af_iucv.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587
  1. /*
  2. * linux/net/iucv/af_iucv.c
  3. *
  4. * IUCV protocol stack for Linux on zSeries
  5. *
  6. * Copyright 2006 IBM Corporation
  7. *
  8. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  9. */
  10. #define KMSG_COMPONENT "af_iucv"
  11. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/types.h>
  14. #include <linux/list.h>
  15. #include <linux/errno.h>
  16. #include <linux/kernel.h>
  17. #include <linux/sched.h>
  18. #include <linux/slab.h>
  19. #include <linux/skbuff.h>
  20. #include <linux/init.h>
  21. #include <linux/poll.h>
  22. #include <net/sock.h>
  23. #include <asm/ebcdic.h>
  24. #include <asm/cpcmd.h>
  25. #include <linux/kmod.h>
  26. #include <net/iucv/iucv.h>
  27. #include <net/iucv/af_iucv.h>
  28. #define VERSION "1.1"
  29. static char iucv_userid[80];
  30. static struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. /* special AF_IUCV IPRM messages */
  37. static const u8 iprm_shutdown[8] =
  38. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  39. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  40. /* macros to set/get socket control buffer at correct offset */
  41. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  42. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  43. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  44. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  45. static void iucv_sock_kill(struct sock *sk);
  46. static void iucv_sock_close(struct sock *sk);
  47. /* Call Back functions */
  48. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  49. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  50. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  51. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  52. u8 ipuser[16]);
  53. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  54. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  55. static struct iucv_sock_list iucv_sk_list = {
  56. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  57. .autobind_name = ATOMIC_INIT(0)
  58. };
  59. static struct iucv_handler af_iucv_handler = {
  60. .path_pending = iucv_callback_connreq,
  61. .path_complete = iucv_callback_connack,
  62. .path_severed = iucv_callback_connrej,
  63. .message_pending = iucv_callback_rx,
  64. .message_complete = iucv_callback_txdone,
  65. .path_quiesced = iucv_callback_shutdown,
  66. };
  67. static inline void high_nmcpy(unsigned char *dst, char *src)
  68. {
  69. memcpy(dst, src, 8);
  70. }
  71. static inline void low_nmcpy(unsigned char *dst, char *src)
  72. {
  73. memcpy(&dst[8], src, 8);
  74. }
  75. /**
  76. * iucv_msg_length() - Returns the length of an iucv message.
  77. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  78. *
  79. * The function returns the length of the specified iucv message @msg of data
  80. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  81. *
  82. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  83. * data:
  84. * PRMDATA[0..6] socket data (max 7 bytes);
  85. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  86. *
  87. * The socket data length is computed by substracting the socket data length
  88. * value from 0xFF.
  89. * If the socket data len is greater 7, then PRMDATA can be used for special
  90. * notifications (see iucv_sock_shutdown); and further,
  91. * if the socket data len is > 7, the function returns 8.
  92. *
  93. * Use this function to allocate socket buffers to store iucv message data.
  94. */
  95. static inline size_t iucv_msg_length(struct iucv_message *msg)
  96. {
  97. size_t datalen;
  98. if (msg->flags & IUCV_IPRMDATA) {
  99. datalen = 0xff - msg->rmmsg[7];
  100. return (datalen < 8) ? datalen : 8;
  101. }
  102. return msg->length;
  103. }
  104. /* Timers */
  105. static void iucv_sock_timeout(unsigned long arg)
  106. {
  107. struct sock *sk = (struct sock *)arg;
  108. bh_lock_sock(sk);
  109. sk->sk_err = ETIMEDOUT;
  110. sk->sk_state_change(sk);
  111. bh_unlock_sock(sk);
  112. iucv_sock_kill(sk);
  113. sock_put(sk);
  114. }
  115. static void iucv_sock_clear_timer(struct sock *sk)
  116. {
  117. sk_stop_timer(sk, &sk->sk_timer);
  118. }
  119. static struct sock *__iucv_get_sock_by_name(char *nm)
  120. {
  121. struct sock *sk;
  122. struct hlist_node *node;
  123. sk_for_each(sk, node, &iucv_sk_list.head)
  124. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  125. return sk;
  126. return NULL;
  127. }
  128. static void iucv_sock_destruct(struct sock *sk)
  129. {
  130. skb_queue_purge(&sk->sk_receive_queue);
  131. skb_queue_purge(&sk->sk_write_queue);
  132. }
  133. /* Cleanup Listen */
  134. static void iucv_sock_cleanup_listen(struct sock *parent)
  135. {
  136. struct sock *sk;
  137. /* Close non-accepted connections */
  138. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  139. iucv_sock_close(sk);
  140. iucv_sock_kill(sk);
  141. }
  142. parent->sk_state = IUCV_CLOSED;
  143. sock_set_flag(parent, SOCK_ZAPPED);
  144. }
  145. /* Kill socket */
  146. static void iucv_sock_kill(struct sock *sk)
  147. {
  148. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  149. return;
  150. iucv_sock_unlink(&iucv_sk_list, sk);
  151. sock_set_flag(sk, SOCK_DEAD);
  152. sock_put(sk);
  153. }
  154. /* Close an IUCV socket */
  155. static void iucv_sock_close(struct sock *sk)
  156. {
  157. unsigned char user_data[16];
  158. struct iucv_sock *iucv = iucv_sk(sk);
  159. int err;
  160. unsigned long timeo;
  161. iucv_sock_clear_timer(sk);
  162. lock_sock(sk);
  163. switch (sk->sk_state) {
  164. case IUCV_LISTEN:
  165. iucv_sock_cleanup_listen(sk);
  166. break;
  167. case IUCV_CONNECTED:
  168. case IUCV_DISCONN:
  169. err = 0;
  170. sk->sk_state = IUCV_CLOSING;
  171. sk->sk_state_change(sk);
  172. if (!skb_queue_empty(&iucv->send_skb_q)) {
  173. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  174. timeo = sk->sk_lingertime;
  175. else
  176. timeo = IUCV_DISCONN_TIMEOUT;
  177. err = iucv_sock_wait_state(sk, IUCV_CLOSED, 0, timeo);
  178. }
  179. case IUCV_CLOSING: /* fall through */
  180. sk->sk_state = IUCV_CLOSED;
  181. sk->sk_state_change(sk);
  182. if (iucv->path) {
  183. low_nmcpy(user_data, iucv->src_name);
  184. high_nmcpy(user_data, iucv->dst_name);
  185. ASCEBC(user_data, sizeof(user_data));
  186. err = iucv_path_sever(iucv->path, user_data);
  187. iucv_path_free(iucv->path);
  188. iucv->path = NULL;
  189. }
  190. sk->sk_err = ECONNRESET;
  191. sk->sk_state_change(sk);
  192. skb_queue_purge(&iucv->send_skb_q);
  193. skb_queue_purge(&iucv->backlog_skb_q);
  194. sock_set_flag(sk, SOCK_ZAPPED);
  195. break;
  196. default:
  197. sock_set_flag(sk, SOCK_ZAPPED);
  198. break;
  199. }
  200. release_sock(sk);
  201. iucv_sock_kill(sk);
  202. }
  203. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  204. {
  205. if (parent)
  206. sk->sk_type = parent->sk_type;
  207. }
  208. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  209. {
  210. struct sock *sk;
  211. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  212. if (!sk)
  213. return NULL;
  214. sock_init_data(sock, sk);
  215. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  216. spin_lock_init(&iucv_sk(sk)->accept_q_lock);
  217. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  218. INIT_LIST_HEAD(&iucv_sk(sk)->message_q.list);
  219. spin_lock_init(&iucv_sk(sk)->message_q.lock);
  220. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  221. iucv_sk(sk)->send_tag = 0;
  222. iucv_sk(sk)->flags = 0;
  223. iucv_sk(sk)->msglimit = IUCV_QUEUELEN_DEFAULT;
  224. iucv_sk(sk)->path = NULL;
  225. memset(&iucv_sk(sk)->src_user_id , 0, 32);
  226. sk->sk_destruct = iucv_sock_destruct;
  227. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  228. sk->sk_allocation = GFP_DMA;
  229. sock_reset_flag(sk, SOCK_ZAPPED);
  230. sk->sk_protocol = proto;
  231. sk->sk_state = IUCV_OPEN;
  232. setup_timer(&sk->sk_timer, iucv_sock_timeout, (unsigned long)sk);
  233. iucv_sock_link(&iucv_sk_list, sk);
  234. return sk;
  235. }
  236. /* Create an IUCV socket */
  237. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol)
  238. {
  239. struct sock *sk;
  240. if (protocol && protocol != PF_IUCV)
  241. return -EPROTONOSUPPORT;
  242. sock->state = SS_UNCONNECTED;
  243. switch (sock->type) {
  244. case SOCK_STREAM:
  245. sock->ops = &iucv_sock_ops;
  246. break;
  247. case SOCK_SEQPACKET:
  248. /* currently, proto ops can handle both sk types */
  249. sock->ops = &iucv_sock_ops;
  250. break;
  251. default:
  252. return -ESOCKTNOSUPPORT;
  253. }
  254. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  255. if (!sk)
  256. return -ENOMEM;
  257. iucv_sock_init(sk, NULL);
  258. return 0;
  259. }
  260. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  261. {
  262. write_lock_bh(&l->lock);
  263. sk_add_node(sk, &l->head);
  264. write_unlock_bh(&l->lock);
  265. }
  266. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  267. {
  268. write_lock_bh(&l->lock);
  269. sk_del_node_init(sk);
  270. write_unlock_bh(&l->lock);
  271. }
  272. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  273. {
  274. unsigned long flags;
  275. struct iucv_sock *par = iucv_sk(parent);
  276. sock_hold(sk);
  277. spin_lock_irqsave(&par->accept_q_lock, flags);
  278. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  279. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  280. iucv_sk(sk)->parent = parent;
  281. parent->sk_ack_backlog++;
  282. }
  283. void iucv_accept_unlink(struct sock *sk)
  284. {
  285. unsigned long flags;
  286. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  287. spin_lock_irqsave(&par->accept_q_lock, flags);
  288. list_del_init(&iucv_sk(sk)->accept_q);
  289. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  290. iucv_sk(sk)->parent->sk_ack_backlog--;
  291. iucv_sk(sk)->parent = NULL;
  292. sock_put(sk);
  293. }
  294. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  295. {
  296. struct iucv_sock *isk, *n;
  297. struct sock *sk;
  298. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  299. sk = (struct sock *) isk;
  300. lock_sock(sk);
  301. if (sk->sk_state == IUCV_CLOSED) {
  302. iucv_accept_unlink(sk);
  303. release_sock(sk);
  304. continue;
  305. }
  306. if (sk->sk_state == IUCV_CONNECTED ||
  307. sk->sk_state == IUCV_SEVERED ||
  308. !newsock) {
  309. iucv_accept_unlink(sk);
  310. if (newsock)
  311. sock_graft(sk, newsock);
  312. if (sk->sk_state == IUCV_SEVERED)
  313. sk->sk_state = IUCV_DISCONN;
  314. release_sock(sk);
  315. return sk;
  316. }
  317. release_sock(sk);
  318. }
  319. return NULL;
  320. }
  321. int iucv_sock_wait_state(struct sock *sk, int state, int state2,
  322. unsigned long timeo)
  323. {
  324. DECLARE_WAITQUEUE(wait, current);
  325. int err = 0;
  326. add_wait_queue(sk->sk_sleep, &wait);
  327. while (sk->sk_state != state && sk->sk_state != state2) {
  328. set_current_state(TASK_INTERRUPTIBLE);
  329. if (!timeo) {
  330. err = -EAGAIN;
  331. break;
  332. }
  333. if (signal_pending(current)) {
  334. err = sock_intr_errno(timeo);
  335. break;
  336. }
  337. release_sock(sk);
  338. timeo = schedule_timeout(timeo);
  339. lock_sock(sk);
  340. err = sock_error(sk);
  341. if (err)
  342. break;
  343. }
  344. set_current_state(TASK_RUNNING);
  345. remove_wait_queue(sk->sk_sleep, &wait);
  346. return err;
  347. }
  348. /* Bind an unbound socket */
  349. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  350. int addr_len)
  351. {
  352. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  353. struct sock *sk = sock->sk;
  354. struct iucv_sock *iucv;
  355. int err;
  356. /* Verify the input sockaddr */
  357. if (!addr || addr->sa_family != AF_IUCV)
  358. return -EINVAL;
  359. lock_sock(sk);
  360. if (sk->sk_state != IUCV_OPEN) {
  361. err = -EBADFD;
  362. goto done;
  363. }
  364. write_lock_bh(&iucv_sk_list.lock);
  365. iucv = iucv_sk(sk);
  366. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  367. err = -EADDRINUSE;
  368. goto done_unlock;
  369. }
  370. if (iucv->path) {
  371. err = 0;
  372. goto done_unlock;
  373. }
  374. /* Bind the socket */
  375. memcpy(iucv->src_name, sa->siucv_name, 8);
  376. /* Copy the user id */
  377. memcpy(iucv->src_user_id, iucv_userid, 8);
  378. sk->sk_state = IUCV_BOUND;
  379. err = 0;
  380. done_unlock:
  381. /* Release the socket list lock */
  382. write_unlock_bh(&iucv_sk_list.lock);
  383. done:
  384. release_sock(sk);
  385. return err;
  386. }
  387. /* Automatically bind an unbound socket */
  388. static int iucv_sock_autobind(struct sock *sk)
  389. {
  390. struct iucv_sock *iucv = iucv_sk(sk);
  391. char query_buffer[80];
  392. char name[12];
  393. int err = 0;
  394. /* Set the userid and name */
  395. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  396. if (unlikely(err))
  397. return -EPROTO;
  398. memcpy(iucv->src_user_id, query_buffer, 8);
  399. write_lock_bh(&iucv_sk_list.lock);
  400. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  401. while (__iucv_get_sock_by_name(name)) {
  402. sprintf(name, "%08x",
  403. atomic_inc_return(&iucv_sk_list.autobind_name));
  404. }
  405. write_unlock_bh(&iucv_sk_list.lock);
  406. memcpy(&iucv->src_name, name, 8);
  407. return err;
  408. }
  409. /* Connect an unconnected socket */
  410. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  411. int alen, int flags)
  412. {
  413. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  414. struct sock *sk = sock->sk;
  415. struct iucv_sock *iucv;
  416. unsigned char user_data[16];
  417. int err;
  418. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  419. return -EINVAL;
  420. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  421. return -EBADFD;
  422. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  423. return -EINVAL;
  424. if (sk->sk_state == IUCV_OPEN) {
  425. err = iucv_sock_autobind(sk);
  426. if (unlikely(err))
  427. return err;
  428. }
  429. lock_sock(sk);
  430. /* Set the destination information */
  431. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  432. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  433. high_nmcpy(user_data, sa->siucv_name);
  434. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  435. ASCEBC(user_data, sizeof(user_data));
  436. iucv = iucv_sk(sk);
  437. /* Create path. */
  438. iucv->path = iucv_path_alloc(iucv->msglimit,
  439. IUCV_IPRMDATA, GFP_KERNEL);
  440. if (!iucv->path) {
  441. err = -ENOMEM;
  442. goto done;
  443. }
  444. err = iucv_path_connect(iucv->path, &af_iucv_handler,
  445. sa->siucv_user_id, NULL, user_data, sk);
  446. if (err) {
  447. iucv_path_free(iucv->path);
  448. iucv->path = NULL;
  449. switch (err) {
  450. case 0x0b: /* Target communicator is not logged on */
  451. err = -ENETUNREACH;
  452. break;
  453. case 0x0d: /* Max connections for this guest exceeded */
  454. case 0x0e: /* Max connections for target guest exceeded */
  455. err = -EAGAIN;
  456. break;
  457. case 0x0f: /* Missing IUCV authorization */
  458. err = -EACCES;
  459. break;
  460. default:
  461. err = -ECONNREFUSED;
  462. break;
  463. }
  464. goto done;
  465. }
  466. if (sk->sk_state != IUCV_CONNECTED) {
  467. err = iucv_sock_wait_state(sk, IUCV_CONNECTED, IUCV_DISCONN,
  468. sock_sndtimeo(sk, flags & O_NONBLOCK));
  469. }
  470. if (sk->sk_state == IUCV_DISCONN) {
  471. err = -ECONNREFUSED;
  472. }
  473. if (err) {
  474. iucv_path_sever(iucv->path, NULL);
  475. iucv_path_free(iucv->path);
  476. iucv->path = NULL;
  477. }
  478. done:
  479. release_sock(sk);
  480. return err;
  481. }
  482. /* Move a socket into listening state. */
  483. static int iucv_sock_listen(struct socket *sock, int backlog)
  484. {
  485. struct sock *sk = sock->sk;
  486. int err;
  487. lock_sock(sk);
  488. err = -EINVAL;
  489. if (sk->sk_state != IUCV_BOUND)
  490. goto done;
  491. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  492. goto done;
  493. sk->sk_max_ack_backlog = backlog;
  494. sk->sk_ack_backlog = 0;
  495. sk->sk_state = IUCV_LISTEN;
  496. err = 0;
  497. done:
  498. release_sock(sk);
  499. return err;
  500. }
  501. /* Accept a pending connection */
  502. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  503. int flags)
  504. {
  505. DECLARE_WAITQUEUE(wait, current);
  506. struct sock *sk = sock->sk, *nsk;
  507. long timeo;
  508. int err = 0;
  509. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  510. if (sk->sk_state != IUCV_LISTEN) {
  511. err = -EBADFD;
  512. goto done;
  513. }
  514. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  515. /* Wait for an incoming connection */
  516. add_wait_queue_exclusive(sk->sk_sleep, &wait);
  517. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  518. set_current_state(TASK_INTERRUPTIBLE);
  519. if (!timeo) {
  520. err = -EAGAIN;
  521. break;
  522. }
  523. release_sock(sk);
  524. timeo = schedule_timeout(timeo);
  525. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  526. if (sk->sk_state != IUCV_LISTEN) {
  527. err = -EBADFD;
  528. break;
  529. }
  530. if (signal_pending(current)) {
  531. err = sock_intr_errno(timeo);
  532. break;
  533. }
  534. }
  535. set_current_state(TASK_RUNNING);
  536. remove_wait_queue(sk->sk_sleep, &wait);
  537. if (err)
  538. goto done;
  539. newsock->state = SS_CONNECTED;
  540. done:
  541. release_sock(sk);
  542. return err;
  543. }
  544. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  545. int *len, int peer)
  546. {
  547. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  548. struct sock *sk = sock->sk;
  549. addr->sa_family = AF_IUCV;
  550. *len = sizeof(struct sockaddr_iucv);
  551. if (peer) {
  552. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  553. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  554. } else {
  555. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  556. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  557. }
  558. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  559. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  560. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  561. return 0;
  562. }
  563. /**
  564. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  565. * @path: IUCV path
  566. * @msg: Pointer to a struct iucv_message
  567. * @skb: The socket data to send, skb->len MUST BE <= 7
  568. *
  569. * Send the socket data in the parameter list in the iucv message
  570. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  571. * list and the socket data len at index 7 (last byte).
  572. * See also iucv_msg_length().
  573. *
  574. * Returns the error code from the iucv_message_send() call.
  575. */
  576. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  577. struct sk_buff *skb)
  578. {
  579. u8 prmdata[8];
  580. memcpy(prmdata, (void *) skb->data, skb->len);
  581. prmdata[7] = 0xff - (u8) skb->len;
  582. return iucv_message_send(path, msg, IUCV_IPRMDATA, 0,
  583. (void *) prmdata, 8);
  584. }
  585. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  586. struct msghdr *msg, size_t len)
  587. {
  588. struct sock *sk = sock->sk;
  589. struct iucv_sock *iucv = iucv_sk(sk);
  590. struct sk_buff *skb;
  591. struct iucv_message txmsg;
  592. struct cmsghdr *cmsg;
  593. int cmsg_done;
  594. char user_id[9];
  595. char appl_id[9];
  596. int err;
  597. err = sock_error(sk);
  598. if (err)
  599. return err;
  600. if (msg->msg_flags & MSG_OOB)
  601. return -EOPNOTSUPP;
  602. /* SOCK_SEQPACKET: we do not support segmented records */
  603. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  604. return -EOPNOTSUPP;
  605. lock_sock(sk);
  606. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  607. err = -EPIPE;
  608. goto out;
  609. }
  610. if (sk->sk_state == IUCV_CONNECTED) {
  611. /* initialize defaults */
  612. cmsg_done = 0; /* check for duplicate headers */
  613. txmsg.class = 0;
  614. /* iterate over control messages */
  615. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  616. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  617. if (!CMSG_OK(msg, cmsg)) {
  618. err = -EINVAL;
  619. goto out;
  620. }
  621. if (cmsg->cmsg_level != SOL_IUCV)
  622. continue;
  623. if (cmsg->cmsg_type & cmsg_done) {
  624. err = -EINVAL;
  625. goto out;
  626. }
  627. cmsg_done |= cmsg->cmsg_type;
  628. switch (cmsg->cmsg_type) {
  629. case SCM_IUCV_TRGCLS:
  630. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  631. err = -EINVAL;
  632. goto out;
  633. }
  634. /* set iucv message target class */
  635. memcpy(&txmsg.class,
  636. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  637. break;
  638. default:
  639. err = -EINVAL;
  640. goto out;
  641. break;
  642. }
  643. }
  644. /* allocate one skb for each iucv message:
  645. * this is fine for SOCK_SEQPACKET (unless we want to support
  646. * segmented records using the MSG_EOR flag), but
  647. * for SOCK_STREAM we might want to improve it in future */
  648. if (!(skb = sock_alloc_send_skb(sk, len,
  649. msg->msg_flags & MSG_DONTWAIT,
  650. &err)))
  651. goto out;
  652. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  653. err = -EFAULT;
  654. goto fail;
  655. }
  656. /* increment and save iucv message tag for msg_completion cbk */
  657. txmsg.tag = iucv->send_tag++;
  658. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  659. skb_queue_tail(&iucv->send_skb_q, skb);
  660. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  661. && skb->len <= 7) {
  662. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  663. /* on success: there is no message_complete callback
  664. * for an IPRMDATA msg; remove skb from send queue */
  665. if (err == 0) {
  666. skb_unlink(skb, &iucv->send_skb_q);
  667. kfree_skb(skb);
  668. }
  669. /* this error should never happen since the
  670. * IUCV_IPRMDATA path flag is set... sever path */
  671. if (err == 0x15) {
  672. iucv_path_sever(iucv->path, NULL);
  673. skb_unlink(skb, &iucv->send_skb_q);
  674. err = -EPIPE;
  675. goto fail;
  676. }
  677. } else
  678. err = iucv_message_send(iucv->path, &txmsg, 0, 0,
  679. (void *) skb->data, skb->len);
  680. if (err) {
  681. if (err == 3) {
  682. user_id[8] = 0;
  683. memcpy(user_id, iucv->dst_user_id, 8);
  684. appl_id[8] = 0;
  685. memcpy(appl_id, iucv->dst_name, 8);
  686. pr_err("Application %s on z/VM guest %s"
  687. " exceeds message limit\n",
  688. user_id, appl_id);
  689. }
  690. skb_unlink(skb, &iucv->send_skb_q);
  691. err = -EPIPE;
  692. goto fail;
  693. }
  694. } else {
  695. err = -ENOTCONN;
  696. goto out;
  697. }
  698. release_sock(sk);
  699. return len;
  700. fail:
  701. kfree_skb(skb);
  702. out:
  703. release_sock(sk);
  704. return err;
  705. }
  706. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  707. {
  708. int dataleft, size, copied = 0;
  709. struct sk_buff *nskb;
  710. dataleft = len;
  711. while (dataleft) {
  712. if (dataleft >= sk->sk_rcvbuf / 4)
  713. size = sk->sk_rcvbuf / 4;
  714. else
  715. size = dataleft;
  716. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  717. if (!nskb)
  718. return -ENOMEM;
  719. /* copy target class to control buffer of new skb */
  720. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  721. /* copy data fragment */
  722. memcpy(nskb->data, skb->data + copied, size);
  723. copied += size;
  724. dataleft -= size;
  725. skb_reset_transport_header(nskb);
  726. skb_reset_network_header(nskb);
  727. nskb->len = size;
  728. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  729. }
  730. return 0;
  731. }
  732. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  733. struct iucv_path *path,
  734. struct iucv_message *msg)
  735. {
  736. int rc;
  737. unsigned int len;
  738. len = iucv_msg_length(msg);
  739. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  740. /* Note: the first 4 bytes are reserved for msg tag */
  741. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  742. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  743. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  744. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  745. skb->data = NULL;
  746. skb->len = 0;
  747. }
  748. } else {
  749. rc = iucv_message_receive(path, msg, msg->flags & IUCV_IPRMDATA,
  750. skb->data, len, NULL);
  751. if (rc) {
  752. kfree_skb(skb);
  753. return;
  754. }
  755. /* we need to fragment iucv messages for SOCK_STREAM only;
  756. * for SOCK_SEQPACKET, it is only relevant if we support
  757. * record segmentation using MSG_EOR (see also recvmsg()) */
  758. if (sk->sk_type == SOCK_STREAM &&
  759. skb->truesize >= sk->sk_rcvbuf / 4) {
  760. rc = iucv_fragment_skb(sk, skb, len);
  761. kfree_skb(skb);
  762. skb = NULL;
  763. if (rc) {
  764. iucv_path_sever(path, NULL);
  765. return;
  766. }
  767. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  768. } else {
  769. skb_reset_transport_header(skb);
  770. skb_reset_network_header(skb);
  771. skb->len = len;
  772. }
  773. }
  774. if (sock_queue_rcv_skb(sk, skb))
  775. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  776. }
  777. static void iucv_process_message_q(struct sock *sk)
  778. {
  779. struct iucv_sock *iucv = iucv_sk(sk);
  780. struct sk_buff *skb;
  781. struct sock_msg_q *p, *n;
  782. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  783. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  784. if (!skb)
  785. break;
  786. iucv_process_message(sk, skb, p->path, &p->msg);
  787. list_del(&p->list);
  788. kfree(p);
  789. if (!skb_queue_empty(&iucv->backlog_skb_q))
  790. break;
  791. }
  792. }
  793. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  794. struct msghdr *msg, size_t len, int flags)
  795. {
  796. int noblock = flags & MSG_DONTWAIT;
  797. struct sock *sk = sock->sk;
  798. struct iucv_sock *iucv = iucv_sk(sk);
  799. unsigned int copied, rlen;
  800. struct sk_buff *skb, *rskb, *cskb;
  801. int err = 0;
  802. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  803. skb_queue_empty(&iucv->backlog_skb_q) &&
  804. skb_queue_empty(&sk->sk_receive_queue) &&
  805. list_empty(&iucv->message_q.list))
  806. return 0;
  807. if (flags & (MSG_OOB))
  808. return -EOPNOTSUPP;
  809. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  810. /* receive/dequeue next skb:
  811. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  812. skb = skb_recv_datagram(sk, flags, noblock, &err);
  813. if (!skb) {
  814. if (sk->sk_shutdown & RCV_SHUTDOWN)
  815. return 0;
  816. return err;
  817. }
  818. rlen = skb->len; /* real length of skb */
  819. copied = min_t(unsigned int, rlen, len);
  820. cskb = skb;
  821. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  822. if (!(flags & MSG_PEEK))
  823. skb_queue_head(&sk->sk_receive_queue, skb);
  824. return -EFAULT;
  825. }
  826. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  827. if (sk->sk_type == SOCK_SEQPACKET) {
  828. if (copied < rlen)
  829. msg->msg_flags |= MSG_TRUNC;
  830. /* each iucv message contains a complete record */
  831. msg->msg_flags |= MSG_EOR;
  832. }
  833. /* create control message to store iucv msg target class:
  834. * get the trgcls from the control buffer of the skb due to
  835. * fragmentation of original iucv message. */
  836. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  837. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  838. if (err) {
  839. if (!(flags & MSG_PEEK))
  840. skb_queue_head(&sk->sk_receive_queue, skb);
  841. return err;
  842. }
  843. /* Mark read part of skb as used */
  844. if (!(flags & MSG_PEEK)) {
  845. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  846. if (sk->sk_type == SOCK_STREAM) {
  847. skb_pull(skb, copied);
  848. if (skb->len) {
  849. skb_queue_head(&sk->sk_receive_queue, skb);
  850. goto done;
  851. }
  852. }
  853. kfree_skb(skb);
  854. /* Queue backlog skbs */
  855. rskb = skb_dequeue(&iucv->backlog_skb_q);
  856. while (rskb) {
  857. if (sock_queue_rcv_skb(sk, rskb)) {
  858. skb_queue_head(&iucv->backlog_skb_q,
  859. rskb);
  860. break;
  861. } else {
  862. rskb = skb_dequeue(&iucv->backlog_skb_q);
  863. }
  864. }
  865. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  866. spin_lock_bh(&iucv->message_q.lock);
  867. if (!list_empty(&iucv->message_q.list))
  868. iucv_process_message_q(sk);
  869. spin_unlock_bh(&iucv->message_q.lock);
  870. }
  871. }
  872. done:
  873. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  874. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  875. copied = rlen;
  876. return copied;
  877. }
  878. static inline unsigned int iucv_accept_poll(struct sock *parent)
  879. {
  880. struct iucv_sock *isk, *n;
  881. struct sock *sk;
  882. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  883. sk = (struct sock *) isk;
  884. if (sk->sk_state == IUCV_CONNECTED)
  885. return POLLIN | POLLRDNORM;
  886. }
  887. return 0;
  888. }
  889. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  890. poll_table *wait)
  891. {
  892. struct sock *sk = sock->sk;
  893. unsigned int mask = 0;
  894. poll_wait(file, sk->sk_sleep, wait);
  895. if (sk->sk_state == IUCV_LISTEN)
  896. return iucv_accept_poll(sk);
  897. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  898. mask |= POLLERR;
  899. if (sk->sk_shutdown & RCV_SHUTDOWN)
  900. mask |= POLLRDHUP;
  901. if (sk->sk_shutdown == SHUTDOWN_MASK)
  902. mask |= POLLHUP;
  903. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  904. (sk->sk_shutdown & RCV_SHUTDOWN))
  905. mask |= POLLIN | POLLRDNORM;
  906. if (sk->sk_state == IUCV_CLOSED)
  907. mask |= POLLHUP;
  908. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  909. mask |= POLLIN;
  910. if (sock_writeable(sk))
  911. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  912. else
  913. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  914. return mask;
  915. }
  916. static int iucv_sock_shutdown(struct socket *sock, int how)
  917. {
  918. struct sock *sk = sock->sk;
  919. struct iucv_sock *iucv = iucv_sk(sk);
  920. struct iucv_message txmsg;
  921. int err = 0;
  922. how++;
  923. if ((how & ~SHUTDOWN_MASK) || !how)
  924. return -EINVAL;
  925. lock_sock(sk);
  926. switch (sk->sk_state) {
  927. case IUCV_DISCONN:
  928. case IUCV_CLOSING:
  929. case IUCV_SEVERED:
  930. case IUCV_CLOSED:
  931. err = -ENOTCONN;
  932. goto fail;
  933. default:
  934. sk->sk_shutdown |= how;
  935. break;
  936. }
  937. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  938. txmsg.class = 0;
  939. txmsg.tag = 0;
  940. err = iucv_message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0,
  941. (void *) iprm_shutdown, 8);
  942. if (err) {
  943. switch (err) {
  944. case 1:
  945. err = -ENOTCONN;
  946. break;
  947. case 2:
  948. err = -ECONNRESET;
  949. break;
  950. default:
  951. err = -ENOTCONN;
  952. break;
  953. }
  954. }
  955. }
  956. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  957. err = iucv_path_quiesce(iucv_sk(sk)->path, NULL);
  958. if (err)
  959. err = -ENOTCONN;
  960. skb_queue_purge(&sk->sk_receive_queue);
  961. }
  962. /* Wake up anyone sleeping in poll */
  963. sk->sk_state_change(sk);
  964. fail:
  965. release_sock(sk);
  966. return err;
  967. }
  968. static int iucv_sock_release(struct socket *sock)
  969. {
  970. struct sock *sk = sock->sk;
  971. int err = 0;
  972. if (!sk)
  973. return 0;
  974. iucv_sock_close(sk);
  975. /* Unregister with IUCV base support */
  976. if (iucv_sk(sk)->path) {
  977. iucv_path_sever(iucv_sk(sk)->path, NULL);
  978. iucv_path_free(iucv_sk(sk)->path);
  979. iucv_sk(sk)->path = NULL;
  980. }
  981. sock_orphan(sk);
  982. iucv_sock_kill(sk);
  983. return err;
  984. }
  985. /* getsockopt and setsockopt */
  986. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  987. char __user *optval, int optlen)
  988. {
  989. struct sock *sk = sock->sk;
  990. struct iucv_sock *iucv = iucv_sk(sk);
  991. int val;
  992. int rc;
  993. if (level != SOL_IUCV)
  994. return -ENOPROTOOPT;
  995. if (optlen < sizeof(int))
  996. return -EINVAL;
  997. if (get_user(val, (int __user *) optval))
  998. return -EFAULT;
  999. rc = 0;
  1000. lock_sock(sk);
  1001. switch (optname) {
  1002. case SO_IPRMDATA_MSG:
  1003. if (val)
  1004. iucv->flags |= IUCV_IPRMDATA;
  1005. else
  1006. iucv->flags &= ~IUCV_IPRMDATA;
  1007. break;
  1008. case SO_MSGLIMIT:
  1009. switch (sk->sk_state) {
  1010. case IUCV_OPEN:
  1011. case IUCV_BOUND:
  1012. if (val < 1 || val > (u16)(~0))
  1013. rc = -EINVAL;
  1014. else
  1015. iucv->msglimit = val;
  1016. break;
  1017. default:
  1018. rc = -EINVAL;
  1019. break;
  1020. }
  1021. break;
  1022. default:
  1023. rc = -ENOPROTOOPT;
  1024. break;
  1025. }
  1026. release_sock(sk);
  1027. return rc;
  1028. }
  1029. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1030. char __user *optval, int __user *optlen)
  1031. {
  1032. struct sock *sk = sock->sk;
  1033. struct iucv_sock *iucv = iucv_sk(sk);
  1034. int val, len;
  1035. if (level != SOL_IUCV)
  1036. return -ENOPROTOOPT;
  1037. if (get_user(len, optlen))
  1038. return -EFAULT;
  1039. if (len < 0)
  1040. return -EINVAL;
  1041. len = min_t(unsigned int, len, sizeof(int));
  1042. switch (optname) {
  1043. case SO_IPRMDATA_MSG:
  1044. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1045. break;
  1046. case SO_MSGLIMIT:
  1047. lock_sock(sk);
  1048. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1049. : iucv->msglimit; /* default */
  1050. release_sock(sk);
  1051. break;
  1052. default:
  1053. return -ENOPROTOOPT;
  1054. }
  1055. if (put_user(len, optlen))
  1056. return -EFAULT;
  1057. if (copy_to_user(optval, &val, len))
  1058. return -EFAULT;
  1059. return 0;
  1060. }
  1061. /* Callback wrappers - called from iucv base support */
  1062. static int iucv_callback_connreq(struct iucv_path *path,
  1063. u8 ipvmid[8], u8 ipuser[16])
  1064. {
  1065. unsigned char user_data[16];
  1066. unsigned char nuser_data[16];
  1067. unsigned char src_name[8];
  1068. struct hlist_node *node;
  1069. struct sock *sk, *nsk;
  1070. struct iucv_sock *iucv, *niucv;
  1071. int err;
  1072. memcpy(src_name, ipuser, 8);
  1073. EBCASC(src_name, 8);
  1074. /* Find out if this path belongs to af_iucv. */
  1075. read_lock(&iucv_sk_list.lock);
  1076. iucv = NULL;
  1077. sk = NULL;
  1078. sk_for_each(sk, node, &iucv_sk_list.head)
  1079. if (sk->sk_state == IUCV_LISTEN &&
  1080. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1081. /*
  1082. * Found a listening socket with
  1083. * src_name == ipuser[0-7].
  1084. */
  1085. iucv = iucv_sk(sk);
  1086. break;
  1087. }
  1088. read_unlock(&iucv_sk_list.lock);
  1089. if (!iucv)
  1090. /* No socket found, not one of our paths. */
  1091. return -EINVAL;
  1092. bh_lock_sock(sk);
  1093. /* Check if parent socket is listening */
  1094. low_nmcpy(user_data, iucv->src_name);
  1095. high_nmcpy(user_data, iucv->dst_name);
  1096. ASCEBC(user_data, sizeof(user_data));
  1097. if (sk->sk_state != IUCV_LISTEN) {
  1098. err = iucv_path_sever(path, user_data);
  1099. iucv_path_free(path);
  1100. goto fail;
  1101. }
  1102. /* Check for backlog size */
  1103. if (sk_acceptq_is_full(sk)) {
  1104. err = iucv_path_sever(path, user_data);
  1105. iucv_path_free(path);
  1106. goto fail;
  1107. }
  1108. /* Create the new socket */
  1109. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1110. if (!nsk) {
  1111. err = iucv_path_sever(path, user_data);
  1112. iucv_path_free(path);
  1113. goto fail;
  1114. }
  1115. niucv = iucv_sk(nsk);
  1116. iucv_sock_init(nsk, sk);
  1117. /* Set the new iucv_sock */
  1118. memcpy(niucv->dst_name, ipuser + 8, 8);
  1119. EBCASC(niucv->dst_name, 8);
  1120. memcpy(niucv->dst_user_id, ipvmid, 8);
  1121. memcpy(niucv->src_name, iucv->src_name, 8);
  1122. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1123. niucv->path = path;
  1124. /* Call iucv_accept */
  1125. high_nmcpy(nuser_data, ipuser + 8);
  1126. memcpy(nuser_data + 8, niucv->src_name, 8);
  1127. ASCEBC(nuser_data + 8, 8);
  1128. /* set message limit for path based on msglimit of accepting socket */
  1129. niucv->msglimit = iucv->msglimit;
  1130. path->msglim = iucv->msglimit;
  1131. err = iucv_path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1132. if (err) {
  1133. err = iucv_path_sever(path, user_data);
  1134. iucv_path_free(path);
  1135. iucv_sock_kill(nsk);
  1136. goto fail;
  1137. }
  1138. iucv_accept_enqueue(sk, nsk);
  1139. /* Wake up accept */
  1140. nsk->sk_state = IUCV_CONNECTED;
  1141. sk->sk_data_ready(sk, 1);
  1142. err = 0;
  1143. fail:
  1144. bh_unlock_sock(sk);
  1145. return 0;
  1146. }
  1147. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1148. {
  1149. struct sock *sk = path->private;
  1150. sk->sk_state = IUCV_CONNECTED;
  1151. sk->sk_state_change(sk);
  1152. }
  1153. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1154. {
  1155. struct sock *sk = path->private;
  1156. struct iucv_sock *iucv = iucv_sk(sk);
  1157. struct sk_buff *skb;
  1158. struct sock_msg_q *save_msg;
  1159. int len;
  1160. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1161. iucv_message_reject(path, msg);
  1162. return;
  1163. }
  1164. spin_lock(&iucv->message_q.lock);
  1165. if (!list_empty(&iucv->message_q.list) ||
  1166. !skb_queue_empty(&iucv->backlog_skb_q))
  1167. goto save_message;
  1168. len = atomic_read(&sk->sk_rmem_alloc);
  1169. len += iucv_msg_length(msg) + sizeof(struct sk_buff);
  1170. if (len > sk->sk_rcvbuf)
  1171. goto save_message;
  1172. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1173. if (!skb)
  1174. goto save_message;
  1175. iucv_process_message(sk, skb, path, msg);
  1176. goto out_unlock;
  1177. return;
  1178. save_message:
  1179. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1180. if (!save_msg)
  1181. return;
  1182. save_msg->path = path;
  1183. save_msg->msg = *msg;
  1184. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1185. out_unlock:
  1186. spin_unlock(&iucv->message_q.lock);
  1187. }
  1188. static void iucv_callback_txdone(struct iucv_path *path,
  1189. struct iucv_message *msg)
  1190. {
  1191. struct sock *sk = path->private;
  1192. struct sk_buff *this = NULL;
  1193. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1194. struct sk_buff *list_skb = list->next;
  1195. unsigned long flags;
  1196. if (!skb_queue_empty(list)) {
  1197. spin_lock_irqsave(&list->lock, flags);
  1198. while (list_skb != (struct sk_buff *)list) {
  1199. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1200. this = list_skb;
  1201. break;
  1202. }
  1203. list_skb = list_skb->next;
  1204. }
  1205. if (this)
  1206. __skb_unlink(this, list);
  1207. spin_unlock_irqrestore(&list->lock, flags);
  1208. kfree_skb(this);
  1209. }
  1210. BUG_ON(!this);
  1211. if (sk->sk_state == IUCV_CLOSING) {
  1212. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1213. sk->sk_state = IUCV_CLOSED;
  1214. sk->sk_state_change(sk);
  1215. }
  1216. }
  1217. }
  1218. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1219. {
  1220. struct sock *sk = path->private;
  1221. if (!list_empty(&iucv_sk(sk)->accept_q))
  1222. sk->sk_state = IUCV_SEVERED;
  1223. else
  1224. sk->sk_state = IUCV_DISCONN;
  1225. sk->sk_state_change(sk);
  1226. }
  1227. /* called if the other communication side shuts down its RECV direction;
  1228. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1229. */
  1230. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1231. {
  1232. struct sock *sk = path->private;
  1233. bh_lock_sock(sk);
  1234. if (sk->sk_state != IUCV_CLOSED) {
  1235. sk->sk_shutdown |= SEND_SHUTDOWN;
  1236. sk->sk_state_change(sk);
  1237. }
  1238. bh_unlock_sock(sk);
  1239. }
  1240. static struct proto_ops iucv_sock_ops = {
  1241. .family = PF_IUCV,
  1242. .owner = THIS_MODULE,
  1243. .release = iucv_sock_release,
  1244. .bind = iucv_sock_bind,
  1245. .connect = iucv_sock_connect,
  1246. .listen = iucv_sock_listen,
  1247. .accept = iucv_sock_accept,
  1248. .getname = iucv_sock_getname,
  1249. .sendmsg = iucv_sock_sendmsg,
  1250. .recvmsg = iucv_sock_recvmsg,
  1251. .poll = iucv_sock_poll,
  1252. .ioctl = sock_no_ioctl,
  1253. .mmap = sock_no_mmap,
  1254. .socketpair = sock_no_socketpair,
  1255. .shutdown = iucv_sock_shutdown,
  1256. .setsockopt = iucv_sock_setsockopt,
  1257. .getsockopt = iucv_sock_getsockopt,
  1258. };
  1259. static struct net_proto_family iucv_sock_family_ops = {
  1260. .family = AF_IUCV,
  1261. .owner = THIS_MODULE,
  1262. .create = iucv_sock_create,
  1263. };
  1264. static int __init afiucv_init(void)
  1265. {
  1266. int err;
  1267. if (!MACHINE_IS_VM) {
  1268. pr_err("The af_iucv module cannot be loaded"
  1269. " without z/VM\n");
  1270. err = -EPROTONOSUPPORT;
  1271. goto out;
  1272. }
  1273. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  1274. if (unlikely(err)) {
  1275. WARN_ON(err);
  1276. err = -EPROTONOSUPPORT;
  1277. goto out;
  1278. }
  1279. err = iucv_register(&af_iucv_handler, 0);
  1280. if (err)
  1281. goto out;
  1282. err = proto_register(&iucv_proto, 0);
  1283. if (err)
  1284. goto out_iucv;
  1285. err = sock_register(&iucv_sock_family_ops);
  1286. if (err)
  1287. goto out_proto;
  1288. return 0;
  1289. out_proto:
  1290. proto_unregister(&iucv_proto);
  1291. out_iucv:
  1292. iucv_unregister(&af_iucv_handler, 0);
  1293. out:
  1294. return err;
  1295. }
  1296. static void __exit afiucv_exit(void)
  1297. {
  1298. sock_unregister(PF_IUCV);
  1299. proto_unregister(&iucv_proto);
  1300. iucv_unregister(&af_iucv_handler, 0);
  1301. }
  1302. module_init(afiucv_init);
  1303. module_exit(afiucv_exit);
  1304. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  1305. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  1306. MODULE_VERSION(VERSION);
  1307. MODULE_LICENSE("GPL");
  1308. MODULE_ALIAS_NETPROTO(PF_IUCV);