messenger.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
  29. #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
  30. #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
  31. #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
  32. #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
  33. #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
  34. /* static tag bytes (protocol control messages) */
  35. static char tag_msg = CEPH_MSGR_TAG_MSG;
  36. static char tag_ack = CEPH_MSGR_TAG_ACK;
  37. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  38. #ifdef CONFIG_LOCKDEP
  39. static struct lock_class_key socket_class;
  40. #endif
  41. /*
  42. * When skipping (ignoring) a block of input we read it into a "skip
  43. * buffer," which is this many bytes in size.
  44. */
  45. #define SKIP_BUF_SIZE 1024
  46. static void queue_con(struct ceph_connection *con);
  47. static void con_work(struct work_struct *);
  48. static void ceph_fault(struct ceph_connection *con);
  49. /*
  50. * Nicely render a sockaddr as a string. An array of formatted
  51. * strings is used, to approximate reentrancy.
  52. */
  53. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  54. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  55. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  56. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  57. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  58. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  59. static struct page *zero_page; /* used in certain error cases */
  60. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  61. {
  62. int i;
  63. char *s;
  64. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  65. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  66. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  67. s = addr_str[i];
  68. switch (ss->ss_family) {
  69. case AF_INET:
  70. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  71. ntohs(in4->sin_port));
  72. break;
  73. case AF_INET6:
  74. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  75. ntohs(in6->sin6_port));
  76. break;
  77. default:
  78. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  79. ss->ss_family);
  80. }
  81. return s;
  82. }
  83. EXPORT_SYMBOL(ceph_pr_addr);
  84. static void encode_my_addr(struct ceph_messenger *msgr)
  85. {
  86. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  87. ceph_encode_addr(&msgr->my_enc_addr);
  88. }
  89. /*
  90. * work queue for all reading and writing to/from the socket.
  91. */
  92. static struct workqueue_struct *ceph_msgr_wq;
  93. void _ceph_msgr_exit(void)
  94. {
  95. if (ceph_msgr_wq) {
  96. destroy_workqueue(ceph_msgr_wq);
  97. ceph_msgr_wq = NULL;
  98. }
  99. BUG_ON(zero_page == NULL);
  100. kunmap(zero_page);
  101. page_cache_release(zero_page);
  102. zero_page = NULL;
  103. }
  104. int ceph_msgr_init(void)
  105. {
  106. BUG_ON(zero_page != NULL);
  107. zero_page = ZERO_PAGE(0);
  108. page_cache_get(zero_page);
  109. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  110. if (ceph_msgr_wq)
  111. return 0;
  112. pr_err("msgr_init failed to create workqueue\n");
  113. _ceph_msgr_exit();
  114. return -ENOMEM;
  115. }
  116. EXPORT_SYMBOL(ceph_msgr_init);
  117. void ceph_msgr_exit(void)
  118. {
  119. BUG_ON(ceph_msgr_wq == NULL);
  120. _ceph_msgr_exit();
  121. }
  122. EXPORT_SYMBOL(ceph_msgr_exit);
  123. void ceph_msgr_flush(void)
  124. {
  125. flush_workqueue(ceph_msgr_wq);
  126. }
  127. EXPORT_SYMBOL(ceph_msgr_flush);
  128. /* Connection socket state transition functions */
  129. static void con_sock_state_init(struct ceph_connection *con)
  130. {
  131. int old_state;
  132. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
  133. if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
  134. printk("%s: unexpected old state %d\n", __func__, old_state);
  135. }
  136. static void con_sock_state_connecting(struct ceph_connection *con)
  137. {
  138. int old_state;
  139. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
  140. if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
  141. printk("%s: unexpected old state %d\n", __func__, old_state);
  142. }
  143. static void con_sock_state_connected(struct ceph_connection *con)
  144. {
  145. int old_state;
  146. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
  147. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
  148. printk("%s: unexpected old state %d\n", __func__, old_state);
  149. }
  150. static void con_sock_state_closing(struct ceph_connection *con)
  151. {
  152. int old_state;
  153. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
  154. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
  155. old_state != CON_SOCK_STATE_CONNECTED &&
  156. old_state != CON_SOCK_STATE_CLOSING))
  157. printk("%s: unexpected old state %d\n", __func__, old_state);
  158. }
  159. static void con_sock_state_closed(struct ceph_connection *con)
  160. {
  161. int old_state;
  162. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
  163. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
  164. old_state != CON_SOCK_STATE_CLOSING))
  165. printk("%s: unexpected old state %d\n", __func__, old_state);
  166. }
  167. /*
  168. * socket callback functions
  169. */
  170. /* data available on socket, or listen socket received a connect */
  171. static void ceph_sock_data_ready(struct sock *sk, int count_unused)
  172. {
  173. struct ceph_connection *con = sk->sk_user_data;
  174. if (sk->sk_state != TCP_CLOSE_WAIT) {
  175. dout("%s on %p state = %lu, queueing work\n", __func__,
  176. con, con->state);
  177. queue_con(con);
  178. }
  179. }
  180. /* socket has buffer space for writing */
  181. static void ceph_sock_write_space(struct sock *sk)
  182. {
  183. struct ceph_connection *con = sk->sk_user_data;
  184. /* only queue to workqueue if there is data we want to write,
  185. * and there is sufficient space in the socket buffer to accept
  186. * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
  187. * doesn't get called again until try_write() fills the socket
  188. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  189. * and net/core/stream.c:sk_stream_write_space().
  190. */
  191. if (test_bit(WRITE_PENDING, &con->flags)) {
  192. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  193. dout("%s %p queueing write work\n", __func__, con);
  194. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  195. queue_con(con);
  196. }
  197. } else {
  198. dout("%s %p nothing to write\n", __func__, con);
  199. }
  200. }
  201. /* socket's state has changed */
  202. static void ceph_sock_state_change(struct sock *sk)
  203. {
  204. struct ceph_connection *con = sk->sk_user_data;
  205. dout("%s %p state = %lu sk_state = %u\n", __func__,
  206. con, con->state, sk->sk_state);
  207. if (test_bit(CLOSED, &con->state))
  208. return;
  209. switch (sk->sk_state) {
  210. case TCP_CLOSE:
  211. dout("%s TCP_CLOSE\n", __func__);
  212. case TCP_CLOSE_WAIT:
  213. dout("%s TCP_CLOSE_WAIT\n", __func__);
  214. con_sock_state_closing(con);
  215. set_bit(SOCK_CLOSED, &con->flags);
  216. queue_con(con);
  217. break;
  218. case TCP_ESTABLISHED:
  219. dout("%s TCP_ESTABLISHED\n", __func__);
  220. con_sock_state_connected(con);
  221. queue_con(con);
  222. break;
  223. default: /* Everything else is uninteresting */
  224. break;
  225. }
  226. }
  227. /*
  228. * set up socket callbacks
  229. */
  230. static void set_sock_callbacks(struct socket *sock,
  231. struct ceph_connection *con)
  232. {
  233. struct sock *sk = sock->sk;
  234. sk->sk_user_data = con;
  235. sk->sk_data_ready = ceph_sock_data_ready;
  236. sk->sk_write_space = ceph_sock_write_space;
  237. sk->sk_state_change = ceph_sock_state_change;
  238. }
  239. /*
  240. * socket helpers
  241. */
  242. /*
  243. * initiate connection to a remote socket.
  244. */
  245. static int ceph_tcp_connect(struct ceph_connection *con)
  246. {
  247. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  248. struct socket *sock;
  249. int ret;
  250. BUG_ON(con->sock);
  251. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  252. IPPROTO_TCP, &sock);
  253. if (ret)
  254. return ret;
  255. sock->sk->sk_allocation = GFP_NOFS;
  256. #ifdef CONFIG_LOCKDEP
  257. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  258. #endif
  259. set_sock_callbacks(sock, con);
  260. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  261. con_sock_state_connecting(con);
  262. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  263. O_NONBLOCK);
  264. if (ret == -EINPROGRESS) {
  265. dout("connect %s EINPROGRESS sk_state = %u\n",
  266. ceph_pr_addr(&con->peer_addr.in_addr),
  267. sock->sk->sk_state);
  268. } else if (ret < 0) {
  269. pr_err("connect %s error %d\n",
  270. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  271. sock_release(sock);
  272. con->error_msg = "connect error";
  273. return ret;
  274. }
  275. con->sock = sock;
  276. return 0;
  277. }
  278. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  279. {
  280. struct kvec iov = {buf, len};
  281. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  282. int r;
  283. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  284. if (r == -EAGAIN)
  285. r = 0;
  286. return r;
  287. }
  288. /*
  289. * write something. @more is true if caller will be sending more data
  290. * shortly.
  291. */
  292. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  293. size_t kvlen, size_t len, int more)
  294. {
  295. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  296. int r;
  297. if (more)
  298. msg.msg_flags |= MSG_MORE;
  299. else
  300. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  301. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  302. if (r == -EAGAIN)
  303. r = 0;
  304. return r;
  305. }
  306. static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
  307. int offset, size_t size, int more)
  308. {
  309. int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
  310. int ret;
  311. ret = kernel_sendpage(sock, page, offset, size, flags);
  312. if (ret == -EAGAIN)
  313. ret = 0;
  314. return ret;
  315. }
  316. /*
  317. * Shutdown/close the socket for the given connection.
  318. */
  319. static int con_close_socket(struct ceph_connection *con)
  320. {
  321. int rc;
  322. dout("con_close_socket on %p sock %p\n", con, con->sock);
  323. if (!con->sock)
  324. return 0;
  325. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  326. sock_release(con->sock);
  327. con->sock = NULL;
  328. /*
  329. * Forcibly clear the SOCK_CLOSE flag. It gets set
  330. * independent of the connection mutex, and we could have
  331. * received a socket close event before we had the chance to
  332. * shut the socket down.
  333. */
  334. clear_bit(SOCK_CLOSED, &con->flags);
  335. con_sock_state_closed(con);
  336. return rc;
  337. }
  338. /*
  339. * Reset a connection. Discard all incoming and outgoing messages
  340. * and clear *_seq state.
  341. */
  342. static void ceph_msg_remove(struct ceph_msg *msg)
  343. {
  344. list_del_init(&msg->list_head);
  345. BUG_ON(msg->con == NULL);
  346. msg->con->ops->put(msg->con);
  347. msg->con = NULL;
  348. ceph_msg_put(msg);
  349. }
  350. static void ceph_msg_remove_list(struct list_head *head)
  351. {
  352. while (!list_empty(head)) {
  353. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  354. list_head);
  355. ceph_msg_remove(msg);
  356. }
  357. }
  358. static void reset_connection(struct ceph_connection *con)
  359. {
  360. /* reset connection, out_queue, msg_ and connect_seq */
  361. /* discard existing out_queue and msg_seq */
  362. ceph_msg_remove_list(&con->out_queue);
  363. ceph_msg_remove_list(&con->out_sent);
  364. if (con->in_msg) {
  365. BUG_ON(con->in_msg->con != con);
  366. con->in_msg->con = NULL;
  367. ceph_msg_put(con->in_msg);
  368. con->in_msg = NULL;
  369. con->ops->put(con);
  370. }
  371. con->connect_seq = 0;
  372. con->out_seq = 0;
  373. if (con->out_msg) {
  374. ceph_msg_put(con->out_msg);
  375. con->out_msg = NULL;
  376. }
  377. con->in_seq = 0;
  378. con->in_seq_acked = 0;
  379. }
  380. /*
  381. * mark a peer down. drop any open connections.
  382. */
  383. void ceph_con_close(struct ceph_connection *con)
  384. {
  385. dout("con_close %p peer %s\n", con,
  386. ceph_pr_addr(&con->peer_addr.in_addr));
  387. clear_bit(NEGOTIATING, &con->state);
  388. clear_bit(CONNECTING, &con->state);
  389. clear_bit(CONNECTED, &con->state);
  390. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  391. set_bit(CLOSED, &con->state);
  392. clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
  393. clear_bit(KEEPALIVE_PENDING, &con->flags);
  394. clear_bit(WRITE_PENDING, &con->flags);
  395. mutex_lock(&con->mutex);
  396. reset_connection(con);
  397. con->peer_global_seq = 0;
  398. cancel_delayed_work(&con->work);
  399. mutex_unlock(&con->mutex);
  400. queue_con(con);
  401. }
  402. EXPORT_SYMBOL(ceph_con_close);
  403. /*
  404. * Reopen a closed connection, with a new peer address.
  405. */
  406. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  407. {
  408. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  409. set_bit(OPENING, &con->state);
  410. WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
  411. memcpy(&con->peer_addr, addr, sizeof(*addr));
  412. con->delay = 0; /* reset backoff memory */
  413. queue_con(con);
  414. }
  415. EXPORT_SYMBOL(ceph_con_open);
  416. /*
  417. * return true if this connection ever successfully opened
  418. */
  419. bool ceph_con_opened(struct ceph_connection *con)
  420. {
  421. return con->connect_seq > 0;
  422. }
  423. /*
  424. * initialize a new connection.
  425. */
  426. void ceph_con_init(struct ceph_connection *con, void *private,
  427. const struct ceph_connection_operations *ops,
  428. struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
  429. {
  430. dout("con_init %p\n", con);
  431. memset(con, 0, sizeof(*con));
  432. con->private = private;
  433. con->ops = ops;
  434. con->msgr = msgr;
  435. con_sock_state_init(con);
  436. con->peer_name.type = (__u8) entity_type;
  437. con->peer_name.num = cpu_to_le64(entity_num);
  438. mutex_init(&con->mutex);
  439. INIT_LIST_HEAD(&con->out_queue);
  440. INIT_LIST_HEAD(&con->out_sent);
  441. INIT_DELAYED_WORK(&con->work, con_work);
  442. set_bit(CLOSED, &con->state);
  443. }
  444. EXPORT_SYMBOL(ceph_con_init);
  445. /*
  446. * We maintain a global counter to order connection attempts. Get
  447. * a unique seq greater than @gt.
  448. */
  449. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  450. {
  451. u32 ret;
  452. spin_lock(&msgr->global_seq_lock);
  453. if (msgr->global_seq < gt)
  454. msgr->global_seq = gt;
  455. ret = ++msgr->global_seq;
  456. spin_unlock(&msgr->global_seq_lock);
  457. return ret;
  458. }
  459. static void con_out_kvec_reset(struct ceph_connection *con)
  460. {
  461. con->out_kvec_left = 0;
  462. con->out_kvec_bytes = 0;
  463. con->out_kvec_cur = &con->out_kvec[0];
  464. }
  465. static void con_out_kvec_add(struct ceph_connection *con,
  466. size_t size, void *data)
  467. {
  468. int index;
  469. index = con->out_kvec_left;
  470. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  471. con->out_kvec[index].iov_len = size;
  472. con->out_kvec[index].iov_base = data;
  473. con->out_kvec_left++;
  474. con->out_kvec_bytes += size;
  475. }
  476. #ifdef CONFIG_BLOCK
  477. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  478. {
  479. if (!bio) {
  480. *iter = NULL;
  481. *seg = 0;
  482. return;
  483. }
  484. *iter = bio;
  485. *seg = bio->bi_idx;
  486. }
  487. static void iter_bio_next(struct bio **bio_iter, int *seg)
  488. {
  489. if (*bio_iter == NULL)
  490. return;
  491. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  492. (*seg)++;
  493. if (*seg == (*bio_iter)->bi_vcnt)
  494. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  495. }
  496. #endif
  497. static void prepare_write_message_data(struct ceph_connection *con)
  498. {
  499. struct ceph_msg *msg = con->out_msg;
  500. BUG_ON(!msg);
  501. BUG_ON(!msg->hdr.data_len);
  502. /* initialize page iterator */
  503. con->out_msg_pos.page = 0;
  504. if (msg->pages)
  505. con->out_msg_pos.page_pos = msg->page_alignment;
  506. else
  507. con->out_msg_pos.page_pos = 0;
  508. #ifdef CONFIG_BLOCK
  509. if (msg->bio)
  510. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  511. #endif
  512. con->out_msg_pos.data_pos = 0;
  513. con->out_msg_pos.did_page_crc = false;
  514. con->out_more = 1; /* data + footer will follow */
  515. }
  516. /*
  517. * Prepare footer for currently outgoing message, and finish things
  518. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  519. */
  520. static void prepare_write_message_footer(struct ceph_connection *con)
  521. {
  522. struct ceph_msg *m = con->out_msg;
  523. int v = con->out_kvec_left;
  524. m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
  525. dout("prepare_write_message_footer %p\n", con);
  526. con->out_kvec_is_msg = true;
  527. con->out_kvec[v].iov_base = &m->footer;
  528. con->out_kvec[v].iov_len = sizeof(m->footer);
  529. con->out_kvec_bytes += sizeof(m->footer);
  530. con->out_kvec_left++;
  531. con->out_more = m->more_to_follow;
  532. con->out_msg_done = true;
  533. }
  534. /*
  535. * Prepare headers for the next outgoing message.
  536. */
  537. static void prepare_write_message(struct ceph_connection *con)
  538. {
  539. struct ceph_msg *m;
  540. u32 crc;
  541. con_out_kvec_reset(con);
  542. con->out_kvec_is_msg = true;
  543. con->out_msg_done = false;
  544. /* Sneak an ack in there first? If we can get it into the same
  545. * TCP packet that's a good thing. */
  546. if (con->in_seq > con->in_seq_acked) {
  547. con->in_seq_acked = con->in_seq;
  548. con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  549. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  550. con_out_kvec_add(con, sizeof (con->out_temp_ack),
  551. &con->out_temp_ack);
  552. }
  553. BUG_ON(list_empty(&con->out_queue));
  554. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  555. con->out_msg = m;
  556. BUG_ON(m->con != con);
  557. /* put message on sent list */
  558. ceph_msg_get(m);
  559. list_move_tail(&m->list_head, &con->out_sent);
  560. /*
  561. * only assign outgoing seq # if we haven't sent this message
  562. * yet. if it is requeued, resend with it's original seq.
  563. */
  564. if (m->needs_out_seq) {
  565. m->hdr.seq = cpu_to_le64(++con->out_seq);
  566. m->needs_out_seq = false;
  567. }
  568. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  569. m, con->out_seq, le16_to_cpu(m->hdr.type),
  570. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  571. le32_to_cpu(m->hdr.data_len),
  572. m->nr_pages);
  573. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  574. /* tag + hdr + front + middle */
  575. con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  576. con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  577. con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  578. if (m->middle)
  579. con_out_kvec_add(con, m->middle->vec.iov_len,
  580. m->middle->vec.iov_base);
  581. /* fill in crc (except data pages), footer */
  582. crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
  583. con->out_msg->hdr.crc = cpu_to_le32(crc);
  584. con->out_msg->footer.flags = 0;
  585. crc = crc32c(0, m->front.iov_base, m->front.iov_len);
  586. con->out_msg->footer.front_crc = cpu_to_le32(crc);
  587. if (m->middle) {
  588. crc = crc32c(0, m->middle->vec.iov_base,
  589. m->middle->vec.iov_len);
  590. con->out_msg->footer.middle_crc = cpu_to_le32(crc);
  591. } else
  592. con->out_msg->footer.middle_crc = 0;
  593. dout("%s front_crc %u middle_crc %u\n", __func__,
  594. le32_to_cpu(con->out_msg->footer.front_crc),
  595. le32_to_cpu(con->out_msg->footer.middle_crc));
  596. /* is there a data payload? */
  597. con->out_msg->footer.data_crc = 0;
  598. if (m->hdr.data_len)
  599. prepare_write_message_data(con);
  600. else
  601. /* no, queue up footer too and be done */
  602. prepare_write_message_footer(con);
  603. set_bit(WRITE_PENDING, &con->flags);
  604. }
  605. /*
  606. * Prepare an ack.
  607. */
  608. static void prepare_write_ack(struct ceph_connection *con)
  609. {
  610. dout("prepare_write_ack %p %llu -> %llu\n", con,
  611. con->in_seq_acked, con->in_seq);
  612. con->in_seq_acked = con->in_seq;
  613. con_out_kvec_reset(con);
  614. con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  615. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  616. con_out_kvec_add(con, sizeof (con->out_temp_ack),
  617. &con->out_temp_ack);
  618. con->out_more = 1; /* more will follow.. eventually.. */
  619. set_bit(WRITE_PENDING, &con->flags);
  620. }
  621. /*
  622. * Prepare to write keepalive byte.
  623. */
  624. static void prepare_write_keepalive(struct ceph_connection *con)
  625. {
  626. dout("prepare_write_keepalive %p\n", con);
  627. con_out_kvec_reset(con);
  628. con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  629. set_bit(WRITE_PENDING, &con->flags);
  630. }
  631. /*
  632. * Connection negotiation.
  633. */
  634. static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
  635. int *auth_proto)
  636. {
  637. struct ceph_auth_handshake *auth;
  638. if (!con->ops->get_authorizer) {
  639. con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
  640. con->out_connect.authorizer_len = 0;
  641. return NULL;
  642. }
  643. /* Can't hold the mutex while getting authorizer */
  644. mutex_unlock(&con->mutex);
  645. auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
  646. mutex_lock(&con->mutex);
  647. if (IS_ERR(auth))
  648. return auth;
  649. if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
  650. return ERR_PTR(-EAGAIN);
  651. con->auth_reply_buf = auth->authorizer_reply_buf;
  652. con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
  653. return auth;
  654. }
  655. /*
  656. * We connected to a peer and are saying hello.
  657. */
  658. static void prepare_write_banner(struct ceph_connection *con)
  659. {
  660. con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  661. con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
  662. &con->msgr->my_enc_addr);
  663. con->out_more = 0;
  664. set_bit(WRITE_PENDING, &con->flags);
  665. }
  666. static int prepare_write_connect(struct ceph_connection *con)
  667. {
  668. unsigned int global_seq = get_global_seq(con->msgr, 0);
  669. int proto;
  670. int auth_proto;
  671. struct ceph_auth_handshake *auth;
  672. switch (con->peer_name.type) {
  673. case CEPH_ENTITY_TYPE_MON:
  674. proto = CEPH_MONC_PROTOCOL;
  675. break;
  676. case CEPH_ENTITY_TYPE_OSD:
  677. proto = CEPH_OSDC_PROTOCOL;
  678. break;
  679. case CEPH_ENTITY_TYPE_MDS:
  680. proto = CEPH_MDSC_PROTOCOL;
  681. break;
  682. default:
  683. BUG();
  684. }
  685. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  686. con->connect_seq, global_seq, proto);
  687. con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
  688. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  689. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  690. con->out_connect.global_seq = cpu_to_le32(global_seq);
  691. con->out_connect.protocol_version = cpu_to_le32(proto);
  692. con->out_connect.flags = 0;
  693. auth_proto = CEPH_AUTH_UNKNOWN;
  694. auth = get_connect_authorizer(con, &auth_proto);
  695. if (IS_ERR(auth))
  696. return PTR_ERR(auth);
  697. con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
  698. con->out_connect.authorizer_len = auth ?
  699. cpu_to_le32(auth->authorizer_buf_len) : 0;
  700. con_out_kvec_reset(con);
  701. con_out_kvec_add(con, sizeof (con->out_connect),
  702. &con->out_connect);
  703. if (auth && auth->authorizer_buf_len)
  704. con_out_kvec_add(con, auth->authorizer_buf_len,
  705. auth->authorizer_buf);
  706. con->out_more = 0;
  707. set_bit(WRITE_PENDING, &con->flags);
  708. return 0;
  709. }
  710. /*
  711. * write as much of pending kvecs to the socket as we can.
  712. * 1 -> done
  713. * 0 -> socket full, but more to do
  714. * <0 -> error
  715. */
  716. static int write_partial_kvec(struct ceph_connection *con)
  717. {
  718. int ret;
  719. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  720. while (con->out_kvec_bytes > 0) {
  721. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  722. con->out_kvec_left, con->out_kvec_bytes,
  723. con->out_more);
  724. if (ret <= 0)
  725. goto out;
  726. con->out_kvec_bytes -= ret;
  727. if (con->out_kvec_bytes == 0)
  728. break; /* done */
  729. /* account for full iov entries consumed */
  730. while (ret >= con->out_kvec_cur->iov_len) {
  731. BUG_ON(!con->out_kvec_left);
  732. ret -= con->out_kvec_cur->iov_len;
  733. con->out_kvec_cur++;
  734. con->out_kvec_left--;
  735. }
  736. /* and for a partially-consumed entry */
  737. if (ret) {
  738. con->out_kvec_cur->iov_len -= ret;
  739. con->out_kvec_cur->iov_base += ret;
  740. }
  741. }
  742. con->out_kvec_left = 0;
  743. con->out_kvec_is_msg = false;
  744. ret = 1;
  745. out:
  746. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  747. con->out_kvec_bytes, con->out_kvec_left, ret);
  748. return ret; /* done! */
  749. }
  750. static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
  751. size_t len, size_t sent, bool in_trail)
  752. {
  753. struct ceph_msg *msg = con->out_msg;
  754. BUG_ON(!msg);
  755. BUG_ON(!sent);
  756. con->out_msg_pos.data_pos += sent;
  757. con->out_msg_pos.page_pos += sent;
  758. if (sent < len)
  759. return;
  760. BUG_ON(sent != len);
  761. con->out_msg_pos.page_pos = 0;
  762. con->out_msg_pos.page++;
  763. con->out_msg_pos.did_page_crc = false;
  764. if (in_trail)
  765. list_move_tail(&page->lru,
  766. &msg->trail->head);
  767. else if (msg->pagelist)
  768. list_move_tail(&page->lru,
  769. &msg->pagelist->head);
  770. #ifdef CONFIG_BLOCK
  771. else if (msg->bio)
  772. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  773. #endif
  774. }
  775. /*
  776. * Write as much message data payload as we can. If we finish, queue
  777. * up the footer.
  778. * 1 -> done, footer is now queued in out_kvec[].
  779. * 0 -> socket full, but more to do
  780. * <0 -> error
  781. */
  782. static int write_partial_msg_pages(struct ceph_connection *con)
  783. {
  784. struct ceph_msg *msg = con->out_msg;
  785. unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
  786. size_t len;
  787. bool do_datacrc = !con->msgr->nocrc;
  788. int ret;
  789. int total_max_write;
  790. bool in_trail = false;
  791. const size_t trail_len = (msg->trail ? msg->trail->length : 0);
  792. const size_t trail_off = data_len - trail_len;
  793. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  794. con, msg, con->out_msg_pos.page, msg->nr_pages,
  795. con->out_msg_pos.page_pos);
  796. /*
  797. * Iterate through each page that contains data to be
  798. * written, and send as much as possible for each.
  799. *
  800. * If we are calculating the data crc (the default), we will
  801. * need to map the page. If we have no pages, they have
  802. * been revoked, so use the zero page.
  803. */
  804. while (data_len > con->out_msg_pos.data_pos) {
  805. struct page *page = NULL;
  806. int max_write = PAGE_SIZE;
  807. int bio_offset = 0;
  808. in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
  809. if (!in_trail)
  810. total_max_write = trail_off - con->out_msg_pos.data_pos;
  811. if (in_trail) {
  812. total_max_write = data_len - con->out_msg_pos.data_pos;
  813. page = list_first_entry(&msg->trail->head,
  814. struct page, lru);
  815. } else if (msg->pages) {
  816. page = msg->pages[con->out_msg_pos.page];
  817. } else if (msg->pagelist) {
  818. page = list_first_entry(&msg->pagelist->head,
  819. struct page, lru);
  820. #ifdef CONFIG_BLOCK
  821. } else if (msg->bio) {
  822. struct bio_vec *bv;
  823. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  824. page = bv->bv_page;
  825. bio_offset = bv->bv_offset;
  826. max_write = bv->bv_len;
  827. #endif
  828. } else {
  829. page = zero_page;
  830. }
  831. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  832. total_max_write);
  833. if (do_datacrc && !con->out_msg_pos.did_page_crc) {
  834. void *base;
  835. u32 crc = le32_to_cpu(msg->footer.data_crc);
  836. char *kaddr;
  837. kaddr = kmap(page);
  838. BUG_ON(kaddr == NULL);
  839. base = kaddr + con->out_msg_pos.page_pos + bio_offset;
  840. crc = crc32c(crc, base, len);
  841. msg->footer.data_crc = cpu_to_le32(crc);
  842. con->out_msg_pos.did_page_crc = true;
  843. }
  844. ret = ceph_tcp_sendpage(con->sock, page,
  845. con->out_msg_pos.page_pos + bio_offset,
  846. len, 1);
  847. if (do_datacrc)
  848. kunmap(page);
  849. if (ret <= 0)
  850. goto out;
  851. out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
  852. }
  853. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  854. /* prepare and queue up footer, too */
  855. if (!do_datacrc)
  856. msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  857. con_out_kvec_reset(con);
  858. prepare_write_message_footer(con);
  859. ret = 1;
  860. out:
  861. return ret;
  862. }
  863. /*
  864. * write some zeros
  865. */
  866. static int write_partial_skip(struct ceph_connection *con)
  867. {
  868. int ret;
  869. while (con->out_skip > 0) {
  870. size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
  871. ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
  872. if (ret <= 0)
  873. goto out;
  874. con->out_skip -= ret;
  875. }
  876. ret = 1;
  877. out:
  878. return ret;
  879. }
  880. /*
  881. * Prepare to read connection handshake, or an ack.
  882. */
  883. static void prepare_read_banner(struct ceph_connection *con)
  884. {
  885. dout("prepare_read_banner %p\n", con);
  886. con->in_base_pos = 0;
  887. }
  888. static void prepare_read_connect(struct ceph_connection *con)
  889. {
  890. dout("prepare_read_connect %p\n", con);
  891. con->in_base_pos = 0;
  892. }
  893. static void prepare_read_ack(struct ceph_connection *con)
  894. {
  895. dout("prepare_read_ack %p\n", con);
  896. con->in_base_pos = 0;
  897. }
  898. static void prepare_read_tag(struct ceph_connection *con)
  899. {
  900. dout("prepare_read_tag %p\n", con);
  901. con->in_base_pos = 0;
  902. con->in_tag = CEPH_MSGR_TAG_READY;
  903. }
  904. /*
  905. * Prepare to read a message.
  906. */
  907. static int prepare_read_message(struct ceph_connection *con)
  908. {
  909. dout("prepare_read_message %p\n", con);
  910. BUG_ON(con->in_msg != NULL);
  911. con->in_base_pos = 0;
  912. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  913. return 0;
  914. }
  915. static int read_partial(struct ceph_connection *con,
  916. int end, int size, void *object)
  917. {
  918. while (con->in_base_pos < end) {
  919. int left = end - con->in_base_pos;
  920. int have = size - left;
  921. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  922. if (ret <= 0)
  923. return ret;
  924. con->in_base_pos += ret;
  925. }
  926. return 1;
  927. }
  928. /*
  929. * Read all or part of the connect-side handshake on a new connection
  930. */
  931. static int read_partial_banner(struct ceph_connection *con)
  932. {
  933. int size;
  934. int end;
  935. int ret;
  936. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  937. /* peer's banner */
  938. size = strlen(CEPH_BANNER);
  939. end = size;
  940. ret = read_partial(con, end, size, con->in_banner);
  941. if (ret <= 0)
  942. goto out;
  943. size = sizeof (con->actual_peer_addr);
  944. end += size;
  945. ret = read_partial(con, end, size, &con->actual_peer_addr);
  946. if (ret <= 0)
  947. goto out;
  948. size = sizeof (con->peer_addr_for_me);
  949. end += size;
  950. ret = read_partial(con, end, size, &con->peer_addr_for_me);
  951. if (ret <= 0)
  952. goto out;
  953. out:
  954. return ret;
  955. }
  956. static int read_partial_connect(struct ceph_connection *con)
  957. {
  958. int size;
  959. int end;
  960. int ret;
  961. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  962. size = sizeof (con->in_reply);
  963. end = size;
  964. ret = read_partial(con, end, size, &con->in_reply);
  965. if (ret <= 0)
  966. goto out;
  967. size = le32_to_cpu(con->in_reply.authorizer_len);
  968. end += size;
  969. ret = read_partial(con, end, size, con->auth_reply_buf);
  970. if (ret <= 0)
  971. goto out;
  972. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  973. con, (int)con->in_reply.tag,
  974. le32_to_cpu(con->in_reply.connect_seq),
  975. le32_to_cpu(con->in_reply.global_seq));
  976. out:
  977. return ret;
  978. }
  979. /*
  980. * Verify the hello banner looks okay.
  981. */
  982. static int verify_hello(struct ceph_connection *con)
  983. {
  984. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  985. pr_err("connect to %s got bad banner\n",
  986. ceph_pr_addr(&con->peer_addr.in_addr));
  987. con->error_msg = "protocol error, bad banner";
  988. return -1;
  989. }
  990. return 0;
  991. }
  992. static bool addr_is_blank(struct sockaddr_storage *ss)
  993. {
  994. switch (ss->ss_family) {
  995. case AF_INET:
  996. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  997. case AF_INET6:
  998. return
  999. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  1000. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  1001. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  1002. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  1003. }
  1004. return false;
  1005. }
  1006. static int addr_port(struct sockaddr_storage *ss)
  1007. {
  1008. switch (ss->ss_family) {
  1009. case AF_INET:
  1010. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  1011. case AF_INET6:
  1012. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  1013. }
  1014. return 0;
  1015. }
  1016. static void addr_set_port(struct sockaddr_storage *ss, int p)
  1017. {
  1018. switch (ss->ss_family) {
  1019. case AF_INET:
  1020. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  1021. break;
  1022. case AF_INET6:
  1023. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  1024. break;
  1025. }
  1026. }
  1027. /*
  1028. * Unlike other *_pton function semantics, zero indicates success.
  1029. */
  1030. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  1031. char delim, const char **ipend)
  1032. {
  1033. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  1034. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  1035. memset(ss, 0, sizeof(*ss));
  1036. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  1037. ss->ss_family = AF_INET;
  1038. return 0;
  1039. }
  1040. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  1041. ss->ss_family = AF_INET6;
  1042. return 0;
  1043. }
  1044. return -EINVAL;
  1045. }
  1046. /*
  1047. * Extract hostname string and resolve using kernel DNS facility.
  1048. */
  1049. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  1050. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  1051. struct sockaddr_storage *ss, char delim, const char **ipend)
  1052. {
  1053. const char *end, *delim_p;
  1054. char *colon_p, *ip_addr = NULL;
  1055. int ip_len, ret;
  1056. /*
  1057. * The end of the hostname occurs immediately preceding the delimiter or
  1058. * the port marker (':') where the delimiter takes precedence.
  1059. */
  1060. delim_p = memchr(name, delim, namelen);
  1061. colon_p = memchr(name, ':', namelen);
  1062. if (delim_p && colon_p)
  1063. end = delim_p < colon_p ? delim_p : colon_p;
  1064. else if (!delim_p && colon_p)
  1065. end = colon_p;
  1066. else {
  1067. end = delim_p;
  1068. if (!end) /* case: hostname:/ */
  1069. end = name + namelen;
  1070. }
  1071. if (end <= name)
  1072. return -EINVAL;
  1073. /* do dns_resolve upcall */
  1074. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  1075. if (ip_len > 0)
  1076. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1077. else
  1078. ret = -ESRCH;
  1079. kfree(ip_addr);
  1080. *ipend = end;
  1081. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1082. ret, ret ? "failed" : ceph_pr_addr(ss));
  1083. return ret;
  1084. }
  1085. #else
  1086. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1087. struct sockaddr_storage *ss, char delim, const char **ipend)
  1088. {
  1089. return -EINVAL;
  1090. }
  1091. #endif
  1092. /*
  1093. * Parse a server name (IP or hostname). If a valid IP address is not found
  1094. * then try to extract a hostname to resolve using userspace DNS upcall.
  1095. */
  1096. static int ceph_parse_server_name(const char *name, size_t namelen,
  1097. struct sockaddr_storage *ss, char delim, const char **ipend)
  1098. {
  1099. int ret;
  1100. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1101. if (ret)
  1102. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1103. return ret;
  1104. }
  1105. /*
  1106. * Parse an ip[:port] list into an addr array. Use the default
  1107. * monitor port if a port isn't specified.
  1108. */
  1109. int ceph_parse_ips(const char *c, const char *end,
  1110. struct ceph_entity_addr *addr,
  1111. int max_count, int *count)
  1112. {
  1113. int i, ret = -EINVAL;
  1114. const char *p = c;
  1115. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1116. for (i = 0; i < max_count; i++) {
  1117. const char *ipend;
  1118. struct sockaddr_storage *ss = &addr[i].in_addr;
  1119. int port;
  1120. char delim = ',';
  1121. if (*p == '[') {
  1122. delim = ']';
  1123. p++;
  1124. }
  1125. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1126. if (ret)
  1127. goto bad;
  1128. ret = -EINVAL;
  1129. p = ipend;
  1130. if (delim == ']') {
  1131. if (*p != ']') {
  1132. dout("missing matching ']'\n");
  1133. goto bad;
  1134. }
  1135. p++;
  1136. }
  1137. /* port? */
  1138. if (p < end && *p == ':') {
  1139. port = 0;
  1140. p++;
  1141. while (p < end && *p >= '0' && *p <= '9') {
  1142. port = (port * 10) + (*p - '0');
  1143. p++;
  1144. }
  1145. if (port > 65535 || port == 0)
  1146. goto bad;
  1147. } else {
  1148. port = CEPH_MON_PORT;
  1149. }
  1150. addr_set_port(ss, port);
  1151. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1152. if (p == end)
  1153. break;
  1154. if (*p != ',')
  1155. goto bad;
  1156. p++;
  1157. }
  1158. if (p != end)
  1159. goto bad;
  1160. if (count)
  1161. *count = i + 1;
  1162. return 0;
  1163. bad:
  1164. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1165. return ret;
  1166. }
  1167. EXPORT_SYMBOL(ceph_parse_ips);
  1168. static int process_banner(struct ceph_connection *con)
  1169. {
  1170. dout("process_banner on %p\n", con);
  1171. if (verify_hello(con) < 0)
  1172. return -1;
  1173. ceph_decode_addr(&con->actual_peer_addr);
  1174. ceph_decode_addr(&con->peer_addr_for_me);
  1175. /*
  1176. * Make sure the other end is who we wanted. note that the other
  1177. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1178. * them the benefit of the doubt.
  1179. */
  1180. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1181. sizeof(con->peer_addr)) != 0 &&
  1182. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1183. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1184. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1185. ceph_pr_addr(&con->peer_addr.in_addr),
  1186. (int)le32_to_cpu(con->peer_addr.nonce),
  1187. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1188. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1189. con->error_msg = "wrong peer at address";
  1190. return -1;
  1191. }
  1192. /*
  1193. * did we learn our address?
  1194. */
  1195. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1196. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1197. memcpy(&con->msgr->inst.addr.in_addr,
  1198. &con->peer_addr_for_me.in_addr,
  1199. sizeof(con->peer_addr_for_me.in_addr));
  1200. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1201. encode_my_addr(con->msgr);
  1202. dout("process_banner learned my addr is %s\n",
  1203. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1204. }
  1205. return 0;
  1206. }
  1207. static void fail_protocol(struct ceph_connection *con)
  1208. {
  1209. reset_connection(con);
  1210. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1211. }
  1212. static int process_connect(struct ceph_connection *con)
  1213. {
  1214. u64 sup_feat = con->msgr->supported_features;
  1215. u64 req_feat = con->msgr->required_features;
  1216. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1217. int ret;
  1218. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1219. switch (con->in_reply.tag) {
  1220. case CEPH_MSGR_TAG_FEATURES:
  1221. pr_err("%s%lld %s feature set mismatch,"
  1222. " my %llx < server's %llx, missing %llx\n",
  1223. ENTITY_NAME(con->peer_name),
  1224. ceph_pr_addr(&con->peer_addr.in_addr),
  1225. sup_feat, server_feat, server_feat & ~sup_feat);
  1226. con->error_msg = "missing required protocol features";
  1227. fail_protocol(con);
  1228. return -1;
  1229. case CEPH_MSGR_TAG_BADPROTOVER:
  1230. pr_err("%s%lld %s protocol version mismatch,"
  1231. " my %d != server's %d\n",
  1232. ENTITY_NAME(con->peer_name),
  1233. ceph_pr_addr(&con->peer_addr.in_addr),
  1234. le32_to_cpu(con->out_connect.protocol_version),
  1235. le32_to_cpu(con->in_reply.protocol_version));
  1236. con->error_msg = "protocol version mismatch";
  1237. fail_protocol(con);
  1238. return -1;
  1239. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1240. con->auth_retry++;
  1241. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1242. con->auth_retry);
  1243. if (con->auth_retry == 2) {
  1244. con->error_msg = "connect authorization failure";
  1245. return -1;
  1246. }
  1247. con->auth_retry = 1;
  1248. ret = prepare_write_connect(con);
  1249. if (ret < 0)
  1250. return ret;
  1251. prepare_read_connect(con);
  1252. break;
  1253. case CEPH_MSGR_TAG_RESETSESSION:
  1254. /*
  1255. * If we connected with a large connect_seq but the peer
  1256. * has no record of a session with us (no connection, or
  1257. * connect_seq == 0), they will send RESETSESION to indicate
  1258. * that they must have reset their session, and may have
  1259. * dropped messages.
  1260. */
  1261. dout("process_connect got RESET peer seq %u\n",
  1262. le32_to_cpu(con->in_connect.connect_seq));
  1263. pr_err("%s%lld %s connection reset\n",
  1264. ENTITY_NAME(con->peer_name),
  1265. ceph_pr_addr(&con->peer_addr.in_addr));
  1266. reset_connection(con);
  1267. ret = prepare_write_connect(con);
  1268. if (ret < 0)
  1269. return ret;
  1270. prepare_read_connect(con);
  1271. /* Tell ceph about it. */
  1272. mutex_unlock(&con->mutex);
  1273. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1274. if (con->ops->peer_reset)
  1275. con->ops->peer_reset(con);
  1276. mutex_lock(&con->mutex);
  1277. if (test_bit(CLOSED, &con->state) ||
  1278. test_bit(OPENING, &con->state))
  1279. return -EAGAIN;
  1280. break;
  1281. case CEPH_MSGR_TAG_RETRY_SESSION:
  1282. /*
  1283. * If we sent a smaller connect_seq than the peer has, try
  1284. * again with a larger value.
  1285. */
  1286. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1287. le32_to_cpu(con->out_connect.connect_seq),
  1288. le32_to_cpu(con->in_connect.connect_seq));
  1289. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1290. ret = prepare_write_connect(con);
  1291. if (ret < 0)
  1292. return ret;
  1293. prepare_read_connect(con);
  1294. break;
  1295. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1296. /*
  1297. * If we sent a smaller global_seq than the peer has, try
  1298. * again with a larger value.
  1299. */
  1300. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1301. con->peer_global_seq,
  1302. le32_to_cpu(con->in_connect.global_seq));
  1303. get_global_seq(con->msgr,
  1304. le32_to_cpu(con->in_connect.global_seq));
  1305. ret = prepare_write_connect(con);
  1306. if (ret < 0)
  1307. return ret;
  1308. prepare_read_connect(con);
  1309. break;
  1310. case CEPH_MSGR_TAG_READY:
  1311. if (req_feat & ~server_feat) {
  1312. pr_err("%s%lld %s protocol feature mismatch,"
  1313. " my required %llx > server's %llx, need %llx\n",
  1314. ENTITY_NAME(con->peer_name),
  1315. ceph_pr_addr(&con->peer_addr.in_addr),
  1316. req_feat, server_feat, req_feat & ~server_feat);
  1317. con->error_msg = "missing required protocol features";
  1318. fail_protocol(con);
  1319. return -1;
  1320. }
  1321. clear_bit(NEGOTIATING, &con->state);
  1322. set_bit(CONNECTED, &con->state);
  1323. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1324. con->connect_seq++;
  1325. con->peer_features = server_feat;
  1326. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1327. con->peer_global_seq,
  1328. le32_to_cpu(con->in_reply.connect_seq),
  1329. con->connect_seq);
  1330. WARN_ON(con->connect_seq !=
  1331. le32_to_cpu(con->in_reply.connect_seq));
  1332. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1333. set_bit(LOSSYTX, &con->flags);
  1334. prepare_read_tag(con);
  1335. break;
  1336. case CEPH_MSGR_TAG_WAIT:
  1337. /*
  1338. * If there is a connection race (we are opening
  1339. * connections to each other), one of us may just have
  1340. * to WAIT. This shouldn't happen if we are the
  1341. * client.
  1342. */
  1343. pr_err("process_connect got WAIT as client\n");
  1344. con->error_msg = "protocol error, got WAIT as client";
  1345. return -1;
  1346. default:
  1347. pr_err("connect protocol error, will retry\n");
  1348. con->error_msg = "protocol error, garbage tag during connect";
  1349. return -1;
  1350. }
  1351. return 0;
  1352. }
  1353. /*
  1354. * read (part of) an ack
  1355. */
  1356. static int read_partial_ack(struct ceph_connection *con)
  1357. {
  1358. int size = sizeof (con->in_temp_ack);
  1359. int end = size;
  1360. return read_partial(con, end, size, &con->in_temp_ack);
  1361. }
  1362. /*
  1363. * We can finally discard anything that's been acked.
  1364. */
  1365. static void process_ack(struct ceph_connection *con)
  1366. {
  1367. struct ceph_msg *m;
  1368. u64 ack = le64_to_cpu(con->in_temp_ack);
  1369. u64 seq;
  1370. while (!list_empty(&con->out_sent)) {
  1371. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1372. list_head);
  1373. seq = le64_to_cpu(m->hdr.seq);
  1374. if (seq > ack)
  1375. break;
  1376. dout("got ack for seq %llu type %d at %p\n", seq,
  1377. le16_to_cpu(m->hdr.type), m);
  1378. m->ack_stamp = jiffies;
  1379. ceph_msg_remove(m);
  1380. }
  1381. prepare_read_tag(con);
  1382. }
  1383. static int read_partial_message_section(struct ceph_connection *con,
  1384. struct kvec *section,
  1385. unsigned int sec_len, u32 *crc)
  1386. {
  1387. int ret, left;
  1388. BUG_ON(!section);
  1389. while (section->iov_len < sec_len) {
  1390. BUG_ON(section->iov_base == NULL);
  1391. left = sec_len - section->iov_len;
  1392. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1393. section->iov_len, left);
  1394. if (ret <= 0)
  1395. return ret;
  1396. section->iov_len += ret;
  1397. }
  1398. if (section->iov_len == sec_len)
  1399. *crc = crc32c(0, section->iov_base, section->iov_len);
  1400. return 1;
  1401. }
  1402. static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
  1403. struct ceph_msg_header *hdr);
  1404. static int read_partial_message_pages(struct ceph_connection *con,
  1405. struct page **pages,
  1406. unsigned int data_len, bool do_datacrc)
  1407. {
  1408. void *p;
  1409. int ret;
  1410. int left;
  1411. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1412. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1413. /* (page) data */
  1414. BUG_ON(pages == NULL);
  1415. p = kmap(pages[con->in_msg_pos.page]);
  1416. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1417. left);
  1418. if (ret > 0 && do_datacrc)
  1419. con->in_data_crc =
  1420. crc32c(con->in_data_crc,
  1421. p + con->in_msg_pos.page_pos, ret);
  1422. kunmap(pages[con->in_msg_pos.page]);
  1423. if (ret <= 0)
  1424. return ret;
  1425. con->in_msg_pos.data_pos += ret;
  1426. con->in_msg_pos.page_pos += ret;
  1427. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1428. con->in_msg_pos.page_pos = 0;
  1429. con->in_msg_pos.page++;
  1430. }
  1431. return ret;
  1432. }
  1433. #ifdef CONFIG_BLOCK
  1434. static int read_partial_message_bio(struct ceph_connection *con,
  1435. struct bio **bio_iter, int *bio_seg,
  1436. unsigned int data_len, bool do_datacrc)
  1437. {
  1438. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1439. void *p;
  1440. int ret, left;
  1441. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1442. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1443. p = kmap(bv->bv_page) + bv->bv_offset;
  1444. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1445. left);
  1446. if (ret > 0 && do_datacrc)
  1447. con->in_data_crc =
  1448. crc32c(con->in_data_crc,
  1449. p + con->in_msg_pos.page_pos, ret);
  1450. kunmap(bv->bv_page);
  1451. if (ret <= 0)
  1452. return ret;
  1453. con->in_msg_pos.data_pos += ret;
  1454. con->in_msg_pos.page_pos += ret;
  1455. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1456. con->in_msg_pos.page_pos = 0;
  1457. iter_bio_next(bio_iter, bio_seg);
  1458. }
  1459. return ret;
  1460. }
  1461. #endif
  1462. /*
  1463. * read (part of) a message.
  1464. */
  1465. static int read_partial_message(struct ceph_connection *con)
  1466. {
  1467. struct ceph_msg *m = con->in_msg;
  1468. int size;
  1469. int end;
  1470. int ret;
  1471. unsigned int front_len, middle_len, data_len;
  1472. bool do_datacrc = !con->msgr->nocrc;
  1473. u64 seq;
  1474. u32 crc;
  1475. dout("read_partial_message con %p msg %p\n", con, m);
  1476. /* header */
  1477. size = sizeof (con->in_hdr);
  1478. end = size;
  1479. ret = read_partial(con, end, size, &con->in_hdr);
  1480. if (ret <= 0)
  1481. return ret;
  1482. crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
  1483. if (cpu_to_le32(crc) != con->in_hdr.crc) {
  1484. pr_err("read_partial_message bad hdr "
  1485. " crc %u != expected %u\n",
  1486. crc, con->in_hdr.crc);
  1487. return -EBADMSG;
  1488. }
  1489. front_len = le32_to_cpu(con->in_hdr.front_len);
  1490. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1491. return -EIO;
  1492. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1493. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1494. return -EIO;
  1495. data_len = le32_to_cpu(con->in_hdr.data_len);
  1496. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1497. return -EIO;
  1498. /* verify seq# */
  1499. seq = le64_to_cpu(con->in_hdr.seq);
  1500. if ((s64)seq - (s64)con->in_seq < 1) {
  1501. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1502. ENTITY_NAME(con->peer_name),
  1503. ceph_pr_addr(&con->peer_addr.in_addr),
  1504. seq, con->in_seq + 1);
  1505. con->in_base_pos = -front_len - middle_len - data_len -
  1506. sizeof(m->footer);
  1507. con->in_tag = CEPH_MSGR_TAG_READY;
  1508. return 0;
  1509. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1510. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1511. seq, con->in_seq + 1);
  1512. con->error_msg = "bad message sequence # for incoming message";
  1513. return -EBADMSG;
  1514. }
  1515. /* allocate message? */
  1516. if (!con->in_msg) {
  1517. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1518. con->in_hdr.front_len, con->in_hdr.data_len);
  1519. if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
  1520. /* skip this message */
  1521. dout("alloc_msg said skip message\n");
  1522. BUG_ON(con->in_msg);
  1523. con->in_base_pos = -front_len - middle_len - data_len -
  1524. sizeof(m->footer);
  1525. con->in_tag = CEPH_MSGR_TAG_READY;
  1526. con->in_seq++;
  1527. return 0;
  1528. }
  1529. if (!con->in_msg) {
  1530. con->error_msg =
  1531. "error allocating memory for incoming message";
  1532. return -ENOMEM;
  1533. }
  1534. BUG_ON(con->in_msg->con != con);
  1535. m = con->in_msg;
  1536. m->front.iov_len = 0; /* haven't read it yet */
  1537. if (m->middle)
  1538. m->middle->vec.iov_len = 0;
  1539. con->in_msg_pos.page = 0;
  1540. if (m->pages)
  1541. con->in_msg_pos.page_pos = m->page_alignment;
  1542. else
  1543. con->in_msg_pos.page_pos = 0;
  1544. con->in_msg_pos.data_pos = 0;
  1545. }
  1546. /* front */
  1547. ret = read_partial_message_section(con, &m->front, front_len,
  1548. &con->in_front_crc);
  1549. if (ret <= 0)
  1550. return ret;
  1551. /* middle */
  1552. if (m->middle) {
  1553. ret = read_partial_message_section(con, &m->middle->vec,
  1554. middle_len,
  1555. &con->in_middle_crc);
  1556. if (ret <= 0)
  1557. return ret;
  1558. }
  1559. #ifdef CONFIG_BLOCK
  1560. if (m->bio && !m->bio_iter)
  1561. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1562. #endif
  1563. /* (page) data */
  1564. while (con->in_msg_pos.data_pos < data_len) {
  1565. if (m->pages) {
  1566. ret = read_partial_message_pages(con, m->pages,
  1567. data_len, do_datacrc);
  1568. if (ret <= 0)
  1569. return ret;
  1570. #ifdef CONFIG_BLOCK
  1571. } else if (m->bio) {
  1572. ret = read_partial_message_bio(con,
  1573. &m->bio_iter, &m->bio_seg,
  1574. data_len, do_datacrc);
  1575. if (ret <= 0)
  1576. return ret;
  1577. #endif
  1578. } else {
  1579. BUG_ON(1);
  1580. }
  1581. }
  1582. /* footer */
  1583. size = sizeof (m->footer);
  1584. end += size;
  1585. ret = read_partial(con, end, size, &m->footer);
  1586. if (ret <= 0)
  1587. return ret;
  1588. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1589. m, front_len, m->footer.front_crc, middle_len,
  1590. m->footer.middle_crc, data_len, m->footer.data_crc);
  1591. /* crc ok? */
  1592. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1593. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1594. m, con->in_front_crc, m->footer.front_crc);
  1595. return -EBADMSG;
  1596. }
  1597. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1598. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1599. m, con->in_middle_crc, m->footer.middle_crc);
  1600. return -EBADMSG;
  1601. }
  1602. if (do_datacrc &&
  1603. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1604. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1605. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1606. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1607. return -EBADMSG;
  1608. }
  1609. return 1; /* done! */
  1610. }
  1611. /*
  1612. * Process message. This happens in the worker thread. The callback should
  1613. * be careful not to do anything that waits on other incoming messages or it
  1614. * may deadlock.
  1615. */
  1616. static void process_message(struct ceph_connection *con)
  1617. {
  1618. struct ceph_msg *msg;
  1619. BUG_ON(con->in_msg->con != con);
  1620. con->in_msg->con = NULL;
  1621. msg = con->in_msg;
  1622. con->in_msg = NULL;
  1623. con->ops->put(con);
  1624. /* if first message, set peer_name */
  1625. if (con->peer_name.type == 0)
  1626. con->peer_name = msg->hdr.src;
  1627. con->in_seq++;
  1628. mutex_unlock(&con->mutex);
  1629. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1630. msg, le64_to_cpu(msg->hdr.seq),
  1631. ENTITY_NAME(msg->hdr.src),
  1632. le16_to_cpu(msg->hdr.type),
  1633. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1634. le32_to_cpu(msg->hdr.front_len),
  1635. le32_to_cpu(msg->hdr.data_len),
  1636. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1637. con->ops->dispatch(con, msg);
  1638. mutex_lock(&con->mutex);
  1639. prepare_read_tag(con);
  1640. }
  1641. /*
  1642. * Write something to the socket. Called in a worker thread when the
  1643. * socket appears to be writeable and we have something ready to send.
  1644. */
  1645. static int try_write(struct ceph_connection *con)
  1646. {
  1647. int ret = 1;
  1648. dout("try_write start %p state %lu\n", con, con->state);
  1649. more:
  1650. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1651. /* open the socket first? */
  1652. if (con->sock == NULL) {
  1653. set_bit(CONNECTING, &con->state);
  1654. con_out_kvec_reset(con);
  1655. prepare_write_banner(con);
  1656. prepare_read_banner(con);
  1657. BUG_ON(con->in_msg);
  1658. con->in_tag = CEPH_MSGR_TAG_READY;
  1659. dout("try_write initiating connect on %p new state %lu\n",
  1660. con, con->state);
  1661. ret = ceph_tcp_connect(con);
  1662. if (ret < 0) {
  1663. con->error_msg = "connect error";
  1664. goto out;
  1665. }
  1666. }
  1667. more_kvec:
  1668. /* kvec data queued? */
  1669. if (con->out_skip) {
  1670. ret = write_partial_skip(con);
  1671. if (ret <= 0)
  1672. goto out;
  1673. }
  1674. if (con->out_kvec_left) {
  1675. ret = write_partial_kvec(con);
  1676. if (ret <= 0)
  1677. goto out;
  1678. }
  1679. /* msg pages? */
  1680. if (con->out_msg) {
  1681. if (con->out_msg_done) {
  1682. ceph_msg_put(con->out_msg);
  1683. con->out_msg = NULL; /* we're done with this one */
  1684. goto do_next;
  1685. }
  1686. ret = write_partial_msg_pages(con);
  1687. if (ret == 1)
  1688. goto more_kvec; /* we need to send the footer, too! */
  1689. if (ret == 0)
  1690. goto out;
  1691. if (ret < 0) {
  1692. dout("try_write write_partial_msg_pages err %d\n",
  1693. ret);
  1694. goto out;
  1695. }
  1696. }
  1697. do_next:
  1698. if (!test_bit(CONNECTING, &con->state) &&
  1699. !test_bit(NEGOTIATING, &con->state)) {
  1700. /* is anything else pending? */
  1701. if (!list_empty(&con->out_queue)) {
  1702. prepare_write_message(con);
  1703. goto more;
  1704. }
  1705. if (con->in_seq > con->in_seq_acked) {
  1706. prepare_write_ack(con);
  1707. goto more;
  1708. }
  1709. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
  1710. prepare_write_keepalive(con);
  1711. goto more;
  1712. }
  1713. }
  1714. /* Nothing to do! */
  1715. clear_bit(WRITE_PENDING, &con->flags);
  1716. dout("try_write nothing else to write.\n");
  1717. ret = 0;
  1718. out:
  1719. dout("try_write done on %p ret %d\n", con, ret);
  1720. return ret;
  1721. }
  1722. /*
  1723. * Read what we can from the socket.
  1724. */
  1725. static int try_read(struct ceph_connection *con)
  1726. {
  1727. int ret = -1;
  1728. if (!con->sock)
  1729. return 0;
  1730. if (test_bit(STANDBY, &con->state))
  1731. return 0;
  1732. dout("try_read start on %p\n", con);
  1733. more:
  1734. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1735. con->in_base_pos);
  1736. /*
  1737. * process_connect and process_message drop and re-take
  1738. * con->mutex. make sure we handle a racing close or reopen.
  1739. */
  1740. if (test_bit(CLOSED, &con->state) ||
  1741. test_bit(OPENING, &con->state)) {
  1742. ret = -EAGAIN;
  1743. goto out;
  1744. }
  1745. if (test_bit(CONNECTING, &con->state)) {
  1746. dout("try_read connecting\n");
  1747. ret = read_partial_banner(con);
  1748. if (ret <= 0)
  1749. goto out;
  1750. ret = process_banner(con);
  1751. if (ret < 0)
  1752. goto out;
  1753. clear_bit(CONNECTING, &con->state);
  1754. set_bit(NEGOTIATING, &con->state);
  1755. /* Banner is good, exchange connection info */
  1756. ret = prepare_write_connect(con);
  1757. if (ret < 0)
  1758. goto out;
  1759. prepare_read_connect(con);
  1760. /* Send connection info before awaiting response */
  1761. goto out;
  1762. }
  1763. if (test_bit(NEGOTIATING, &con->state)) {
  1764. dout("try_read negotiating\n");
  1765. ret = read_partial_connect(con);
  1766. if (ret <= 0)
  1767. goto out;
  1768. ret = process_connect(con);
  1769. if (ret < 0)
  1770. goto out;
  1771. goto more;
  1772. }
  1773. if (con->in_base_pos < 0) {
  1774. /*
  1775. * skipping + discarding content.
  1776. *
  1777. * FIXME: there must be a better way to do this!
  1778. */
  1779. static char buf[SKIP_BUF_SIZE];
  1780. int skip = min((int) sizeof (buf), -con->in_base_pos);
  1781. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1782. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1783. if (ret <= 0)
  1784. goto out;
  1785. con->in_base_pos += ret;
  1786. if (con->in_base_pos)
  1787. goto more;
  1788. }
  1789. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1790. /*
  1791. * what's next?
  1792. */
  1793. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1794. if (ret <= 0)
  1795. goto out;
  1796. dout("try_read got tag %d\n", (int)con->in_tag);
  1797. switch (con->in_tag) {
  1798. case CEPH_MSGR_TAG_MSG:
  1799. prepare_read_message(con);
  1800. break;
  1801. case CEPH_MSGR_TAG_ACK:
  1802. prepare_read_ack(con);
  1803. break;
  1804. case CEPH_MSGR_TAG_CLOSE:
  1805. clear_bit(CONNECTED, &con->state);
  1806. set_bit(CLOSED, &con->state); /* fixme */
  1807. goto out;
  1808. default:
  1809. goto bad_tag;
  1810. }
  1811. }
  1812. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1813. ret = read_partial_message(con);
  1814. if (ret <= 0) {
  1815. switch (ret) {
  1816. case -EBADMSG:
  1817. con->error_msg = "bad crc";
  1818. ret = -EIO;
  1819. break;
  1820. case -EIO:
  1821. con->error_msg = "io error";
  1822. break;
  1823. }
  1824. goto out;
  1825. }
  1826. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1827. goto more;
  1828. process_message(con);
  1829. goto more;
  1830. }
  1831. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1832. ret = read_partial_ack(con);
  1833. if (ret <= 0)
  1834. goto out;
  1835. process_ack(con);
  1836. goto more;
  1837. }
  1838. out:
  1839. dout("try_read done on %p ret %d\n", con, ret);
  1840. return ret;
  1841. bad_tag:
  1842. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1843. con->error_msg = "protocol error, garbage tag";
  1844. ret = -1;
  1845. goto out;
  1846. }
  1847. /*
  1848. * Atomically queue work on a connection. Bump @con reference to
  1849. * avoid races with connection teardown.
  1850. */
  1851. static void queue_con(struct ceph_connection *con)
  1852. {
  1853. if (!con->ops->get(con)) {
  1854. dout("queue_con %p ref count 0\n", con);
  1855. return;
  1856. }
  1857. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1858. dout("queue_con %p - already queued\n", con);
  1859. con->ops->put(con);
  1860. } else {
  1861. dout("queue_con %p\n", con);
  1862. }
  1863. }
  1864. /*
  1865. * Do some work on a connection. Drop a connection ref when we're done.
  1866. */
  1867. static void con_work(struct work_struct *work)
  1868. {
  1869. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1870. work.work);
  1871. int ret;
  1872. mutex_lock(&con->mutex);
  1873. restart:
  1874. if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) {
  1875. if (test_and_clear_bit(CONNECTED, &con->state))
  1876. con->error_msg = "socket closed";
  1877. else if (test_and_clear_bit(NEGOTIATING, &con->state))
  1878. con->error_msg = "negotiation failed";
  1879. else if (test_and_clear_bit(CONNECTING, &con->state))
  1880. con->error_msg = "connection failed";
  1881. else
  1882. con->error_msg = "unrecognized con state";
  1883. goto fault;
  1884. }
  1885. if (test_and_clear_bit(BACKOFF, &con->flags)) {
  1886. dout("con_work %p backing off\n", con);
  1887. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1888. round_jiffies_relative(con->delay))) {
  1889. dout("con_work %p backoff %lu\n", con, con->delay);
  1890. mutex_unlock(&con->mutex);
  1891. return;
  1892. } else {
  1893. con->ops->put(con);
  1894. dout("con_work %p FAILED to back off %lu\n", con,
  1895. con->delay);
  1896. }
  1897. }
  1898. if (test_bit(STANDBY, &con->state)) {
  1899. dout("con_work %p STANDBY\n", con);
  1900. goto done;
  1901. }
  1902. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1903. dout("con_work CLOSED\n");
  1904. con_close_socket(con);
  1905. goto done;
  1906. }
  1907. if (test_and_clear_bit(OPENING, &con->state)) {
  1908. /* reopen w/ new peer */
  1909. dout("con_work OPENING\n");
  1910. con_close_socket(con);
  1911. }
  1912. ret = try_read(con);
  1913. if (ret == -EAGAIN)
  1914. goto restart;
  1915. if (ret < 0)
  1916. goto fault;
  1917. ret = try_write(con);
  1918. if (ret == -EAGAIN)
  1919. goto restart;
  1920. if (ret < 0)
  1921. goto fault;
  1922. done:
  1923. mutex_unlock(&con->mutex);
  1924. done_unlocked:
  1925. con->ops->put(con);
  1926. return;
  1927. fault:
  1928. mutex_unlock(&con->mutex);
  1929. ceph_fault(con); /* error/fault path */
  1930. goto done_unlocked;
  1931. }
  1932. /*
  1933. * Generic error/fault handler. A retry mechanism is used with
  1934. * exponential backoff
  1935. */
  1936. static void ceph_fault(struct ceph_connection *con)
  1937. {
  1938. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1939. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1940. dout("fault %p state %lu to peer %s\n",
  1941. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1942. if (test_bit(LOSSYTX, &con->flags)) {
  1943. dout("fault on LOSSYTX channel\n");
  1944. goto out;
  1945. }
  1946. mutex_lock(&con->mutex);
  1947. if (test_bit(CLOSED, &con->state))
  1948. goto out_unlock;
  1949. con_close_socket(con);
  1950. if (con->in_msg) {
  1951. BUG_ON(con->in_msg->con != con);
  1952. con->in_msg->con = NULL;
  1953. ceph_msg_put(con->in_msg);
  1954. con->in_msg = NULL;
  1955. con->ops->put(con);
  1956. }
  1957. /* Requeue anything that hasn't been acked */
  1958. list_splice_init(&con->out_sent, &con->out_queue);
  1959. /* If there are no messages queued or keepalive pending, place
  1960. * the connection in a STANDBY state */
  1961. if (list_empty(&con->out_queue) &&
  1962. !test_bit(KEEPALIVE_PENDING, &con->flags)) {
  1963. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1964. clear_bit(WRITE_PENDING, &con->flags);
  1965. set_bit(STANDBY, &con->state);
  1966. } else {
  1967. /* retry after a delay. */
  1968. if (con->delay == 0)
  1969. con->delay = BASE_DELAY_INTERVAL;
  1970. else if (con->delay < MAX_DELAY_INTERVAL)
  1971. con->delay *= 2;
  1972. con->ops->get(con);
  1973. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1974. round_jiffies_relative(con->delay))) {
  1975. dout("fault queued %p delay %lu\n", con, con->delay);
  1976. } else {
  1977. con->ops->put(con);
  1978. dout("fault failed to queue %p delay %lu, backoff\n",
  1979. con, con->delay);
  1980. /*
  1981. * In many cases we see a socket state change
  1982. * while con_work is running and end up
  1983. * queuing (non-delayed) work, such that we
  1984. * can't backoff with a delay. Set a flag so
  1985. * that when con_work restarts we schedule the
  1986. * delay then.
  1987. */
  1988. set_bit(BACKOFF, &con->flags);
  1989. }
  1990. }
  1991. out_unlock:
  1992. mutex_unlock(&con->mutex);
  1993. out:
  1994. /*
  1995. * in case we faulted due to authentication, invalidate our
  1996. * current tickets so that we can get new ones.
  1997. */
  1998. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1999. dout("calling invalidate_authorizer()\n");
  2000. con->ops->invalidate_authorizer(con);
  2001. }
  2002. if (con->ops->fault)
  2003. con->ops->fault(con);
  2004. }
  2005. /*
  2006. * initialize a new messenger instance
  2007. */
  2008. void ceph_messenger_init(struct ceph_messenger *msgr,
  2009. struct ceph_entity_addr *myaddr,
  2010. u32 supported_features,
  2011. u32 required_features,
  2012. bool nocrc)
  2013. {
  2014. msgr->supported_features = supported_features;
  2015. msgr->required_features = required_features;
  2016. spin_lock_init(&msgr->global_seq_lock);
  2017. if (myaddr)
  2018. msgr->inst.addr = *myaddr;
  2019. /* select a random nonce */
  2020. msgr->inst.addr.type = 0;
  2021. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  2022. encode_my_addr(msgr);
  2023. msgr->nocrc = nocrc;
  2024. dout("%s %p\n", __func__, msgr);
  2025. }
  2026. EXPORT_SYMBOL(ceph_messenger_init);
  2027. static void clear_standby(struct ceph_connection *con)
  2028. {
  2029. /* come back from STANDBY? */
  2030. if (test_and_clear_bit(STANDBY, &con->state)) {
  2031. mutex_lock(&con->mutex);
  2032. dout("clear_standby %p and ++connect_seq\n", con);
  2033. con->connect_seq++;
  2034. WARN_ON(test_bit(WRITE_PENDING, &con->flags));
  2035. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
  2036. mutex_unlock(&con->mutex);
  2037. }
  2038. }
  2039. /*
  2040. * Queue up an outgoing message on the given connection.
  2041. */
  2042. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  2043. {
  2044. if (test_bit(CLOSED, &con->state)) {
  2045. dout("con_send %p closed, dropping %p\n", con, msg);
  2046. ceph_msg_put(msg);
  2047. return;
  2048. }
  2049. /* set src+dst */
  2050. msg->hdr.src = con->msgr->inst.name;
  2051. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  2052. msg->needs_out_seq = true;
  2053. /* queue */
  2054. mutex_lock(&con->mutex);
  2055. BUG_ON(msg->con != NULL);
  2056. msg->con = con->ops->get(con);
  2057. BUG_ON(msg->con == NULL);
  2058. BUG_ON(!list_empty(&msg->list_head));
  2059. list_add_tail(&msg->list_head, &con->out_queue);
  2060. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  2061. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  2062. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  2063. le32_to_cpu(msg->hdr.front_len),
  2064. le32_to_cpu(msg->hdr.middle_len),
  2065. le32_to_cpu(msg->hdr.data_len));
  2066. mutex_unlock(&con->mutex);
  2067. /* if there wasn't anything waiting to send before, queue
  2068. * new work */
  2069. clear_standby(con);
  2070. if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
  2071. queue_con(con);
  2072. }
  2073. EXPORT_SYMBOL(ceph_con_send);
  2074. /*
  2075. * Revoke a message that was previously queued for send
  2076. */
  2077. void ceph_msg_revoke(struct ceph_msg *msg)
  2078. {
  2079. struct ceph_connection *con = msg->con;
  2080. if (!con)
  2081. return; /* Message not in our possession */
  2082. mutex_lock(&con->mutex);
  2083. if (!list_empty(&msg->list_head)) {
  2084. dout("%s %p msg %p - was on queue\n", __func__, con, msg);
  2085. list_del_init(&msg->list_head);
  2086. BUG_ON(msg->con == NULL);
  2087. msg->con->ops->put(msg->con);
  2088. msg->con = NULL;
  2089. msg->hdr.seq = 0;
  2090. ceph_msg_put(msg);
  2091. }
  2092. if (con->out_msg == msg) {
  2093. dout("%s %p msg %p - was sending\n", __func__, con, msg);
  2094. con->out_msg = NULL;
  2095. if (con->out_kvec_is_msg) {
  2096. con->out_skip = con->out_kvec_bytes;
  2097. con->out_kvec_is_msg = false;
  2098. }
  2099. msg->hdr.seq = 0;
  2100. ceph_msg_put(msg);
  2101. }
  2102. mutex_unlock(&con->mutex);
  2103. }
  2104. /*
  2105. * Revoke a message that we may be reading data into
  2106. */
  2107. void ceph_msg_revoke_incoming(struct ceph_msg *msg)
  2108. {
  2109. struct ceph_connection *con;
  2110. BUG_ON(msg == NULL);
  2111. if (!msg->con) {
  2112. dout("%s msg %p null con\n", __func__, msg);
  2113. return; /* Message not in our possession */
  2114. }
  2115. con = msg->con;
  2116. mutex_lock(&con->mutex);
  2117. if (con->in_msg == msg) {
  2118. unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
  2119. unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2120. unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
  2121. /* skip rest of message */
  2122. dout("%s %p msg %p revoked\n", __func__, con, msg);
  2123. con->in_base_pos = con->in_base_pos -
  2124. sizeof(struct ceph_msg_header) -
  2125. front_len -
  2126. middle_len -
  2127. data_len -
  2128. sizeof(struct ceph_msg_footer);
  2129. ceph_msg_put(con->in_msg);
  2130. con->in_msg = NULL;
  2131. con->in_tag = CEPH_MSGR_TAG_READY;
  2132. con->in_seq++;
  2133. } else {
  2134. dout("%s %p in_msg %p msg %p no-op\n",
  2135. __func__, con, con->in_msg, msg);
  2136. }
  2137. mutex_unlock(&con->mutex);
  2138. }
  2139. /*
  2140. * Queue a keepalive byte to ensure the tcp connection is alive.
  2141. */
  2142. void ceph_con_keepalive(struct ceph_connection *con)
  2143. {
  2144. dout("con_keepalive %p\n", con);
  2145. clear_standby(con);
  2146. if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
  2147. test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
  2148. queue_con(con);
  2149. }
  2150. EXPORT_SYMBOL(ceph_con_keepalive);
  2151. /*
  2152. * construct a new message with given type, size
  2153. * the new msg has a ref count of 1.
  2154. */
  2155. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2156. bool can_fail)
  2157. {
  2158. struct ceph_msg *m;
  2159. m = kmalloc(sizeof(*m), flags);
  2160. if (m == NULL)
  2161. goto out;
  2162. kref_init(&m->kref);
  2163. m->con = NULL;
  2164. INIT_LIST_HEAD(&m->list_head);
  2165. m->hdr.tid = 0;
  2166. m->hdr.type = cpu_to_le16(type);
  2167. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2168. m->hdr.version = 0;
  2169. m->hdr.front_len = cpu_to_le32(front_len);
  2170. m->hdr.middle_len = 0;
  2171. m->hdr.data_len = 0;
  2172. m->hdr.data_off = 0;
  2173. m->hdr.reserved = 0;
  2174. m->footer.front_crc = 0;
  2175. m->footer.middle_crc = 0;
  2176. m->footer.data_crc = 0;
  2177. m->footer.flags = 0;
  2178. m->front_max = front_len;
  2179. m->front_is_vmalloc = false;
  2180. m->more_to_follow = false;
  2181. m->ack_stamp = 0;
  2182. m->pool = NULL;
  2183. /* middle */
  2184. m->middle = NULL;
  2185. /* data */
  2186. m->nr_pages = 0;
  2187. m->page_alignment = 0;
  2188. m->pages = NULL;
  2189. m->pagelist = NULL;
  2190. m->bio = NULL;
  2191. m->bio_iter = NULL;
  2192. m->bio_seg = 0;
  2193. m->trail = NULL;
  2194. /* front */
  2195. if (front_len) {
  2196. if (front_len > PAGE_CACHE_SIZE) {
  2197. m->front.iov_base = __vmalloc(front_len, flags,
  2198. PAGE_KERNEL);
  2199. m->front_is_vmalloc = true;
  2200. } else {
  2201. m->front.iov_base = kmalloc(front_len, flags);
  2202. }
  2203. if (m->front.iov_base == NULL) {
  2204. dout("ceph_msg_new can't allocate %d bytes\n",
  2205. front_len);
  2206. goto out2;
  2207. }
  2208. } else {
  2209. m->front.iov_base = NULL;
  2210. }
  2211. m->front.iov_len = front_len;
  2212. dout("ceph_msg_new %p front %d\n", m, front_len);
  2213. return m;
  2214. out2:
  2215. ceph_msg_put(m);
  2216. out:
  2217. if (!can_fail) {
  2218. pr_err("msg_new can't create type %d front %d\n", type,
  2219. front_len);
  2220. WARN_ON(1);
  2221. } else {
  2222. dout("msg_new can't create type %d front %d\n", type,
  2223. front_len);
  2224. }
  2225. return NULL;
  2226. }
  2227. EXPORT_SYMBOL(ceph_msg_new);
  2228. /*
  2229. * Allocate "middle" portion of a message, if it is needed and wasn't
  2230. * allocated by alloc_msg. This allows us to read a small fixed-size
  2231. * per-type header in the front and then gracefully fail (i.e.,
  2232. * propagate the error to the caller based on info in the front) when
  2233. * the middle is too large.
  2234. */
  2235. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2236. {
  2237. int type = le16_to_cpu(msg->hdr.type);
  2238. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2239. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2240. ceph_msg_type_name(type), middle_len);
  2241. BUG_ON(!middle_len);
  2242. BUG_ON(msg->middle);
  2243. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2244. if (!msg->middle)
  2245. return -ENOMEM;
  2246. return 0;
  2247. }
  2248. /*
  2249. * Allocate a message for receiving an incoming message on a
  2250. * connection, and save the result in con->in_msg. Uses the
  2251. * connection's private alloc_msg op if available.
  2252. *
  2253. * Returns true if the message should be skipped, false otherwise.
  2254. * If true is returned (skip message), con->in_msg will be NULL.
  2255. * If false is returned, con->in_msg will contain a pointer to the
  2256. * newly-allocated message, or NULL in case of memory exhaustion.
  2257. */
  2258. static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
  2259. struct ceph_msg_header *hdr)
  2260. {
  2261. int type = le16_to_cpu(hdr->type);
  2262. int front_len = le32_to_cpu(hdr->front_len);
  2263. int middle_len = le32_to_cpu(hdr->middle_len);
  2264. int ret;
  2265. BUG_ON(con->in_msg != NULL);
  2266. if (con->ops->alloc_msg) {
  2267. int skip = 0;
  2268. mutex_unlock(&con->mutex);
  2269. con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
  2270. mutex_lock(&con->mutex);
  2271. if (con->in_msg) {
  2272. con->in_msg->con = con->ops->get(con);
  2273. BUG_ON(con->in_msg->con == NULL);
  2274. }
  2275. if (skip)
  2276. con->in_msg = NULL;
  2277. if (!con->in_msg)
  2278. return skip != 0;
  2279. }
  2280. if (!con->in_msg) {
  2281. con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2282. if (!con->in_msg) {
  2283. pr_err("unable to allocate msg type %d len %d\n",
  2284. type, front_len);
  2285. return false;
  2286. }
  2287. con->in_msg->con = con->ops->get(con);
  2288. BUG_ON(con->in_msg->con == NULL);
  2289. con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
  2290. }
  2291. memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2292. if (middle_len && !con->in_msg->middle) {
  2293. ret = ceph_alloc_middle(con, con->in_msg);
  2294. if (ret < 0) {
  2295. ceph_msg_put(con->in_msg);
  2296. con->in_msg = NULL;
  2297. }
  2298. }
  2299. return false;
  2300. }
  2301. /*
  2302. * Free a generically kmalloc'd message.
  2303. */
  2304. void ceph_msg_kfree(struct ceph_msg *m)
  2305. {
  2306. dout("msg_kfree %p\n", m);
  2307. if (m->front_is_vmalloc)
  2308. vfree(m->front.iov_base);
  2309. else
  2310. kfree(m->front.iov_base);
  2311. kfree(m);
  2312. }
  2313. /*
  2314. * Drop a msg ref. Destroy as needed.
  2315. */
  2316. void ceph_msg_last_put(struct kref *kref)
  2317. {
  2318. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2319. dout("ceph_msg_put last one on %p\n", m);
  2320. WARN_ON(!list_empty(&m->list_head));
  2321. /* drop middle, data, if any */
  2322. if (m->middle) {
  2323. ceph_buffer_put(m->middle);
  2324. m->middle = NULL;
  2325. }
  2326. m->nr_pages = 0;
  2327. m->pages = NULL;
  2328. if (m->pagelist) {
  2329. ceph_pagelist_release(m->pagelist);
  2330. kfree(m->pagelist);
  2331. m->pagelist = NULL;
  2332. }
  2333. m->trail = NULL;
  2334. if (m->pool)
  2335. ceph_msgpool_put(m->pool, m);
  2336. else
  2337. ceph_msg_kfree(m);
  2338. }
  2339. EXPORT_SYMBOL(ceph_msg_last_put);
  2340. void ceph_msg_dump(struct ceph_msg *msg)
  2341. {
  2342. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2343. msg->front_max, msg->nr_pages);
  2344. print_hex_dump(KERN_DEBUG, "header: ",
  2345. DUMP_PREFIX_OFFSET, 16, 1,
  2346. &msg->hdr, sizeof(msg->hdr), true);
  2347. print_hex_dump(KERN_DEBUG, " front: ",
  2348. DUMP_PREFIX_OFFSET, 16, 1,
  2349. msg->front.iov_base, msg->front.iov_len, true);
  2350. if (msg->middle)
  2351. print_hex_dump(KERN_DEBUG, "middle: ",
  2352. DUMP_PREFIX_OFFSET, 16, 1,
  2353. msg->middle->vec.iov_base,
  2354. msg->middle->vec.iov_len, true);
  2355. print_hex_dump(KERN_DEBUG, "footer: ",
  2356. DUMP_PREFIX_OFFSET, 16, 1,
  2357. &msg->footer, sizeof(msg->footer), true);
  2358. }
  2359. EXPORT_SYMBOL(ceph_msg_dump);