. *
  1739. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1740. * the same zonelist. So only NUMA can configure this param.
  1741. */
  1742. #define ZONELIST_ORDER_DEFAULT 0
  1743. #define ZONELIST_ORDER_NODE 1
  1744. #define ZONELIST_ORDER_ZONE 2
  1745. /* zonelist order in the kernel.
  1746. * set_zonelist_order() will set this to NODE or ZONE.
  1747. */
  1748. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1749. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1750. #ifdef CONFIG_NUMA
  1751. /* The value user specified ....changed by config */
  1752. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1753. /* string for sysctl */
  1754. #define NUMA_ZONELIST_ORDER_LEN 16
  1755. char numa_zonelist_order[16] = "default";
  1756. /*
  1757. * interface for configure zonelist ordering.
  1758. * command line option "numa_zonelist_order"
  1759. * = "[dD]efault - default, automatic configuration.
  1760. * = "[nN]ode - order by node locality, then by zone within node
  1761. * = "[zZ]one - order by zone, then by locality within zone
  1762. */
  1763. static int __parse_numa_zonelist_order(char *s)
  1764. {
  1765. if (*s == 'd' || *s == 'D') {
  1766. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1767. } else if (*s == 'n' || *s == 'N') {
  1768. user_zonelist_order = ZONELIST_ORDER_NODE;
  1769. } else if (*s == 'z' || *s == 'Z') {
  1770. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1771. } else {
  1772. printk(KERN_WARNING
  1773. "Ignoring invalid numa_zonelist_order value: "
  1774. "%s\n", s);
  1775. return -EINVAL;
  1776. }
  1777. return 0;
  1778. }
  1779. static __init int setup_numa_zonelist_order(char *s)
  1780. {
  1781. if (s)
  1782. return __parse_numa_zonelist_order(s);
  1783. return 0;
  1784. }
  1785. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1786. /*
  1787. * sysctl handler for numa_zonelist_order
  1788. */
  1789. int numa_zonelist_order_handler(ctl_table *table, int write,
  1790. struct file *file, void __user *buffer, size_t *length,
  1791. loff_t *ppos)
  1792. {
  1793. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1794. int ret;
  1795. if (write)
  1796. strncpy(saved_string, (char*)table->data,
  1797. NUMA_ZONELIST_ORDER_LEN);
  1798. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1799. if (ret)
  1800. return ret;
  1801. if (write) {
  1802. int oldval = user_zonelist_order;
  1803. if (__parse_numa_zonelist_order((char*)table->data)) {
  1804. /*
  1805. * bogus value. restore saved string
  1806. */
  1807. strncpy((char*)table->data, saved_string,
  1808. NUMA_ZONELIST_ORDER_LEN);
  1809. user_zonelist_order = oldval;
  1810. } else if (oldval != user_zonelist_order)
  1811. build_all_zonelists();
  1812. }
  1813. return 0;
  1814. }
  1815. #define MAX_NODE_LOAD (num_online_nodes())
  1816. static int node_load[MAX_NUMNODES];
  1817. /**
  1818. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1819. * @node: node whose fallback list we're appending
  1820. * @used_node_mask: nodemask_t of already used nodes
  1821. *
  1822. * We use a number of factors to determine which is the next node that should
  1823. * appear on a given node's fallback list. The node should not have appeared
  1824. * already in @node's fallback list, and it should be the next closest node
  1825. * according to the distance array (which contains arbitrary distance values
  1826. * from each node to each node in the system), and should also prefer nodes
  1827. * with no CPUs, since presumably they'll have very little allocation pressure
  1828. * on them otherwise.
  1829. * It returns -1 if no node is found.
  1830. */
  1831. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1832. {
  1833. int n, val;
  1834. int min_val = INT_MAX;
  1835. int best_node = -1;
  1836. const struct cpumask *tmp = cpumask_of_node(0);
  1837. /* Use the local node if we haven't already */
  1838. if (!node_isset(node, *used_node_mask)) {
  1839. node_set(node, *used_node_mask);
  1840. return node;
  1841. }
  1842. for_each_node_state(n, N_HIGH_MEMORY) {
  1843. /* Don't want a node to appear more than once */
  1844. if (node_isset(n, *used_node_mask))
  1845. continue;
  1846. /* Use the distance array to find the distance */
  1847. val = node_distance(node, n);
  1848. /* Penalize nodes under us ("prefer the next node") */
  1849. val += (n < node);
  1850. /* Give preference to headless and unused nodes */
  1851. tmp = cpumask_of_node(n);
  1852. if (!cpumask_empty(tmp))
  1853. val += PENALTY_FOR_NODE_WITH_CPUS;
  1854. /* Slight preference for less loaded node */
  1855. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1856. val += node_load[n];
  1857. if (val < min_val) {
  1858. min_val = val;
  1859. best_node = n;
  1860. }
  1861. }
  1862. if (best_node >= 0)
  1863. node_set(best_node, *used_node_mask);
  1864. return best_node;
  1865. }
  1866. /*
  1867. * Build zonelists ordered by node and zones within node.
  1868. * This results in maximum locality--normal zone overflows into local
  1869. * DMA zone, if any--but risks exhausting DMA zone.
  1870. */
  1871. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1872. {
  1873. int j;
  1874. struct zonelist *zonelist;
  1875. zonelist = &pgdat->node_zonelists[0];
  1876. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1877. ;
  1878. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1879. MAX_NR_ZONES - 1);
  1880. zonelist->_zonerefs[j].zone = NULL;
  1881. zonelist->_zonerefs[j].zone_idx = 0;
  1882. }
  1883. /*
  1884. * Build gfp_thisnode zonelists
  1885. */
  1886. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1887. {
  1888. int j;
  1889. struct zonelist *zonelist;
  1890. zonelist = &pgdat->node_zonelists[1];
  1891. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1892. zonelist->_zonerefs[j].zone = NULL;
  1893. zonelist->_zonerefs[j].zone_idx = 0;
  1894. }
  1895. /*
  1896. * Build zonelists ordered by zone and nodes within zones.
  1897. * This results in conserving DMA zone[s] until all Normal memory is
  1898. * exhausted, but results in overflowing to remote node while memory
  1899. * may still exist in local DMA zone.
  1900. */
  1901. static int node_order[MAX_NUMNODES];
  1902. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1903. {
  1904. int pos, j, node;
  1905. int zone_type; /* needs to be signed */
  1906. struct zone *z;
  1907. struct zonelist *zonelist;
  1908. zonelist = &pgdat->node_zonelists[0];
  1909. pos = 0;
  1910. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1911. for (j = 0; j < nr_nodes; j++) {
  1912. node = node_order[j];
  1913. z = &NODE_DATA(node)->node_zones[zone_type];
  1914. if (populated_zone(z)) {
  1915. zoneref_set_zone(z,
  1916. &zonelist->_zonerefs[pos++]);
  1917. check_highest_zone(zone_type);
  1918. }
  1919. }
  1920. }
  1921. zonelist->_zonerefs[pos].zone = NULL;
  1922. zonelist->_zonerefs[pos].zone_idx = 0;
  1923. }
  1924. static int default_zonelist_order(void)
  1925. {
  1926. int nid, zone_type;
  1927. unsigned long low_kmem_size,total_size;
  1928. struct zone *z;
  1929. int average_size;
  1930. /*
  1931. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1932. * If they are really small and used heavily, the system can fall
  1933. * into OOM very easily.
  1934. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1935. */
  1936. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1937. low_kmem_size = 0;
  1938. total_size = 0;
  1939. for_each_online_node(nid) {
  1940. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1941. z = &NODE_DATA(nid)->node_zones[zone_type];
  1942. if (populated_zone(z)) {
  1943. if (zone_type < ZONE_NORMAL)
  1944. low_kmem_size += z->present_pages;
  1945. total_size += z->present_pages;
  1946. }
  1947. }
  1948. }
  1949. if (!low_kmem_size || /* there are no DMA area. */
  1950. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1951. return ZONELIST_ORDER_NODE;
  1952. /*
  1953. * look into each node's config.
  1954. * If there is a node whose DMA/DMA32 memory is very big area on
  1955. * local memory, NODE_ORDER may be suitable.
  1956. */
  1957. average_size = total_size /
  1958. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1959. for_each_online_node(nid) {
  1960. low_kmem_size = 0;
  1961. total_size = 0;
  1962. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1963. z = &NODE_DATA(nid)->node_zones[zone_type];
  1964. if (populated_zone(z)) {
  1965. if (zone_type < ZONE_NORMAL)
  1966. low_kmem_size += z->present_pages;
  1967. total_size += z->present_pages;
  1968. }
  1969. }
  1970. if (low_kmem_size &&
  1971. total_size > average_size && /* ignore small node */
  1972. low_kmem_size > total_size * 70/100)
  1973. return ZONELIST_ORDER_NODE;
  1974. }
  1975. return ZONELIST_ORDER_ZONE;
  1976. }
  1977. static void set_zonelist_order(void)
  1978. {
  1979. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1980. current_zonelist_order = default_zonelist_order();
  1981. else
  1982. current_zonelist_order = user_zonelist_order;
  1983. }
  1984. static void build_zonelists(pg_data_t *pgdat)
  1985. {
  1986. int j, node, load;
  1987. enum zone_type i;
  1988. nodemask_t used_mask;
  1989. int local_node, prev_node;
  1990. struct zonelist *zonelist;
  1991. int order = current_zonelist_order;
  1992. /* initialize zonelists */
  1993. for (i = 0; i < MAX_ZONELISTS; i++) {
  1994. zonelist = pgdat->node_zonelists + i;
  1995. zonelist->_zonerefs[0].zone = NULL;
  1996. zonelist->_zonerefs[0].zone_idx = 0;
  1997. }
  1998. /* NUMA-aware ordering of nodes */
  1999. local_node = pgdat->node_id;
  2000. load = num_online_nodes();
  2001. prev_node = local_node;
  2002. nodes_clear(used_mask);
  2003. memset(node_load, 0, sizeof(node_load));
  2004. memset(node_order, 0, sizeof(node_order));
  2005. j = 0;
  2006. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2007. int distance = node_distance(local_node, node);
  2008. /*
  2009. * If another node is sufficiently far away then it is better
  2010. * to reclaim pages in a zone before going off node.
  2011. */
  2012. if (distance > RECLAIM_DISTANCE)
  2013. zone_reclaim_mode = 1;
  2014. /*
  2015. * We don't want to pressure a particular node.
  2016. * So adding penalty to the first node in same
  2017. * distance group to make it round-robin.
  2018. */
  2019. if (distance != node_distance(local_node, prev_node))
  2020. node_load[node] = load;
  2021. prev_node = node;
  2022. load--;
  2023. if (order == ZONELIST_ORDER_NODE)
  2024. build_zonelists_in_node_order(pgdat, node);
  2025. else
  2026. node_order[j++] = node; /* remember order */
  2027. }
  2028. if (order == ZONELIST_ORDER_ZONE) {
  2029. /* calculate node order -- i.e., DMA last! */
  2030. build_zonelists_in_zone_order(pgdat, j);
  2031. }
  2032. build_thisnode_zonelists(pgdat);
  2033. }
  2034. /* Construct the zonelist performance cache - see further mmzone.h */
  2035. static void build_zonelist_cache(pg_data_t *pgdat)
  2036. {
  2037. struct zonelist *zonelist;
  2038. struct zonelist_cache *zlc;
  2039. struct zoneref *z;
  2040. zonelist = &pgdat->node_zonelists[0];
  2041. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2042. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2043. for (z = zonelist->_zonerefs; z->zone; z++)
  2044. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2045. }
  2046. #else /* CONFIG_NUMA */
  2047. static void set_zonelist_order(void)
  2048. {
  2049. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2050. }
  2051. static void build_zonelists(pg_data_t *pgdat)
  2052. {
  2053. int node, local_node;
  2054. enum zone_type j;
  2055. struct zonelist *zonelist;
  2056. local_node = pgdat->node_id;
  2057. zonelist = &pgdat->node_zonelists[0];
  2058. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2059. /*
  2060. * Now we build the zonelist so that it contains the zones
  2061. * of all the other nodes.
  2062. * We don't want to pressure a particular node, so when
  2063. * building the zones for node N, we make sure that the
  2064. * zones coming right after the local ones are those from
  2065. * node N+1 (modulo N)
  2066. */
  2067. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2068. if (!node_online(node))
  2069. continue;
  2070. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2071. MAX_NR_ZONES - 1);
  2072. }
  2073. for (node = 0; node < local_node; node++) {
  2074. if (!node_online(node))
  2075. continue;
  2076. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2077. MAX_NR_ZONES - 1);
  2078. }
  2079. zonelist->_zonerefs[j].zone = NULL;
  2080. zonelist->_zonerefs[j].zone_idx = 0;
  2081. }
  2082. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2083. static void build_zonelist_cache(pg_data_t *pgdat)
  2084. {
  2085. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2086. }
  2087. #endif /* CONFIG_NUMA */
  2088. /* return values int ....just for stop_machine() */
  2089. static int __build_all_zonelists(void *dummy)
  2090. {
  2091. int nid;
  2092. for_each_online_node(nid) {
  2093. pg_data_t *pgdat = NODE_DATA(nid);
  2094. build_zonelists(pgdat);
  2095. build_zonelist_cache(pgdat);
  2096. }
  2097. return 0;
  2098. }
  2099. void build_all_zonelists(void)
  2100. {
  2101. set_zonelist_order();
  2102. if (system_state == SYSTEM_BOOTING) {
  2103. __build_all_zonelists(NULL);
  2104. mminit_verify_zonelist();
  2105. cpuset_init_current_mems_allowed();
  2106. } else {
  2107. /* we have to stop all cpus to guarantee there is no user
  2108. of zonelist */
  2109. stop_machine(__build_all_zonelists, NULL, NULL);
  2110. /* cpuset refresh routine should be here */
  2111. }
  2112. vm_total_pages = nr_free_pagecache_pages();
  2113. /*
  2114. * Disable grouping by mobility if the number of pages in the
  2115. * system is too low to allow the mechanism to work. It would be
  2116. * more accurate, but expensive to check per-zone. This check is
  2117. * made on memory-hotadd so a system can start with mobility
  2118. * disabled and enable it later
  2119. */
  2120. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2121. page_group_by_mobility_disabled = 1;
  2122. else
  2123. page_group_by_mobility_disabled = 0;
  2124. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2125. "Total pages: %ld\n",
  2126. num_online_nodes(),
  2127. zonelist_order_name[current_zonelist_order],
  2128. page_group_by_mobility_disabled ? "off" : "on",
  2129. vm_total_pages);
  2130. #ifdef CONFIG_NUMA
  2131. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2132. #endif
  2133. }
  2134. /*
  2135. * Helper functions to size the waitqueue hash table.
  2136. * Essentially these want to choose hash table sizes sufficiently
  2137. * large so that collisions trying to wait on pages are rare.
  2138. * But in fact, the number of active page waitqueues on typical
  2139. * systems is ridiculously low, less than 200. So this is even
  2140. * conservative, even though it seems large.
  2141. *
  2142. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2143. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2144. */
  2145. #define PAGES_PER_WAITQUEUE 256
  2146. #ifndef CONFIG_MEMORY_HOTPLUG
  2147. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2148. {
  2149. unsigned long size = 1;
  2150. pages /= PAGES_PER_WAITQUEUE;
  2151. while (size < pages)
  2152. size <<= 1;
  2153. /*
  2154. * Once we have dozens or even hundreds of threads sleeping
  2155. * on IO we've got bigger problems than wait queue collision.
  2156. * Limit the size of the wait table to a reasonable size.
  2157. */
  2158. size = min(size, 4096UL);
  2159. return max(size, 4UL);
  2160. }
  2161. #else
  2162. /*
  2163. * A zone's size might be changed by hot-add, so it is not possible to determine
  2164. * a suitable size for its wait_table. So we use the maximum size now.
  2165. *
  2166. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2167. *
  2168. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2169. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2170. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2171. *
  2172. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2173. * or more by the traditional way. (See above). It equals:
  2174. *
  2175. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2176. * ia64(16K page size) : = ( 8G + 4M)byte.
  2177. * powerpc (64K page size) : = (32G +16M)byte.
  2178. */
  2179. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2180. {
  2181. return 4096UL;
  2182. }
  2183. #endif
  2184. /*
  2185. * This is an integer logarithm so that shifts can be used later
  2186. * to extract the more random high bits from the multiplicative
  2187. * hash function before the remainder is taken.
  2188. */
  2189. static inline unsigned long wait_table_bits(unsigned long size)
  2190. {
  2191. return ffz(~size);
  2192. }
  2193. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2194. /*
  2195. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2196. * of blocks reserved is based on zone->pages_min. The memory within the
  2197. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2198. * higher will lead to a bigger reserve which will get freed as contiguous
  2199. * blocks as reclaim kicks in
  2200. */
  2201. static void setup_zone_migrate_reserve(struct zone *zone)
  2202. {
  2203. unsigned long start_pfn, pfn, end_pfn;
  2204. struct page *page;
  2205. unsigned long reserve, block_migratetype;
  2206. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2207. start_pfn = zone->zone_start_pfn;
  2208. end_pfn = start_pfn + zone->spanned_pages;
  2209. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2210. pageblock_order;
  2211. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2212. if (!pfn_valid(pfn))
  2213. continue;
  2214. page = pfn_to_page(pfn);
  2215. /* Watch out for overlapping nodes */
  2216. if (page_to_nid(page) != zone_to_nid(zone))
  2217. continue;
  2218. /* Blocks with reserved pages will never free, skip them. */
  2219. if (PageReserved(page))
  2220. continue;
  2221. block_migratetype = get_pageblock_migratetype(page);
  2222. /* If this block is reserved, account for it */
  2223. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2224. reserve--;
  2225. continue;
  2226. }
  2227. /* Suitable for reserving if this block is movable */
  2228. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2229. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2230. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2231. reserve--;
  2232. continue;
  2233. }
  2234. /*
  2235. * If the reserve is met and this is a previous reserved block,
  2236. * take it back
  2237. */
  2238. if (block_migratetype == MIGRATE_RESERVE) {
  2239. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2240. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2241. }
  2242. }
  2243. }
  2244. /*
  2245. * Initially all pages are reserved - free ones are freed
  2246. * up by free_all_bootmem() once the early boot process is
  2247. * done. Non-atomic initialization, single-pass.
  2248. */
  2249. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2250. unsigned long start_pfn, enum memmap_context context)
  2251. {
  2252. struct page *page;
  2253. unsigned long end_pfn = start_pfn + size;
  2254. unsigned long pfn;
  2255. struct zone *z;
  2256. if (highest_memmap_pfn < end_pfn - 1)
  2257. highest_memmap_pfn = end_pfn - 1;
  2258. z = &NODE_DATA(nid)->node_zones[zone];
  2259. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2260. /*
  2261. * There can be holes in boot-time mem_map[]s
  2262. * handed to this function. They do not
  2263. * exist on hotplugged memory.
  2264. */
  2265. if (context == MEMMAP_EARLY) {
  2266. if (!early_pfn_valid(pfn))
  2267. continue;
  2268. if (!early_pfn_in_nid(pfn, nid))
  2269. continue;
  2270. }
  2271. page = pfn_to_page(pfn);
  2272. set_page_links(page, zone, nid, pfn);
  2273. mminit_verify_page_links(page, zone, nid, pfn);
  2274. init_page_count(page);
  2275. reset_page_mapcount(page);
  2276. SetPageReserved(page);
  2277. /*
  2278. * Mark the block movable so that blocks are reserved for
  2279. * movable at startup. This will force kernel allocations
  2280. * to reserve their blocks rather than leaking throughout
  2281. * the address space during boot when many long-lived
  2282. * kernel allocations are made. Later some blocks near
  2283. * the start are marked MIGRATE_RESERVE by
  2284. * setup_zone_migrate_reserve()
  2285. *
  2286. * bitmap is created for zone's valid pfn range. but memmap
  2287. * can be created for invalid pages (for alignment)
  2288. * check here not to call set_pageblock_migratetype() against
  2289. * pfn out of zone.
  2290. */
  2291. if ((z->zone_start_pfn <= pfn)
  2292. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2293. && !(pfn & (pageblock_nr_pages - 1)))
  2294. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2295. INIT_LIST_HEAD(&page->lru);
  2296. #ifdef WANT_PAGE_VIRTUAL
  2297. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2298. if (!is_highmem_idx(zone))
  2299. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2300. #endif
  2301. }
  2302. }
  2303. static void __meminit zone_init_free_lists(struct zone *zone)
  2304. {
  2305. int order, t;
  2306. for_each_migratetype_order(order, t) {
  2307. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2308. zone->free_area[order].nr_free = 0;
  2309. }
  2310. }
  2311. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2312. #define memmap_init(size, nid, zone, start_pfn) \
  2313. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2314. #endif
  2315. static int zone_batchsize(struct zone *zone)
  2316. {
  2317. #ifdef CONFIG_MMU
  2318. int batch;
  2319. /*
  2320. * The per-cpu-pages pools are set to around 1000th of the
  2321. * size of the zone. But no more than 1/2 of a meg.
  2322. *
  2323. * OK, so we don't know how big the cache is. So guess.
  2324. */
  2325. batch = zone->present_pages / 1024;
  2326. if (batch * PAGE_SIZE > 512 * 1024)
  2327. batch = (512 * 1024) / PAGE_SIZE;
  2328. batch /= 4; /* We effectively *= 4 below */
  2329. if (batch < 1)
  2330. batch = 1;
  2331. /*
  2332. * Clamp the batch to a 2^n - 1 value. Having a power
  2333. * of 2 value was found to be more likely to have
  2334. * suboptimal cache aliasing properties in some cases.
  2335. *
  2336. * For example if 2 tasks are alternately allocating
  2337. * batches of pages, one task can end up with a lot
  2338. * of pages of one half of the possible page colors
  2339. * and the other with pages of the other colors.
  2340. */
  2341. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2342. return batch;
  2343. #else
  2344. /* The deferral and batching of frees should be suppressed under NOMMU
  2345. * conditions.
  2346. *
  2347. * The problem is that NOMMU needs to be able to allocate large chunks
  2348. * of contiguous memory as there's no hardware page translation to
  2349. * assemble apparent contiguous memory from discontiguous pages.
  2350. *
  2351. * Queueing large contiguous runs of pages for batching, however,
  2352. * causes the pages to actually be freed in smaller chunks. As there
  2353. * can be a significant delay between the individual batches being
  2354. * recycled, this leads to the once large chunks of space being
  2355. * fragmented and becoming unavailable for high-order allocations.
  2356. */
  2357. return 0;
  2358. #endif
  2359. }
  2360. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2361. {
  2362. struct per_cpu_pages *pcp;
  2363. memset(p, 0, sizeof(*p));
  2364. pcp = &p->pcp;
  2365. pcp->count = 0;
  2366. pcp->high = 6 * batch;
  2367. pcp->batch = max(1UL, 1 * batch);
  2368. INIT_LIST_HEAD(&pcp->list);
  2369. }
  2370. /*
  2371. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2372. * to the value high for the pageset p.
  2373. */
  2374. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2375. unsigned long high)
  2376. {
  2377. struct per_cpu_pages *pcp;
  2378. pcp = &p->pcp;
  2379. pcp->high = high;
  2380. pcp->batch = max(1UL, high/4);
  2381. if ((high/4) > (PAGE_SHIFT * 8))
  2382. pcp->batch = PAGE_SHIFT * 8;
  2383. }
  2384. #ifdef CONFIG_NUMA
  2385. /*
  2386. * Boot pageset table. One per cpu which is going to be used for all
  2387. * zones and all nodes. The parameters will be set in such a way
  2388. * that an item put on a list will immediately be handed over to
  2389. * the buddy list. This is safe since pageset manipulation is done
  2390. * with interrupts disabled.
  2391. *
  2392. * Some NUMA counter updates may also be caught by the boot pagesets.
  2393. *
  2394. * The boot_pagesets must be kept even after bootup is complete for
  2395. * unused processors and/or zones. They do play a role for bootstrapping
  2396. * hotplugged processors.
  2397. *
  2398. * zoneinfo_show() and maybe other functions do
  2399. * not check if the processor is online before following the pageset pointer.
  2400. * Other parts of the kernel may not check if the zone is available.
  2401. */
  2402. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2403. /*
  2404. * Dynamically allocate memory for the
  2405. * per cpu pageset array in struct zone.
  2406. */
  2407. static int __cpuinit process_zones(int cpu)
  2408. {
  2409. struct zone *zone, *dzone;
  2410. int node = cpu_to_node(cpu);
  2411. node_set_state(node, N_CPU); /* this node has a cpu */
  2412. for_each_populated_zone(zone) {
  2413. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2414. GFP_KERNEL, node);
  2415. if (!zone_pcp(zone, cpu))
  2416. goto bad;
  2417. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2418. if (percpu_pagelist_fraction)
  2419. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2420. (zone->present_pages / percpu_pagelist_fraction));
  2421. }
  2422. return 0;
  2423. bad:
  2424. for_each_zone(dzone) {
  2425. if (!populated_zone(dzone))
  2426. continue;
  2427. if (dzone == zone)
  2428. break;
  2429. kfree(zone_pcp(dzone, cpu));
  2430. zone_pcp(dzone, cpu) = NULL;
  2431. }
  2432. return -ENOMEM;
  2433. }
  2434. static inline void free_zone_pagesets(int cpu)
  2435. {
  2436. struct zone *zone;
  2437. for_each_zone(zone) {
  2438. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2439. /* Free per_cpu_pageset if it is slab allocated */
  2440. if (pset != &boot_pageset[cpu])
  2441. kfree(pset);
  2442. zone_pcp(zone, cpu) = NULL;
  2443. }
  2444. }
  2445. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2446. unsigned long action,
  2447. void *hcpu)
  2448. {
  2449. int cpu = (long)hcpu;
  2450. int ret = NOTIFY_OK;
  2451. switch (action) {
  2452. case CPU_UP_PREPARE:
  2453. case CPU_UP_PREPARE_FROZEN:
  2454. if (process_zones(cpu))
  2455. ret = NOTIFY_BAD;
  2456. break;
  2457. case CPU_UP_CANCELED:
  2458. case CPU_UP_CANCELED_FROZEN:
  2459. case CPU_DEAD:
  2460. case CPU_DEAD_FROZEN:
  2461. free_zone_pagesets(cpu);
  2462. break;
  2463. default:
  2464. break;
  2465. }
  2466. return ret;
  2467. }
  2468. static struct notifier_block __cpuinitdata pageset_notifier =
  2469. { &pageset_cpuup_callback, NULL, 0 };
  2470. void __init setup_per_cpu_pageset(void)
  2471. {
  2472. int err;
  2473. /* Initialize per_cpu_pageset for cpu 0.
  2474. * A cpuup callback will do this for every cpu
  2475. * as it comes online
  2476. */
  2477. err = process_zones(smp_processor_id());
  2478. BUG_ON(err);
  2479. register_cpu_notifier(&pageset_notifier);
  2480. }
  2481. #endif
  2482. static noinline __init_refok
  2483. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2484. {
  2485. int i;
  2486. struct pglist_data *pgdat = zone->zone_pgdat;
  2487. size_t alloc_size;
  2488. /*
  2489. * The per-page waitqueue mechanism uses hashed waitqueues
  2490. * per zone.
  2491. */
  2492. zone->wait_table_hash_nr_entries =
  2493. wait_table_hash_nr_entries(zone_size_pages);
  2494. zone->wait_table_bits =
  2495. wait_table_bits(zone->wait_table_hash_nr_entries);
  2496. alloc_size = zone->wait_table_hash_nr_entries
  2497. * sizeof(wait_queue_head_t);
  2498. if (!slab_is_available()) {
  2499. zone->wait_table = (wait_queue_head_t *)
  2500. alloc_bootmem_node(pgdat, alloc_size);
  2501. } else {
  2502. /*
  2503. * This case means that a zone whose size was 0 gets new memory
  2504. * via memory hot-add.
  2505. * But it may be the case that a new node was hot-added. In
  2506. * this case vmalloc() will not be able to use this new node's
  2507. * memory - this wait_table must be initialized to use this new
  2508. * node itself as well.
  2509. * To use this new node's memory, further consideration will be
  2510. * necessary.
  2511. */
  2512. zone->wait_table = vmalloc(alloc_size);
  2513. }
  2514. if (!zone->wait_table)
  2515. return -ENOMEM;
  2516. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2517. init_waitqueue_head(zone->wait_table + i);
  2518. return 0;
  2519. }
  2520. static __meminit void zone_pcp_init(struct zone *zone)
  2521. {
  2522. int cpu;
  2523. unsigned long batch = zone_batchsize(zone);
  2524. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2525. #ifdef CONFIG_NUMA
  2526. /* Early boot. Slab allocator not functional yet */
  2527. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2528. setup_pageset(&boot_pageset[cpu],0);
  2529. #else
  2530. setup_pageset(zone_pcp(zone,cpu), batch);
  2531. #endif
  2532. }
  2533. if (zone->present_pages)
  2534. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2535. zone->name, zone->present_pages, batch);
  2536. }
  2537. __meminit int init_currently_empty_zone(struct zone *zone,
  2538. unsigned long zone_start_pfn,
  2539. unsigned long size,
  2540. enum memmap_context context)
  2541. {
  2542. struct pglist_data *pgdat = zone->zone_pgdat;
  2543. int ret;
  2544. ret = zone_wait_table_init(zone, size);
  2545. if (ret)
  2546. return ret;
  2547. pgdat->nr_zones = zone_idx(zone) + 1;
  2548. zone->zone_start_pfn = zone_start_pfn;
  2549. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2550. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2551. pgdat->node_id,
  2552. (unsigned long)zone_idx(zone),
  2553. zone_start_pfn, (zone_start_pfn + size));
  2554. zone_init_free_lists(zone);
  2555. return 0;
  2556. }
  2557. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2558. /*
  2559. * Basic iterator support. Return the first range of PFNs for a node
  2560. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2561. */
  2562. static int __meminit first_active_region_index_in_nid(int nid)
  2563. {
  2564. int i;
  2565. for (i = 0; i < nr_nodemap_entries; i++)
  2566. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2567. return i;
  2568. return -1;
  2569. }
  2570. /*
  2571. * Basic iterator support. Return the next active range of PFNs for a node
  2572. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2573. */
  2574. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2575. {
  2576. for (index = index + 1; index < nr_nodemap_entries; index++)
  2577. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2578. return index;
  2579. return -1;
  2580. }
  2581. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2582. /*
  2583. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2584. * Architectures may implement their own version but if add_active_range()
  2585. * was used and there are no special requirements, this is a convenient
  2586. * alternative
  2587. */
  2588. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2589. {
  2590. int i;
  2591. for (i = 0; i < nr_nodemap_entries; i++) {
  2592. unsigned long start_pfn = early_node_map[i].start_pfn;
  2593. unsigned long end_pfn = early_node_map[i].end_pfn;
  2594. if (start_pfn <= pfn && pfn < end_pfn)
  2595. return early_node_map[i].nid;
  2596. }
  2597. /* This is a memory hole */
  2598. return -1;
  2599. }
  2600. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2601. int __meminit early_pfn_to_nid(unsigned long pfn)
  2602. {
  2603. int nid;
  2604. nid = __early_pfn_to_nid(pfn);
  2605. if (nid >= 0)
  2606. return nid;
  2607. /* just returns 0 */
  2608. return 0;
  2609. }
  2610. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2611. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2612. {
  2613. int nid;
  2614. nid = __early_pfn_to_nid(pfn);
  2615. if (nid >= 0 && nid != node)
  2616. return false;
  2617. return true;
  2618. }
  2619. #endif
  2620. /* Basic iterator support to walk early_node_map[] */
  2621. #define for_each_active_range_index_in_nid(i, nid) \
  2622. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2623. i = next_active_region_index_in_nid(i, nid))
  2624. /**
  2625. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2626. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2627. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2628. *
  2629. * If an architecture guarantees that all ranges registered with
  2630. * add_active_ranges() contain no holes and may be freed, this
  2631. * this function may be used instead of calling free_bootmem() manually.
  2632. */
  2633. void __init free_bootmem_with_active_regions(int nid,
  2634. unsigned long max_low_pfn)
  2635. {
  2636. int i;
  2637. for_each_active_range_index_in_nid(i, nid) {
  2638. unsigned long size_pages = 0;
  2639. unsigned long end_pfn = early_node_map[i].end_pfn;
  2640. if (early_node_map[i].start_pfn >= max_low_pfn)
  2641. continue;
  2642. if (end_pfn > max_low_pfn)
  2643. end_pfn = max_low_pfn;
  2644. size_pages = end_pfn - early_node_map[i].start_pfn;
  2645. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2646. PFN_PHYS(early_node_map[i].start_pfn),
  2647. size_pages << PAGE_SHIFT);
  2648. }
  2649. }
  2650. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2651. {
  2652. int i;
  2653. int ret;
  2654. for_each_active_range_index_in_nid(i, nid) {
  2655. ret = work_fn(early_node_map[i].start_pfn,
  2656. early_node_map[i].end_pfn, data);
  2657. if (ret)
  2658. break;
  2659. }
  2660. }
  2661. /**
  2662. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2663. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2664. *
  2665. * If an architecture guarantees that all ranges registered with
  2666. * add_active_ranges() contain no holes and may be freed, this
  2667. * function may be used instead of calling memory_present() manually.
  2668. */
  2669. void __init sparse_memory_present_with_active_regions(int nid)
  2670. {
  2671. int i;
  2672. for_each_active_range_index_in_nid(i, nid)
  2673. memory_present(early_node_map[i].nid,
  2674. early_node_map[i].start_pfn,
  2675. early_node_map[i].end_pfn);
  2676. }
  2677. /**
  2678. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2679. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2680. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2681. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2682. *
  2683. * It returns the start and end page frame of a node based on information
  2684. * provided by an arch calling add_active_range(). If called for a node
  2685. * with no available memory, a warning is printed and the start and end
  2686. * PFNs will be 0.
  2687. */
  2688. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2689. unsigned long *start_pfn, unsigned long *end_pfn)
  2690. {
  2691. int i;
  2692. *start_pfn = -1UL;
  2693. *end_pfn = 0;
  2694. for_each_active_range_index_in_nid(i, nid) {
  2695. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2696. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2697. }
  2698. if (*start_pfn == -1UL)
  2699. *start_pfn = 0;
  2700. }
  2701. /*
  2702. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2703. * assumption is made that zones within a node are ordered in monotonic
  2704. * increasing memory addresses so that the "highest" populated zone is used
  2705. */
  2706. static void __init find_usable_zone_for_movable(void)
  2707. {
  2708. int zone_index;
  2709. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2710. if (zone_index == ZONE_MOVABLE)
  2711. continue;
  2712. if (arch_zone_highest_possible_pfn[zone_index] >
  2713. arch_zone_lowest_possible_pfn[zone_index])
  2714. break;
  2715. }
  2716. VM_BUG_ON(zone_index == -1);
  2717. movable_zone = zone_index;
  2718. }
  2719. /*
  2720. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2721. * because it is sized independant of architecture. Unlike the other zones,
  2722. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2723. * in each node depending on the size of each node and how evenly kernelcore
  2724. * is distributed. This helper function adjusts the zone ranges
  2725. * provided by the architecture for a given node by using the end of the
  2726. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2727. * zones within a node are in order of monotonic increases memory addresses
  2728. */
  2729. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2730. unsigned long zone_type,
  2731. unsigned long node_start_pfn,
  2732. unsigned long node_end_pfn,
  2733. unsigned long *zone_start_pfn,
  2734. unsigned long *zone_end_pfn)
  2735. {
  2736. /* Only adjust if ZONE_MOVABLE is on this node */
  2737. if (zone_movable_pfn[nid]) {
  2738. /* Size ZONE_MOVABLE */
  2739. if (zone_type == ZONE_MOVABLE) {
  2740. *zone_start_pfn = zone_movable_pfn[nid];
  2741. *zone_end_pfn = min(node_end_pfn,
  2742. arch_zone_highest_possible_pfn[movable_zone]);
  2743. /* Adjust for ZONE_MOVABLE starting within this range */
  2744. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2745. *zone_end_pfn > zone_movable_pfn[nid]) {
  2746. *zone_end_pfn = zone_movable_pfn[nid];
  2747. /* Check if this whole range is within ZONE_MOVABLE */
  2748. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2749. *zone_start_pfn = *zone_end_pfn;
  2750. }
  2751. }
  2752. /*
  2753. * Return the number of pages a zone spans in a node, including holes
  2754. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2755. */
  2756. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2757. unsigned long zone_type,
  2758. unsigned long *ignored)
  2759. {
  2760. unsigned long node_start_pfn, node_end_pfn;
  2761. unsigned long zone_start_pfn, zone_end_pfn;
  2762. /* Get the start and end of the node and zone */
  2763. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2764. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2765. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2766. adjust_zone_range_for_zone_movable(nid, zone_type,
  2767. node_start_pfn, node_end_pfn,
  2768. &zone_start_pfn, &zone_end_pfn);
  2769. /* Check that this node has pages within the zone's required range */
  2770. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2771. return 0;
  2772. /* Move the zone boundaries inside the node if necessary */
  2773. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2774. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2775. /* Return the spanned pages */
  2776. return zone_end_pfn - zone_start_pfn;
  2777. }
  2778. /*
  2779. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2780. * then all holes in the requested range will be accounted for.
  2781. */
  2782. static unsigned long __meminit __absent_pages_in_range(int nid,
  2783. unsigned long range_start_pfn,
  2784. unsigned long range_end_pfn)
  2785. {
  2786. int i = 0;
  2787. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2788. unsigned long start_pfn;
  2789. /* Find the end_pfn of the first active range of pfns in the node */
  2790. i = first_active_region_index_in_nid(nid);
  2791. if (i == -1)
  2792. return 0;
  2793. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2794. /* Account for ranges before physical memory on this node */
  2795. if (early_node_map[i].start_pfn > range_start_pfn)
  2796. hole_pages = prev_end_pfn - range_start_pfn;
  2797. /* Find all holes for the zone within the node */
  2798. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2799. /* No need to continue if prev_end_pfn is outside the zone */
  2800. if (prev_end_pfn >= range_end_pfn)
  2801. break;
  2802. /* Make sure the end of the zone is not within the hole */
  2803. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2804. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2805. /* Update the hole size cound and move on */
  2806. if (start_pfn > range_start_pfn) {
  2807. BUG_ON(prev_end_pfn > start_pfn);
  2808. hole_pages += start_pfn - prev_end_pfn;
  2809. }
  2810. prev_end_pfn = early_node_map[i].end_pfn;
  2811. }
  2812. /* Account for ranges past physical memory on this node */
  2813. if (range_end_pfn > prev_end_pfn)
  2814. hole_pages += range_end_pfn -
  2815. max(range_start_pfn, prev_end_pfn);
  2816. return hole_pages;
  2817. }
  2818. /**
  2819. * absent_pages_in_range - Return number of page frames in holes within a range
  2820. * @start_pfn: The start PFN to start searching for holes
  2821. * @end_pfn: The end PFN to stop searching for holes
  2822. *
  2823. * It returns the number of pages frames in memory holes within a range.
  2824. */
  2825. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2826. unsigned long end_pfn)
  2827. {
  2828. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2829. }
  2830. /* Return the number of page frames in holes in a zone on a node */
  2831. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2832. unsigned long zone_type,
  2833. unsigned long *ignored)
  2834. {
  2835. unsigned long node_start_pfn, node_end_pfn;
  2836. unsigned long zone_start_pfn, zone_end_pfn;
  2837. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2838. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2839. node_start_pfn);
  2840. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2841. node_end_pfn);
  2842. adjust_zone_range_for_zone_movable(nid, zone_type,
  2843. node_start_pfn, node_end_pfn,
  2844. &zone_start_pfn, &zone_end_pfn);
  2845. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2846. }
  2847. #else
  2848. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2849. unsigned long zone_type,
  2850. unsigned long *zones_size)
  2851. {
  2852. return zones_size[zone_type];
  2853. }
  2854. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2855. unsigned long zone_type,
  2856. unsigned long *zholes_size)
  2857. {
  2858. if (!zholes_size)
  2859. return 0;
  2860. return zholes_size[zone_type];
  2861. }
  2862. #endif
  2863. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2864. unsigned long *zones_size, unsigned long *zholes_size)
  2865. {
  2866. unsigned long realtotalpages, totalpages = 0;
  2867. enum zone_type i;
  2868. for (i = 0; i < MAX_NR_ZONES; i++)
  2869. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2870. zones_size);
  2871. pgdat->node_spanned_pages = totalpages;
  2872. realtotalpages = totalpages;
  2873. for (i = 0; i < MAX_NR_ZONES; i++)
  2874. realtotalpages -=
  2875. zone_absent_pages_in_node(pgdat->node_id, i,
  2876. zholes_size);
  2877. pgdat->node_present_pages = realtotalpages;
  2878. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2879. realtotalpages);
  2880. }
  2881. #ifndef CONFIG_SPARSEMEM
  2882. /*
  2883. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2884. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2885. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2886. * round what is now in bits to nearest long in bits, then return it in
  2887. * bytes.
  2888. */
  2889. static unsigned long __init usemap_size(unsigned long zonesize)
  2890. {
  2891. unsigned long usemapsize;
  2892. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2893. usemapsize = usemapsize >> pageblock_order;
  2894. usemapsize *= NR_PAGEBLOCK_BITS;
  2895. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2896. return usemapsize / 8;
  2897. }
  2898. static void __init setup_usemap(struct pglist_data *pgdat,
  2899. struct zone *zone, unsigned long zonesize)
  2900. {
  2901. unsigned long usemapsize = usemap_size(zonesize);
  2902. zone->pageblock_flags = NULL;
  2903. if (usemapsize)
  2904. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2905. }
  2906. #else
  2907. static void inline setup_usemap(struct pglist_data *pgdat,
  2908. struct zone *zone, unsigned long zonesize) {}
  2909. #endif /* CONFIG_SPARSEMEM */
  2910. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2911. /* Return a sensible default order for the pageblock size. */
  2912. static inline int pageblock_default_order(void)
  2913. {
  2914. if (HPAGE_SHIFT > PAGE_SHIFT)
  2915. return HUGETLB_PAGE_ORDER;
  2916. return MAX_ORDER-1;
  2917. }
  2918. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2919. static inline void __init set_pageblock_order(unsigned int order)
  2920. {
  2921. /* Check that pageblock_nr_pages has not already been setup */
  2922. if (pageblock_order)
  2923. return;
  2924. /*
  2925. * Assume the largest contiguous order of interest is a huge page.
  2926. * This value may be variable depending on boot parameters on IA64
  2927. */
  2928. pageblock_order = order;
  2929. }
  2930. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2931. /*
  2932. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2933. * and pageblock_default_order() are unused as pageblock_order is set
  2934. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2935. * pageblock_order based on the kernel config
  2936. */
  2937. static inline int pageblock_default_order(unsigned int order)
  2938. {
  2939. return MAX_ORDER-1;
  2940. }
  2941. #define set_pageblock_order(x) do {} while (0)
  2942. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2943. /*
  2944. * Set up the zone data structures:
  2945. * - mark all pages reserved
  2946. * - mark all memory queues empty
  2947. * - clear the memory bitmaps
  2948. */
  2949. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2950. unsigned long *zones_size, unsigned long *zholes_size)
  2951. {
  2952. enum zone_type j;
  2953. int nid = pgdat->node_id;
  2954. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2955. int ret;
  2956. pgdat_resize_init(pgdat);
  2957. pgdat->nr_zones = 0;
  2958. init_waitqueue_head(&pgdat->kswapd_wait);
  2959. pgdat->kswapd_max_order = 0;
  2960. pgdat_page_cgroup_init(pgdat);
  2961. for (j = 0; j < MAX_NR_ZONES; j++) {
  2962. struct zone *zone = pgdat->node_zones + j;
  2963. unsigned long size, realsize, memmap_pages;
  2964. enum lru_list l;
  2965. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2966. realsize = size - zone_absent_pages_in_node(nid, j,
  2967. zholes_size);
  2968. /*
  2969. * Adjust realsize so that it accounts for how much memory
  2970. * is used by this zone for memmap. This affects the watermark
  2971. * and per-cpu initialisations
  2972. */
  2973. memmap_pages =
  2974. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2975. if (realsize >= memmap_pages) {
  2976. realsize -= memmap_pages;
  2977. if (memmap_pages)
  2978. printk(KERN_DEBUG
  2979. " %s zone: %lu pages used for memmap\n",
  2980. zone_names[j], memmap_pages);
  2981. } else
  2982. printk(KERN_WARNING
  2983. " %s zone: %lu pages exceeds realsize %lu\n",
  2984. zone_names[j], memmap_pages, realsize);
  2985. /* Account for reserved pages */
  2986. if (j == 0 && realsize > dma_reserve) {
  2987. realsize -= dma_reserve;
  2988. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2989. zone_names[0], dma_reserve);
  2990. }
  2991. if (!is_highmem_idx(j))
  2992. nr_kernel_pages += realsize;
  2993. nr_all_pages += realsize;
  2994. zone->spanned_pages = size;
  2995. zone->present_pages = realsize;
  2996. #ifdef CONFIG_NUMA
  2997. zone->node = nid;
  2998. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2999. / 100;
  3000. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3001. #endif
  3002. zone->name = zone_names[j];
  3003. spin_lock_init(&zone->lock);
  3004. spin_lock_init(&zone->lru_lock);
  3005. zone_seqlock_init(zone);
  3006. zone->zone_pgdat = pgdat;
  3007. zone->prev_priority = DEF_PRIORITY;
  3008. zone_pcp_init(zone);
  3009. for_each_lru(l) {
  3010. INIT_LIST_HEAD(&zone->lru[l].list);
  3011. zone->lru[l].nr_scan = 0;
  3012. }
  3013. zone->reclaim_stat.recent_rotated[0] = 0;
  3014. zone->reclaim_stat.recent_rotated[1] = 0;
  3015. zone->reclaim_stat.recent_scanned[0] = 0;
  3016. zone->reclaim_stat.recent_scanned[1] = 0;
  3017. zap_zone_vm_stats(zone);
  3018. zone->flags = 0;
  3019. if (!size)
  3020. continue;
  3021. set_pageblock_order(pageblock_default_order());
  3022. setup_usemap(pgdat, zone, size);
  3023. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3024. size, MEMMAP_EARLY);
  3025. BUG_ON(ret);
  3026. memmap_init(size, nid, j, zone_start_pfn);
  3027. zone_start_pfn += size;
  3028. }
  3029. }
  3030. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3031. {
  3032. /* Skip empty nodes */
  3033. if (!pgdat->node_spanned_pages)
  3034. return;
  3035. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3036. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3037. if (!pgdat->node_mem_map) {
  3038. unsigned long size, start, end;
  3039. struct page *map;
  3040. /*
  3041. * The zone's endpoints aren't required to be MAX_ORDER
  3042. * aligned but the node_mem_map endpoints must be in order
  3043. * for the buddy allocator to function correctly.
  3044. */
  3045. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3046. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3047. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3048. size = (end - start) * sizeof(struct page);
  3049. map = alloc_remap(pgdat->node_id, size);
  3050. if (!map)
  3051. map = alloc_bootmem_node(pgdat, size);
  3052. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3053. }
  3054. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3055. /*
  3056. * With no DISCONTIG, the global mem_map is just set as node 0's
  3057. */
  3058. if (pgdat == NODE_DATA(0)) {
  3059. mem_map = NODE_DATA(0)->node_mem_map;
  3060. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3061. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3062. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3063. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3064. }
  3065. #endif
  3066. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3067. }
  3068. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3069. unsigned long node_start_pfn, unsigned long *zholes_size)
  3070. {
  3071. pg_data_t *pgdat = NODE_DATA(nid);
  3072. pgdat->node_id = nid;
  3073. pgdat->node_start_pfn = node_start_pfn;
  3074. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3075. alloc_node_mem_map(pgdat);
  3076. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3077. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3078. nid, (unsigned long)pgdat,
  3079. (unsigned long)pgdat->node_mem_map);
  3080. #endif
  3081. free_area_init_core(pgdat, zones_size, zholes_size);
  3082. }
  3083. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3084. #if MAX_NUMNODES > 1
  3085. /*
  3086. * Figure out the number of possible node ids.
  3087. */
  3088. static void __init setup_nr_node_ids(void)
  3089. {
  3090. unsigned int node;
  3091. unsigned int highest = 0;
  3092. for_each_node_mask(node, node_possible_map)
  3093. highest = node;
  3094. nr_node_ids = highest + 1;
  3095. }
  3096. #else
  3097. static inline void setup_nr_node_ids(void)
  3098. {
  3099. }
  3100. #endif
  3101. /**
  3102. * add_active_range - Register a range of PFNs backed by physical memory
  3103. * @nid: The node ID the range resides on
  3104. * @start_pfn: The start PFN of the available physical memory
  3105. * @end_pfn: The end PFN of the available physical memory
  3106. *
  3107. * These ranges are stored in an early_node_map[] and later used by
  3108. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3109. * range spans a memory hole, it is up to the architecture to ensure
  3110. * the memory is not freed by the bootmem allocator. If possible
  3111. * the range being registered will be merged with existing ranges.
  3112. */
  3113. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3114. unsigned long end_pfn)
  3115. {
  3116. int i;
  3117. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3118. "Entering add_active_range(%d, %#lx, %#lx) "
  3119. "%d entries of %d used\n",
  3120. nid, start_pfn, end_pfn,
  3121. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3122. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3123. /* Merge with existing active regions if possible */
  3124. for (i = 0; i < nr_nodemap_entries; i++) {
  3125. if (early_node_map[i].nid != nid)
  3126. continue;
  3127. /* Skip if an existing region covers this new one */
  3128. if (start_pfn >= early_node_map[i].start_pfn &&
  3129. end_pfn <= early_node_map[i].end_pfn)
  3130. return;
  3131. /* Merge forward if suitable */
  3132. if (start_pfn <= early_node_map[i].end_pfn &&
  3133. end_pfn > early_node_map[i].end_pfn) {
  3134. early_node_map[i].end_pfn = end_pfn;
  3135. return;
  3136. }
  3137. /* Merge backward if suitable */
  3138. if (start_pfn < early_node_map[i].end_pfn &&
  3139. end_pfn >= early_node_map[i].start_pfn) {
  3140. early_node_map[i].start_pfn = start_pfn;
  3141. return;
  3142. }
  3143. }
  3144. /* Check that early_node_map is large enough */
  3145. if (i >= MAX_ACTIVE_REGIONS) {
  3146. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3147. MAX_ACTIVE_REGIONS);
  3148. return;
  3149. }
  3150. early_node_map[i].nid = nid;
  3151. early_node_map[i].start_pfn = start_pfn;
  3152. early_node_map[i].end_pfn = end_pfn;
  3153. nr_nodemap_entries = i + 1;
  3154. }
  3155. /**
  3156. * remove_active_range - Shrink an existing registered range of PFNs
  3157. * @nid: The node id the range is on that should be shrunk
  3158. * @start_pfn: The new PFN of the range
  3159. * @end_pfn: The new PFN of the range
  3160. *
  3161. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3162. * The map is kept near the end physical page range that has already been
  3163. * registered. This function allows an arch to shrink an existing registered
  3164. * range.
  3165. */
  3166. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3167. unsigned long end_pfn)
  3168. {
  3169. int i, j;
  3170. int removed = 0;
  3171. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3172. nid, start_pfn, end_pfn);
  3173. /* Find the old active region end and shrink */
  3174. for_each_active_range_index_in_nid(i, nid) {
  3175. if (early_node_map[i].start_pfn >= start_pfn &&
  3176. early_node_map[i].end_pfn <= end_pfn) {
  3177. /* clear it */
  3178. early_node_map[i].start_pfn = 0;
  3179. early_node_map[i].end_pfn = 0;
  3180. removed = 1;
  3181. continue;
  3182. }
  3183. if (early_node_map[i].start_pfn < start_pfn &&
  3184. early_node_map[i].end_pfn > start_pfn) {
  3185. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3186. early_node_map[i].end_pfn = start_pfn;
  3187. if (temp_end_pfn > end_pfn)
  3188. add_active_range(nid, end_pfn, temp_end_pfn);
  3189. continue;
  3190. }
  3191. if (early_node_map[i].start_pfn >= start_pfn &&
  3192. early_node_map[i].end_pfn > end_pfn &&
  3193. early_node_map[i].start_pfn < end_pfn) {
  3194. early_node_map[i].start_pfn = end_pfn;
  3195. continue;
  3196. }
  3197. }
  3198. if (!removed)
  3199. return;
  3200. /* remove the blank ones */
  3201. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3202. if (early_node_map[i].nid != nid)
  3203. continue;
  3204. if (early_node_map[i].end_pfn)
  3205. continue;
  3206. /* we found it, get rid of it */
  3207. for (j = i; j < nr_nodemap_entries - 1; j++)
  3208. memcpy(&early_node_map[j], &early_node_map[j+1],
  3209. sizeof(early_node_map[j]));
  3210. j = nr_nodemap_entries - 1;
  3211. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3212. nr_nodemap_entries--;
  3213. }
  3214. }
  3215. /**
  3216. * remove_all_active_ranges - Remove all currently registered regions
  3217. *
  3218. * During discovery, it may be found that a table like SRAT is invalid
  3219. * and an alternative discovery method must be used. This function removes
  3220. * all currently registered regions.
  3221. */
  3222. void __init remove_all_active_ranges(void)
  3223. {
  3224. memset(early_node_map, 0, sizeof(early_node_map));
  3225. nr_nodemap_entries = 0;
  3226. }
  3227. /* Compare two active node_active_regions */
  3228. static int __init cmp_node_active_region(const void *a, const void *b)
  3229. {
  3230. struct node_active_region *arange = (struct node_active_region *)a;
  3231. struct node_active_region *brange = (struct node_active_region *)b;
  3232. /* Done this way to avoid overflows */
  3233. if (arange->start_pfn > brange->start_pfn)
  3234. return 1;
  3235. if (arange->start_pfn < brange->start_pfn)
  3236. return -1;
  3237. return 0;
  3238. }
  3239. /* sort the node_map by start_pfn */
  3240. static void __init sort_node_map(void)
  3241. {
  3242. sort(early_node_map, (size_t)nr_nodemap_entries,
  3243. sizeof(struct node_active_region),
  3244. cmp_node_active_region, NULL);
  3245. }
  3246. /* Find the lowest pfn for a node */
  3247. static unsigned long __init find_min_pfn_for_node(int nid)
  3248. {
  3249. int i;
  3250. unsigned long min_pfn = ULONG_MAX;
  3251. /* Assuming a sorted map, the first range found has the starting pfn */
  3252. for_each_active_range_index_in_nid(i, nid)
  3253. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3254. if (min_pfn == ULONG_MAX) {
  3255. printk(KERN_WARNING
  3256. "Could not find start_pfn for node %d\n", nid);
  3257. return 0;
  3258. }
  3259. return min_pfn;
  3260. }
  3261. /**
  3262. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3263. *
  3264. * It returns the minimum PFN based on information provided via
  3265. * add_active_range().
  3266. */
  3267. unsigned long __init find_min_pfn_with_active_regions(void)
  3268. {
  3269. return find_min_pfn_for_node(MAX_NUMNODES);
  3270. }
  3271. /*
  3272. * early_calculate_totalpages()
  3273. * Sum pages in active regions for movable zone.
  3274. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3275. */
  3276. static unsigned long __init early_calculate_totalpages(void)
  3277. {
  3278. int i;
  3279. unsigned long totalpages = 0;
  3280. for (i = 0; i < nr_nodemap_entries; i++) {
  3281. unsigned long pages = early_node_map[i].end_pfn -
  3282. early_node_map[i].start_pfn;
  3283. totalpages += pages;
  3284. if (pages)
  3285. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3286. }
  3287. return totalpages;
  3288. }
  3289. /*
  3290. * Find the PFN the Movable zone begins in each node. Kernel memory
  3291. * is spread evenly between nodes as long as the nodes have enough
  3292. * memory. When they don't, some nodes will have more kernelcore than
  3293. * others
  3294. */
  3295. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3296. {
  3297. int i, nid;
  3298. unsigned long usable_startpfn;
  3299. unsigned long kernelcore_node, kernelcore_remaining;
  3300. unsigned long totalpages = early_calculate_totalpages();
  3301. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3302. /*
  3303. * If movablecore was specified, calculate what size of
  3304. * kernelcore that corresponds so that memory usable for
  3305. * any allocation type is evenly spread. If both kernelcore
  3306. * and movablecore are specified, then the value of kernelcore
  3307. * will be used for required_kernelcore if it's greater than
  3308. * what movablecore would have allowed.
  3309. */
  3310. if (required_movablecore) {
  3311. unsigned long corepages;
  3312. /*
  3313. * Round-up so that ZONE_MOVABLE is at least as large as what
  3314. * was requested by the user
  3315. */
  3316. required_movablecore =
  3317. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3318. corepages = totalpages - required_movablecore;
  3319. required_kernelcore = max(required_kernelcore, corepages);
  3320. }
  3321. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3322. if (!required_kernelcore)
  3323. return;
  3324. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3325. find_usable_zone_for_movable();
  3326. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3327. restart:
  3328. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3329. kernelcore_node = required_kernelcore / usable_nodes;
  3330. for_each_node_state(nid, N_HIGH_MEMORY) {
  3331. /*
  3332. * Recalculate kernelcore_node if the division per node
  3333. * now exceeds what is necessary to satisfy the requested
  3334. * amount of memory for the kernel
  3335. */
  3336. if (required_kernelcore < kernelcore_node)
  3337. kernelcore_node = required_kernelcore / usable_nodes;
  3338. /*
  3339. * As the map is walked, we track how much memory is usable
  3340. * by the kernel using kernelcore_remaining. When it is
  3341. * 0, the rest of the node is usable by ZONE_MOVABLE
  3342. */
  3343. kernelcore_remaining = kernelcore_node;
  3344. /* Go through each range of PFNs within this node */
  3345. for_each_active_range_index_in_nid(i, nid) {
  3346. unsigned long start_pfn, end_pfn;
  3347. unsigned long size_pages;
  3348. start_pfn = max(early_node_map[i].start_pfn,
  3349. zone_movable_pfn[nid]);
  3350. end_pfn = early_node_map[i].end_pfn;
  3351. if (start_pfn >= end_pfn)
  3352. continue;
  3353. /* Account for what is only usable for kernelcore */
  3354. if (start_pfn < usable_startpfn) {
  3355. unsigned long kernel_pages;
  3356. kernel_pages = min(end_pfn, usable_startpfn)
  3357. - start_pfn;
  3358. kernelcore_remaining -= min(kernel_pages,
  3359. kernelcore_remaining);
  3360. required_kernelcore -= min(kernel_pages,
  3361. required_kernelcore);
  3362. /* Continue if range is now fully accounted */
  3363. if (end_pfn <= usable_startpfn) {
  3364. /*
  3365. * Push zone_movable_pfn to the end so
  3366. * that if we have to rebalance
  3367. * kernelcore across nodes, we will
  3368. * not double account here
  3369. */
  3370. zone_movable_pfn[nid] = end_pfn;
  3371. continue;
  3372. }
  3373. start_pfn = usable_startpfn;
  3374. }
  3375. /*
  3376. * The usable PFN range for ZONE_MOVABLE is from
  3377. * start_pfn->end_pfn. Calculate size_pages as the
  3378. * number of pages used as kernelcore
  3379. */
  3380. size_pages = end_pfn - start_pfn;
  3381. if (size_pages > kernelcore_remaining)
  3382. size_pages = kernelcore_remaining;
  3383. zone_movable_pfn[nid] = start_pfn + size_pages;
  3384. /*
  3385. * Some kernelcore has been met, update counts and
  3386. * break if the kernelcore for this node has been
  3387. * satisified
  3388. */
  3389. required_kernelcore -= min(required_kernelcore,
  3390. size_pages);
  3391. kernelcore_remaining -= size_pages;
  3392. if (!kernelcore_remaining)
  3393. break;
  3394. }
  3395. }
  3396. /*
  3397. * If there is still required_kernelcore, we do another pass with one
  3398. * less node in the count. This will push zone_movable_pfn[nid] further
  3399. * along on the nodes that still have memory until kernelcore is
  3400. * satisified
  3401. */
  3402. usable_nodes--;
  3403. if (usable_nodes && required_kernelcore > usable_nodes)
  3404. goto restart;
  3405. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3406. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3407. zone_movable_pfn[nid] =
  3408. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3409. }
  3410. /* Any regular memory on that node ? */
  3411. static void check_for_regular_memory(pg_data_t *pgdat)
  3412. {
  3413. #ifdef CONFIG_HIGHMEM
  3414. enum zone_type zone_type;
  3415. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3416. struct zone *zone = &pgdat->node_zones[zone_type];
  3417. if (zone->present_pages)
  3418. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3419. }
  3420. #endif
  3421. }
  3422. /**
  3423. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3424. * @max_zone_pfn: an array of max PFNs for each zone
  3425. *
  3426. * This will call free_area_init_node() for each active node in the system.
  3427. * Using the page ranges provided by add_active_range(), the size of each
  3428. * zone in each node and their holes is calculated. If the maximum PFN
  3429. * between two adjacent zones match, it is assumed that the zone is empty.
  3430. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3431. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3432. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3433. * at arch_max_dma_pfn.
  3434. */
  3435. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3436. {
  3437. unsigned long nid;
  3438. int i;
  3439. /* Sort early_node_map as initialisation assumes it is sorted */
  3440. sort_node_map();
  3441. /* Record where the zone boundaries are */
  3442. memset(arch_zone_lowest_possible_pfn, 0,
  3443. sizeof(arch_zone_lowest_possible_pfn));
  3444. memset(arch_zone_highest_possible_pfn, 0,
  3445. sizeof(arch_zone_highest_possible_pfn));
  3446. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3447. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3448. for (i = 1; i < MAX_NR_ZONES; i++) {
  3449. if (i == ZONE_MOVABLE)
  3450. continue;
  3451. arch_zone_lowest_possible_pfn[i] =
  3452. arch_zone_highest_possible_pfn[i-1];
  3453. arch_zone_highest_possible_pfn[i] =
  3454. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3455. }
  3456. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3457. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3458. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3459. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3460. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3461. /* Print out the zone ranges */
  3462. printk("Zone PFN ranges:\n");
  3463. for (i = 0; i < MAX_NR_ZONES; i++) {
  3464. if (i == ZONE_MOVABLE)
  3465. continue;
  3466. printk(" %-8s %0#10lx -> %0#10lx\n",
  3467. zone_names[i],
  3468. arch_zone_lowest_possible_pfn[i],
  3469. arch_zone_highest_possible_pfn[i]);
  3470. }
  3471. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3472. printk("Movable zone start PFN for each node\n");
  3473. for (i = 0; i < MAX_NUMNODES; i++) {
  3474. if (zone_movable_pfn[i])
  3475. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3476. }
  3477. /* Print out the early_node_map[] */
  3478. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3479. for (i = 0; i < nr_nodemap_entries; i++)
  3480. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3481. early_node_map[i].start_pfn,
  3482. early_node_map[i].end_pfn);
  3483. /* Initialise every node */
  3484. mminit_verify_pageflags_layout();
  3485. setup_nr_node_ids();
  3486. for_each_online_node(nid) {
  3487. pg_data_t *pgdat = NODE_DATA(nid);
  3488. free_area_init_node(nid, NULL,
  3489. find_min_pfn_for_node(nid), NULL);
  3490. /* Any memory on that node */
  3491. if (pgdat->node_present_pages)
  3492. node_set_state(nid, N_HIGH_MEMORY);
  3493. check_for_regular_memory(pgdat);
  3494. }
  3495. }
  3496. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3497. {
  3498. unsigned long long coremem;
  3499. if (!p)
  3500. return -EINVAL;
  3501. coremem = memparse(p, &p);
  3502. *core = coremem >> PAGE_SHIFT;
  3503. /* Paranoid check that UL is enough for the coremem value */
  3504. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3505. return 0;
  3506. }
  3507. /*
  3508. * kernelcore=size sets the amount of memory for use for allocations that
  3509. * cannot be reclaimed or migrated.
  3510. */
  3511. static int __init cmdline_parse_kernelcore(char *p)
  3512. {
  3513. return cmdline_parse_core(p, &required_kernelcore);
  3514. }
  3515. /*
  3516. * movablecore=size sets the amount of memory for use for allocations that
  3517. * can be reclaimed or migrated.
  3518. */
  3519. static int __init cmdline_parse_movablecore(char *p)
  3520. {
  3521. return cmdline_parse_core(p, &required_movablecore);
  3522. }
  3523. early_param("kernelcore", cmdline_parse_kernelcore);
  3524. early_param("movablecore", cmdline_parse_movablecore);
  3525. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3526. /**
  3527. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3528. * @new_dma_reserve: The number of pages to mark reserved
  3529. *
  3530. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3531. * In the DMA zone, a significant percentage may be consumed by kernel image
  3532. * and other unfreeable allocations which can skew the watermarks badly. This
  3533. * function may optionally be used to account for unfreeable pages in the
  3534. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3535. * smaller per-cpu batchsize.
  3536. */
  3537. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3538. {
  3539. dma_reserve = new_dma_reserve;
  3540. }
  3541. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3542. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3543. EXPORT_SYMBOL(contig_page_data);
  3544. #endif
  3545. void __init free_area_init(unsigned long *zones_size)
  3546. {
  3547. free_area_init_node(0, zones_size,
  3548. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3549. }
  3550. static int page_alloc_cpu_notify(struct notifier_block *self,
  3551. unsigned long action, void *hcpu)
  3552. {
  3553. int cpu = (unsigned long)hcpu;
  3554. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3555. drain_pages(cpu);
  3556. /*
  3557. * Spill the event counters of the dead processor
  3558. * into the current processors event counters.
  3559. * This artificially elevates the count of the current
  3560. * processor.
  3561. */
  3562. vm_events_fold_cpu(cpu);
  3563. /*
  3564. * Zero the differential counters of the dead processor
  3565. * so that the vm statistics are consistent.
  3566. *
  3567. * This is only okay since the processor is dead and cannot
  3568. * race with what we are doing.
  3569. */
  3570. refresh_cpu_vm_stats(cpu);
  3571. }
  3572. return NOTIFY_OK;
  3573. }
  3574. void __init page_alloc_init(void)
  3575. {
  3576. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3577. }
  3578. /*
  3579. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3580. * or min_free_kbytes changes.
  3581. */
  3582. static void calculate_totalreserve_pages(void)
  3583. {
  3584. struct pglist_data *pgdat;
  3585. unsigned long reserve_pages = 0;
  3586. enum zone_type i, j;
  3587. for_each_online_pgdat(pgdat) {
  3588. for (i = 0; i < MAX_NR_ZONES; i++) {
  3589. struct zone *zone = pgdat->node_zones + i;
  3590. unsigned long max = 0;
  3591. /* Find valid and maximum lowmem_reserve in the zone */
  3592. for (j = i; j < MAX_NR_ZONES; j++) {
  3593. if (zone->lowmem_reserve[j] > max)
  3594. max = zone->lowmem_reserve[j];
  3595. }
  3596. /* we treat pages_high as reserved pages. */
  3597. max += zone->pages_high;
  3598. if (max > zone->present_pages)
  3599. max = zone->present_pages;
  3600. reserve_pages += max;
  3601. }
  3602. }
  3603. totalreserve_pages = reserve_pages;
  3604. }
  3605. /*
  3606. * setup_per_zone_lowmem_reserve - called whenever
  3607. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3608. * has a correct pages reserved value, so an adequate number of
  3609. * pages are left in the zone after a successful __alloc_pages().
  3610. */
  3611. static void setup_per_zone_lowmem_reserve(void)
  3612. {
  3613. struct pglist_data *pgdat;
  3614. enum zone_type j, idx;
  3615. for_each_online_pgdat(pgdat) {
  3616. for (j = 0; j < MAX_NR_ZONES; j++) {
  3617. struct zone *zone = pgdat->node_zones + j;
  3618. unsigned long present_pages = zone->present_pages;
  3619. zone->lowmem_reserve[j] = 0;
  3620. idx = j;
  3621. while (idx) {
  3622. struct zone *lower_zone;
  3623. idx--;
  3624. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3625. sysctl_lowmem_reserve_ratio[idx] = 1;
  3626. lower_zone = pgdat->node_zones + idx;
  3627. lower_zone->lowmem_reserve[j] = present_pages /
  3628. sysctl_lowmem_reserve_ratio[idx];
  3629. present_pages += lower_zone->present_pages;
  3630. }
  3631. }
  3632. }
  3633. /* update totalreserve_pages */
  3634. calculate_totalreserve_pages();
  3635. }
  3636. /**
  3637. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3638. *
  3639. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3640. * with respect to min_free_kbytes.
  3641. */
  3642. void setup_per_zone_pages_min(void)
  3643. {
  3644. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3645. unsigned long lowmem_pages = 0;
  3646. struct zone *zone;
  3647. unsigned long flags;
  3648. /* Calculate total number of !ZONE_HIGHMEM pages */
  3649. for_each_zone(zone) {
  3650. if (!is_highmem(zone))
  3651. lowmem_pages += zone->present_pages;
  3652. }
  3653. for_each_zone(zone) {
  3654. u64 tmp;
  3655. spin_lock_irqsave(&zone->lock, flags);
  3656. tmp = (u64)pages_min * zone->present_pages;
  3657. do_div(tmp, lowmem_pages);
  3658. if (is_highmem(zone)) {
  3659. /*
  3660. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3661. * need highmem pages, so cap pages_min to a small
  3662. * value here.
  3663. *
  3664. * The (pages_high-pages_low) and (pages_low-pages_min)
  3665. * deltas controls asynch page reclaim, and so should
  3666. * not be capped for highmem.
  3667. */
  3668. int min_pages;
  3669. min_pages = zone->present_pages / 1024;
  3670. if (min_pages < SWAP_CLUSTER_MAX)
  3671. min_pages = SWAP_CLUSTER_MAX;
  3672. if (min_pages > 128)
  3673. min_pages = 128;
  3674. zone->pages_min = min_pages;
  3675. } else {
  3676. /*
  3677. * If it's a lowmem zone, reserve a number of pages
  3678. * proportionate to the zone's size.
  3679. */
  3680. zone->pages_min = tmp;
  3681. }
  3682. zone->pages_low = zone->pages_min + (tmp >> 2);
  3683. zone->pages_high = zone->pages_min + (tmp >> 1);
  3684. setup_zone_migrate_reserve(zone);
  3685. spin_unlock_irqrestore(&zone->lock, flags);
  3686. }
  3687. /* update totalreserve_pages */
  3688. calculate_totalreserve_pages();
  3689. }
  3690. /**
  3691. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3692. *
  3693. * The inactive anon list should be small enough that the VM never has to
  3694. * do too much work, but large enough that each inactive page has a chance
  3695. * to be referenced again before it is swapped out.
  3696. *
  3697. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3698. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3699. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3700. * the anonymous pages are kept on the inactive list.
  3701. *
  3702. * total target max
  3703. * memory ratio inactive anon
  3704. * -------------------------------------
  3705. * 10MB 1 5MB
  3706. * 100MB 1 50MB
  3707. * 1GB 3 250MB
  3708. * 10GB 10 0.9GB
  3709. * 100GB 31 3GB
  3710. * 1TB 101 10GB
  3711. * 10TB 320 32GB
  3712. */
  3713. static void setup_per_zone_inactive_ratio(void)
  3714. {
  3715. struct zone *zone;
  3716. for_each_zone(zone) {
  3717. unsigned int gb, ratio;
  3718. /* Zone size in gigabytes */
  3719. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3720. ratio = int_sqrt(10 * gb);
  3721. if (!ratio)
  3722. ratio = 1;
  3723. zone->inactive_ratio = ratio;
  3724. }
  3725. }
  3726. /*
  3727. * Initialise min_free_kbytes.
  3728. *
  3729. * For small machines we want it small (128k min). For large machines
  3730. * we want it large (64MB max). But it is not linear, because network
  3731. * bandwidth does not increase linearly with machine size. We use
  3732. *
  3733. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3734. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3735. *
  3736. * which yields
  3737. *
  3738. * 16MB: 512k
  3739. * 32MB: 724k
  3740. * 64MB: 1024k
  3741. * 128MB: 1448k
  3742. * 256MB: 2048k
  3743. * 512MB: 2896k
  3744. * 1024MB: 4096k
  3745. * 2048MB: 5792k
  3746. * 4096MB: 8192k
  3747. * 8192MB: 11584k
  3748. * 16384MB: 16384k
  3749. */
  3750. static int __init init_per_zone_pages_min(void)
  3751. {
  3752. unsigned long lowmem_kbytes;
  3753. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3754. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3755. if (min_free_kbytes < 128)
  3756. min_free_kbytes = 128;
  3757. if (min_free_kbytes > 65536)
  3758. min_free_kbytes = 65536;
  3759. setup_per_zone_pages_min();
  3760. setup_per_zone_lowmem_reserve();
  3761. setup_per_zone_inactive_ratio();
  3762. return 0;
  3763. }
  3764. module_init(init_per_zone_pages_min)
  3765. /*
  3766. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3767. * that we can call two helper functions whenever min_free_kbytes
  3768. * changes.
  3769. */
  3770. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3771. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3772. {
  3773. proc_dointvec(table, write, file, buffer, length, ppos);
  3774. if (write)
  3775. setup_per_zone_pages_min();
  3776. return 0;
  3777. }
  3778. #ifdef CONFIG_NUMA
  3779. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3780. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3781. {
  3782. struct zone *zone;
  3783. int rc;
  3784. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3785. if (rc)
  3786. return rc;
  3787. for_each_zone(zone)
  3788. zone->min_unmapped_pages = (zone->present_pages *
  3789. sysctl_min_unmapped_ratio) / 100;
  3790. return 0;
  3791. }
  3792. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3793. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3794. {
  3795. struct zone *zone;
  3796. int rc;
  3797. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3798. if (rc)
  3799. return rc;
  3800. for_each_zone(zone)
  3801. zone->min_slab_pages = (zone->present_pages *
  3802. sysctl_min_slab_ratio) / 100;
  3803. return 0;
  3804. }
  3805. #endif
  3806. /*
  3807. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3808. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3809. * whenever sysctl_lowmem_reserve_ratio changes.
  3810. *
  3811. * The reserve ratio obviously has absolutely no relation with the
  3812. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3813. * if in function of the boot time zone sizes.
  3814. */
  3815. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3816. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3817. {
  3818. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3819. setup_per_zone_lowmem_reserve();
  3820. return 0;
  3821. }
  3822. /*
  3823. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3824. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3825. * can have before it gets flushed back to buddy allocator.
  3826. */
  3827. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3828. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3829. {
  3830. struct zone *zone;
  3831. unsigned int cpu;
  3832. int ret;
  3833. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3834. if (!write || (ret == -EINVAL))
  3835. return ret;
  3836. for_each_zone(zone) {
  3837. for_each_online_cpu(cpu) {
  3838. unsigned long high;
  3839. high = zone->present_pages / percpu_pagelist_fraction;
  3840. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3841. }
  3842. }
  3843. return 0;
  3844. }
  3845. int hashdist = HASHDIST_DEFAULT;
  3846. #ifdef CONFIG_NUMA
  3847. static int __init set_hashdist(char *str)
  3848. {
  3849. if (!str)
  3850. return 0;
  3851. hashdist = simple_strtoul(str, &str, 0);
  3852. return 1;
  3853. }
  3854. __setup("hashdist=", set_hashdist);
  3855. #endif
  3856. /*
  3857. * allocate a large system hash table from bootmem
  3858. * - it is assumed that the hash table must contain an exact power-of-2
  3859. * quantity of entries
  3860. * - limit is the number of hash buckets, not the total allocation size
  3861. */
  3862. void *__init alloc_large_system_hash(const char *tablename,
  3863. unsigned long bucketsize,
  3864. unsigned long numentries,
  3865. int scale,
  3866. int flags,
  3867. unsigned int *_hash_shift,
  3868. unsigned int *_hash_mask,
  3869. unsigned long limit)
  3870. {
  3871. unsigned long long max = limit;
  3872. unsigned long log2qty, size;
  3873. void *table = NULL;
  3874. /* allow the kernel cmdline to have a say */
  3875. if (!numentries) {
  3876. /* round applicable memory size up to nearest megabyte */
  3877. numentries = nr_kernel_pages;
  3878. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3879. numentries >>= 20 - PAGE_SHIFT;
  3880. numentries <<= 20 - PAGE_SHIFT;
  3881. /* limit to 1 bucket per 2^scale bytes of low memory */
  3882. if (scale > PAGE_SHIFT)
  3883. numentries >>= (scale - PAGE_SHIFT);
  3884. else
  3885. numentries <<= (PAGE_SHIFT - scale);
  3886. /* Make sure we've got at least a 0-order allocation.. */
  3887. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3888. numentries = PAGE_SIZE / bucketsize;
  3889. }
  3890. numentries = roundup_pow_of_two(numentries);
  3891. /* limit allocation size to 1/16 total memory by default */
  3892. if (max == 0) {
  3893. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3894. do_div(max, bucketsize);
  3895. }
  3896. if (numentries > max)
  3897. numentries = max;
  3898. log2qty = ilog2(numentries);
  3899. do {
  3900. size = bucketsize << log2qty;
  3901. if (flags & HASH_EARLY)
  3902. table = alloc_bootmem_nopanic(size);
  3903. else if (hashdist)
  3904. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3905. else {
  3906. unsigned long order = get_order(size);
  3907. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3908. /*
  3909. * If bucketsize is not a power-of-two, we may free
  3910. * some pages at the end of hash table.
  3911. */
  3912. if (table) {
  3913. unsigned long alloc_end = (unsigned long)table +
  3914. (PAGE_SIZE << order);
  3915. unsigned long used = (unsigned long)table +
  3916. PAGE_ALIGN(size);
  3917. split_page(virt_to_page(table), order);
  3918. while (used < alloc_end) {
  3919. free_page(used);
  3920. used += PAGE_SIZE;
  3921. }
  3922. }
  3923. }
  3924. } while (!table && size > PAGE_SIZE && --log2qty);
  3925. if (!table)
  3926. panic("Failed to allocate %s hash table\n", tablename);
  3927. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3928. tablename,
  3929. (1U << log2qty),
  3930. ilog2(size) - PAGE_SHIFT,
  3931. size);
  3932. if (_hash_shift)
  3933. *_hash_shift = log2qty;
  3934. if (_hash_mask)
  3935. *_hash_mask = (1 << log2qty) - 1;
  3936. /*
  3937. * If hashdist is set, the table allocation is done with __vmalloc()
  3938. * which invokes the kmemleak_alloc() callback. This function may also
  3939. * be called before the slab and kmemleak are initialised when
  3940. * kmemleak simply buffers the request to be executed later
  3941. * (GFP_ATOMIC flag ignored in this case).
  3942. */
  3943. if (!hashdist)
  3944. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  3945. return table;
  3946. }
  3947. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3948. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3949. unsigned long pfn)
  3950. {
  3951. #ifdef CONFIG_SPARSEMEM
  3952. return __pfn_to_section(pfn)->pageblock_flags;
  3953. #else
  3954. return zone->pageblock_flags;
  3955. #endif /* CONFIG_SPARSEMEM */
  3956. }
  3957. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3958. {
  3959. #ifdef CONFIG_SPARSEMEM
  3960. pfn &= (PAGES_PER_SECTION-1);
  3961. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3962. #else
  3963. pfn = pfn - zone->zone_start_pfn;
  3964. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3965. #endif /* CONFIG_SPARSEMEM */
  3966. }
  3967. /**
  3968. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3969. * @page: The page within the block of interest
  3970. * @start_bitidx: The first bit of interest to retrieve
  3971. * @end_bitidx: The last bit of interest
  3972. * returns pageblock_bits flags
  3973. */
  3974. unsigned long get_pageblock_flags_group(struct page *page,
  3975. int start_bitidx, int end_bitidx)
  3976. {
  3977. struct zone *zone;
  3978. unsigned long *bitmap;
  3979. unsigned long pfn, bitidx;
  3980. unsigned long flags = 0;
  3981. unsigned long value = 1;
  3982. zone = page_zone(page);
  3983. pfn = page_to_pfn(page);
  3984. bitmap = get_pageblock_bitmap(zone, pfn);
  3985. bitidx = pfn_to_bitidx(zone, pfn);
  3986. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3987. if (test_bit(bitidx + start_bitidx, bitmap))
  3988. flags |= value;
  3989. return flags;
  3990. }
  3991. /**
  3992. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3993. * @page: The page within the block of interest
  3994. * @start_bitidx: The first bit of interest
  3995. * @end_bitidx: The last bit of interest
  3996. * @flags: The flags to set
  3997. */
  3998. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3999. int start_bitidx, int end_bitidx)
  4000. {
  4001. struct zone *zone;
  4002. unsigned long *bitmap;
  4003. unsigned long pfn, bitidx;
  4004. unsigned long value = 1;
  4005. zone = page_zone(page);
  4006. pfn = page_to_pfn(page);
  4007. bitmap = get_pageblock_bitmap(zone, pfn);
  4008. bitidx = pfn_to_bitidx(zone, pfn);
  4009. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4010. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4011. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4012. if (flags & value)
  4013. __set_bit(bitidx + start_bitidx, bitmap);
  4014. else
  4015. __clear_bit(bitidx + start_bitidx, bitmap);
  4016. }
  4017. /*
  4018. * This is designed as sub function...plz see page_isolation.c also.
  4019. * set/clear page block's type to be ISOLATE.
  4020. * page allocater never alloc memory from ISOLATE block.
  4021. */
  4022. int set_migratetype_isolate(struct page *page)
  4023. {
  4024. struct zone *zone;
  4025. unsigned long flags;
  4026. int ret = -EBUSY;
  4027. zone = page_zone(page);
  4028. spin_lock_irqsave(&zone->lock, flags);
  4029. /*
  4030. * In future, more migrate types will be able to be isolation target.
  4031. */
  4032. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4033. goto out;
  4034. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4035. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4036. ret = 0;
  4037. out:
  4038. spin_unlock_irqrestore(&zone->lock, flags);
  4039. if (!ret)
  4040. drain_all_pages();
  4041. return ret;
  4042. }
  4043. void unset_migratetype_isolate(struct page *page)
  4044. {
  4045. struct zone *zone;
  4046. unsigned long flags;
  4047. zone = page_zone(page);
  4048. spin_lock_irqsave(&zone->lock, flags);
  4049. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4050. goto out;
  4051. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4052. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4053. out:
  4054. spin_unlock_irqrestore(&zone->lock, flags);
  4055. }
  4056. #ifdef CONFIG_MEMORY_HOTREMOVE
  4057. /*
  4058. * All pages in the range must be isolated before calling this.
  4059. */
  4060. void
  4061. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4062. {
  4063. struct page *page;
  4064. struct zone *zone;
  4065. int order, i;
  4066. unsigned long pfn;
  4067. unsigned long flags;
  4068. /* find the first valid pfn */
  4069. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4070. if (pfn_valid(pfn))
  4071. break;
  4072. if (pfn == end_pfn)
  4073. return;
  4074. zone = page_zone(pfn_to_page(pfn));
  4075. spin_lock_irqsave(&zone->lock, flags);
  4076. pfn = start_pfn;
  4077. while (pfn < end_pfn) {
  4078. if (!pfn_valid(pfn)) {
  4079. pfn++;
  4080. continue;
  4081. }
  4082. page = pfn_to_page(pfn);
  4083. BUG_ON(page_count(page));
  4084. BUG_ON(!PageBuddy(page));
  4085. order = page_order(page);
  4086. #ifdef CONFIG_DEBUG_VM
  4087. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4088. pfn, 1 << order, end_pfn);
  4089. #endif
  4090. list_del(&page->lru);
  4091. rmv_page_order(page);
  4092. zone->free_area[order].nr_free--;
  4093. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4094. - (1UL << order));
  4095. for (i = 0; i < (1 << order); i++)
  4096. SetPageReserved((page+i));
  4097. pfn += (1 << order);
  4098. }
  4099. spin_unlock_irqrestore(&zone->lock, flags);
  4100. }
  4101. #endif