hpsa.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233
  1. /*
  2. * Disk Array driver for HP Smart Array SAS controllers
  3. * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12. * NON INFRINGEMENT. See the GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. *
  18. * Questions/Comments/Bugfixes to iss_storagedev@hp.com
  19. *
  20. */
  21. #include <linux/module.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/types.h>
  24. #include <linux/pci.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/delay.h>
  28. #include <linux/fs.h>
  29. #include <linux/timer.h>
  30. #include <linux/seq_file.h>
  31. #include <linux/init.h>
  32. #include <linux/spinlock.h>
  33. #include <linux/compat.h>
  34. #include <linux/blktrace_api.h>
  35. #include <linux/uaccess.h>
  36. #include <linux/io.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/completion.h>
  39. #include <linux/moduleparam.h>
  40. #include <scsi/scsi.h>
  41. #include <scsi/scsi_cmnd.h>
  42. #include <scsi/scsi_device.h>
  43. #include <scsi/scsi_host.h>
  44. #include <scsi/scsi_tcq.h>
  45. #include <linux/cciss_ioctl.h>
  46. #include <linux/string.h>
  47. #include <linux/bitmap.h>
  48. #include <asm/atomic.h>
  49. #include <linux/kthread.h>
  50. #include "hpsa_cmd.h"
  51. #include "hpsa.h"
  52. /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
  53. #define HPSA_DRIVER_VERSION "2.0.2-1"
  54. #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  55. /* How long to wait (in milliseconds) for board to go into simple mode */
  56. #define MAX_CONFIG_WAIT 30000
  57. #define MAX_IOCTL_CONFIG_WAIT 1000
  58. /*define how many times we will try a command because of bus resets */
  59. #define MAX_CMD_RETRIES 3
  60. /* Embedded module documentation macros - see modules.h */
  61. MODULE_AUTHOR("Hewlett-Packard Company");
  62. MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  63. HPSA_DRIVER_VERSION);
  64. MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  65. MODULE_VERSION(HPSA_DRIVER_VERSION);
  66. MODULE_LICENSE("GPL");
  67. static int hpsa_allow_any;
  68. module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
  69. MODULE_PARM_DESC(hpsa_allow_any,
  70. "Allow hpsa driver to access unknown HP Smart Array hardware");
  71. static int hpsa_simple_mode;
  72. module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  73. MODULE_PARM_DESC(hpsa_simple_mode,
  74. "Use 'simple mode' rather than 'performant mode'");
  75. /* define the PCI info for the cards we can control */
  76. static const struct pci_device_id hpsa_pci_device_id[] = {
  77. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
  78. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
  79. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
  80. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
  81. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
  82. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
  83. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
  84. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
  85. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
  86. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
  87. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
  88. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
  89. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
  90. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
  91. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
  92. {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
  93. PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
  94. {0,}
  95. };
  96. MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
  97. /* board_id = Subsystem Device ID & Vendor ID
  98. * product = Marketing Name for the board
  99. * access = Address of the struct of function pointers
  100. */
  101. static struct board_type products[] = {
  102. {0x3241103C, "Smart Array P212", &SA5_access},
  103. {0x3243103C, "Smart Array P410", &SA5_access},
  104. {0x3245103C, "Smart Array P410i", &SA5_access},
  105. {0x3247103C, "Smart Array P411", &SA5_access},
  106. {0x3249103C, "Smart Array P812", &SA5_access},
  107. {0x324a103C, "Smart Array P712m", &SA5_access},
  108. {0x324b103C, "Smart Array P711m", &SA5_access},
  109. {0x3350103C, "Smart Array", &SA5_access},
  110. {0x3351103C, "Smart Array", &SA5_access},
  111. {0x3352103C, "Smart Array", &SA5_access},
  112. {0x3353103C, "Smart Array", &SA5_access},
  113. {0x3354103C, "Smart Array", &SA5_access},
  114. {0x3355103C, "Smart Array", &SA5_access},
  115. {0x3356103C, "Smart Array", &SA5_access},
  116. {0xFFFF103C, "Unknown Smart Array", &SA5_access},
  117. };
  118. static int number_of_controllers;
  119. static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
  120. static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
  121. static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
  122. static void start_io(struct ctlr_info *h);
  123. #ifdef CONFIG_COMPAT
  124. static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
  125. #endif
  126. static void cmd_free(struct ctlr_info *h, struct CommandList *c);
  127. static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
  128. static struct CommandList *cmd_alloc(struct ctlr_info *h);
  129. static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
  130. static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
  131. void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
  132. int cmd_type);
  133. static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
  134. static void hpsa_scan_start(struct Scsi_Host *);
  135. static int hpsa_scan_finished(struct Scsi_Host *sh,
  136. unsigned long elapsed_time);
  137. static int hpsa_change_queue_depth(struct scsi_device *sdev,
  138. int qdepth, int reason);
  139. static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
  140. static int hpsa_slave_alloc(struct scsi_device *sdev);
  141. static void hpsa_slave_destroy(struct scsi_device *sdev);
  142. static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
  143. static int check_for_unit_attention(struct ctlr_info *h,
  144. struct CommandList *c);
  145. static void check_ioctl_unit_attention(struct ctlr_info *h,
  146. struct CommandList *c);
  147. /* performant mode helper functions */
  148. static void calc_bucket_map(int *bucket, int num_buckets,
  149. int nsgs, int *bucket_map);
  150. static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
  151. static inline u32 next_command(struct ctlr_info *h);
  152. static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
  153. void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
  154. u64 *cfg_offset);
  155. static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
  156. unsigned long *memory_bar);
  157. static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
  158. static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
  159. void __iomem *vaddr, int wait_for_ready);
  160. #define BOARD_NOT_READY 0
  161. #define BOARD_READY 1
  162. static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
  163. {
  164. unsigned long *priv = shost_priv(sdev->host);
  165. return (struct ctlr_info *) *priv;
  166. }
  167. static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
  168. {
  169. unsigned long *priv = shost_priv(sh);
  170. return (struct ctlr_info *) *priv;
  171. }
  172. static int check_for_unit_attention(struct ctlr_info *h,
  173. struct CommandList *c)
  174. {
  175. if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
  176. return 0;
  177. switch (c->err_info->SenseInfo[12]) {
  178. case STATE_CHANGED:
  179. dev_warn(&h->pdev->dev, "hpsa%d: a state change "
  180. "detected, command retried\n", h->ctlr);
  181. break;
  182. case LUN_FAILED:
  183. dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
  184. "detected, action required\n", h->ctlr);
  185. break;
  186. case REPORT_LUNS_CHANGED:
  187. dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
  188. "changed, action required\n", h->ctlr);
  189. /*
  190. * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
  191. */
  192. break;
  193. case POWER_OR_RESET:
  194. dev_warn(&h->pdev->dev, "hpsa%d: a power on "
  195. "or device reset detected\n", h->ctlr);
  196. break;
  197. case UNIT_ATTENTION_CLEARED:
  198. dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
  199. "cleared by another initiator\n", h->ctlr);
  200. break;
  201. default:
  202. dev_warn(&h->pdev->dev, "hpsa%d: unknown "
  203. "unit attention detected\n", h->ctlr);
  204. break;
  205. }
  206. return 1;
  207. }
  208. static ssize_t host_store_rescan(struct device *dev,
  209. struct device_attribute *attr,
  210. const char *buf, size_t count)
  211. {
  212. struct ctlr_info *h;
  213. struct Scsi_Host *shost = class_to_shost(dev);
  214. h = shost_to_hba(shost);
  215. hpsa_scan_start(h->scsi_host);
  216. return count;
  217. }
  218. static ssize_t host_show_firmware_revision(struct device *dev,
  219. struct device_attribute *attr, char *buf)
  220. {
  221. struct ctlr_info *h;
  222. struct Scsi_Host *shost = class_to_shost(dev);
  223. unsigned char *fwrev;
  224. h = shost_to_hba(shost);
  225. if (!h->hba_inquiry_data)
  226. return 0;
  227. fwrev = &h->hba_inquiry_data[32];
  228. return snprintf(buf, 20, "%c%c%c%c\n",
  229. fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
  230. }
  231. static ssize_t host_show_commands_outstanding(struct device *dev,
  232. struct device_attribute *attr, char *buf)
  233. {
  234. struct Scsi_Host *shost = class_to_shost(dev);
  235. struct ctlr_info *h = shost_to_hba(shost);
  236. return snprintf(buf, 20, "%d\n", h->commands_outstanding);
  237. }
  238. static ssize_t host_show_transport_mode(struct device *dev,
  239. struct device_attribute *attr, char *buf)
  240. {
  241. struct ctlr_info *h;
  242. struct Scsi_Host *shost = class_to_shost(dev);
  243. h = shost_to_hba(shost);
  244. return snprintf(buf, 20, "%s\n",
  245. h->transMethod & CFGTBL_Trans_Performant ?
  246. "performant" : "simple");
  247. }
  248. /* List of controllers which cannot be reset on kexec with reset_devices */
  249. static u32 unresettable_controller[] = {
  250. 0x324a103C, /* Smart Array P712m */
  251. 0x324b103C, /* SmartArray P711m */
  252. 0x3223103C, /* Smart Array P800 */
  253. 0x3234103C, /* Smart Array P400 */
  254. 0x3235103C, /* Smart Array P400i */
  255. 0x3211103C, /* Smart Array E200i */
  256. 0x3212103C, /* Smart Array E200 */
  257. 0x3213103C, /* Smart Array E200i */
  258. 0x3214103C, /* Smart Array E200i */
  259. 0x3215103C, /* Smart Array E200i */
  260. 0x3237103C, /* Smart Array E500 */
  261. 0x323D103C, /* Smart Array P700m */
  262. 0x409C0E11, /* Smart Array 6400 */
  263. 0x409D0E11, /* Smart Array 6400 EM */
  264. };
  265. static int ctlr_is_resettable(struct ctlr_info *h)
  266. {
  267. int i;
  268. for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
  269. if (unresettable_controller[i] == h->board_id)
  270. return 0;
  271. return 1;
  272. }
  273. static ssize_t host_show_resettable(struct device *dev,
  274. struct device_attribute *attr, char *buf)
  275. {
  276. struct ctlr_info *h;
  277. struct Scsi_Host *shost = class_to_shost(dev);
  278. h = shost_to_hba(shost);
  279. return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
  280. }
  281. static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
  282. {
  283. return (scsi3addr[3] & 0xC0) == 0x40;
  284. }
  285. static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
  286. "UNKNOWN"
  287. };
  288. #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
  289. static ssize_t raid_level_show(struct device *dev,
  290. struct device_attribute *attr, char *buf)
  291. {
  292. ssize_t l = 0;
  293. unsigned char rlevel;
  294. struct ctlr_info *h;
  295. struct scsi_device *sdev;
  296. struct hpsa_scsi_dev_t *hdev;
  297. unsigned long flags;
  298. sdev = to_scsi_device(dev);
  299. h = sdev_to_hba(sdev);
  300. spin_lock_irqsave(&h->lock, flags);
  301. hdev = sdev->hostdata;
  302. if (!hdev) {
  303. spin_unlock_irqrestore(&h->lock, flags);
  304. return -ENODEV;
  305. }
  306. /* Is this even a logical drive? */
  307. if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
  308. spin_unlock_irqrestore(&h->lock, flags);
  309. l = snprintf(buf, PAGE_SIZE, "N/A\n");
  310. return l;
  311. }
  312. rlevel = hdev->raid_level;
  313. spin_unlock_irqrestore(&h->lock, flags);
  314. if (rlevel > RAID_UNKNOWN)
  315. rlevel = RAID_UNKNOWN;
  316. l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
  317. return l;
  318. }
  319. static ssize_t lunid_show(struct device *dev,
  320. struct device_attribute *attr, char *buf)
  321. {
  322. struct ctlr_info *h;
  323. struct scsi_device *sdev;
  324. struct hpsa_scsi_dev_t *hdev;
  325. unsigned long flags;
  326. unsigned char lunid[8];
  327. sdev = to_scsi_device(dev);
  328. h = sdev_to_hba(sdev);
  329. spin_lock_irqsave(&h->lock, flags);
  330. hdev = sdev->hostdata;
  331. if (!hdev) {
  332. spin_unlock_irqrestore(&h->lock, flags);
  333. return -ENODEV;
  334. }
  335. memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
  336. spin_unlock_irqrestore(&h->lock, flags);
  337. return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
  338. lunid[0], lunid[1], lunid[2], lunid[3],
  339. lunid[4], lunid[5], lunid[6], lunid[7]);
  340. }
  341. static ssize_t unique_id_show(struct device *dev,
  342. struct device_attribute *attr, char *buf)
  343. {
  344. struct ctlr_info *h;
  345. struct scsi_device *sdev;
  346. struct hpsa_scsi_dev_t *hdev;
  347. unsigned long flags;
  348. unsigned char sn[16];
  349. sdev = to_scsi_device(dev);
  350. h = sdev_to_hba(sdev);
  351. spin_lock_irqsave(&h->lock, flags);
  352. hdev = sdev->hostdata;
  353. if (!hdev) {
  354. spin_unlock_irqrestore(&h->lock, flags);
  355. return -ENODEV;
  356. }
  357. memcpy(sn, hdev->device_id, sizeof(sn));
  358. spin_unlock_irqrestore(&h->lock, flags);
  359. return snprintf(buf, 16 * 2 + 2,
  360. "%02X%02X%02X%02X%02X%02X%02X%02X"
  361. "%02X%02X%02X%02X%02X%02X%02X%02X\n",
  362. sn[0], sn[1], sn[2], sn[3],
  363. sn[4], sn[5], sn[6], sn[7],
  364. sn[8], sn[9], sn[10], sn[11],
  365. sn[12], sn[13], sn[14], sn[15]);
  366. }
  367. static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
  368. static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
  369. static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
  370. static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
  371. static DEVICE_ATTR(firmware_revision, S_IRUGO,
  372. host_show_firmware_revision, NULL);
  373. static DEVICE_ATTR(commands_outstanding, S_IRUGO,
  374. host_show_commands_outstanding, NULL);
  375. static DEVICE_ATTR(transport_mode, S_IRUGO,
  376. host_show_transport_mode, NULL);
  377. static DEVICE_ATTR(resettable, S_IRUGO,
  378. host_show_resettable, NULL);
  379. static struct device_attribute *hpsa_sdev_attrs[] = {
  380. &dev_attr_raid_level,
  381. &dev_attr_lunid,
  382. &dev_attr_unique_id,
  383. NULL,
  384. };
  385. static struct device_attribute *hpsa_shost_attrs[] = {
  386. &dev_attr_rescan,
  387. &dev_attr_firmware_revision,
  388. &dev_attr_commands_outstanding,
  389. &dev_attr_transport_mode,
  390. &dev_attr_resettable,
  391. NULL,
  392. };
  393. static struct scsi_host_template hpsa_driver_template = {
  394. .module = THIS_MODULE,
  395. .name = "hpsa",
  396. .proc_name = "hpsa",
  397. .queuecommand = hpsa_scsi_queue_command,
  398. .scan_start = hpsa_scan_start,
  399. .scan_finished = hpsa_scan_finished,
  400. .change_queue_depth = hpsa_change_queue_depth,
  401. .this_id = -1,
  402. .use_clustering = ENABLE_CLUSTERING,
  403. .eh_device_reset_handler = hpsa_eh_device_reset_handler,
  404. .ioctl = hpsa_ioctl,
  405. .slave_alloc = hpsa_slave_alloc,
  406. .slave_destroy = hpsa_slave_destroy,
  407. #ifdef CONFIG_COMPAT
  408. .compat_ioctl = hpsa_compat_ioctl,
  409. #endif
  410. .sdev_attrs = hpsa_sdev_attrs,
  411. .shost_attrs = hpsa_shost_attrs,
  412. };
  413. /* Enqueuing and dequeuing functions for cmdlists. */
  414. static inline void addQ(struct list_head *list, struct CommandList *c)
  415. {
  416. list_add_tail(&c->list, list);
  417. }
  418. static inline u32 next_command(struct ctlr_info *h)
  419. {
  420. u32 a;
  421. if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
  422. return h->access.command_completed(h);
  423. if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
  424. a = *(h->reply_pool_head); /* Next cmd in ring buffer */
  425. (h->reply_pool_head)++;
  426. h->commands_outstanding--;
  427. } else {
  428. a = FIFO_EMPTY;
  429. }
  430. /* Check for wraparound */
  431. if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
  432. h->reply_pool_head = h->reply_pool;
  433. h->reply_pool_wraparound ^= 1;
  434. }
  435. return a;
  436. }
  437. /* set_performant_mode: Modify the tag for cciss performant
  438. * set bit 0 for pull model, bits 3-1 for block fetch
  439. * register number
  440. */
  441. static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
  442. {
  443. if (likely(h->transMethod & CFGTBL_Trans_Performant))
  444. c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
  445. }
  446. static void enqueue_cmd_and_start_io(struct ctlr_info *h,
  447. struct CommandList *c)
  448. {
  449. unsigned long flags;
  450. set_performant_mode(h, c);
  451. spin_lock_irqsave(&h->lock, flags);
  452. addQ(&h->reqQ, c);
  453. h->Qdepth++;
  454. start_io(h);
  455. spin_unlock_irqrestore(&h->lock, flags);
  456. }
  457. static inline void removeQ(struct CommandList *c)
  458. {
  459. if (WARN_ON(list_empty(&c->list)))
  460. return;
  461. list_del_init(&c->list);
  462. }
  463. static inline int is_hba_lunid(unsigned char scsi3addr[])
  464. {
  465. return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
  466. }
  467. static inline int is_scsi_rev_5(struct ctlr_info *h)
  468. {
  469. if (!h->hba_inquiry_data)
  470. return 0;
  471. if ((h->hba_inquiry_data[2] & 0x07) == 5)
  472. return 1;
  473. return 0;
  474. }
  475. static int hpsa_find_target_lun(struct ctlr_info *h,
  476. unsigned char scsi3addr[], int bus, int *target, int *lun)
  477. {
  478. /* finds an unused bus, target, lun for a new physical device
  479. * assumes h->devlock is held
  480. */
  481. int i, found = 0;
  482. DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
  483. memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
  484. for (i = 0; i < h->ndevices; i++) {
  485. if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
  486. set_bit(h->dev[i]->target, lun_taken);
  487. }
  488. for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
  489. if (!test_bit(i, lun_taken)) {
  490. /* *bus = 1; */
  491. *target = i;
  492. *lun = 0;
  493. found = 1;
  494. break;
  495. }
  496. }
  497. return !found;
  498. }
  499. /* Add an entry into h->dev[] array. */
  500. static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
  501. struct hpsa_scsi_dev_t *device,
  502. struct hpsa_scsi_dev_t *added[], int *nadded)
  503. {
  504. /* assumes h->devlock is held */
  505. int n = h->ndevices;
  506. int i;
  507. unsigned char addr1[8], addr2[8];
  508. struct hpsa_scsi_dev_t *sd;
  509. if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
  510. dev_err(&h->pdev->dev, "too many devices, some will be "
  511. "inaccessible.\n");
  512. return -1;
  513. }
  514. /* physical devices do not have lun or target assigned until now. */
  515. if (device->lun != -1)
  516. /* Logical device, lun is already assigned. */
  517. goto lun_assigned;
  518. /* If this device a non-zero lun of a multi-lun device
  519. * byte 4 of the 8-byte LUN addr will contain the logical
  520. * unit no, zero otherise.
  521. */
  522. if (device->scsi3addr[4] == 0) {
  523. /* This is not a non-zero lun of a multi-lun device */
  524. if (hpsa_find_target_lun(h, device->scsi3addr,
  525. device->bus, &device->target, &device->lun) != 0)
  526. return -1;
  527. goto lun_assigned;
  528. }
  529. /* This is a non-zero lun of a multi-lun device.
  530. * Search through our list and find the device which
  531. * has the same 8 byte LUN address, excepting byte 4.
  532. * Assign the same bus and target for this new LUN.
  533. * Use the logical unit number from the firmware.
  534. */
  535. memcpy(addr1, device->scsi3addr, 8);
  536. addr1[4] = 0;
  537. for (i = 0; i < n; i++) {
  538. sd = h->dev[i];
  539. memcpy(addr2, sd->scsi3addr, 8);
  540. addr2[4] = 0;
  541. /* differ only in byte 4? */
  542. if (memcmp(addr1, addr2, 8) == 0) {
  543. device->bus = sd->bus;
  544. device->target = sd->target;
  545. device->lun = device->scsi3addr[4];
  546. break;
  547. }
  548. }
  549. if (device->lun == -1) {
  550. dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
  551. " suspect firmware bug or unsupported hardware "
  552. "configuration.\n");
  553. return -1;
  554. }
  555. lun_assigned:
  556. h->dev[n] = device;
  557. h->ndevices++;
  558. added[*nadded] = device;
  559. (*nadded)++;
  560. /* initially, (before registering with scsi layer) we don't
  561. * know our hostno and we don't want to print anything first
  562. * time anyway (the scsi layer's inquiries will show that info)
  563. */
  564. /* if (hostno != -1) */
  565. dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
  566. scsi_device_type(device->devtype), hostno,
  567. device->bus, device->target, device->lun);
  568. return 0;
  569. }
  570. /* Replace an entry from h->dev[] array. */
  571. static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
  572. int entry, struct hpsa_scsi_dev_t *new_entry,
  573. struct hpsa_scsi_dev_t *added[], int *nadded,
  574. struct hpsa_scsi_dev_t *removed[], int *nremoved)
  575. {
  576. /* assumes h->devlock is held */
  577. BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
  578. removed[*nremoved] = h->dev[entry];
  579. (*nremoved)++;
  580. h->dev[entry] = new_entry;
  581. added[*nadded] = new_entry;
  582. (*nadded)++;
  583. dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
  584. scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
  585. new_entry->target, new_entry->lun);
  586. }
  587. /* Remove an entry from h->dev[] array. */
  588. static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
  589. struct hpsa_scsi_dev_t *removed[], int *nremoved)
  590. {
  591. /* assumes h->devlock is held */
  592. int i;
  593. struct hpsa_scsi_dev_t *sd;
  594. BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
  595. sd = h->dev[entry];
  596. removed[*nremoved] = h->dev[entry];
  597. (*nremoved)++;
  598. for (i = entry; i < h->ndevices-1; i++)
  599. h->dev[i] = h->dev[i+1];
  600. h->ndevices--;
  601. dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
  602. scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
  603. sd->lun);
  604. }
  605. #define SCSI3ADDR_EQ(a, b) ( \
  606. (a)[7] == (b)[7] && \
  607. (a)[6] == (b)[6] && \
  608. (a)[5] == (b)[5] && \
  609. (a)[4] == (b)[4] && \
  610. (a)[3] == (b)[3] && \
  611. (a)[2] == (b)[2] && \
  612. (a)[1] == (b)[1] && \
  613. (a)[0] == (b)[0])
  614. static void fixup_botched_add(struct ctlr_info *h,
  615. struct hpsa_scsi_dev_t *added)
  616. {
  617. /* called when scsi_add_device fails in order to re-adjust
  618. * h->dev[] to match the mid layer's view.
  619. */
  620. unsigned long flags;
  621. int i, j;
  622. spin_lock_irqsave(&h->lock, flags);
  623. for (i = 0; i < h->ndevices; i++) {
  624. if (h->dev[i] == added) {
  625. for (j = i; j < h->ndevices-1; j++)
  626. h->dev[j] = h->dev[j+1];
  627. h->ndevices--;
  628. break;
  629. }
  630. }
  631. spin_unlock_irqrestore(&h->lock, flags);
  632. kfree(added);
  633. }
  634. static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
  635. struct hpsa_scsi_dev_t *dev2)
  636. {
  637. /* we compare everything except lun and target as these
  638. * are not yet assigned. Compare parts likely
  639. * to differ first
  640. */
  641. if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
  642. sizeof(dev1->scsi3addr)) != 0)
  643. return 0;
  644. if (memcmp(dev1->device_id, dev2->device_id,
  645. sizeof(dev1->device_id)) != 0)
  646. return 0;
  647. if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
  648. return 0;
  649. if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
  650. return 0;
  651. if (dev1->devtype != dev2->devtype)
  652. return 0;
  653. if (dev1->bus != dev2->bus)
  654. return 0;
  655. return 1;
  656. }
  657. /* Find needle in haystack. If exact match found, return DEVICE_SAME,
  658. * and return needle location in *index. If scsi3addr matches, but not
  659. * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
  660. * location in *index. If needle not found, return DEVICE_NOT_FOUND.
  661. */
  662. static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
  663. struct hpsa_scsi_dev_t *haystack[], int haystack_size,
  664. int *index)
  665. {
  666. int i;
  667. #define DEVICE_NOT_FOUND 0
  668. #define DEVICE_CHANGED 1
  669. #define DEVICE_SAME 2
  670. for (i = 0; i < haystack_size; i++) {
  671. if (haystack[i] == NULL) /* previously removed. */
  672. continue;
  673. if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
  674. *index = i;
  675. if (device_is_the_same(needle, haystack[i]))
  676. return DEVICE_SAME;
  677. else
  678. return DEVICE_CHANGED;
  679. }
  680. }
  681. *index = -1;
  682. return DEVICE_NOT_FOUND;
  683. }
  684. static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
  685. struct hpsa_scsi_dev_t *sd[], int nsds)
  686. {
  687. /* sd contains scsi3 addresses and devtypes, and inquiry
  688. * data. This function takes what's in sd to be the current
  689. * reality and updates h->dev[] to reflect that reality.
  690. */
  691. int i, entry, device_change, changes = 0;
  692. struct hpsa_scsi_dev_t *csd;
  693. unsigned long flags;
  694. struct hpsa_scsi_dev_t **added, **removed;
  695. int nadded, nremoved;
  696. struct Scsi_Host *sh = NULL;
  697. added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
  698. GFP_KERNEL);
  699. removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
  700. GFP_KERNEL);
  701. if (!added || !removed) {
  702. dev_warn(&h->pdev->dev, "out of memory in "
  703. "adjust_hpsa_scsi_table\n");
  704. goto free_and_out;
  705. }
  706. spin_lock_irqsave(&h->devlock, flags);
  707. /* find any devices in h->dev[] that are not in
  708. * sd[] and remove them from h->dev[], and for any
  709. * devices which have changed, remove the old device
  710. * info and add the new device info.
  711. */
  712. i = 0;
  713. nremoved = 0;
  714. nadded = 0;
  715. while (i < h->ndevices) {
  716. csd = h->dev[i];
  717. device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
  718. if (device_change == DEVICE_NOT_FOUND) {
  719. changes++;
  720. hpsa_scsi_remove_entry(h, hostno, i,
  721. removed, &nremoved);
  722. continue; /* remove ^^^, hence i not incremented */
  723. } else if (device_change == DEVICE_CHANGED) {
  724. changes++;
  725. hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
  726. added, &nadded, removed, &nremoved);
  727. /* Set it to NULL to prevent it from being freed
  728. * at the bottom of hpsa_update_scsi_devices()
  729. */
  730. sd[entry] = NULL;
  731. }
  732. i++;
  733. }
  734. /* Now, make sure every device listed in sd[] is also
  735. * listed in h->dev[], adding them if they aren't found
  736. */
  737. for (i = 0; i < nsds; i++) {
  738. if (!sd[i]) /* if already added above. */
  739. continue;
  740. device_change = hpsa_scsi_find_entry(sd[i], h->dev,
  741. h->ndevices, &entry);
  742. if (device_change == DEVICE_NOT_FOUND) {
  743. changes++;
  744. if (hpsa_scsi_add_entry(h, hostno, sd[i],
  745. added, &nadded) != 0)
  746. break;
  747. sd[i] = NULL; /* prevent from being freed later. */
  748. } else if (device_change == DEVICE_CHANGED) {
  749. /* should never happen... */
  750. changes++;
  751. dev_warn(&h->pdev->dev,
  752. "device unexpectedly changed.\n");
  753. /* but if it does happen, we just ignore that device */
  754. }
  755. }
  756. spin_unlock_irqrestore(&h->devlock, flags);
  757. /* Don't notify scsi mid layer of any changes the first time through
  758. * (or if there are no changes) scsi_scan_host will do it later the
  759. * first time through.
  760. */
  761. if (hostno == -1 || !changes)
  762. goto free_and_out;
  763. sh = h->scsi_host;
  764. /* Notify scsi mid layer of any removed devices */
  765. for (i = 0; i < nremoved; i++) {
  766. struct scsi_device *sdev =
  767. scsi_device_lookup(sh, removed[i]->bus,
  768. removed[i]->target, removed[i]->lun);
  769. if (sdev != NULL) {
  770. scsi_remove_device(sdev);
  771. scsi_device_put(sdev);
  772. } else {
  773. /* We don't expect to get here.
  774. * future cmds to this device will get selection
  775. * timeout as if the device was gone.
  776. */
  777. dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
  778. " for removal.", hostno, removed[i]->bus,
  779. removed[i]->target, removed[i]->lun);
  780. }
  781. kfree(removed[i]);
  782. removed[i] = NULL;
  783. }
  784. /* Notify scsi mid layer of any added devices */
  785. for (i = 0; i < nadded; i++) {
  786. if (scsi_add_device(sh, added[i]->bus,
  787. added[i]->target, added[i]->lun) == 0)
  788. continue;
  789. dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
  790. "device not added.\n", hostno, added[i]->bus,
  791. added[i]->target, added[i]->lun);
  792. /* now we have to remove it from h->dev,
  793. * since it didn't get added to scsi mid layer
  794. */
  795. fixup_botched_add(h, added[i]);
  796. }
  797. free_and_out:
  798. kfree(added);
  799. kfree(removed);
  800. }
  801. /*
  802. * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
  803. * Assume's h->devlock is held.
  804. */
  805. static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
  806. int bus, int target, int lun)
  807. {
  808. int i;
  809. struct hpsa_scsi_dev_t *sd;
  810. for (i = 0; i < h->ndevices; i++) {
  811. sd = h->dev[i];
  812. if (sd->bus == bus && sd->target == target && sd->lun == lun)
  813. return sd;
  814. }
  815. return NULL;
  816. }
  817. /* link sdev->hostdata to our per-device structure. */
  818. static int hpsa_slave_alloc(struct scsi_device *sdev)
  819. {
  820. struct hpsa_scsi_dev_t *sd;
  821. unsigned long flags;
  822. struct ctlr_info *h;
  823. h = sdev_to_hba(sdev);
  824. spin_lock_irqsave(&h->devlock, flags);
  825. sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
  826. sdev_id(sdev), sdev->lun);
  827. if (sd != NULL)
  828. sdev->hostdata = sd;
  829. spin_unlock_irqrestore(&h->devlock, flags);
  830. return 0;
  831. }
  832. static void hpsa_slave_destroy(struct scsi_device *sdev)
  833. {
  834. /* nothing to do. */
  835. }
  836. static void hpsa_scsi_setup(struct ctlr_info *h)
  837. {
  838. h->ndevices = 0;
  839. h->scsi_host = NULL;
  840. spin_lock_init(&h->devlock);
  841. }
  842. static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
  843. {
  844. int i;
  845. if (!h->cmd_sg_list)
  846. return;
  847. for (i = 0; i < h->nr_cmds; i++) {
  848. kfree(h->cmd_sg_list[i]);
  849. h->cmd_sg_list[i] = NULL;
  850. }
  851. kfree(h->cmd_sg_list);
  852. h->cmd_sg_list = NULL;
  853. }
  854. static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
  855. {
  856. int i;
  857. if (h->chainsize <= 0)
  858. return 0;
  859. h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
  860. GFP_KERNEL);
  861. if (!h->cmd_sg_list)
  862. return -ENOMEM;
  863. for (i = 0; i < h->nr_cmds; i++) {
  864. h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
  865. h->chainsize, GFP_KERNEL);
  866. if (!h->cmd_sg_list[i])
  867. goto clean;
  868. }
  869. return 0;
  870. clean:
  871. hpsa_free_sg_chain_blocks(h);
  872. return -ENOMEM;
  873. }
  874. static void hpsa_map_sg_chain_block(struct ctlr_info *h,
  875. struct CommandList *c)
  876. {
  877. struct SGDescriptor *chain_sg, *chain_block;
  878. u64 temp64;
  879. chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
  880. chain_block = h->cmd_sg_list[c->cmdindex];
  881. chain_sg->Ext = HPSA_SG_CHAIN;
  882. chain_sg->Len = sizeof(*chain_sg) *
  883. (c->Header.SGTotal - h->max_cmd_sg_entries);
  884. temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
  885. PCI_DMA_TODEVICE);
  886. chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
  887. chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
  888. }
  889. static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
  890. struct CommandList *c)
  891. {
  892. struct SGDescriptor *chain_sg;
  893. union u64bit temp64;
  894. if (c->Header.SGTotal <= h->max_cmd_sg_entries)
  895. return;
  896. chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
  897. temp64.val32.lower = chain_sg->Addr.lower;
  898. temp64.val32.upper = chain_sg->Addr.upper;
  899. pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
  900. }
  901. static void complete_scsi_command(struct CommandList *cp)
  902. {
  903. struct scsi_cmnd *cmd;
  904. struct ctlr_info *h;
  905. struct ErrorInfo *ei;
  906. unsigned char sense_key;
  907. unsigned char asc; /* additional sense code */
  908. unsigned char ascq; /* additional sense code qualifier */
  909. ei = cp->err_info;
  910. cmd = (struct scsi_cmnd *) cp->scsi_cmd;
  911. h = cp->h;
  912. scsi_dma_unmap(cmd); /* undo the DMA mappings */
  913. if (cp->Header.SGTotal > h->max_cmd_sg_entries)
  914. hpsa_unmap_sg_chain_block(h, cp);
  915. cmd->result = (DID_OK << 16); /* host byte */
  916. cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
  917. cmd->result |= ei->ScsiStatus;
  918. /* copy the sense data whether we need to or not. */
  919. memcpy(cmd->sense_buffer, ei->SenseInfo,
  920. ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
  921. SCSI_SENSE_BUFFERSIZE :
  922. ei->SenseLen);
  923. scsi_set_resid(cmd, ei->ResidualCnt);
  924. if (ei->CommandStatus == 0) {
  925. cmd->scsi_done(cmd);
  926. cmd_free(h, cp);
  927. return;
  928. }
  929. /* an error has occurred */
  930. switch (ei->CommandStatus) {
  931. case CMD_TARGET_STATUS:
  932. if (ei->ScsiStatus) {
  933. /* Get sense key */
  934. sense_key = 0xf & ei->SenseInfo[2];
  935. /* Get additional sense code */
  936. asc = ei->SenseInfo[12];
  937. /* Get addition sense code qualifier */
  938. ascq = ei->SenseInfo[13];
  939. }
  940. if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
  941. if (check_for_unit_attention(h, cp)) {
  942. cmd->result = DID_SOFT_ERROR << 16;
  943. break;
  944. }
  945. if (sense_key == ILLEGAL_REQUEST) {
  946. /*
  947. * SCSI REPORT_LUNS is commonly unsupported on
  948. * Smart Array. Suppress noisy complaint.
  949. */
  950. if (cp->Request.CDB[0] == REPORT_LUNS)
  951. break;
  952. /* If ASC/ASCQ indicate Logical Unit
  953. * Not Supported condition,
  954. */
  955. if ((asc == 0x25) && (ascq == 0x0)) {
  956. dev_warn(&h->pdev->dev, "cp %p "
  957. "has check condition\n", cp);
  958. break;
  959. }
  960. }
  961. if (sense_key == NOT_READY) {
  962. /* If Sense is Not Ready, Logical Unit
  963. * Not ready, Manual Intervention
  964. * required
  965. */
  966. if ((asc == 0x04) && (ascq == 0x03)) {
  967. dev_warn(&h->pdev->dev, "cp %p "
  968. "has check condition: unit "
  969. "not ready, manual "
  970. "intervention required\n", cp);
  971. break;
  972. }
  973. }
  974. if (sense_key == ABORTED_COMMAND) {
  975. /* Aborted command is retryable */
  976. dev_warn(&h->pdev->dev, "cp %p "
  977. "has check condition: aborted command: "
  978. "ASC: 0x%x, ASCQ: 0x%x\n",
  979. cp, asc, ascq);
  980. cmd->result = DID_SOFT_ERROR << 16;
  981. break;
  982. }
  983. /* Must be some other type of check condition */
  984. dev_warn(&h->pdev->dev, "cp %p has check condition: "
  985. "unknown type: "
  986. "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
  987. "Returning result: 0x%x, "
  988. "cmd=[%02x %02x %02x %02x %02x "
  989. "%02x %02x %02x %02x %02x %02x "
  990. "%02x %02x %02x %02x %02x]\n",
  991. cp, sense_key, asc, ascq,
  992. cmd->result,
  993. cmd->cmnd[0], cmd->cmnd[1],
  994. cmd->cmnd[2], cmd->cmnd[3],
  995. cmd->cmnd[4], cmd->cmnd[5],
  996. cmd->cmnd[6], cmd->cmnd[7],
  997. cmd->cmnd[8], cmd->cmnd[9],
  998. cmd->cmnd[10], cmd->cmnd[11],
  999. cmd->cmnd[12], cmd->cmnd[13],
  1000. cmd->cmnd[14], cmd->cmnd[15]);
  1001. break;
  1002. }
  1003. /* Problem was not a check condition
  1004. * Pass it up to the upper layers...
  1005. */
  1006. if (ei->ScsiStatus) {
  1007. dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
  1008. "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
  1009. "Returning result: 0x%x\n",
  1010. cp, ei->ScsiStatus,
  1011. sense_key, asc, ascq,
  1012. cmd->result);
  1013. } else { /* scsi status is zero??? How??? */
  1014. dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
  1015. "Returning no connection.\n", cp),
  1016. /* Ordinarily, this case should never happen,
  1017. * but there is a bug in some released firmware
  1018. * revisions that allows it to happen if, for
  1019. * example, a 4100 backplane loses power and
  1020. * the tape drive is in it. We assume that
  1021. * it's a fatal error of some kind because we
  1022. * can't show that it wasn't. We will make it
  1023. * look like selection timeout since that is
  1024. * the most common reason for this to occur,
  1025. * and it's severe enough.
  1026. */
  1027. cmd->result = DID_NO_CONNECT << 16;
  1028. }
  1029. break;
  1030. case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
  1031. break;
  1032. case CMD_DATA_OVERRUN:
  1033. dev_warn(&h->pdev->dev, "cp %p has"
  1034. " completed with data overrun "
  1035. "reported\n", cp);
  1036. break;
  1037. case CMD_INVALID: {
  1038. /* print_bytes(cp, sizeof(*cp), 1, 0);
  1039. print_cmd(cp); */
  1040. /* We get CMD_INVALID if you address a non-existent device
  1041. * instead of a selection timeout (no response). You will
  1042. * see this if you yank out a drive, then try to access it.
  1043. * This is kind of a shame because it means that any other
  1044. * CMD_INVALID (e.g. driver bug) will get interpreted as a
  1045. * missing target. */
  1046. cmd->result = DID_NO_CONNECT << 16;
  1047. }
  1048. break;
  1049. case CMD_PROTOCOL_ERR:
  1050. dev_warn(&h->pdev->dev, "cp %p has "
  1051. "protocol error \n", cp);
  1052. break;
  1053. case CMD_HARDWARE_ERR:
  1054. cmd->result = DID_ERROR << 16;
  1055. dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
  1056. break;
  1057. case CMD_CONNECTION_LOST:
  1058. cmd->result = DID_ERROR << 16;
  1059. dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
  1060. break;
  1061. case CMD_ABORTED:
  1062. cmd->result = DID_ABORT << 16;
  1063. dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
  1064. cp, ei->ScsiStatus);
  1065. break;
  1066. case CMD_ABORT_FAILED:
  1067. cmd->result = DID_ERROR << 16;
  1068. dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
  1069. break;
  1070. case CMD_UNSOLICITED_ABORT:
  1071. cmd->result = DID_RESET << 16;
  1072. dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
  1073. "abort\n", cp);
  1074. break;
  1075. case CMD_TIMEOUT:
  1076. cmd->result = DID_TIME_OUT << 16;
  1077. dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
  1078. break;
  1079. case CMD_UNABORTABLE:
  1080. cmd->result = DID_ERROR << 16;
  1081. dev_warn(&h->pdev->dev, "Command unabortable\n");
  1082. break;
  1083. default:
  1084. cmd->result = DID_ERROR << 16;
  1085. dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
  1086. cp, ei->CommandStatus);
  1087. }
  1088. cmd->scsi_done(cmd);
  1089. cmd_free(h, cp);
  1090. }
  1091. static int hpsa_scsi_detect(struct ctlr_info *h)
  1092. {
  1093. struct Scsi_Host *sh;
  1094. int error;
  1095. sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
  1096. if (sh == NULL)
  1097. goto fail;
  1098. sh->io_port = 0;
  1099. sh->n_io_port = 0;
  1100. sh->this_id = -1;
  1101. sh->max_channel = 3;
  1102. sh->max_cmd_len = MAX_COMMAND_SIZE;
  1103. sh->max_lun = HPSA_MAX_LUN;
  1104. sh->max_id = HPSA_MAX_LUN;
  1105. sh->can_queue = h->nr_cmds;
  1106. sh->cmd_per_lun = h->nr_cmds;
  1107. sh->sg_tablesize = h->maxsgentries;
  1108. h->scsi_host = sh;
  1109. sh->hostdata[0] = (unsigned long) h;
  1110. sh->irq = h->intr[h->intr_mode];
  1111. sh->unique_id = sh->irq;
  1112. error = scsi_add_host(sh, &h->pdev->dev);
  1113. if (error)
  1114. goto fail_host_put;
  1115. scsi_scan_host(sh);
  1116. return 0;
  1117. fail_host_put:
  1118. dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
  1119. " failed for controller %d\n", h->ctlr);
  1120. scsi_host_put(sh);
  1121. return error;
  1122. fail:
  1123. dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
  1124. " failed for controller %d\n", h->ctlr);
  1125. return -ENOMEM;
  1126. }
  1127. static void hpsa_pci_unmap(struct pci_dev *pdev,
  1128. struct CommandList *c, int sg_used, int data_direction)
  1129. {
  1130. int i;
  1131. union u64bit addr64;
  1132. for (i = 0; i < sg_used; i++) {
  1133. addr64.val32.lower = c->SG[i].Addr.lower;
  1134. addr64.val32.upper = c->SG[i].Addr.upper;
  1135. pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
  1136. data_direction);
  1137. }
  1138. }
  1139. static void hpsa_map_one(struct pci_dev *pdev,
  1140. struct CommandList *cp,
  1141. unsigned char *buf,
  1142. size_t buflen,
  1143. int data_direction)
  1144. {
  1145. u64 addr64;
  1146. if (buflen == 0 || data_direction == PCI_DMA_NONE) {
  1147. cp->Header.SGList = 0;
  1148. cp->Header.SGTotal = 0;
  1149. return;
  1150. }
  1151. addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
  1152. cp->SG[0].Addr.lower =
  1153. (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
  1154. cp->SG[0].Addr.upper =
  1155. (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
  1156. cp->SG[0].Len = buflen;
  1157. cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
  1158. cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
  1159. }
  1160. static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
  1161. struct CommandList *c)
  1162. {
  1163. DECLARE_COMPLETION_ONSTACK(wait);
  1164. c->waiting = &wait;
  1165. enqueue_cmd_and_start_io(h, c);
  1166. wait_for_completion(&wait);
  1167. }
  1168. static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
  1169. struct CommandList *c, int data_direction)
  1170. {
  1171. int retry_count = 0;
  1172. do {
  1173. memset(c->err_info, 0, sizeof(c->err_info));
  1174. hpsa_scsi_do_simple_cmd_core(h, c);
  1175. retry_count++;
  1176. } while (check_for_unit_attention(h, c) && retry_count <= 3);
  1177. hpsa_pci_unmap(h->pdev, c, 1, data_direction);
  1178. }
  1179. static void hpsa_scsi_interpret_error(struct CommandList *cp)
  1180. {
  1181. struct ErrorInfo *ei;
  1182. struct device *d = &cp->h->pdev->dev;
  1183. ei = cp->err_info;
  1184. switch (ei->CommandStatus) {
  1185. case CMD_TARGET_STATUS:
  1186. dev_warn(d, "cmd %p has completed with errors\n", cp);
  1187. dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
  1188. ei->ScsiStatus);
  1189. if (ei->ScsiStatus == 0)
  1190. dev_warn(d, "SCSI status is abnormally zero. "
  1191. "(probably indicates selection timeout "
  1192. "reported incorrectly due to a known "
  1193. "firmware bug, circa July, 2001.)\n");
  1194. break;
  1195. case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
  1196. dev_info(d, "UNDERRUN\n");
  1197. break;
  1198. case CMD_DATA_OVERRUN:
  1199. dev_warn(d, "cp %p has completed with data overrun\n", cp);
  1200. break;
  1201. case CMD_INVALID: {
  1202. /* controller unfortunately reports SCSI passthru's
  1203. * to non-existent targets as invalid commands.
  1204. */
  1205. dev_warn(d, "cp %p is reported invalid (probably means "
  1206. "target device no longer present)\n", cp);
  1207. /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
  1208. print_cmd(cp); */
  1209. }
  1210. break;
  1211. case CMD_PROTOCOL_ERR:
  1212. dev_warn(d, "cp %p has protocol error \n", cp);
  1213. break;
  1214. case CMD_HARDWARE_ERR:
  1215. /* cmd->result = DID_ERROR << 16; */
  1216. dev_warn(d, "cp %p had hardware error\n", cp);
  1217. break;
  1218. case CMD_CONNECTION_LOST:
  1219. dev_warn(d, "cp %p had connection lost\n", cp);
  1220. break;
  1221. case CMD_ABORTED:
  1222. dev_warn(d, "cp %p was aborted\n", cp);
  1223. break;
  1224. case CMD_ABORT_FAILED:
  1225. dev_warn(d, "cp %p reports abort failed\n", cp);
  1226. break;
  1227. case CMD_UNSOLICITED_ABORT:
  1228. dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
  1229. break;
  1230. case CMD_TIMEOUT:
  1231. dev_warn(d, "cp %p timed out\n", cp);
  1232. break;
  1233. case CMD_UNABORTABLE:
  1234. dev_warn(d, "Command unabortable\n");
  1235. break;
  1236. default:
  1237. dev_warn(d, "cp %p returned unknown status %x\n", cp,
  1238. ei->CommandStatus);
  1239. }
  1240. }
  1241. static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
  1242. unsigned char page, unsigned char *buf,
  1243. unsigned char bufsize)
  1244. {
  1245. int rc = IO_OK;
  1246. struct CommandList *c;
  1247. struct ErrorInfo *ei;
  1248. c = cmd_special_alloc(h);
  1249. if (c == NULL) { /* trouble... */
  1250. dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
  1251. return -ENOMEM;
  1252. }
  1253. fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
  1254. hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
  1255. ei = c->err_info;
  1256. if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
  1257. hpsa_scsi_interpret_error(c);
  1258. rc = -1;
  1259. }
  1260. cmd_special_free(h, c);
  1261. return rc;
  1262. }
  1263. static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
  1264. {
  1265. int rc = IO_OK;
  1266. struct CommandList *c;
  1267. struct ErrorInfo *ei;
  1268. c = cmd_special_alloc(h);
  1269. if (c == NULL) { /* trouble... */
  1270. dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
  1271. return -ENOMEM;
  1272. }
  1273. fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
  1274. hpsa_scsi_do_simple_cmd_core(h, c);
  1275. /* no unmap needed here because no data xfer. */
  1276. ei = c->err_info;
  1277. if (ei->CommandStatus != 0) {
  1278. hpsa_scsi_interpret_error(c);
  1279. rc = -1;
  1280. }
  1281. cmd_special_free(h, c);
  1282. return rc;
  1283. }
  1284. static void hpsa_get_raid_level(struct ctlr_info *h,
  1285. unsigned char *scsi3addr, unsigned char *raid_level)
  1286. {
  1287. int rc;
  1288. unsigned char *buf;
  1289. *raid_level = RAID_UNKNOWN;
  1290. buf = kzalloc(64, GFP_KERNEL);
  1291. if (!buf)
  1292. return;
  1293. rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
  1294. if (rc == 0)
  1295. *raid_level = buf[8];
  1296. if (*raid_level > RAID_UNKNOWN)
  1297. *raid_level = RAID_UNKNOWN;
  1298. kfree(buf);
  1299. return;
  1300. }
  1301. /* Get the device id from inquiry page 0x83 */
  1302. static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
  1303. unsigned char *device_id, int buflen)
  1304. {
  1305. int rc;
  1306. unsigned char *buf;
  1307. if (buflen > 16)
  1308. buflen = 16;
  1309. buf = kzalloc(64, GFP_KERNEL);
  1310. if (!buf)
  1311. return -1;
  1312. rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
  1313. if (rc == 0)
  1314. memcpy(device_id, &buf[8], buflen);
  1315. kfree(buf);
  1316. return rc != 0;
  1317. }
  1318. static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
  1319. struct ReportLUNdata *buf, int bufsize,
  1320. int extended_response)
  1321. {
  1322. int rc = IO_OK;
  1323. struct CommandList *c;
  1324. unsigned char scsi3addr[8];
  1325. struct ErrorInfo *ei;
  1326. c = cmd_special_alloc(h);
  1327. if (c == NULL) { /* trouble... */
  1328. dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
  1329. return -1;
  1330. }
  1331. /* address the controller */
  1332. memset(scsi3addr, 0, sizeof(scsi3addr));
  1333. fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
  1334. buf, bufsize, 0, scsi3addr, TYPE_CMD);
  1335. if (extended_response)
  1336. c->Request.CDB[1] = extended_response;
  1337. hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
  1338. ei = c->err_info;
  1339. if (ei->CommandStatus != 0 &&
  1340. ei->CommandStatus != CMD_DATA_UNDERRUN) {
  1341. hpsa_scsi_interpret_error(c);
  1342. rc = -1;
  1343. }
  1344. cmd_special_free(h, c);
  1345. return rc;
  1346. }
  1347. static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
  1348. struct ReportLUNdata *buf,
  1349. int bufsize, int extended_response)
  1350. {
  1351. return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
  1352. }
  1353. static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
  1354. struct ReportLUNdata *buf, int bufsize)
  1355. {
  1356. return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
  1357. }
  1358. static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
  1359. int bus, int target, int lun)
  1360. {
  1361. device->bus = bus;
  1362. device->target = target;
  1363. device->lun = lun;
  1364. }
  1365. static int hpsa_update_device_info(struct ctlr_info *h,
  1366. unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
  1367. {
  1368. #define OBDR_TAPE_INQ_SIZE 49
  1369. unsigned char *inq_buff;
  1370. inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
  1371. if (!inq_buff)
  1372. goto bail_out;
  1373. /* Do an inquiry to the device to see what it is. */
  1374. if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
  1375. (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
  1376. /* Inquiry failed (msg printed already) */
  1377. dev_err(&h->pdev->dev,
  1378. "hpsa_update_device_info: inquiry failed\n");
  1379. goto bail_out;
  1380. }
  1381. this_device->devtype = (inq_buff[0] & 0x1f);
  1382. memcpy(this_device->scsi3addr, scsi3addr, 8);
  1383. memcpy(this_device->vendor, &inq_buff[8],
  1384. sizeof(this_device->vendor));
  1385. memcpy(this_device->model, &inq_buff[16],
  1386. sizeof(this_device->model));
  1387. memset(this_device->device_id, 0,
  1388. sizeof(this_device->device_id));
  1389. hpsa_get_device_id(h, scsi3addr, this_device->device_id,
  1390. sizeof(this_device->device_id));
  1391. if (this_device->devtype == TYPE_DISK &&
  1392. is_logical_dev_addr_mode(scsi3addr))
  1393. hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
  1394. else
  1395. this_device->raid_level = RAID_UNKNOWN;
  1396. kfree(inq_buff);
  1397. return 0;
  1398. bail_out:
  1399. kfree(inq_buff);
  1400. return 1;
  1401. }
  1402. static unsigned char *msa2xxx_model[] = {
  1403. "MSA2012",
  1404. "MSA2024",
  1405. "MSA2312",
  1406. "MSA2324",
  1407. NULL,
  1408. };
  1409. static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
  1410. {
  1411. int i;
  1412. for (i = 0; msa2xxx_model[i]; i++)
  1413. if (strncmp(device->model, msa2xxx_model[i],
  1414. strlen(msa2xxx_model[i])) == 0)
  1415. return 1;
  1416. return 0;
  1417. }
  1418. /* Helper function to assign bus, target, lun mapping of devices.
  1419. * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
  1420. * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
  1421. * Logical drive target and lun are assigned at this time, but
  1422. * physical device lun and target assignment are deferred (assigned
  1423. * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
  1424. */
  1425. static void figure_bus_target_lun(struct ctlr_info *h,
  1426. u8 *lunaddrbytes, int *bus, int *target, int *lun,
  1427. struct hpsa_scsi_dev_t *device)
  1428. {
  1429. u32 lunid;
  1430. if (is_logical_dev_addr_mode(lunaddrbytes)) {
  1431. /* logical device */
  1432. if (unlikely(is_scsi_rev_5(h))) {
  1433. /* p1210m, logical drives lun assignments
  1434. * match SCSI REPORT LUNS data.
  1435. */
  1436. lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
  1437. *bus = 0;
  1438. *target = 0;
  1439. *lun = (lunid & 0x3fff) + 1;
  1440. } else {
  1441. /* not p1210m... */
  1442. lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
  1443. if (is_msa2xxx(h, device)) {
  1444. /* msa2xxx way, put logicals on bus 1
  1445. * and match target/lun numbers box
  1446. * reports.
  1447. */
  1448. *bus = 1;
  1449. *target = (lunid >> 16) & 0x3fff;
  1450. *lun = lunid & 0x00ff;
  1451. } else {
  1452. /* Traditional smart array way. */
  1453. *bus = 0;
  1454. *lun = 0;
  1455. *target = lunid & 0x3fff;
  1456. }
  1457. }
  1458. } else {
  1459. /* physical device */
  1460. if (is_hba_lunid(lunaddrbytes))
  1461. if (unlikely(is_scsi_rev_5(h))) {
  1462. *bus = 0; /* put p1210m ctlr at 0,0,0 */
  1463. *target = 0;
  1464. *lun = 0;
  1465. return;
  1466. } else
  1467. *bus = 3; /* traditional smartarray */
  1468. else
  1469. *bus = 2; /* physical disk */
  1470. *target = -1;
  1471. *lun = -1; /* we will fill these in later. */
  1472. }
  1473. }
  1474. /*
  1475. * If there is no lun 0 on a target, linux won't find any devices.
  1476. * For the MSA2xxx boxes, we have to manually detect the enclosure
  1477. * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
  1478. * it for some reason. *tmpdevice is the target we're adding,
  1479. * this_device is a pointer into the current element of currentsd[]
  1480. * that we're building up in update_scsi_devices(), below.
  1481. * lunzerobits is a bitmap that tracks which targets already have a
  1482. * lun 0 assigned.
  1483. * Returns 1 if an enclosure was added, 0 if not.
  1484. */
  1485. static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
  1486. struct hpsa_scsi_dev_t *tmpdevice,
  1487. struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
  1488. int bus, int target, int lun, unsigned long lunzerobits[],
  1489. int *nmsa2xxx_enclosures)
  1490. {
  1491. unsigned char scsi3addr[8];
  1492. if (test_bit(target, lunzerobits))
  1493. return 0; /* There is already a lun 0 on this target. */
  1494. if (!is_logical_dev_addr_mode(lunaddrbytes))
  1495. return 0; /* It's the logical targets that may lack lun 0. */
  1496. if (!is_msa2xxx(h, tmpdevice))
  1497. return 0; /* It's only the MSA2xxx that have this problem. */
  1498. if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
  1499. return 0;
  1500. memset(scsi3addr, 0, 8);
  1501. scsi3addr[3] = target;
  1502. if (is_hba_lunid(scsi3addr))
  1503. return 0; /* Don't add the RAID controller here. */
  1504. if (is_scsi_rev_5(h))
  1505. return 0; /* p1210m doesn't need to do this. */
  1506. #define MAX_MSA2XXX_ENCLOSURES 32
  1507. if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
  1508. dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
  1509. "enclosures exceeded. Check your hardware "
  1510. "configuration.");
  1511. return 0;
  1512. }
  1513. if (hpsa_update_device_info(h, scsi3addr, this_device))
  1514. return 0;
  1515. (*nmsa2xxx_enclosures)++;
  1516. hpsa_set_bus_target_lun(this_device, bus, target, 0);
  1517. set_bit(target, lunzerobits);
  1518. return 1;
  1519. }
  1520. /*
  1521. * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
  1522. * logdev. The number of luns in physdev and logdev are returned in
  1523. * *nphysicals and *nlogicals, respectively.
  1524. * Returns 0 on success, -1 otherwise.
  1525. */
  1526. static int hpsa_gather_lun_info(struct ctlr_info *h,
  1527. int reportlunsize,
  1528. struct ReportLUNdata *physdev, u32 *nphysicals,
  1529. struct ReportLUNdata *logdev, u32 *nlogicals)
  1530. {
  1531. if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
  1532. dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
  1533. return -1;
  1534. }
  1535. *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
  1536. if (*nphysicals > HPSA_MAX_PHYS_LUN) {
  1537. dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
  1538. " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
  1539. *nphysicals - HPSA_MAX_PHYS_LUN);
  1540. *nphysicals = HPSA_MAX_PHYS_LUN;
  1541. }
  1542. if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
  1543. dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
  1544. return -1;
  1545. }
  1546. *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
  1547. /* Reject Logicals in excess of our max capability. */
  1548. if (*nlogicals > HPSA_MAX_LUN) {
  1549. dev_warn(&h->pdev->dev,
  1550. "maximum logical LUNs (%d) exceeded. "
  1551. "%d LUNs ignored.\n", HPSA_MAX_LUN,
  1552. *nlogicals - HPSA_MAX_LUN);
  1553. *nlogicals = HPSA_MAX_LUN;
  1554. }
  1555. if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
  1556. dev_warn(&h->pdev->dev,
  1557. "maximum logical + physical LUNs (%d) exceeded. "
  1558. "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
  1559. *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
  1560. *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
  1561. }
  1562. return 0;
  1563. }
  1564. u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
  1565. int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
  1566. struct ReportLUNdata *logdev_list)
  1567. {
  1568. /* Helper function, figure out where the LUN ID info is coming from
  1569. * given index i, lists of physical and logical devices, where in
  1570. * the list the raid controller is supposed to appear (first or last)
  1571. */
  1572. int logicals_start = nphysicals + (raid_ctlr_position == 0);
  1573. int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
  1574. if (i == raid_ctlr_position)
  1575. return RAID_CTLR_LUNID;
  1576. if (i < logicals_start)
  1577. return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
  1578. if (i < last_device)
  1579. return &logdev_list->LUN[i - nphysicals -
  1580. (raid_ctlr_position == 0)][0];
  1581. BUG();
  1582. return NULL;
  1583. }
  1584. static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
  1585. {
  1586. /* the idea here is we could get notified
  1587. * that some devices have changed, so we do a report
  1588. * physical luns and report logical luns cmd, and adjust
  1589. * our list of devices accordingly.
  1590. *
  1591. * The scsi3addr's of devices won't change so long as the
  1592. * adapter is not reset. That means we can rescan and
  1593. * tell which devices we already know about, vs. new
  1594. * devices, vs. disappearing devices.
  1595. */
  1596. struct ReportLUNdata *physdev_list = NULL;
  1597. struct ReportLUNdata *logdev_list = NULL;
  1598. unsigned char *inq_buff = NULL;
  1599. u32 nphysicals = 0;
  1600. u32 nlogicals = 0;
  1601. u32 ndev_allocated = 0;
  1602. struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
  1603. int ncurrent = 0;
  1604. int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
  1605. int i, nmsa2xxx_enclosures, ndevs_to_allocate;
  1606. int bus, target, lun;
  1607. int raid_ctlr_position;
  1608. DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
  1609. currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
  1610. GFP_KERNEL);
  1611. physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
  1612. logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
  1613. inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
  1614. tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
  1615. if (!currentsd || !physdev_list || !logdev_list ||
  1616. !inq_buff || !tmpdevice) {
  1617. dev_err(&h->pdev->dev, "out of memory\n");
  1618. goto out;
  1619. }
  1620. memset(lunzerobits, 0, sizeof(lunzerobits));
  1621. if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
  1622. logdev_list, &nlogicals))
  1623. goto out;
  1624. /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
  1625. * but each of them 4 times through different paths. The plus 1
  1626. * is for the RAID controller.
  1627. */
  1628. ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
  1629. /* Allocate the per device structures */
  1630. for (i = 0; i < ndevs_to_allocate; i++) {
  1631. currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
  1632. if (!currentsd[i]) {
  1633. dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
  1634. __FILE__, __LINE__);
  1635. goto out;
  1636. }
  1637. ndev_allocated++;
  1638. }
  1639. if (unlikely(is_scsi_rev_5(h)))
  1640. raid_ctlr_position = 0;
  1641. else
  1642. raid_ctlr_position = nphysicals + nlogicals;
  1643. /* adjust our table of devices */
  1644. nmsa2xxx_enclosures = 0;
  1645. for (i = 0; i < nphysicals + nlogicals + 1; i++) {
  1646. u8 *lunaddrbytes;
  1647. /* Figure out where the LUN ID info is coming from */
  1648. lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
  1649. i, nphysicals, nlogicals, physdev_list, logdev_list);
  1650. /* skip masked physical devices. */
  1651. if (lunaddrbytes[3] & 0xC0 &&
  1652. i < nphysicals + (raid_ctlr_position == 0))
  1653. continue;
  1654. /* Get device type, vendor, model, device id */
  1655. if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
  1656. continue; /* skip it if we can't talk to it. */
  1657. figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
  1658. tmpdevice);
  1659. this_device = currentsd[ncurrent];
  1660. /*
  1661. * For the msa2xxx boxes, we have to insert a LUN 0 which
  1662. * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
  1663. * is nonetheless an enclosure device there. We have to
  1664. * present that otherwise linux won't find anything if
  1665. * there is no lun 0.
  1666. */
  1667. if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
  1668. lunaddrbytes, bus, target, lun, lunzerobits,
  1669. &nmsa2xxx_enclosures)) {
  1670. ncurrent++;
  1671. this_device = currentsd[ncurrent];
  1672. }
  1673. *this_device = *tmpdevice;
  1674. hpsa_set_bus_target_lun(this_device, bus, target, lun);
  1675. switch (this_device->devtype) {
  1676. case TYPE_ROM: {
  1677. /* We don't *really* support actual CD-ROM devices,
  1678. * just "One Button Disaster Recovery" tape drive
  1679. * which temporarily pretends to be a CD-ROM drive.
  1680. * So we check that the device is really an OBDR tape
  1681. * device by checking for "$DR-10" in bytes 43-48 of
  1682. * the inquiry data.
  1683. */
  1684. char obdr_sig[7];
  1685. #define OBDR_TAPE_SIG "$DR-10"
  1686. strncpy(obdr_sig, &inq_buff[43], 6);
  1687. obdr_sig[6] = '\0';
  1688. if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
  1689. /* Not OBDR device, ignore it. */
  1690. break;
  1691. }
  1692. ncurrent++;
  1693. break;
  1694. case TYPE_DISK:
  1695. if (i < nphysicals)
  1696. break;
  1697. ncurrent++;
  1698. break;
  1699. case TYPE_TAPE:
  1700. case TYPE_MEDIUM_CHANGER:
  1701. ncurrent++;
  1702. break;
  1703. case TYPE_RAID:
  1704. /* Only present the Smartarray HBA as a RAID controller.
  1705. * If it's a RAID controller other than the HBA itself
  1706. * (an external RAID controller, MSA500 or similar)
  1707. * don't present it.
  1708. */
  1709. if (!is_hba_lunid(lunaddrbytes))
  1710. break;
  1711. ncurrent++;
  1712. break;
  1713. default:
  1714. break;
  1715. }
  1716. if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
  1717. break;
  1718. }
  1719. adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
  1720. out:
  1721. kfree(tmpdevice);
  1722. for (i = 0; i < ndev_allocated; i++)
  1723. kfree(currentsd[i]);
  1724. kfree(currentsd);
  1725. kfree(inq_buff);
  1726. kfree(physdev_list);
  1727. kfree(logdev_list);
  1728. }
  1729. /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
  1730. * dma mapping and fills in the scatter gather entries of the
  1731. * hpsa command, cp.
  1732. */
  1733. static int hpsa_scatter_gather(struct ctlr_info *h,
  1734. struct CommandList *cp,
  1735. struct scsi_cmnd *cmd)
  1736. {
  1737. unsigned int len;
  1738. struct scatterlist *sg;
  1739. u64 addr64;
  1740. int use_sg, i, sg_index, chained;
  1741. struct SGDescriptor *curr_sg;
  1742. BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
  1743. use_sg = scsi_dma_map(cmd);
  1744. if (use_sg < 0)
  1745. return use_sg;
  1746. if (!use_sg)
  1747. goto sglist_finished;
  1748. curr_sg = cp->SG;
  1749. chained = 0;
  1750. sg_index = 0;
  1751. scsi_for_each_sg(cmd, sg, use_sg, i) {
  1752. if (i == h->max_cmd_sg_entries - 1 &&
  1753. use_sg > h->max_cmd_sg_entries) {
  1754. chained = 1;
  1755. curr_sg = h->cmd_sg_list[cp->cmdindex];
  1756. sg_index = 0;
  1757. }
  1758. addr64 = (u64) sg_dma_address(sg);
  1759. len = sg_dma_len(sg);
  1760. curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
  1761. curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
  1762. curr_sg->Len = len;
  1763. curr_sg->Ext = 0; /* we are not chaining */
  1764. curr_sg++;
  1765. }
  1766. if (use_sg + chained > h->maxSG)
  1767. h->maxSG = use_sg + chained;
  1768. if (chained) {
  1769. cp->Header.SGList = h->max_cmd_sg_entries;
  1770. cp->Header.SGTotal = (u16) (use_sg + 1);
  1771. hpsa_map_sg_chain_block(h, cp);
  1772. return 0;
  1773. }
  1774. sglist_finished:
  1775. cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
  1776. cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
  1777. return 0;
  1778. }
  1779. static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
  1780. void (*done)(struct scsi_cmnd *))
  1781. {
  1782. struct ctlr_info *h;
  1783. struct hpsa_scsi_dev_t *dev;
  1784. unsigned char scsi3addr[8];
  1785. struct CommandList *c;
  1786. unsigned long flags;
  1787. /* Get the ptr to our adapter structure out of cmd->host. */
  1788. h = sdev_to_hba(cmd->device);
  1789. dev = cmd->device->hostdata;
  1790. if (!dev) {
  1791. cmd->result = DID_NO_CONNECT << 16;
  1792. done(cmd);
  1793. return 0;
  1794. }
  1795. memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
  1796. /* Need a lock as this is being allocated from the pool */
  1797. spin_lock_irqsave(&h->lock, flags);
  1798. c = cmd_alloc(h);
  1799. spin_unlock_irqrestore(&h->lock, flags);
  1800. if (c == NULL) { /* trouble... */
  1801. dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
  1802. return SCSI_MLQUEUE_HOST_BUSY;
  1803. }
  1804. /* Fill in the command list header */
  1805. cmd->scsi_done = done; /* save this for use by completion code */
  1806. /* save c in case we have to abort it */
  1807. cmd->host_scribble = (unsigned char *) c;
  1808. c->cmd_type = CMD_SCSI;
  1809. c->scsi_cmd = cmd;
  1810. c->Header.ReplyQueue = 0; /* unused in simple mode */
  1811. memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
  1812. c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
  1813. c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
  1814. /* Fill in the request block... */
  1815. c->Request.Timeout = 0;
  1816. memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
  1817. BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
  1818. c->Request.CDBLen = cmd->cmd_len;
  1819. memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
  1820. c->Request.Type.Type = TYPE_CMD;
  1821. c->Request.Type.Attribute = ATTR_SIMPLE;
  1822. switch (cmd->sc_data_direction) {
  1823. case DMA_TO_DEVICE:
  1824. c->Request.Type.Direction = XFER_WRITE;
  1825. break;
  1826. case DMA_FROM_DEVICE:
  1827. c->Request.Type.Direction = XFER_READ;
  1828. break;
  1829. case DMA_NONE:
  1830. c->Request.Type.Direction = XFER_NONE;
  1831. break;
  1832. case DMA_BIDIRECTIONAL:
  1833. /* This can happen if a buggy application does a scsi passthru
  1834. * and sets both inlen and outlen to non-zero. ( see
  1835. * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
  1836. */
  1837. c->Request.Type.Direction = XFER_RSVD;
  1838. /* This is technically wrong, and hpsa controllers should
  1839. * reject it with CMD_INVALID, which is the most correct
  1840. * response, but non-fibre backends appear to let it
  1841. * slide by, and give the same results as if this field
  1842. * were set correctly. Either way is acceptable for
  1843. * our purposes here.
  1844. */
  1845. break;
  1846. default:
  1847. dev_err(&h->pdev->dev, "unknown data direction: %d\n",
  1848. cmd->sc_data_direction);
  1849. BUG();
  1850. break;
  1851. }
  1852. if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
  1853. cmd_free(h, c);
  1854. return SCSI_MLQUEUE_HOST_BUSY;
  1855. }
  1856. enqueue_cmd_and_start_io(h, c);
  1857. /* the cmd'll come back via intr handler in complete_scsi_command() */
  1858. return 0;
  1859. }
  1860. static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
  1861. static void hpsa_scan_start(struct Scsi_Host *sh)
  1862. {
  1863. struct ctlr_info *h = shost_to_hba(sh);
  1864. unsigned long flags;
  1865. /* wait until any scan already in progress is finished. */
  1866. while (1) {
  1867. spin_lock_irqsave(&h->scan_lock, flags);
  1868. if (h->scan_finished)
  1869. break;
  1870. spin_unlock_irqrestore(&h->scan_lock, flags);
  1871. wait_event(h->scan_wait_queue, h->scan_finished);
  1872. /* Note: We don't need to worry about a race between this
  1873. * thread and driver unload because the midlayer will
  1874. * have incremented the reference count, so unload won't
  1875. * happen if we're in here.
  1876. */
  1877. }
  1878. h->scan_finished = 0; /* mark scan as in progress */
  1879. spin_unlock_irqrestore(&h->scan_lock, flags);
  1880. hpsa_update_scsi_devices(h, h->scsi_host->host_no);
  1881. spin_lock_irqsave(&h->scan_lock, flags);
  1882. h->scan_finished = 1; /* mark scan as finished. */
  1883. wake_up_all(&h->scan_wait_queue);
  1884. spin_unlock_irqrestore(&h->scan_lock, flags);
  1885. }
  1886. static int hpsa_scan_finished(struct Scsi_Host *sh,
  1887. unsigned long elapsed_time)
  1888. {
  1889. struct ctlr_info *h = shost_to_hba(sh);
  1890. unsigned long flags;
  1891. int finished;
  1892. spin_lock_irqsave(&h->scan_lock, flags);
  1893. finished = h->scan_finished;
  1894. spin_unlock_irqrestore(&h->scan_lock, flags);
  1895. return finished;
  1896. }
  1897. static int hpsa_change_queue_depth(struct scsi_device *sdev,
  1898. int qdepth, int reason)
  1899. {
  1900. struct ctlr_info *h = sdev_to_hba(sdev);
  1901. if (reason != SCSI_QDEPTH_DEFAULT)
  1902. return -ENOTSUPP;
  1903. if (qdepth < 1)
  1904. qdepth = 1;
  1905. else
  1906. if (qdepth > h->nr_cmds)
  1907. qdepth = h->nr_cmds;
  1908. scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
  1909. return sdev->queue_depth;
  1910. }
  1911. static void hpsa_unregister_scsi(struct ctlr_info *h)
  1912. {
  1913. /* we are being forcibly unloaded, and may not refuse. */
  1914. scsi_remove_host(h->scsi_host);
  1915. scsi_host_put(h->scsi_host);
  1916. h->scsi_host = NULL;
  1917. }
  1918. static int hpsa_register_scsi(struct ctlr_info *h)
  1919. {
  1920. int rc;
  1921. rc = hpsa_scsi_detect(h);
  1922. if (rc != 0)
  1923. dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
  1924. " hpsa_scsi_detect(), rc is %d\n", rc);
  1925. return rc;
  1926. }
  1927. static int wait_for_device_to_become_ready(struct ctlr_info *h,
  1928. unsigned char lunaddr[])
  1929. {
  1930. int rc = 0;
  1931. int count = 0;
  1932. int waittime = 1; /* seconds */
  1933. struct CommandList *c;
  1934. c = cmd_special_alloc(h);
  1935. if (!c) {
  1936. dev_warn(&h->pdev->dev, "out of memory in "
  1937. "wait_for_device_to_become_ready.\n");
  1938. return IO_ERROR;
  1939. }
  1940. /* Send test unit ready until device ready, or give up. */
  1941. while (count < HPSA_TUR_RETRY_LIMIT) {
  1942. /* Wait for a bit. do this first, because if we send
  1943. * the TUR right away, the reset will just abort it.
  1944. */
  1945. msleep(1000 * waittime);
  1946. count++;
  1947. /* Increase wait time with each try, up to a point. */
  1948. if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
  1949. waittime = waittime * 2;
  1950. /* Send the Test Unit Ready */
  1951. fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
  1952. hpsa_scsi_do_simple_cmd_core(h, c);
  1953. /* no unmap needed here because no data xfer. */
  1954. if (c->err_info->CommandStatus == CMD_SUCCESS)
  1955. break;
  1956. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  1957. c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
  1958. (c->err_info->SenseInfo[2] == NO_SENSE ||
  1959. c->err_info->SenseInfo[2] == UNIT_ATTENTION))
  1960. break;
  1961. dev_warn(&h->pdev->dev, "waiting %d secs "
  1962. "for device to become ready.\n", waittime);
  1963. rc = 1; /* device not ready. */
  1964. }
  1965. if (rc)
  1966. dev_warn(&h->pdev->dev, "giving up on device.\n");
  1967. else
  1968. dev_warn(&h->pdev->dev, "device is ready.\n");
  1969. cmd_special_free(h, c);
  1970. return rc;
  1971. }
  1972. /* Need at least one of these error handlers to keep ../scsi/hosts.c from
  1973. * complaining. Doing a host- or bus-reset can't do anything good here.
  1974. */
  1975. static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
  1976. {
  1977. int rc;
  1978. struct ctlr_info *h;
  1979. struct hpsa_scsi_dev_t *dev;
  1980. /* find the controller to which the command to be aborted was sent */
  1981. h = sdev_to_hba(scsicmd->device);
  1982. if (h == NULL) /* paranoia */
  1983. return FAILED;
  1984. dev = scsicmd->device->hostdata;
  1985. if (!dev) {
  1986. dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
  1987. "device lookup failed.\n");
  1988. return FAILED;
  1989. }
  1990. dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
  1991. h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
  1992. /* send a reset to the SCSI LUN which the command was sent to */
  1993. rc = hpsa_send_reset(h, dev->scsi3addr);
  1994. if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
  1995. return SUCCESS;
  1996. dev_warn(&h->pdev->dev, "resetting device failed.\n");
  1997. return FAILED;
  1998. }
  1999. /*
  2000. * For operations that cannot sleep, a command block is allocated at init,
  2001. * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
  2002. * which ones are free or in use. Lock must be held when calling this.
  2003. * cmd_free() is the complement.
  2004. */
  2005. static struct CommandList *cmd_alloc(struct ctlr_info *h)
  2006. {
  2007. struct CommandList *c;
  2008. int i;
  2009. union u64bit temp64;
  2010. dma_addr_t cmd_dma_handle, err_dma_handle;
  2011. do {
  2012. i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
  2013. if (i == h->nr_cmds)
  2014. return NULL;
  2015. } while (test_and_set_bit
  2016. (i & (BITS_PER_LONG - 1),
  2017. h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
  2018. c = h->cmd_pool + i;
  2019. memset(c, 0, sizeof(*c));
  2020. cmd_dma_handle = h->cmd_pool_dhandle
  2021. + i * sizeof(*c);
  2022. c->err_info = h->errinfo_pool + i;
  2023. memset(c->err_info, 0, sizeof(*c->err_info));
  2024. err_dma_handle = h->errinfo_pool_dhandle
  2025. + i * sizeof(*c->err_info);
  2026. h->nr_allocs++;
  2027. c->cmdindex = i;
  2028. INIT_LIST_HEAD(&c->list);
  2029. c->busaddr = (u32) cmd_dma_handle;
  2030. temp64.val = (u64) err_dma_handle;
  2031. c->ErrDesc.Addr.lower = temp64.val32.lower;
  2032. c->ErrDesc.Addr.upper = temp64.val32.upper;
  2033. c->ErrDesc.Len = sizeof(*c->err_info);
  2034. c->h = h;
  2035. return c;
  2036. }
  2037. /* For operations that can wait for kmalloc to possibly sleep,
  2038. * this routine can be called. Lock need not be held to call
  2039. * cmd_special_alloc. cmd_special_free() is the complement.
  2040. */
  2041. static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
  2042. {
  2043. struct CommandList *c;
  2044. union u64bit temp64;
  2045. dma_addr_t cmd_dma_handle, err_dma_handle;
  2046. c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
  2047. if (c == NULL)
  2048. return NULL;
  2049. memset(c, 0, sizeof(*c));
  2050. c->cmdindex = -1;
  2051. c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
  2052. &err_dma_handle);
  2053. if (c->err_info == NULL) {
  2054. pci_free_consistent(h->pdev,
  2055. sizeof(*c), c, cmd_dma_handle);
  2056. return NULL;
  2057. }
  2058. memset(c->err_info, 0, sizeof(*c->err_info));
  2059. INIT_LIST_HEAD(&c->list);
  2060. c->busaddr = (u32) cmd_dma_handle;
  2061. temp64.val = (u64) err_dma_handle;
  2062. c->ErrDesc.Addr.lower = temp64.val32.lower;
  2063. c->ErrDesc.Addr.upper = temp64.val32.upper;
  2064. c->ErrDesc.Len = sizeof(*c->err_info);
  2065. c->h = h;
  2066. return c;
  2067. }
  2068. static void cmd_free(struct ctlr_info *h, struct CommandList *c)
  2069. {
  2070. int i;
  2071. i = c - h->cmd_pool;
  2072. clear_bit(i & (BITS_PER_LONG - 1),
  2073. h->cmd_pool_bits + (i / BITS_PER_LONG));
  2074. h->nr_frees++;
  2075. }
  2076. static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
  2077. {
  2078. union u64bit temp64;
  2079. temp64.val32.lower = c->ErrDesc.Addr.lower;
  2080. temp64.val32.upper = c->ErrDesc.Addr.upper;
  2081. pci_free_consistent(h->pdev, sizeof(*c->err_info),
  2082. c->err_info, (dma_addr_t) temp64.val);
  2083. pci_free_consistent(h->pdev, sizeof(*c),
  2084. c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
  2085. }
  2086. #ifdef CONFIG_COMPAT
  2087. static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
  2088. {
  2089. IOCTL32_Command_struct __user *arg32 =
  2090. (IOCTL32_Command_struct __user *) arg;
  2091. IOCTL_Command_struct arg64;
  2092. IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
  2093. int err;
  2094. u32 cp;
  2095. memset(&arg64, 0, sizeof(arg64));
  2096. err = 0;
  2097. err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  2098. sizeof(arg64.LUN_info));
  2099. err |= copy_from_user(&arg64.Request, &arg32->Request,
  2100. sizeof(arg64.Request));
  2101. err |= copy_from_user(&arg64.error_info, &arg32->error_info,
  2102. sizeof(arg64.error_info));
  2103. err |= get_user(arg64.buf_size, &arg32->buf_size);
  2104. err |= get_user(cp, &arg32->buf);
  2105. arg64.buf = compat_ptr(cp);
  2106. err |= copy_to_user(p, &arg64, sizeof(arg64));
  2107. if (err)
  2108. return -EFAULT;
  2109. err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
  2110. if (err)
  2111. return err;
  2112. err |= copy_in_user(&arg32->error_info, &p->error_info,
  2113. sizeof(arg32->error_info));
  2114. if (err)
  2115. return -EFAULT;
  2116. return err;
  2117. }
  2118. static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
  2119. int cmd, void *arg)
  2120. {
  2121. BIG_IOCTL32_Command_struct __user *arg32 =
  2122. (BIG_IOCTL32_Command_struct __user *) arg;
  2123. BIG_IOCTL_Command_struct arg64;
  2124. BIG_IOCTL_Command_struct __user *p =
  2125. compat_alloc_user_space(sizeof(arg64));
  2126. int err;
  2127. u32 cp;
  2128. memset(&arg64, 0, sizeof(arg64));
  2129. err = 0;
  2130. err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  2131. sizeof(arg64.LUN_info));
  2132. err |= copy_from_user(&arg64.Request, &arg32->Request,
  2133. sizeof(arg64.Request));
  2134. err |= copy_from_user(&arg64.error_info, &arg32->error_info,
  2135. sizeof(arg64.error_info));
  2136. err |= get_user(arg64.buf_size, &arg32->buf_size);
  2137. err |= get_user(arg64.malloc_size, &arg32->malloc_size);
  2138. err |= get_user(cp, &arg32->buf);
  2139. arg64.buf = compat_ptr(cp);
  2140. err |= copy_to_user(p, &arg64, sizeof(arg64));
  2141. if (err)
  2142. return -EFAULT;
  2143. err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
  2144. if (err)
  2145. return err;
  2146. err |= copy_in_user(&arg32->error_info, &p->error_info,
  2147. sizeof(arg32->error_info));
  2148. if (err)
  2149. return -EFAULT;
  2150. return err;
  2151. }
  2152. static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
  2153. {
  2154. switch (cmd) {
  2155. case CCISS_GETPCIINFO:
  2156. case CCISS_GETINTINFO:
  2157. case CCISS_SETINTINFO:
  2158. case CCISS_GETNODENAME:
  2159. case CCISS_SETNODENAME:
  2160. case CCISS_GETHEARTBEAT:
  2161. case CCISS_GETBUSTYPES:
  2162. case CCISS_GETFIRMVER:
  2163. case CCISS_GETDRIVVER:
  2164. case CCISS_REVALIDVOLS:
  2165. case CCISS_DEREGDISK:
  2166. case CCISS_REGNEWDISK:
  2167. case CCISS_REGNEWD:
  2168. case CCISS_RESCANDISK:
  2169. case CCISS_GETLUNINFO:
  2170. return hpsa_ioctl(dev, cmd, arg);
  2171. case CCISS_PASSTHRU32:
  2172. return hpsa_ioctl32_passthru(dev, cmd, arg);
  2173. case CCISS_BIG_PASSTHRU32:
  2174. return hpsa_ioctl32_big_passthru(dev, cmd, arg);
  2175. default:
  2176. return -ENOIOCTLCMD;
  2177. }
  2178. }
  2179. #endif
  2180. static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
  2181. {
  2182. struct hpsa_pci_info pciinfo;
  2183. if (!argp)
  2184. return -EINVAL;
  2185. pciinfo.domain = pci_domain_nr(h->pdev->bus);
  2186. pciinfo.bus = h->pdev->bus->number;
  2187. pciinfo.dev_fn = h->pdev->devfn;
  2188. pciinfo.board_id = h->board_id;
  2189. if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
  2190. return -EFAULT;
  2191. return 0;
  2192. }
  2193. static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
  2194. {
  2195. DriverVer_type DriverVer;
  2196. unsigned char vmaj, vmin, vsubmin;
  2197. int rc;
  2198. rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
  2199. &vmaj, &vmin, &vsubmin);
  2200. if (rc != 3) {
  2201. dev_info(&h->pdev->dev, "driver version string '%s' "
  2202. "unrecognized.", HPSA_DRIVER_VERSION);
  2203. vmaj = 0;
  2204. vmin = 0;
  2205. vsubmin = 0;
  2206. }
  2207. DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
  2208. if (!argp)
  2209. return -EINVAL;
  2210. if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
  2211. return -EFAULT;
  2212. return 0;
  2213. }
  2214. static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
  2215. {
  2216. IOCTL_Command_struct iocommand;
  2217. struct CommandList *c;
  2218. char *buff = NULL;
  2219. union u64bit temp64;
  2220. if (!argp)
  2221. return -EINVAL;
  2222. if (!capable(CAP_SYS_RAWIO))
  2223. return -EPERM;
  2224. if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
  2225. return -EFAULT;
  2226. if ((iocommand.buf_size < 1) &&
  2227. (iocommand.Request.Type.Direction != XFER_NONE)) {
  2228. return -EINVAL;
  2229. }
  2230. if (iocommand.buf_size > 0) {
  2231. buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
  2232. if (buff == NULL)
  2233. return -EFAULT;
  2234. if (iocommand.Request.Type.Direction == XFER_WRITE) {
  2235. /* Copy the data into the buffer we created */
  2236. if (copy_from_user(buff, iocommand.buf,
  2237. iocommand.buf_size)) {
  2238. kfree(buff);
  2239. return -EFAULT;
  2240. }
  2241. } else {
  2242. memset(buff, 0, iocommand.buf_size);
  2243. }
  2244. }
  2245. c = cmd_special_alloc(h);
  2246. if (c == NULL) {
  2247. kfree(buff);
  2248. return -ENOMEM;
  2249. }
  2250. /* Fill in the command type */
  2251. c->cmd_type = CMD_IOCTL_PEND;
  2252. /* Fill in Command Header */
  2253. c->Header.ReplyQueue = 0; /* unused in simple mode */
  2254. if (iocommand.buf_size > 0) { /* buffer to fill */
  2255. c->Header.SGList = 1;
  2256. c->Header.SGTotal = 1;
  2257. } else { /* no buffers to fill */
  2258. c->Header.SGList = 0;
  2259. c->Header.SGTotal = 0;
  2260. }
  2261. memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
  2262. /* use the kernel address the cmd block for tag */
  2263. c->Header.Tag.lower = c->busaddr;
  2264. /* Fill in Request block */
  2265. memcpy(&c->Request, &iocommand.Request,
  2266. sizeof(c->Request));
  2267. /* Fill in the scatter gather information */
  2268. if (iocommand.buf_size > 0) {
  2269. temp64.val = pci_map_single(h->pdev, buff,
  2270. iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
  2271. c->SG[0].Addr.lower = temp64.val32.lower;
  2272. c->SG[0].Addr.upper = temp64.val32.upper;
  2273. c->SG[0].Len = iocommand.buf_size;
  2274. c->SG[0].Ext = 0; /* we are not chaining*/
  2275. }
  2276. hpsa_scsi_do_simple_cmd_core(h, c);
  2277. hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
  2278. check_ioctl_unit_attention(h, c);
  2279. /* Copy the error information out */
  2280. memcpy(&iocommand.error_info, c->err_info,
  2281. sizeof(iocommand.error_info));
  2282. if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
  2283. kfree(buff);
  2284. cmd_special_free(h, c);
  2285. return -EFAULT;
  2286. }
  2287. if (iocommand.Request.Type.Direction == XFER_READ &&
  2288. iocommand.buf_size > 0) {
  2289. /* Copy the data out of the buffer we created */
  2290. if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
  2291. kfree(buff);
  2292. cmd_special_free(h, c);
  2293. return -EFAULT;
  2294. }
  2295. }
  2296. kfree(buff);
  2297. cmd_special_free(h, c);
  2298. return 0;
  2299. }
  2300. static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
  2301. {
  2302. BIG_IOCTL_Command_struct *ioc;
  2303. struct CommandList *c;
  2304. unsigned char **buff = NULL;
  2305. int *buff_size = NULL;
  2306. union u64bit temp64;
  2307. BYTE sg_used = 0;
  2308. int status = 0;
  2309. int i;
  2310. u32 left;
  2311. u32 sz;
  2312. BYTE __user *data_ptr;
  2313. if (!argp)
  2314. return -EINVAL;
  2315. if (!capable(CAP_SYS_RAWIO))
  2316. return -EPERM;
  2317. ioc = (BIG_IOCTL_Command_struct *)
  2318. kmalloc(sizeof(*ioc), GFP_KERNEL);
  2319. if (!ioc) {
  2320. status = -ENOMEM;
  2321. goto cleanup1;
  2322. }
  2323. if (copy_from_user(ioc, argp, sizeof(*ioc))) {
  2324. status = -EFAULT;
  2325. goto cleanup1;
  2326. }
  2327. if ((ioc->buf_size < 1) &&
  2328. (ioc->Request.Type.Direction != XFER_NONE)) {
  2329. status = -EINVAL;
  2330. goto cleanup1;
  2331. }
  2332. /* Check kmalloc limits using all SGs */
  2333. if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
  2334. status = -EINVAL;
  2335. goto cleanup1;
  2336. }
  2337. if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
  2338. status = -EINVAL;
  2339. goto cleanup1;
  2340. }
  2341. buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
  2342. if (!buff) {
  2343. status = -ENOMEM;
  2344. goto cleanup1;
  2345. }
  2346. buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
  2347. if (!buff_size) {
  2348. status = -ENOMEM;
  2349. goto cleanup1;
  2350. }
  2351. left = ioc->buf_size;
  2352. data_ptr = ioc->buf;
  2353. while (left) {
  2354. sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
  2355. buff_size[sg_used] = sz;
  2356. buff[sg_used] = kmalloc(sz, GFP_KERNEL);
  2357. if (buff[sg_used] == NULL) {
  2358. status = -ENOMEM;
  2359. goto cleanup1;
  2360. }
  2361. if (ioc->Request.Type.Direction == XFER_WRITE) {
  2362. if (copy_from_user(buff[sg_used], data_ptr, sz)) {
  2363. status = -ENOMEM;
  2364. goto cleanup1;
  2365. }
  2366. } else
  2367. memset(buff[sg_used], 0, sz);
  2368. left -= sz;
  2369. data_ptr += sz;
  2370. sg_used++;
  2371. }
  2372. c = cmd_special_alloc(h);
  2373. if (c == NULL) {
  2374. status = -ENOMEM;
  2375. goto cleanup1;
  2376. }
  2377. c->cmd_type = CMD_IOCTL_PEND;
  2378. c->Header.ReplyQueue = 0;
  2379. c->Header.SGList = c->Header.SGTotal = sg_used;
  2380. memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
  2381. c->Header.Tag.lower = c->busaddr;
  2382. memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
  2383. if (ioc->buf_size > 0) {
  2384. int i;
  2385. for (i = 0; i < sg_used; i++) {
  2386. temp64.val = pci_map_single(h->pdev, buff[i],
  2387. buff_size[i], PCI_DMA_BIDIRECTIONAL);
  2388. c->SG[i].Addr.lower = temp64.val32.lower;
  2389. c->SG[i].Addr.upper = temp64.val32.upper;
  2390. c->SG[i].Len = buff_size[i];
  2391. /* we are not chaining */
  2392. c->SG[i].Ext = 0;
  2393. }
  2394. }
  2395. hpsa_scsi_do_simple_cmd_core(h, c);
  2396. if (sg_used)
  2397. hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
  2398. check_ioctl_unit_attention(h, c);
  2399. /* Copy the error information out */
  2400. memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
  2401. if (copy_to_user(argp, ioc, sizeof(*ioc))) {
  2402. cmd_special_free(h, c);
  2403. status = -EFAULT;
  2404. goto cleanup1;
  2405. }
  2406. if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
  2407. /* Copy the data out of the buffer we created */
  2408. BYTE __user *ptr = ioc->buf;
  2409. for (i = 0; i < sg_used; i++) {
  2410. if (copy_to_user(ptr, buff[i], buff_size[i])) {
  2411. cmd_special_free(h, c);
  2412. status = -EFAULT;
  2413. goto cleanup1;
  2414. }
  2415. ptr += buff_size[i];
  2416. }
  2417. }
  2418. cmd_special_free(h, c);
  2419. status = 0;
  2420. cleanup1:
  2421. if (buff) {
  2422. for (i = 0; i < sg_used; i++)
  2423. kfree(buff[i]);
  2424. kfree(buff);
  2425. }
  2426. kfree(buff_size);
  2427. kfree(ioc);
  2428. return status;
  2429. }
  2430. static void check_ioctl_unit_attention(struct ctlr_info *h,
  2431. struct CommandList *c)
  2432. {
  2433. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  2434. c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
  2435. (void) check_for_unit_attention(h, c);
  2436. }
  2437. /*
  2438. * ioctl
  2439. */
  2440. static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
  2441. {
  2442. struct ctlr_info *h;
  2443. void __user *argp = (void __user *)arg;
  2444. h = sdev_to_hba(dev);
  2445. switch (cmd) {
  2446. case CCISS_DEREGDISK:
  2447. case CCISS_REGNEWDISK:
  2448. case CCISS_REGNEWD:
  2449. hpsa_scan_start(h->scsi_host);
  2450. return 0;
  2451. case CCISS_GETPCIINFO:
  2452. return hpsa_getpciinfo_ioctl(h, argp);
  2453. case CCISS_GETDRIVVER:
  2454. return hpsa_getdrivver_ioctl(h, argp);
  2455. case CCISS_PASSTHRU:
  2456. return hpsa_passthru_ioctl(h, argp);
  2457. case CCISS_BIG_PASSTHRU:
  2458. return hpsa_big_passthru_ioctl(h, argp);
  2459. default:
  2460. return -ENOTTY;
  2461. }
  2462. }
  2463. static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
  2464. void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
  2465. int cmd_type)
  2466. {
  2467. int pci_dir = XFER_NONE;
  2468. c->cmd_type = CMD_IOCTL_PEND;
  2469. c->Header.ReplyQueue = 0;
  2470. if (buff != NULL && size > 0) {
  2471. c->Header.SGList = 1;
  2472. c->Header.SGTotal = 1;
  2473. } else {
  2474. c->Header.SGList = 0;
  2475. c->Header.SGTotal = 0;
  2476. }
  2477. c->Header.Tag.lower = c->busaddr;
  2478. memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
  2479. c->Request.Type.Type = cmd_type;
  2480. if (cmd_type == TYPE_CMD) {
  2481. switch (cmd) {
  2482. case HPSA_INQUIRY:
  2483. /* are we trying to read a vital product page */
  2484. if (page_code != 0) {
  2485. c->Request.CDB[1] = 0x01;
  2486. c->Request.CDB[2] = page_code;
  2487. }
  2488. c->Request.CDBLen = 6;
  2489. c->Request.Type.Attribute = ATTR_SIMPLE;
  2490. c->Request.Type.Direction = XFER_READ;
  2491. c->Request.Timeout = 0;
  2492. c->Request.CDB[0] = HPSA_INQUIRY;
  2493. c->Request.CDB[4] = size & 0xFF;
  2494. break;
  2495. case HPSA_REPORT_LOG:
  2496. case HPSA_REPORT_PHYS:
  2497. /* Talking to controller so It's a physical command
  2498. mode = 00 target = 0. Nothing to write.
  2499. */
  2500. c->Request.CDBLen = 12;
  2501. c->Request.Type.Attribute = ATTR_SIMPLE;
  2502. c->Request.Type.Direction = XFER_READ;
  2503. c->Request.Timeout = 0;
  2504. c->Request.CDB[0] = cmd;
  2505. c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
  2506. c->Request.CDB[7] = (size >> 16) & 0xFF;
  2507. c->Request.CDB[8] = (size >> 8) & 0xFF;
  2508. c->Request.CDB[9] = size & 0xFF;
  2509. break;
  2510. case HPSA_CACHE_FLUSH:
  2511. c->Request.CDBLen = 12;
  2512. c->Request.Type.Attribute = ATTR_SIMPLE;
  2513. c->Request.Type.Direction = XFER_WRITE;
  2514. c->Request.Timeout = 0;
  2515. c->Request.CDB[0] = BMIC_WRITE;
  2516. c->Request.CDB[6] = BMIC_CACHE_FLUSH;
  2517. break;
  2518. case TEST_UNIT_READY:
  2519. c->Request.CDBLen = 6;
  2520. c->Request.Type.Attribute = ATTR_SIMPLE;
  2521. c->Request.Type.Direction = XFER_NONE;
  2522. c->Request.Timeout = 0;
  2523. break;
  2524. default:
  2525. dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
  2526. BUG();
  2527. return;
  2528. }
  2529. } else if (cmd_type == TYPE_MSG) {
  2530. switch (cmd) {
  2531. case HPSA_DEVICE_RESET_MSG:
  2532. c->Request.CDBLen = 16;
  2533. c->Request.Type.Type = 1; /* It is a MSG not a CMD */
  2534. c->Request.Type.Attribute = ATTR_SIMPLE;
  2535. c->Request.Type.Direction = XFER_NONE;
  2536. c->Request.Timeout = 0; /* Don't time out */
  2537. c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */
  2538. c->Request.CDB[1] = 0x03; /* Reset target above */
  2539. /* If bytes 4-7 are zero, it means reset the */
  2540. /* LunID device */
  2541. c->Request.CDB[4] = 0x00;
  2542. c->Request.CDB[5] = 0x00;
  2543. c->Request.CDB[6] = 0x00;
  2544. c->Request.CDB[7] = 0x00;
  2545. break;
  2546. default:
  2547. dev_warn(&h->pdev->dev, "unknown message type %d\n",
  2548. cmd);
  2549. BUG();
  2550. }
  2551. } else {
  2552. dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
  2553. BUG();
  2554. }
  2555. switch (c->Request.Type.Direction) {
  2556. case XFER_READ:
  2557. pci_dir = PCI_DMA_FROMDEVICE;
  2558. break;
  2559. case XFER_WRITE:
  2560. pci_dir = PCI_DMA_TODEVICE;
  2561. break;
  2562. case XFER_NONE:
  2563. pci_dir = PCI_DMA_NONE;
  2564. break;
  2565. default:
  2566. pci_dir = PCI_DMA_BIDIRECTIONAL;
  2567. }
  2568. hpsa_map_one(h->pdev, c, buff, size, pci_dir);
  2569. return;
  2570. }
  2571. /*
  2572. * Map (physical) PCI mem into (virtual) kernel space
  2573. */
  2574. static void __iomem *remap_pci_mem(ulong base, ulong size)
  2575. {
  2576. ulong page_base = ((ulong) base) & PAGE_MASK;
  2577. ulong page_offs = ((ulong) base) - page_base;
  2578. void __iomem *page_remapped = ioremap(page_base, page_offs + size);
  2579. return page_remapped ? (page_remapped + page_offs) : NULL;
  2580. }
  2581. /* Takes cmds off the submission queue and sends them to the hardware,
  2582. * then puts them on the queue of cmds waiting for completion.
  2583. */
  2584. static void start_io(struct ctlr_info *h)
  2585. {
  2586. struct CommandList *c;
  2587. while (!list_empty(&h->reqQ)) {
  2588. c = list_entry(h->reqQ.next, struct CommandList, list);
  2589. /* can't do anything if fifo is full */
  2590. if ((h->access.fifo_full(h))) {
  2591. dev_warn(&h->pdev->dev, "fifo full\n");
  2592. break;
  2593. }
  2594. /* Get the first entry from the Request Q */
  2595. removeQ(c);
  2596. h->Qdepth--;
  2597. /* Tell the controller execute command */
  2598. h->access.submit_command(h, c);
  2599. /* Put job onto the completed Q */
  2600. addQ(&h->cmpQ, c);
  2601. }
  2602. }
  2603. static inline unsigned long get_next_completion(struct ctlr_info *h)
  2604. {
  2605. return h->access.command_completed(h);
  2606. }
  2607. static inline bool interrupt_pending(struct ctlr_info *h)
  2608. {
  2609. return h->access.intr_pending(h);
  2610. }
  2611. static inline long interrupt_not_for_us(struct ctlr_info *h)
  2612. {
  2613. return (h->access.intr_pending(h) == 0) ||
  2614. (h->interrupts_enabled == 0);
  2615. }
  2616. static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
  2617. u32 raw_tag)
  2618. {
  2619. if (unlikely(tag_index >= h->nr_cmds)) {
  2620. dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
  2621. return 1;
  2622. }
  2623. return 0;
  2624. }
  2625. static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
  2626. {
  2627. removeQ(c);
  2628. if (likely(c->cmd_type == CMD_SCSI))
  2629. complete_scsi_command(c);
  2630. else if (c->cmd_type == CMD_IOCTL_PEND)
  2631. complete(c->waiting);
  2632. }
  2633. static inline u32 hpsa_tag_contains_index(u32 tag)
  2634. {
  2635. return tag & DIRECT_LOOKUP_BIT;
  2636. }
  2637. static inline u32 hpsa_tag_to_index(u32 tag)
  2638. {
  2639. return tag >> DIRECT_LOOKUP_SHIFT;
  2640. }
  2641. static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
  2642. {
  2643. #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
  2644. #define HPSA_SIMPLE_ERROR_BITS 0x03
  2645. if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
  2646. return tag & ~HPSA_SIMPLE_ERROR_BITS;
  2647. return tag & ~HPSA_PERF_ERROR_BITS;
  2648. }
  2649. /* process completion of an indexed ("direct lookup") command */
  2650. static inline u32 process_indexed_cmd(struct ctlr_info *h,
  2651. u32 raw_tag)
  2652. {
  2653. u32 tag_index;
  2654. struct CommandList *c;
  2655. tag_index = hpsa_tag_to_index(raw_tag);
  2656. if (bad_tag(h, tag_index, raw_tag))
  2657. return next_command(h);
  2658. c = h->cmd_pool + tag_index;
  2659. finish_cmd(c, raw_tag);
  2660. return next_command(h);
  2661. }
  2662. /* process completion of a non-indexed command */
  2663. static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
  2664. u32 raw_tag)
  2665. {
  2666. u32 tag;
  2667. struct CommandList *c = NULL;
  2668. tag = hpsa_tag_discard_error_bits(h, raw_tag);
  2669. list_for_each_entry(c, &h->cmpQ, list) {
  2670. if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
  2671. finish_cmd(c, raw_tag);
  2672. return next_command(h);
  2673. }
  2674. }
  2675. bad_tag(h, h->nr_cmds + 1, raw_tag);
  2676. return next_command(h);
  2677. }
  2678. static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
  2679. {
  2680. struct ctlr_info *h = dev_id;
  2681. unsigned long flags;
  2682. u32 raw_tag;
  2683. if (interrupt_not_for_us(h))
  2684. return IRQ_NONE;
  2685. spin_lock_irqsave(&h->lock, flags);
  2686. while (interrupt_pending(h)) {
  2687. raw_tag = get_next_completion(h);
  2688. while (raw_tag != FIFO_EMPTY) {
  2689. if (hpsa_tag_contains_index(raw_tag))
  2690. raw_tag = process_indexed_cmd(h, raw_tag);
  2691. else
  2692. raw_tag = process_nonindexed_cmd(h, raw_tag);
  2693. }
  2694. }
  2695. spin_unlock_irqrestore(&h->lock, flags);
  2696. return IRQ_HANDLED;
  2697. }
  2698. static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
  2699. {
  2700. struct ctlr_info *h = dev_id;
  2701. unsigned long flags;
  2702. u32 raw_tag;
  2703. spin_lock_irqsave(&h->lock, flags);
  2704. raw_tag = get_next_completion(h);
  2705. while (raw_tag != FIFO_EMPTY) {
  2706. if (hpsa_tag_contains_index(raw_tag))
  2707. raw_tag = process_indexed_cmd(h, raw_tag);
  2708. else
  2709. raw_tag = process_nonindexed_cmd(h, raw_tag);
  2710. }
  2711. spin_unlock_irqrestore(&h->lock, flags);
  2712. return IRQ_HANDLED;
  2713. }
  2714. /* Send a message CDB to the firmware. Careful, this only works
  2715. * in simple mode, not performant mode due to the tag lookup.
  2716. * We only ever use this immediately after a controller reset.
  2717. */
  2718. static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
  2719. unsigned char type)
  2720. {
  2721. struct Command {
  2722. struct CommandListHeader CommandHeader;
  2723. struct RequestBlock Request;
  2724. struct ErrDescriptor ErrorDescriptor;
  2725. };
  2726. struct Command *cmd;
  2727. static const size_t cmd_sz = sizeof(*cmd) +
  2728. sizeof(cmd->ErrorDescriptor);
  2729. dma_addr_t paddr64;
  2730. uint32_t paddr32, tag;
  2731. void __iomem *vaddr;
  2732. int i, err;
  2733. vaddr = pci_ioremap_bar(pdev, 0);
  2734. if (vaddr == NULL)
  2735. return -ENOMEM;
  2736. /* The Inbound Post Queue only accepts 32-bit physical addresses for the
  2737. * CCISS commands, so they must be allocated from the lower 4GiB of
  2738. * memory.
  2739. */
  2740. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  2741. if (err) {
  2742. iounmap(vaddr);
  2743. return -ENOMEM;
  2744. }
  2745. cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
  2746. if (cmd == NULL) {
  2747. iounmap(vaddr);
  2748. return -ENOMEM;
  2749. }
  2750. /* This must fit, because of the 32-bit consistent DMA mask. Also,
  2751. * although there's no guarantee, we assume that the address is at
  2752. * least 4-byte aligned (most likely, it's page-aligned).
  2753. */
  2754. paddr32 = paddr64;
  2755. cmd->CommandHeader.ReplyQueue = 0;
  2756. cmd->CommandHeader.SGList = 0;
  2757. cmd->CommandHeader.SGTotal = 0;
  2758. cmd->CommandHeader.Tag.lower = paddr32;
  2759. cmd->CommandHeader.Tag.upper = 0;
  2760. memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
  2761. cmd->Request.CDBLen = 16;
  2762. cmd->Request.Type.Type = TYPE_MSG;
  2763. cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
  2764. cmd->Request.Type.Direction = XFER_NONE;
  2765. cmd->Request.Timeout = 0; /* Don't time out */
  2766. cmd->Request.CDB[0] = opcode;
  2767. cmd->Request.CDB[1] = type;
  2768. memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
  2769. cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
  2770. cmd->ErrorDescriptor.Addr.upper = 0;
  2771. cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
  2772. writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
  2773. for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
  2774. tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
  2775. if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
  2776. break;
  2777. msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
  2778. }
  2779. iounmap(vaddr);
  2780. /* we leak the DMA buffer here ... no choice since the controller could
  2781. * still complete the command.
  2782. */
  2783. if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
  2784. dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
  2785. opcode, type);
  2786. return -ETIMEDOUT;
  2787. }
  2788. pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
  2789. if (tag & HPSA_ERROR_BIT) {
  2790. dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
  2791. opcode, type);
  2792. return -EIO;
  2793. }
  2794. dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
  2795. opcode, type);
  2796. return 0;
  2797. }
  2798. #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
  2799. #define hpsa_noop(p) hpsa_message(p, 3, 0)
  2800. static int hpsa_controller_hard_reset(struct pci_dev *pdev,
  2801. void * __iomem vaddr, bool use_doorbell)
  2802. {
  2803. u16 pmcsr;
  2804. int pos;
  2805. if (use_doorbell) {
  2806. /* For everything after the P600, the PCI power state method
  2807. * of resetting the controller doesn't work, so we have this
  2808. * other way using the doorbell register.
  2809. */
  2810. dev_info(&pdev->dev, "using doorbell to reset controller\n");
  2811. writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
  2812. msleep(1000);
  2813. } else { /* Try to do it the PCI power state way */
  2814. /* Quoting from the Open CISS Specification: "The Power
  2815. * Management Control/Status Register (CSR) controls the power
  2816. * state of the device. The normal operating state is D0,
  2817. * CSR=00h. The software off state is D3, CSR=03h. To reset
  2818. * the controller, place the interface device in D3 then to D0,
  2819. * this causes a secondary PCI reset which will reset the
  2820. * controller." */
  2821. pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2822. if (pos == 0) {
  2823. dev_err(&pdev->dev,
  2824. "hpsa_reset_controller: "
  2825. "PCI PM not supported\n");
  2826. return -ENODEV;
  2827. }
  2828. dev_info(&pdev->dev, "using PCI PM to reset controller\n");
  2829. /* enter the D3hot power management state */
  2830. pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
  2831. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  2832. pmcsr |= PCI_D3hot;
  2833. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  2834. msleep(500);
  2835. /* enter the D0 power management state */
  2836. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  2837. pmcsr |= PCI_D0;
  2838. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  2839. msleep(500);
  2840. }
  2841. return 0;
  2842. }
  2843. static __devinit void init_driver_version(char *driver_version, int len)
  2844. {
  2845. memset(driver_version, 0, len);
  2846. strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
  2847. }
  2848. static __devinit int write_driver_ver_to_cfgtable(
  2849. struct CfgTable __iomem *cfgtable)
  2850. {
  2851. char *driver_version;
  2852. int i, size = sizeof(cfgtable->driver_version);
  2853. driver_version = kmalloc(size, GFP_KERNEL);
  2854. if (!driver_version)
  2855. return -ENOMEM;
  2856. init_driver_version(driver_version, size);
  2857. for (i = 0; i < size; i++)
  2858. writeb(driver_version[i], &cfgtable->driver_version[i]);
  2859. kfree(driver_version);
  2860. return 0;
  2861. }
  2862. static __devinit void read_driver_ver_from_cfgtable(
  2863. struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
  2864. {
  2865. int i;
  2866. for (i = 0; i < sizeof(cfgtable->driver_version); i++)
  2867. driver_ver[i] = readb(&cfgtable->driver_version[i]);
  2868. }
  2869. static __devinit int controller_reset_failed(
  2870. struct CfgTable __iomem *cfgtable)
  2871. {
  2872. char *driver_ver, *old_driver_ver;
  2873. int rc, size = sizeof(cfgtable->driver_version);
  2874. old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
  2875. if (!old_driver_ver)
  2876. return -ENOMEM;
  2877. driver_ver = old_driver_ver + size;
  2878. /* After a reset, the 32 bytes of "driver version" in the cfgtable
  2879. * should have been changed, otherwise we know the reset failed.
  2880. */
  2881. init_driver_version(old_driver_ver, size);
  2882. read_driver_ver_from_cfgtable(cfgtable, driver_ver);
  2883. rc = !memcmp(driver_ver, old_driver_ver, size);
  2884. kfree(old_driver_ver);
  2885. return rc;
  2886. }
  2887. /* This does a hard reset of the controller using PCI power management
  2888. * states or the using the doorbell register.
  2889. */
  2890. static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
  2891. {
  2892. u64 cfg_offset;
  2893. u32 cfg_base_addr;
  2894. u64 cfg_base_addr_index;
  2895. void __iomem *vaddr;
  2896. unsigned long paddr;
  2897. u32 misc_fw_support;
  2898. int rc;
  2899. struct CfgTable __iomem *cfgtable;
  2900. bool use_doorbell;
  2901. u32 board_id;
  2902. u16 command_register;
  2903. /* For controllers as old as the P600, this is very nearly
  2904. * the same thing as
  2905. *
  2906. * pci_save_state(pci_dev);
  2907. * pci_set_power_state(pci_dev, PCI_D3hot);
  2908. * pci_set_power_state(pci_dev, PCI_D0);
  2909. * pci_restore_state(pci_dev);
  2910. *
  2911. * For controllers newer than the P600, the pci power state
  2912. * method of resetting doesn't work so we have another way
  2913. * using the doorbell register.
  2914. */
  2915. /* Exclude 640x boards. These are two pci devices in one slot
  2916. * which share a battery backed cache module. One controls the
  2917. * cache, the other accesses the cache through the one that controls
  2918. * it. If we reset the one controlling the cache, the other will
  2919. * likely not be happy. Just forbid resetting this conjoined mess.
  2920. * The 640x isn't really supported by hpsa anyway.
  2921. */
  2922. rc = hpsa_lookup_board_id(pdev, &board_id);
  2923. if (rc < 0) {
  2924. dev_warn(&pdev->dev, "Not resetting device.\n");
  2925. return -ENODEV;
  2926. }
  2927. if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
  2928. return -ENOTSUPP;
  2929. /* Save the PCI command register */
  2930. pci_read_config_word(pdev, 4, &command_register);
  2931. /* Turn the board off. This is so that later pci_restore_state()
  2932. * won't turn the board on before the rest of config space is ready.
  2933. */
  2934. pci_disable_device(pdev);
  2935. pci_save_state(pdev);
  2936. /* find the first memory BAR, so we can find the cfg table */
  2937. rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
  2938. if (rc)
  2939. return rc;
  2940. vaddr = remap_pci_mem(paddr, 0x250);
  2941. if (!vaddr)
  2942. return -ENOMEM;
  2943. /* find cfgtable in order to check if reset via doorbell is supported */
  2944. rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
  2945. &cfg_base_addr_index, &cfg_offset);
  2946. if (rc)
  2947. goto unmap_vaddr;
  2948. cfgtable = remap_pci_mem(pci_resource_start(pdev,
  2949. cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
  2950. if (!cfgtable) {
  2951. rc = -ENOMEM;
  2952. goto unmap_vaddr;
  2953. }
  2954. rc = write_driver_ver_to_cfgtable(cfgtable);
  2955. if (rc)
  2956. goto unmap_vaddr;
  2957. /* If reset via doorbell register is supported, use that. */
  2958. misc_fw_support = readl(&cfgtable->misc_fw_support);
  2959. use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
  2960. rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
  2961. if (rc)
  2962. goto unmap_cfgtable;
  2963. pci_restore_state(pdev);
  2964. rc = pci_enable_device(pdev);
  2965. if (rc) {
  2966. dev_warn(&pdev->dev, "failed to enable device.\n");
  2967. goto unmap_cfgtable;
  2968. }
  2969. pci_write_config_word(pdev, 4, command_register);
  2970. /* Some devices (notably the HP Smart Array 5i Controller)
  2971. need a little pause here */
  2972. msleep(HPSA_POST_RESET_PAUSE_MSECS);
  2973. /* Wait for board to become not ready, then ready. */
  2974. dev_info(&pdev->dev, "Waiting for board to become ready.\n");
  2975. rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
  2976. if (rc)
  2977. dev_warn(&pdev->dev,
  2978. "failed waiting for board to become not ready\n");
  2979. rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
  2980. if (rc) {
  2981. dev_warn(&pdev->dev,
  2982. "failed waiting for board to become ready\n");
  2983. goto unmap_cfgtable;
  2984. }
  2985. rc = controller_reset_failed(vaddr);
  2986. if (rc < 0)
  2987. goto unmap_cfgtable;
  2988. if (rc) {
  2989. dev_warn(&pdev->dev, "Unable to successfully reset controller,"
  2990. " Ignoring controller.\n");
  2991. rc = -ENODEV;
  2992. } else {
  2993. dev_info(&pdev->dev, "board ready.\n");
  2994. }
  2995. unmap_cfgtable:
  2996. iounmap(cfgtable);
  2997. unmap_vaddr:
  2998. iounmap(vaddr);
  2999. return rc;
  3000. }
  3001. /*
  3002. * We cannot read the structure directly, for portability we must use
  3003. * the io functions.
  3004. * This is for debug only.
  3005. */
  3006. static void print_cfg_table(struct device *dev, struct CfgTable *tb)
  3007. {
  3008. #ifdef HPSA_DEBUG
  3009. int i;
  3010. char temp_name[17];
  3011. dev_info(dev, "Controller Configuration information\n");
  3012. dev_info(dev, "------------------------------------\n");
  3013. for (i = 0; i < 4; i++)
  3014. temp_name[i] = readb(&(tb->Signature[i]));
  3015. temp_name[4] = '\0';
  3016. dev_info(dev, " Signature = %s\n", temp_name);
  3017. dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
  3018. dev_info(dev, " Transport methods supported = 0x%x\n",
  3019. readl(&(tb->TransportSupport)));
  3020. dev_info(dev, " Transport methods active = 0x%x\n",
  3021. readl(&(tb->TransportActive)));
  3022. dev_info(dev, " Requested transport Method = 0x%x\n",
  3023. readl(&(tb->HostWrite.TransportRequest)));
  3024. dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
  3025. readl(&(tb->HostWrite.CoalIntDelay)));
  3026. dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
  3027. readl(&(tb->HostWrite.CoalIntCount)));
  3028. dev_info(dev, " Max outstanding commands = 0x%d\n",
  3029. readl(&(tb->CmdsOutMax)));
  3030. dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
  3031. for (i = 0; i < 16; i++)
  3032. temp_name[i] = readb(&(tb->ServerName[i]));
  3033. temp_name[16] = '\0';
  3034. dev_info(dev, " Server Name = %s\n", temp_name);
  3035. dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
  3036. readl(&(tb->HeartBeat)));
  3037. #endif /* HPSA_DEBUG */
  3038. }
  3039. static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
  3040. {
  3041. int i, offset, mem_type, bar_type;
  3042. if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
  3043. return 0;
  3044. offset = 0;
  3045. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3046. bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
  3047. if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
  3048. offset += 4;
  3049. else {
  3050. mem_type = pci_resource_flags(pdev, i) &
  3051. PCI_BASE_ADDRESS_MEM_TYPE_MASK;
  3052. switch (mem_type) {
  3053. case PCI_BASE_ADDRESS_MEM_TYPE_32:
  3054. case PCI_BASE_ADDRESS_MEM_TYPE_1M:
  3055. offset += 4; /* 32 bit */
  3056. break;
  3057. case PCI_BASE_ADDRESS_MEM_TYPE_64:
  3058. offset += 8;
  3059. break;
  3060. default: /* reserved in PCI 2.2 */
  3061. dev_warn(&pdev->dev,
  3062. "base address is invalid\n");
  3063. return -1;
  3064. break;
  3065. }
  3066. }
  3067. if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
  3068. return i + 1;
  3069. }
  3070. return -1;
  3071. }
  3072. /* If MSI/MSI-X is supported by the kernel we will try to enable it on
  3073. * controllers that are capable. If not, we use IO-APIC mode.
  3074. */
  3075. static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
  3076. {
  3077. #ifdef CONFIG_PCI_MSI
  3078. int err;
  3079. struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
  3080. {0, 2}, {0, 3}
  3081. };
  3082. /* Some boards advertise MSI but don't really support it */
  3083. if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
  3084. (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
  3085. goto default_int_mode;
  3086. if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
  3087. dev_info(&h->pdev->dev, "MSIX\n");
  3088. err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
  3089. if (!err) {
  3090. h->intr[0] = hpsa_msix_entries[0].vector;
  3091. h->intr[1] = hpsa_msix_entries[1].vector;
  3092. h->intr[2] = hpsa_msix_entries[2].vector;
  3093. h->intr[3] = hpsa_msix_entries[3].vector;
  3094. h->msix_vector = 1;
  3095. return;
  3096. }
  3097. if (err > 0) {
  3098. dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
  3099. "available\n", err);
  3100. goto default_int_mode;
  3101. } else {
  3102. dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
  3103. err);
  3104. goto default_int_mode;
  3105. }
  3106. }
  3107. if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
  3108. dev_info(&h->pdev->dev, "MSI\n");
  3109. if (!pci_enable_msi(h->pdev))
  3110. h->msi_vector = 1;
  3111. else
  3112. dev_warn(&h->pdev->dev, "MSI init failed\n");
  3113. }
  3114. default_int_mode:
  3115. #endif /* CONFIG_PCI_MSI */
  3116. /* if we get here we're going to use the default interrupt mode */
  3117. h->intr[h->intr_mode] = h->pdev->irq;
  3118. }
  3119. static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
  3120. {
  3121. int i;
  3122. u32 subsystem_vendor_id, subsystem_device_id;
  3123. subsystem_vendor_id = pdev->subsystem_vendor;
  3124. subsystem_device_id = pdev->subsystem_device;
  3125. *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
  3126. subsystem_vendor_id;
  3127. for (i = 0; i < ARRAY_SIZE(products); i++)
  3128. if (*board_id == products[i].board_id)
  3129. return i;
  3130. if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
  3131. subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
  3132. !hpsa_allow_any) {
  3133. dev_warn(&pdev->dev, "unrecognized board ID: "
  3134. "0x%08x, ignoring.\n", *board_id);
  3135. return -ENODEV;
  3136. }
  3137. return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
  3138. }
  3139. static inline bool hpsa_board_disabled(struct pci_dev *pdev)
  3140. {
  3141. u16 command;
  3142. (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
  3143. return ((command & PCI_COMMAND_MEMORY) == 0);
  3144. }
  3145. static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
  3146. unsigned long *memory_bar)
  3147. {
  3148. int i;
  3149. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
  3150. if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
  3151. /* addressing mode bits already removed */
  3152. *memory_bar = pci_resource_start(pdev, i);
  3153. dev_dbg(&pdev->dev, "memory BAR = %lx\n",
  3154. *memory_bar);
  3155. return 0;
  3156. }
  3157. dev_warn(&pdev->dev, "no memory BAR found\n");
  3158. return -ENODEV;
  3159. }
  3160. static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
  3161. void __iomem *vaddr, int wait_for_ready)
  3162. {
  3163. int i, iterations;
  3164. u32 scratchpad;
  3165. if (wait_for_ready)
  3166. iterations = HPSA_BOARD_READY_ITERATIONS;
  3167. else
  3168. iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
  3169. for (i = 0; i < iterations; i++) {
  3170. scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
  3171. if (wait_for_ready) {
  3172. if (scratchpad == HPSA_FIRMWARE_READY)
  3173. return 0;
  3174. } else {
  3175. if (scratchpad != HPSA_FIRMWARE_READY)
  3176. return 0;
  3177. }
  3178. msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
  3179. }
  3180. dev_warn(&pdev->dev, "board not ready, timed out.\n");
  3181. return -ENODEV;
  3182. }
  3183. static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
  3184. void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
  3185. u64 *cfg_offset)
  3186. {
  3187. *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
  3188. *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
  3189. *cfg_base_addr &= (u32) 0x0000ffff;
  3190. *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
  3191. if (*cfg_base_addr_index == -1) {
  3192. dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
  3193. return -ENODEV;
  3194. }
  3195. return 0;
  3196. }
  3197. static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
  3198. {
  3199. u64 cfg_offset;
  3200. u32 cfg_base_addr;
  3201. u64 cfg_base_addr_index;
  3202. u32 trans_offset;
  3203. int rc;
  3204. rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
  3205. &cfg_base_addr_index, &cfg_offset);
  3206. if (rc)
  3207. return rc;
  3208. h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
  3209. cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
  3210. if (!h->cfgtable)
  3211. return -ENOMEM;
  3212. rc = write_driver_ver_to_cfgtable(h->cfgtable);
  3213. if (rc)
  3214. return rc;
  3215. /* Find performant mode table. */
  3216. trans_offset = readl(&h->cfgtable->TransMethodOffset);
  3217. h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
  3218. cfg_base_addr_index)+cfg_offset+trans_offset,
  3219. sizeof(*h->transtable));
  3220. if (!h->transtable)
  3221. return -ENOMEM;
  3222. return 0;
  3223. }
  3224. static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
  3225. {
  3226. h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
  3227. /* Limit commands in memory limited kdump scenario. */
  3228. if (reset_devices && h->max_commands > 32)
  3229. h->max_commands = 32;
  3230. if (h->max_commands < 16) {
  3231. dev_warn(&h->pdev->dev, "Controller reports "
  3232. "max supported commands of %d, an obvious lie. "
  3233. "Using 16. Ensure that firmware is up to date.\n",
  3234. h->max_commands);
  3235. h->max_commands = 16;
  3236. }
  3237. }
  3238. /* Interrogate the hardware for some limits:
  3239. * max commands, max SG elements without chaining, and with chaining,
  3240. * SG chain block size, etc.
  3241. */
  3242. static void __devinit hpsa_find_board_params(struct ctlr_info *h)
  3243. {
  3244. hpsa_get_max_perf_mode_cmds(h);
  3245. h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
  3246. h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
  3247. /*
  3248. * Limit in-command s/g elements to 32 save dma'able memory.
  3249. * Howvever spec says if 0, use 31
  3250. */
  3251. h->max_cmd_sg_entries = 31;
  3252. if (h->maxsgentries > 512) {
  3253. h->max_cmd_sg_entries = 32;
  3254. h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
  3255. h->maxsgentries--; /* save one for chain pointer */
  3256. } else {
  3257. h->maxsgentries = 31; /* default to traditional values */
  3258. h->chainsize = 0;
  3259. }
  3260. }
  3261. static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
  3262. {
  3263. if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
  3264. (readb(&h->cfgtable->Signature[1]) != 'I') ||
  3265. (readb(&h->cfgtable->Signature[2]) != 'S') ||
  3266. (readb(&h->cfgtable->Signature[3]) != 'S')) {
  3267. dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
  3268. return false;
  3269. }
  3270. return true;
  3271. }
  3272. /* Need to enable prefetch in the SCSI core for 6400 in x86 */
  3273. static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
  3274. {
  3275. #ifdef CONFIG_X86
  3276. u32 prefetch;
  3277. prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
  3278. prefetch |= 0x100;
  3279. writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
  3280. #endif
  3281. }
  3282. /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
  3283. * in a prefetch beyond physical memory.
  3284. */
  3285. static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
  3286. {
  3287. u32 dma_prefetch;
  3288. if (h->board_id != 0x3225103C)
  3289. return;
  3290. dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
  3291. dma_prefetch |= 0x8000;
  3292. writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
  3293. }
  3294. static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
  3295. {
  3296. int i;
  3297. u32 doorbell_value;
  3298. unsigned long flags;
  3299. /* under certain very rare conditions, this can take awhile.
  3300. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
  3301. * as we enter this code.)
  3302. */
  3303. for (i = 0; i < MAX_CONFIG_WAIT; i++) {
  3304. spin_lock_irqsave(&h->lock, flags);
  3305. doorbell_value = readl(h->vaddr + SA5_DOORBELL);
  3306. spin_unlock_irqrestore(&h->lock, flags);
  3307. if (!(doorbell_value & CFGTBL_ChangeReq))
  3308. break;
  3309. /* delay and try again */
  3310. usleep_range(10000, 20000);
  3311. }
  3312. }
  3313. static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
  3314. {
  3315. u32 trans_support;
  3316. trans_support = readl(&(h->cfgtable->TransportSupport));
  3317. if (!(trans_support & SIMPLE_MODE))
  3318. return -ENOTSUPP;
  3319. h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
  3320. /* Update the field, and then ring the doorbell */
  3321. writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
  3322. writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
  3323. hpsa_wait_for_mode_change_ack(h);
  3324. print_cfg_table(&h->pdev->dev, h->cfgtable);
  3325. if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
  3326. dev_warn(&h->pdev->dev,
  3327. "unable to get board into simple mode\n");
  3328. return -ENODEV;
  3329. }
  3330. h->transMethod = CFGTBL_Trans_Simple;
  3331. return 0;
  3332. }
  3333. static int __devinit hpsa_pci_init(struct ctlr_info *h)
  3334. {
  3335. int prod_index, err;
  3336. prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
  3337. if (prod_index < 0)
  3338. return -ENODEV;
  3339. h->product_name = products[prod_index].product_name;
  3340. h->access = *(products[prod_index].access);
  3341. if (hpsa_board_disabled(h->pdev)) {
  3342. dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
  3343. return -ENODEV;
  3344. }
  3345. err = pci_enable_device(h->pdev);
  3346. if (err) {
  3347. dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
  3348. return err;
  3349. }
  3350. err = pci_request_regions(h->pdev, "hpsa");
  3351. if (err) {
  3352. dev_err(&h->pdev->dev,
  3353. "cannot obtain PCI resources, aborting\n");
  3354. return err;
  3355. }
  3356. hpsa_interrupt_mode(h);
  3357. err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
  3358. if (err)
  3359. goto err_out_free_res;
  3360. h->vaddr = remap_pci_mem(h->paddr, 0x250);
  3361. if (!h->vaddr) {
  3362. err = -ENOMEM;
  3363. goto err_out_free_res;
  3364. }
  3365. err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
  3366. if (err)
  3367. goto err_out_free_res;
  3368. err = hpsa_find_cfgtables(h);
  3369. if (err)
  3370. goto err_out_free_res;
  3371. hpsa_find_board_params(h);
  3372. if (!hpsa_CISS_signature_present(h)) {
  3373. err = -ENODEV;
  3374. goto err_out_free_res;
  3375. }
  3376. hpsa_enable_scsi_prefetch(h);
  3377. hpsa_p600_dma_prefetch_quirk(h);
  3378. err = hpsa_enter_simple_mode(h);
  3379. if (err)
  3380. goto err_out_free_res;
  3381. return 0;
  3382. err_out_free_res:
  3383. if (h->transtable)
  3384. iounmap(h->transtable);
  3385. if (h->cfgtable)
  3386. iounmap(h->cfgtable);
  3387. if (h->vaddr)
  3388. iounmap(h->vaddr);
  3389. /*
  3390. * Deliberately omit pci_disable_device(): it does something nasty to
  3391. * Smart Array controllers that pci_enable_device does not undo
  3392. */
  3393. pci_release_regions(h->pdev);
  3394. return err;
  3395. }
  3396. static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
  3397. {
  3398. int rc;
  3399. #define HBA_INQUIRY_BYTE_COUNT 64
  3400. h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
  3401. if (!h->hba_inquiry_data)
  3402. return;
  3403. rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
  3404. h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
  3405. if (rc != 0) {
  3406. kfree(h->hba_inquiry_data);
  3407. h->hba_inquiry_data = NULL;
  3408. }
  3409. }
  3410. static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
  3411. {
  3412. int rc, i;
  3413. if (!reset_devices)
  3414. return 0;
  3415. /* Reset the controller with a PCI power-cycle or via doorbell */
  3416. rc = hpsa_kdump_hard_reset_controller(pdev);
  3417. /* -ENOTSUPP here means we cannot reset the controller
  3418. * but it's already (and still) up and running in
  3419. * "performant mode". Or, it might be 640x, which can't reset
  3420. * due to concerns about shared bbwc between 6402/6404 pair.
  3421. */
  3422. if (rc == -ENOTSUPP)
  3423. return 0; /* just try to do the kdump anyhow. */
  3424. if (rc)
  3425. return -ENODEV;
  3426. /* Now try to get the controller to respond to a no-op */
  3427. for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
  3428. if (hpsa_noop(pdev) == 0)
  3429. break;
  3430. else
  3431. dev_warn(&pdev->dev, "no-op failed%s\n",
  3432. (i < 11 ? "; re-trying" : ""));
  3433. }
  3434. return 0;
  3435. }
  3436. static int __devinit hpsa_init_one(struct pci_dev *pdev,
  3437. const struct pci_device_id *ent)
  3438. {
  3439. int dac, rc;
  3440. struct ctlr_info *h;
  3441. if (number_of_controllers == 0)
  3442. printk(KERN_INFO DRIVER_NAME "\n");
  3443. rc = hpsa_init_reset_devices(pdev);
  3444. if (rc)
  3445. return rc;
  3446. /* Command structures must be aligned on a 32-byte boundary because
  3447. * the 5 lower bits of the address are used by the hardware. and by
  3448. * the driver. See comments in hpsa.h for more info.
  3449. */
  3450. #define COMMANDLIST_ALIGNMENT 32
  3451. BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
  3452. h = kzalloc(sizeof(*h), GFP_KERNEL);
  3453. if (!h)
  3454. return -ENOMEM;
  3455. h->pdev = pdev;
  3456. h->busy_initializing = 1;
  3457. h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
  3458. INIT_LIST_HEAD(&h->cmpQ);
  3459. INIT_LIST_HEAD(&h->reqQ);
  3460. spin_lock_init(&h->lock);
  3461. spin_lock_init(&h->scan_lock);
  3462. rc = hpsa_pci_init(h);
  3463. if (rc != 0)
  3464. goto clean1;
  3465. sprintf(h->devname, "hpsa%d", number_of_controllers);
  3466. h->ctlr = number_of_controllers;
  3467. number_of_controllers++;
  3468. /* configure PCI DMA stuff */
  3469. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  3470. if (rc == 0) {
  3471. dac = 1;
  3472. } else {
  3473. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3474. if (rc == 0) {
  3475. dac = 0;
  3476. } else {
  3477. dev_err(&pdev->dev, "no suitable DMA available\n");
  3478. goto clean1;
  3479. }
  3480. }
  3481. /* make sure the board interrupts are off */
  3482. h->access.set_intr_mask(h, HPSA_INTR_OFF);
  3483. if (h->msix_vector || h->msi_vector)
  3484. rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi,
  3485. IRQF_DISABLED, h->devname, h);
  3486. else
  3487. rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx,
  3488. IRQF_DISABLED, h->devname, h);
  3489. if (rc) {
  3490. dev_err(&pdev->dev, "unable to get irq %d for %s\n",
  3491. h->intr[h->intr_mode], h->devname);
  3492. goto clean2;
  3493. }
  3494. dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
  3495. h->devname, pdev->device,
  3496. h->intr[h->intr_mode], dac ? "" : " not");
  3497. h->cmd_pool_bits =
  3498. kmalloc(((h->nr_cmds + BITS_PER_LONG -
  3499. 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
  3500. h->cmd_pool = pci_alloc_consistent(h->pdev,
  3501. h->nr_cmds * sizeof(*h->cmd_pool),
  3502. &(h->cmd_pool_dhandle));
  3503. h->errinfo_pool = pci_alloc_consistent(h->pdev,
  3504. h->nr_cmds * sizeof(*h->errinfo_pool),
  3505. &(h->errinfo_pool_dhandle));
  3506. if ((h->cmd_pool_bits == NULL)
  3507. || (h->cmd_pool == NULL)
  3508. || (h->errinfo_pool == NULL)) {
  3509. dev_err(&pdev->dev, "out of memory");
  3510. rc = -ENOMEM;
  3511. goto clean4;
  3512. }
  3513. if (hpsa_allocate_sg_chain_blocks(h))
  3514. goto clean4;
  3515. init_waitqueue_head(&h->scan_wait_queue);
  3516. h->scan_finished = 1; /* no scan currently in progress */
  3517. pci_set_drvdata(pdev, h);
  3518. memset(h->cmd_pool_bits, 0,
  3519. ((h->nr_cmds + BITS_PER_LONG -
  3520. 1) / BITS_PER_LONG) * sizeof(unsigned long));
  3521. hpsa_scsi_setup(h);
  3522. /* Turn the interrupts on so we can service requests */
  3523. h->access.set_intr_mask(h, HPSA_INTR_ON);
  3524. hpsa_put_ctlr_into_performant_mode(h);
  3525. hpsa_hba_inquiry(h);
  3526. hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
  3527. h->busy_initializing = 0;
  3528. return 1;
  3529. clean4:
  3530. hpsa_free_sg_chain_blocks(h);
  3531. kfree(h->cmd_pool_bits);
  3532. if (h->cmd_pool)
  3533. pci_free_consistent(h->pdev,
  3534. h->nr_cmds * sizeof(struct CommandList),
  3535. h->cmd_pool, h->cmd_pool_dhandle);
  3536. if (h->errinfo_pool)
  3537. pci_free_consistent(h->pdev,
  3538. h->nr_cmds * sizeof(struct ErrorInfo),
  3539. h->errinfo_pool,
  3540. h->errinfo_pool_dhandle);
  3541. free_irq(h->intr[h->intr_mode], h);
  3542. clean2:
  3543. clean1:
  3544. h->busy_initializing = 0;
  3545. kfree(h);
  3546. return rc;
  3547. }
  3548. static void hpsa_flush_cache(struct ctlr_info *h)
  3549. {
  3550. char *flush_buf;
  3551. struct CommandList *c;
  3552. flush_buf = kzalloc(4, GFP_KERNEL);
  3553. if (!flush_buf)
  3554. return;
  3555. c = cmd_special_alloc(h);
  3556. if (!c) {
  3557. dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
  3558. goto out_of_memory;
  3559. }
  3560. fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
  3561. RAID_CTLR_LUNID, TYPE_CMD);
  3562. hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
  3563. if (c->err_info->CommandStatus != 0)
  3564. dev_warn(&h->pdev->dev,
  3565. "error flushing cache on controller\n");
  3566. cmd_special_free(h, c);
  3567. out_of_memory:
  3568. kfree(flush_buf);
  3569. }
  3570. static void hpsa_shutdown(struct pci_dev *pdev)
  3571. {
  3572. struct ctlr_info *h;
  3573. h = pci_get_drvdata(pdev);
  3574. /* Turn board interrupts off and send the flush cache command
  3575. * sendcmd will turn off interrupt, and send the flush...
  3576. * To write all data in the battery backed cache to disks
  3577. */
  3578. hpsa_flush_cache(h);
  3579. h->access.set_intr_mask(h, HPSA_INTR_OFF);
  3580. free_irq(h->intr[h->intr_mode], h);
  3581. #ifdef CONFIG_PCI_MSI
  3582. if (h->msix_vector)
  3583. pci_disable_msix(h->pdev);
  3584. else if (h->msi_vector)
  3585. pci_disable_msi(h->pdev);
  3586. #endif /* CONFIG_PCI_MSI */
  3587. }
  3588. static void __devexit hpsa_remove_one(struct pci_dev *pdev)
  3589. {
  3590. struct ctlr_info *h;
  3591. if (pci_get_drvdata(pdev) == NULL) {
  3592. dev_err(&pdev->dev, "unable to remove device \n");
  3593. return;
  3594. }
  3595. h = pci_get_drvdata(pdev);
  3596. hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
  3597. hpsa_shutdown(pdev);
  3598. iounmap(h->vaddr);
  3599. iounmap(h->transtable);
  3600. iounmap(h->cfgtable);
  3601. hpsa_free_sg_chain_blocks(h);
  3602. pci_free_consistent(h->pdev,
  3603. h->nr_cmds * sizeof(struct CommandList),
  3604. h->cmd_pool, h->cmd_pool_dhandle);
  3605. pci_free_consistent(h->pdev,
  3606. h->nr_cmds * sizeof(struct ErrorInfo),
  3607. h->errinfo_pool, h->errinfo_pool_dhandle);
  3608. pci_free_consistent(h->pdev, h->reply_pool_size,
  3609. h->reply_pool, h->reply_pool_dhandle);
  3610. kfree(h->cmd_pool_bits);
  3611. kfree(h->blockFetchTable);
  3612. kfree(h->hba_inquiry_data);
  3613. /*
  3614. * Deliberately omit pci_disable_device(): it does something nasty to
  3615. * Smart Array controllers that pci_enable_device does not undo
  3616. */
  3617. pci_release_regions(pdev);
  3618. pci_set_drvdata(pdev, NULL);
  3619. kfree(h);
  3620. }
  3621. static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
  3622. __attribute__((unused)) pm_message_t state)
  3623. {
  3624. return -ENOSYS;
  3625. }
  3626. static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
  3627. {
  3628. return -ENOSYS;
  3629. }
  3630. static struct pci_driver hpsa_pci_driver = {
  3631. .name = "hpsa",
  3632. .probe = hpsa_init_one,
  3633. .remove = __devexit_p(hpsa_remove_one),
  3634. .id_table = hpsa_pci_device_id, /* id_table */
  3635. .shutdown = hpsa_shutdown,
  3636. .suspend = hpsa_suspend,
  3637. .resume = hpsa_resume,
  3638. };
  3639. /* Fill in bucket_map[], given nsgs (the max number of
  3640. * scatter gather elements supported) and bucket[],
  3641. * which is an array of 8 integers. The bucket[] array
  3642. * contains 8 different DMA transfer sizes (in 16
  3643. * byte increments) which the controller uses to fetch
  3644. * commands. This function fills in bucket_map[], which
  3645. * maps a given number of scatter gather elements to one of
  3646. * the 8 DMA transfer sizes. The point of it is to allow the
  3647. * controller to only do as much DMA as needed to fetch the
  3648. * command, with the DMA transfer size encoded in the lower
  3649. * bits of the command address.
  3650. */
  3651. static void calc_bucket_map(int bucket[], int num_buckets,
  3652. int nsgs, int *bucket_map)
  3653. {
  3654. int i, j, b, size;
  3655. /* even a command with 0 SGs requires 4 blocks */
  3656. #define MINIMUM_TRANSFER_BLOCKS 4
  3657. #define NUM_BUCKETS 8
  3658. /* Note, bucket_map must have nsgs+1 entries. */
  3659. for (i = 0; i <= nsgs; i++) {
  3660. /* Compute size of a command with i SG entries */
  3661. size = i + MINIMUM_TRANSFER_BLOCKS;
  3662. b = num_buckets; /* Assume the biggest bucket */
  3663. /* Find the bucket that is just big enough */
  3664. for (j = 0; j < 8; j++) {
  3665. if (bucket[j] >= size) {
  3666. b = j;
  3667. break;
  3668. }
  3669. }
  3670. /* for a command with i SG entries, use bucket b. */
  3671. bucket_map[i] = b;
  3672. }
  3673. }
  3674. static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
  3675. u32 use_short_tags)
  3676. {
  3677. int i;
  3678. unsigned long register_value;
  3679. /* This is a bit complicated. There are 8 registers on
  3680. * the controller which we write to to tell it 8 different
  3681. * sizes of commands which there may be. It's a way of
  3682. * reducing the DMA done to fetch each command. Encoded into
  3683. * each command's tag are 3 bits which communicate to the controller
  3684. * which of the eight sizes that command fits within. The size of
  3685. * each command depends on how many scatter gather entries there are.
  3686. * Each SG entry requires 16 bytes. The eight registers are programmed
  3687. * with the number of 16-byte blocks a command of that size requires.
  3688. * The smallest command possible requires 5 such 16 byte blocks.
  3689. * the largest command possible requires MAXSGENTRIES + 4 16-byte
  3690. * blocks. Note, this only extends to the SG entries contained
  3691. * within the command block, and does not extend to chained blocks
  3692. * of SG elements. bft[] contains the eight values we write to
  3693. * the registers. They are not evenly distributed, but have more
  3694. * sizes for small commands, and fewer sizes for larger commands.
  3695. */
  3696. int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
  3697. BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
  3698. /* 5 = 1 s/g entry or 4k
  3699. * 6 = 2 s/g entry or 8k
  3700. * 8 = 4 s/g entry or 16k
  3701. * 10 = 6 s/g entry or 24k
  3702. */
  3703. h->reply_pool_wraparound = 1; /* spec: init to 1 */
  3704. /* Controller spec: zero out this buffer. */
  3705. memset(h->reply_pool, 0, h->reply_pool_size);
  3706. h->reply_pool_head = h->reply_pool;
  3707. bft[7] = h->max_sg_entries + 4;
  3708. calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
  3709. for (i = 0; i < 8; i++)
  3710. writel(bft[i], &h->transtable->BlockFetch[i]);
  3711. /* size of controller ring buffer */
  3712. writel(h->max_commands, &h->transtable->RepQSize);
  3713. writel(1, &h->transtable->RepQCount);
  3714. writel(0, &h->transtable->RepQCtrAddrLow32);
  3715. writel(0, &h->transtable->RepQCtrAddrHigh32);
  3716. writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
  3717. writel(0, &h->transtable->RepQAddr0High32);
  3718. writel(CFGTBL_Trans_Performant | use_short_tags,
  3719. &(h->cfgtable->HostWrite.TransportRequest));
  3720. writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
  3721. hpsa_wait_for_mode_change_ack(h);
  3722. register_value = readl(&(h->cfgtable->TransportActive));
  3723. if (!(register_value & CFGTBL_Trans_Performant)) {
  3724. dev_warn(&h->pdev->dev, "unable to get board into"
  3725. " performant mode\n");
  3726. return;
  3727. }
  3728. /* Change the access methods to the performant access methods */
  3729. h->access = SA5_performant_access;
  3730. h->transMethod = CFGTBL_Trans_Performant;
  3731. }
  3732. static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
  3733. {
  3734. u32 trans_support;
  3735. if (hpsa_simple_mode)
  3736. return;
  3737. trans_support = readl(&(h->cfgtable->TransportSupport));
  3738. if (!(trans_support & PERFORMANT_MODE))
  3739. return;
  3740. hpsa_get_max_perf_mode_cmds(h);
  3741. h->max_sg_entries = 32;
  3742. /* Performant mode ring buffer and supporting data structures */
  3743. h->reply_pool_size = h->max_commands * sizeof(u64);
  3744. h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
  3745. &(h->reply_pool_dhandle));
  3746. /* Need a block fetch table for performant mode */
  3747. h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
  3748. sizeof(u32)), GFP_KERNEL);
  3749. if ((h->reply_pool == NULL)
  3750. || (h->blockFetchTable == NULL))
  3751. goto clean_up;
  3752. hpsa_enter_performant_mode(h,
  3753. trans_support & CFGTBL_Trans_use_short_tags);
  3754. return;
  3755. clean_up:
  3756. if (h->reply_pool)
  3757. pci_free_consistent(h->pdev, h->reply_pool_size,
  3758. h->reply_pool, h->reply_pool_dhandle);
  3759. kfree(h->blockFetchTable);
  3760. }
  3761. /*
  3762. * This is it. Register the PCI driver information for the cards we control
  3763. * the OS will call our registered routines when it finds one of our cards.
  3764. */
  3765. static int __init hpsa_init(void)
  3766. {
  3767. return pci_register_driver(&hpsa_pci_driver);
  3768. }
  3769. static void __exit hpsa_cleanup(void)
  3770. {
  3771. pci_unregister_driver(&hpsa_pci_driver);
  3772. }
  3773. module_init(hpsa_init);
  3774. module_exit(hpsa_cleanup);