sched_fair.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. /**************************************************************
  68. * CFS operations on generic schedulable entities:
  69. */
  70. static inline struct task_struct *task_of(struct sched_entity *se)
  71. {
  72. return container_of(se, struct task_struct, se);
  73. }
  74. #ifdef CONFIG_FAIR_GROUP_SCHED
  75. /* cpu runqueue to which this cfs_rq is attached */
  76. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  77. {
  78. return cfs_rq->rq;
  79. }
  80. /* An entity is a task if it doesn't "own" a runqueue */
  81. #define entity_is_task(se) (!se->my_q)
  82. /* Walk up scheduling entities hierarchy */
  83. #define for_each_sched_entity(se) \
  84. for (; se; se = se->parent)
  85. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  86. {
  87. return p->se.cfs_rq;
  88. }
  89. /* runqueue on which this entity is (to be) queued */
  90. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  91. {
  92. return se->cfs_rq;
  93. }
  94. /* runqueue "owned" by this group */
  95. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  96. {
  97. return grp->my_q;
  98. }
  99. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  100. * another cpu ('this_cpu')
  101. */
  102. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  103. {
  104. return cfs_rq->tg->cfs_rq[this_cpu];
  105. }
  106. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  107. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  108. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  109. /* Do the two (enqueued) entities belong to the same group ? */
  110. static inline int
  111. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  112. {
  113. if (se->cfs_rq == pse->cfs_rq)
  114. return 1;
  115. return 0;
  116. }
  117. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  118. {
  119. return se->parent;
  120. }
  121. #else /* CONFIG_FAIR_GROUP_SCHED */
  122. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  123. {
  124. return container_of(cfs_rq, struct rq, cfs);
  125. }
  126. #define entity_is_task(se) 1
  127. #define for_each_sched_entity(se) \
  128. for (; se; se = NULL)
  129. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  130. {
  131. return &task_rq(p)->cfs;
  132. }
  133. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  134. {
  135. struct task_struct *p = task_of(se);
  136. struct rq *rq = task_rq(p);
  137. return &rq->cfs;
  138. }
  139. /* runqueue "owned" by this group */
  140. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  141. {
  142. return NULL;
  143. }
  144. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  145. {
  146. return &cpu_rq(this_cpu)->cfs;
  147. }
  148. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  149. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  150. static inline int
  151. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  152. {
  153. return 1;
  154. }
  155. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  156. {
  157. return NULL;
  158. }
  159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  160. /**************************************************************
  161. * Scheduling class tree data structure manipulation methods:
  162. */
  163. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  164. {
  165. s64 delta = (s64)(vruntime - min_vruntime);
  166. if (delta > 0)
  167. min_vruntime = vruntime;
  168. return min_vruntime;
  169. }
  170. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  171. {
  172. s64 delta = (s64)(vruntime - min_vruntime);
  173. if (delta < 0)
  174. min_vruntime = vruntime;
  175. return min_vruntime;
  176. }
  177. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  178. {
  179. return se->vruntime - cfs_rq->min_vruntime;
  180. }
  181. /*
  182. * Enqueue an entity into the rb-tree:
  183. */
  184. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  185. {
  186. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  187. struct rb_node *parent = NULL;
  188. struct sched_entity *entry;
  189. s64 key = entity_key(cfs_rq, se);
  190. int leftmost = 1;
  191. /*
  192. * Find the right place in the rbtree:
  193. */
  194. while (*link) {
  195. parent = *link;
  196. entry = rb_entry(parent, struct sched_entity, run_node);
  197. /*
  198. * We dont care about collisions. Nodes with
  199. * the same key stay together.
  200. */
  201. if (key < entity_key(cfs_rq, entry)) {
  202. link = &parent->rb_left;
  203. } else {
  204. link = &parent->rb_right;
  205. leftmost = 0;
  206. }
  207. }
  208. /*
  209. * Maintain a cache of leftmost tree entries (it is frequently
  210. * used):
  211. */
  212. if (leftmost) {
  213. cfs_rq->rb_leftmost = &se->run_node;
  214. /*
  215. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  216. * value tracking the leftmost vruntime in the tree.
  217. */
  218. cfs_rq->min_vruntime =
  219. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  220. }
  221. rb_link_node(&se->run_node, parent, link);
  222. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  223. }
  224. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  225. {
  226. if (cfs_rq->rb_leftmost == &se->run_node) {
  227. struct rb_node *next_node;
  228. struct sched_entity *next;
  229. next_node = rb_next(&se->run_node);
  230. cfs_rq->rb_leftmost = next_node;
  231. if (next_node) {
  232. next = rb_entry(next_node,
  233. struct sched_entity, run_node);
  234. cfs_rq->min_vruntime =
  235. max_vruntime(cfs_rq->min_vruntime,
  236. next->vruntime);
  237. }
  238. }
  239. if (cfs_rq->next == se)
  240. cfs_rq->next = NULL;
  241. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  242. }
  243. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  244. {
  245. return cfs_rq->rb_leftmost;
  246. }
  247. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  248. {
  249. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  250. }
  251. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  252. {
  253. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  254. if (!last)
  255. return NULL;
  256. return rb_entry(last, struct sched_entity, run_node);
  257. }
  258. /**************************************************************
  259. * Scheduling class statistics methods:
  260. */
  261. #ifdef CONFIG_SCHED_DEBUG
  262. int sched_nr_latency_handler(struct ctl_table *table, int write,
  263. struct file *filp, void __user *buffer, size_t *lenp,
  264. loff_t *ppos)
  265. {
  266. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  267. if (ret || !write)
  268. return ret;
  269. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  270. sysctl_sched_min_granularity);
  271. return 0;
  272. }
  273. #endif
  274. /*
  275. * delta *= w / rw
  276. */
  277. static inline unsigned long
  278. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  279. {
  280. for_each_sched_entity(se) {
  281. delta = calc_delta_mine(delta,
  282. se->load.weight, &cfs_rq_of(se)->load);
  283. }
  284. return delta;
  285. }
  286. /*
  287. * delta *= rw / w
  288. */
  289. static inline unsigned long
  290. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  291. {
  292. for_each_sched_entity(se) {
  293. delta = calc_delta_mine(delta,
  294. cfs_rq_of(se)->load.weight, &se->load);
  295. }
  296. return delta;
  297. }
  298. /*
  299. * The idea is to set a period in which each task runs once.
  300. *
  301. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  302. * this period because otherwise the slices get too small.
  303. *
  304. * p = (nr <= nl) ? l : l*nr/nl
  305. */
  306. static u64 __sched_period(unsigned long nr_running)
  307. {
  308. u64 period = sysctl_sched_latency;
  309. unsigned long nr_latency = sched_nr_latency;
  310. if (unlikely(nr_running > nr_latency)) {
  311. period = sysctl_sched_min_granularity;
  312. period *= nr_running;
  313. }
  314. return period;
  315. }
  316. /*
  317. * We calculate the wall-time slice from the period by taking a part
  318. * proportional to the weight.
  319. *
  320. * s = p*w/rw
  321. */
  322. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  323. {
  324. return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
  325. }
  326. /*
  327. * We calculate the vruntime slice of a to be inserted task
  328. *
  329. * vs = s*rw/w = p
  330. */
  331. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  332. {
  333. unsigned long nr_running = cfs_rq->nr_running;
  334. if (!se->on_rq)
  335. nr_running++;
  336. return __sched_period(nr_running);
  337. }
  338. /*
  339. * Update the current task's runtime statistics. Skip current tasks that
  340. * are not in our scheduling class.
  341. */
  342. static inline void
  343. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  344. unsigned long delta_exec)
  345. {
  346. unsigned long delta_exec_weighted;
  347. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  348. curr->sum_exec_runtime += delta_exec;
  349. schedstat_add(cfs_rq, exec_clock, delta_exec);
  350. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  351. curr->vruntime += delta_exec_weighted;
  352. }
  353. static void update_curr(struct cfs_rq *cfs_rq)
  354. {
  355. struct sched_entity *curr = cfs_rq->curr;
  356. u64 now = rq_of(cfs_rq)->clock;
  357. unsigned long delta_exec;
  358. if (unlikely(!curr))
  359. return;
  360. /*
  361. * Get the amount of time the current task was running
  362. * since the last time we changed load (this cannot
  363. * overflow on 32 bits):
  364. */
  365. delta_exec = (unsigned long)(now - curr->exec_start);
  366. __update_curr(cfs_rq, curr, delta_exec);
  367. curr->exec_start = now;
  368. if (entity_is_task(curr)) {
  369. struct task_struct *curtask = task_of(curr);
  370. cpuacct_charge(curtask, delta_exec);
  371. }
  372. }
  373. static inline void
  374. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  375. {
  376. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  377. }
  378. /*
  379. * Task is being enqueued - update stats:
  380. */
  381. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  382. {
  383. /*
  384. * Are we enqueueing a waiting task? (for current tasks
  385. * a dequeue/enqueue event is a NOP)
  386. */
  387. if (se != cfs_rq->curr)
  388. update_stats_wait_start(cfs_rq, se);
  389. }
  390. static void
  391. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  392. {
  393. schedstat_set(se->wait_max, max(se->wait_max,
  394. rq_of(cfs_rq)->clock - se->wait_start));
  395. schedstat_set(se->wait_count, se->wait_count + 1);
  396. schedstat_set(se->wait_sum, se->wait_sum +
  397. rq_of(cfs_rq)->clock - se->wait_start);
  398. schedstat_set(se->wait_start, 0);
  399. }
  400. static inline void
  401. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  402. {
  403. /*
  404. * Mark the end of the wait period if dequeueing a
  405. * waiting task:
  406. */
  407. if (se != cfs_rq->curr)
  408. update_stats_wait_end(cfs_rq, se);
  409. }
  410. /*
  411. * We are picking a new current task - update its stats:
  412. */
  413. static inline void
  414. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  415. {
  416. /*
  417. * We are starting a new run period:
  418. */
  419. se->exec_start = rq_of(cfs_rq)->clock;
  420. }
  421. /**************************************************
  422. * Scheduling class queueing methods:
  423. */
  424. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  425. static void
  426. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  427. {
  428. cfs_rq->task_weight += weight;
  429. }
  430. #else
  431. static inline void
  432. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  433. {
  434. }
  435. #endif
  436. static void
  437. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  438. {
  439. update_load_add(&cfs_rq->load, se->load.weight);
  440. if (!parent_entity(se))
  441. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  442. if (entity_is_task(se))
  443. add_cfs_task_weight(cfs_rq, se->load.weight);
  444. cfs_rq->nr_running++;
  445. se->on_rq = 1;
  446. list_add(&se->group_node, &cfs_rq->tasks);
  447. }
  448. static void
  449. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  450. {
  451. update_load_sub(&cfs_rq->load, se->load.weight);
  452. if (!parent_entity(se))
  453. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  454. if (entity_is_task(se))
  455. add_cfs_task_weight(cfs_rq, -se->load.weight);
  456. cfs_rq->nr_running--;
  457. se->on_rq = 0;
  458. list_del_init(&se->group_node);
  459. }
  460. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  461. {
  462. #ifdef CONFIG_SCHEDSTATS
  463. if (se->sleep_start) {
  464. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  465. struct task_struct *tsk = task_of(se);
  466. if ((s64)delta < 0)
  467. delta = 0;
  468. if (unlikely(delta > se->sleep_max))
  469. se->sleep_max = delta;
  470. se->sleep_start = 0;
  471. se->sum_sleep_runtime += delta;
  472. account_scheduler_latency(tsk, delta >> 10, 1);
  473. }
  474. if (se->block_start) {
  475. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  476. struct task_struct *tsk = task_of(se);
  477. if ((s64)delta < 0)
  478. delta = 0;
  479. if (unlikely(delta > se->block_max))
  480. se->block_max = delta;
  481. se->block_start = 0;
  482. se->sum_sleep_runtime += delta;
  483. /*
  484. * Blocking time is in units of nanosecs, so shift by 20 to
  485. * get a milliseconds-range estimation of the amount of
  486. * time that the task spent sleeping:
  487. */
  488. if (unlikely(prof_on == SLEEP_PROFILING)) {
  489. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  490. delta >> 20);
  491. }
  492. account_scheduler_latency(tsk, delta >> 10, 0);
  493. }
  494. #endif
  495. }
  496. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  497. {
  498. #ifdef CONFIG_SCHED_DEBUG
  499. s64 d = se->vruntime - cfs_rq->min_vruntime;
  500. if (d < 0)
  501. d = -d;
  502. if (d > 3*sysctl_sched_latency)
  503. schedstat_inc(cfs_rq, nr_spread_over);
  504. #endif
  505. }
  506. static void
  507. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  508. {
  509. u64 vruntime;
  510. if (first_fair(cfs_rq)) {
  511. vruntime = min_vruntime(cfs_rq->min_vruntime,
  512. __pick_next_entity(cfs_rq)->vruntime);
  513. } else
  514. vruntime = cfs_rq->min_vruntime;
  515. /*
  516. * The 'current' period is already promised to the current tasks,
  517. * however the extra weight of the new task will slow them down a
  518. * little, place the new task so that it fits in the slot that
  519. * stays open at the end.
  520. */
  521. if (initial && sched_feat(START_DEBIT))
  522. vruntime += sched_vslice_add(cfs_rq, se);
  523. if (!initial) {
  524. /* sleeps upto a single latency don't count. */
  525. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  526. unsigned long thresh = sysctl_sched_latency;
  527. /*
  528. * convert the sleeper threshold into virtual time
  529. */
  530. if (sched_feat(NORMALIZED_SLEEPER))
  531. thresh = calc_delta_fair(thresh, se);
  532. vruntime -= thresh;
  533. }
  534. /* ensure we never gain time by being placed backwards. */
  535. vruntime = max_vruntime(se->vruntime, vruntime);
  536. }
  537. se->vruntime = vruntime;
  538. }
  539. static void
  540. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  541. {
  542. /*
  543. * Update run-time statistics of the 'current'.
  544. */
  545. update_curr(cfs_rq);
  546. account_entity_enqueue(cfs_rq, se);
  547. if (wakeup) {
  548. place_entity(cfs_rq, se, 0);
  549. enqueue_sleeper(cfs_rq, se);
  550. }
  551. update_stats_enqueue(cfs_rq, se);
  552. check_spread(cfs_rq, se);
  553. if (se != cfs_rq->curr)
  554. __enqueue_entity(cfs_rq, se);
  555. }
  556. static void
  557. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  558. {
  559. /*
  560. * Update run-time statistics of the 'current'.
  561. */
  562. update_curr(cfs_rq);
  563. update_stats_dequeue(cfs_rq, se);
  564. if (sleep) {
  565. #ifdef CONFIG_SCHEDSTATS
  566. if (entity_is_task(se)) {
  567. struct task_struct *tsk = task_of(se);
  568. if (tsk->state & TASK_INTERRUPTIBLE)
  569. se->sleep_start = rq_of(cfs_rq)->clock;
  570. if (tsk->state & TASK_UNINTERRUPTIBLE)
  571. se->block_start = rq_of(cfs_rq)->clock;
  572. }
  573. #endif
  574. }
  575. if (se != cfs_rq->curr)
  576. __dequeue_entity(cfs_rq, se);
  577. account_entity_dequeue(cfs_rq, se);
  578. }
  579. /*
  580. * Preempt the current task with a newly woken task if needed:
  581. */
  582. static void
  583. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  584. {
  585. unsigned long ideal_runtime, delta_exec;
  586. ideal_runtime = sched_slice(cfs_rq, curr);
  587. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  588. if (delta_exec > ideal_runtime)
  589. resched_task(rq_of(cfs_rq)->curr);
  590. }
  591. static void
  592. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  593. {
  594. /* 'current' is not kept within the tree. */
  595. if (se->on_rq) {
  596. /*
  597. * Any task has to be enqueued before it get to execute on
  598. * a CPU. So account for the time it spent waiting on the
  599. * runqueue.
  600. */
  601. update_stats_wait_end(cfs_rq, se);
  602. __dequeue_entity(cfs_rq, se);
  603. }
  604. update_stats_curr_start(cfs_rq, se);
  605. cfs_rq->curr = se;
  606. #ifdef CONFIG_SCHEDSTATS
  607. /*
  608. * Track our maximum slice length, if the CPU's load is at
  609. * least twice that of our own weight (i.e. dont track it
  610. * when there are only lesser-weight tasks around):
  611. */
  612. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  613. se->slice_max = max(se->slice_max,
  614. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  615. }
  616. #endif
  617. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  618. }
  619. static struct sched_entity *
  620. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  621. {
  622. struct rq *rq = rq_of(cfs_rq);
  623. u64 pair_slice = rq->clock - cfs_rq->pair_start;
  624. if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
  625. cfs_rq->pair_start = rq->clock;
  626. return se;
  627. }
  628. return cfs_rq->next;
  629. }
  630. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  631. {
  632. struct sched_entity *se = NULL;
  633. if (first_fair(cfs_rq)) {
  634. se = __pick_next_entity(cfs_rq);
  635. se = pick_next(cfs_rq, se);
  636. set_next_entity(cfs_rq, se);
  637. }
  638. return se;
  639. }
  640. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  641. {
  642. /*
  643. * If still on the runqueue then deactivate_task()
  644. * was not called and update_curr() has to be done:
  645. */
  646. if (prev->on_rq)
  647. update_curr(cfs_rq);
  648. check_spread(cfs_rq, prev);
  649. if (prev->on_rq) {
  650. update_stats_wait_start(cfs_rq, prev);
  651. /* Put 'current' back into the tree. */
  652. __enqueue_entity(cfs_rq, prev);
  653. }
  654. cfs_rq->curr = NULL;
  655. }
  656. static void
  657. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  658. {
  659. /*
  660. * Update run-time statistics of the 'current'.
  661. */
  662. update_curr(cfs_rq);
  663. #ifdef CONFIG_SCHED_HRTICK
  664. /*
  665. * queued ticks are scheduled to match the slice, so don't bother
  666. * validating it and just reschedule.
  667. */
  668. if (queued) {
  669. resched_task(rq_of(cfs_rq)->curr);
  670. return;
  671. }
  672. /*
  673. * don't let the period tick interfere with the hrtick preemption
  674. */
  675. if (!sched_feat(DOUBLE_TICK) &&
  676. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  677. return;
  678. #endif
  679. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  680. check_preempt_tick(cfs_rq, curr);
  681. }
  682. /**************************************************
  683. * CFS operations on tasks:
  684. */
  685. #ifdef CONFIG_SCHED_HRTICK
  686. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  687. {
  688. struct sched_entity *se = &p->se;
  689. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  690. WARN_ON(task_rq(p) != rq);
  691. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  692. u64 slice = sched_slice(cfs_rq, se);
  693. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  694. s64 delta = slice - ran;
  695. if (delta < 0) {
  696. if (rq->curr == p)
  697. resched_task(p);
  698. return;
  699. }
  700. /*
  701. * Don't schedule slices shorter than 10000ns, that just
  702. * doesn't make sense. Rely on vruntime for fairness.
  703. */
  704. if (rq->curr != p)
  705. delta = max_t(s64, 10000LL, delta);
  706. hrtick_start(rq, delta);
  707. }
  708. }
  709. #else /* !CONFIG_SCHED_HRTICK */
  710. static inline void
  711. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  712. {
  713. }
  714. #endif
  715. /*
  716. * The enqueue_task method is called before nr_running is
  717. * increased. Here we update the fair scheduling stats and
  718. * then put the task into the rbtree:
  719. */
  720. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  721. {
  722. struct cfs_rq *cfs_rq;
  723. struct sched_entity *se = &p->se;
  724. for_each_sched_entity(se) {
  725. if (se->on_rq)
  726. break;
  727. cfs_rq = cfs_rq_of(se);
  728. enqueue_entity(cfs_rq, se, wakeup);
  729. wakeup = 1;
  730. }
  731. hrtick_start_fair(rq, rq->curr);
  732. }
  733. /*
  734. * The dequeue_task method is called before nr_running is
  735. * decreased. We remove the task from the rbtree and
  736. * update the fair scheduling stats:
  737. */
  738. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  739. {
  740. struct cfs_rq *cfs_rq;
  741. struct sched_entity *se = &p->se;
  742. for_each_sched_entity(se) {
  743. cfs_rq = cfs_rq_of(se);
  744. dequeue_entity(cfs_rq, se, sleep);
  745. /* Don't dequeue parent if it has other entities besides us */
  746. if (cfs_rq->load.weight)
  747. break;
  748. sleep = 1;
  749. }
  750. hrtick_start_fair(rq, rq->curr);
  751. }
  752. /*
  753. * sched_yield() support is very simple - we dequeue and enqueue.
  754. *
  755. * If compat_yield is turned on then we requeue to the end of the tree.
  756. */
  757. static void yield_task_fair(struct rq *rq)
  758. {
  759. struct task_struct *curr = rq->curr;
  760. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  761. struct sched_entity *rightmost, *se = &curr->se;
  762. /*
  763. * Are we the only task in the tree?
  764. */
  765. if (unlikely(cfs_rq->nr_running == 1))
  766. return;
  767. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  768. update_rq_clock(rq);
  769. /*
  770. * Update run-time statistics of the 'current'.
  771. */
  772. update_curr(cfs_rq);
  773. return;
  774. }
  775. /*
  776. * Find the rightmost entry in the rbtree:
  777. */
  778. rightmost = __pick_last_entity(cfs_rq);
  779. /*
  780. * Already in the rightmost position?
  781. */
  782. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  783. return;
  784. /*
  785. * Minimally necessary key value to be last in the tree:
  786. * Upon rescheduling, sched_class::put_prev_task() will place
  787. * 'current' within the tree based on its new key value.
  788. */
  789. se->vruntime = rightmost->vruntime + 1;
  790. }
  791. /*
  792. * wake_idle() will wake a task on an idle cpu if task->cpu is
  793. * not idle and an idle cpu is available. The span of cpus to
  794. * search starts with cpus closest then further out as needed,
  795. * so we always favor a closer, idle cpu.
  796. * Domains may include CPUs that are not usable for migration,
  797. * hence we need to mask them out (cpu_active_map)
  798. *
  799. * Returns the CPU we should wake onto.
  800. */
  801. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  802. static int wake_idle(int cpu, struct task_struct *p)
  803. {
  804. cpumask_t tmp;
  805. struct sched_domain *sd;
  806. int i;
  807. /*
  808. * If it is idle, then it is the best cpu to run this task.
  809. *
  810. * This cpu is also the best, if it has more than one task already.
  811. * Siblings must be also busy(in most cases) as they didn't already
  812. * pickup the extra load from this cpu and hence we need not check
  813. * sibling runqueue info. This will avoid the checks and cache miss
  814. * penalities associated with that.
  815. */
  816. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  817. return cpu;
  818. for_each_domain(cpu, sd) {
  819. if ((sd->flags & SD_WAKE_IDLE)
  820. || ((sd->flags & SD_WAKE_IDLE_FAR)
  821. && !task_hot(p, task_rq(p)->clock, sd))) {
  822. cpus_and(tmp, sd->span, p->cpus_allowed);
  823. cpus_and(tmp, tmp, cpu_active_map);
  824. for_each_cpu_mask_nr(i, tmp) {
  825. if (idle_cpu(i)) {
  826. if (i != task_cpu(p)) {
  827. schedstat_inc(p,
  828. se.nr_wakeups_idle);
  829. }
  830. return i;
  831. }
  832. }
  833. } else {
  834. break;
  835. }
  836. }
  837. return cpu;
  838. }
  839. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  840. static inline int wake_idle(int cpu, struct task_struct *p)
  841. {
  842. return cpu;
  843. }
  844. #endif
  845. #ifdef CONFIG_SMP
  846. static const struct sched_class fair_sched_class;
  847. #ifdef CONFIG_FAIR_GROUP_SCHED
  848. /*
  849. * effective_load() calculates the load change as seen from the root_task_group
  850. *
  851. * Adding load to a group doesn't make a group heavier, but can cause movement
  852. * of group shares between cpus. Assuming the shares were perfectly aligned one
  853. * can calculate the shift in shares.
  854. *
  855. * The problem is that perfectly aligning the shares is rather expensive, hence
  856. * we try to avoid doing that too often - see update_shares(), which ratelimits
  857. * this change.
  858. *
  859. * We compensate this by not only taking the current delta into account, but
  860. * also considering the delta between when the shares were last adjusted and
  861. * now.
  862. *
  863. * We still saw a performance dip, some tracing learned us that between
  864. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  865. * significantly. Therefore try to bias the error in direction of failing
  866. * the affine wakeup.
  867. *
  868. */
  869. static long effective_load(struct task_group *tg, int cpu,
  870. long wl, long wg)
  871. {
  872. struct sched_entity *se = tg->se[cpu];
  873. if (!tg->parent)
  874. return wl;
  875. /*
  876. * By not taking the decrease of shares on the other cpu into
  877. * account our error leans towards reducing the affine wakeups.
  878. */
  879. if (!wl && sched_feat(ASYM_EFF_LOAD))
  880. return wl;
  881. for_each_sched_entity(se) {
  882. long S, rw, s, a, b;
  883. long more_w;
  884. /*
  885. * Instead of using this increment, also add the difference
  886. * between when the shares were last updated and now.
  887. */
  888. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  889. wl += more_w;
  890. wg += more_w;
  891. S = se->my_q->tg->shares;
  892. s = se->my_q->shares;
  893. rw = se->my_q->rq_weight;
  894. a = S*(rw + wl);
  895. b = S*rw + s*wg;
  896. wl = s*(a-b);
  897. if (likely(b))
  898. wl /= b;
  899. /*
  900. * Assume the group is already running and will
  901. * thus already be accounted for in the weight.
  902. *
  903. * That is, moving shares between CPUs, does not
  904. * alter the group weight.
  905. */
  906. wg = 0;
  907. }
  908. return wl;
  909. }
  910. #else
  911. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  912. unsigned long wl, unsigned long wg)
  913. {
  914. return wl;
  915. }
  916. #endif
  917. static int
  918. wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
  919. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  920. int idx, unsigned long load, unsigned long this_load,
  921. unsigned int imbalance)
  922. {
  923. struct task_struct *curr = this_rq->curr;
  924. struct task_group *tg;
  925. unsigned long tl = this_load;
  926. unsigned long tl_per_task;
  927. unsigned long weight;
  928. int balanced;
  929. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  930. return 0;
  931. /*
  932. * If sync wakeup then subtract the (maximum possible)
  933. * effect of the currently running task from the load
  934. * of the current CPU:
  935. */
  936. if (sync) {
  937. tg = task_group(current);
  938. weight = current->se.load.weight;
  939. tl += effective_load(tg, this_cpu, -weight, -weight);
  940. load += effective_load(tg, prev_cpu, 0, -weight);
  941. }
  942. tg = task_group(p);
  943. weight = p->se.load.weight;
  944. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  945. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  946. /*
  947. * If the currently running task will sleep within
  948. * a reasonable amount of time then attract this newly
  949. * woken task:
  950. */
  951. if (sync && balanced) {
  952. if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  953. p->se.avg_overlap < sysctl_sched_migration_cost)
  954. return 1;
  955. }
  956. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  957. tl_per_task = cpu_avg_load_per_task(this_cpu);
  958. if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
  959. balanced) {
  960. /*
  961. * This domain has SD_WAKE_AFFINE and
  962. * p is cache cold in this domain, and
  963. * there is no bad imbalance.
  964. */
  965. schedstat_inc(this_sd, ttwu_move_affine);
  966. schedstat_inc(p, se.nr_wakeups_affine);
  967. return 1;
  968. }
  969. return 0;
  970. }
  971. static int select_task_rq_fair(struct task_struct *p, int sync)
  972. {
  973. struct sched_domain *sd, *this_sd = NULL;
  974. int prev_cpu, this_cpu, new_cpu;
  975. unsigned long load, this_load;
  976. struct rq *rq, *this_rq;
  977. unsigned int imbalance;
  978. int idx;
  979. prev_cpu = task_cpu(p);
  980. rq = task_rq(p);
  981. this_cpu = smp_processor_id();
  982. this_rq = cpu_rq(this_cpu);
  983. new_cpu = prev_cpu;
  984. /*
  985. * 'this_sd' is the first domain that both
  986. * this_cpu and prev_cpu are present in:
  987. */
  988. for_each_domain(this_cpu, sd) {
  989. if (cpu_isset(prev_cpu, sd->span)) {
  990. this_sd = sd;
  991. break;
  992. }
  993. }
  994. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  995. goto out;
  996. /*
  997. * Check for affine wakeup and passive balancing possibilities.
  998. */
  999. if (!this_sd)
  1000. goto out;
  1001. idx = this_sd->wake_idx;
  1002. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1003. load = source_load(prev_cpu, idx);
  1004. this_load = target_load(this_cpu, idx);
  1005. if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1006. load, this_load, imbalance))
  1007. return this_cpu;
  1008. if (prev_cpu == this_cpu)
  1009. goto out;
  1010. /*
  1011. * Start passive balancing when half the imbalance_pct
  1012. * limit is reached.
  1013. */
  1014. if (this_sd->flags & SD_WAKE_BALANCE) {
  1015. if (imbalance*this_load <= 100*load) {
  1016. schedstat_inc(this_sd, ttwu_move_balance);
  1017. schedstat_inc(p, se.nr_wakeups_passive);
  1018. return this_cpu;
  1019. }
  1020. }
  1021. out:
  1022. return wake_idle(new_cpu, p);
  1023. }
  1024. #endif /* CONFIG_SMP */
  1025. static unsigned long wakeup_gran(struct sched_entity *se)
  1026. {
  1027. unsigned long gran = sysctl_sched_wakeup_granularity;
  1028. /*
  1029. * More easily preempt - nice tasks, while not making it harder for
  1030. * + nice tasks.
  1031. */
  1032. if (sched_feat(ASYM_GRAN))
  1033. gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
  1034. return gran;
  1035. }
  1036. /*
  1037. * Preempt the current task with a newly woken task if needed:
  1038. */
  1039. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1040. {
  1041. struct task_struct *curr = rq->curr;
  1042. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1043. struct sched_entity *se = &curr->se, *pse = &p->se;
  1044. s64 delta_exec;
  1045. if (unlikely(rt_prio(p->prio))) {
  1046. update_rq_clock(rq);
  1047. update_curr(cfs_rq);
  1048. resched_task(curr);
  1049. return;
  1050. }
  1051. if (unlikely(se == pse))
  1052. return;
  1053. cfs_rq_of(pse)->next = pse;
  1054. /*
  1055. * We can come here with TIF_NEED_RESCHED already set from new task
  1056. * wake up path.
  1057. */
  1058. if (test_tsk_need_resched(curr))
  1059. return;
  1060. /*
  1061. * Batch tasks do not preempt (their preemption is driven by
  1062. * the tick):
  1063. */
  1064. if (unlikely(p->policy == SCHED_BATCH))
  1065. return;
  1066. if (!sched_feat(WAKEUP_PREEMPT))
  1067. return;
  1068. if (sched_feat(WAKEUP_OVERLAP) && sync &&
  1069. se->avg_overlap < sysctl_sched_migration_cost &&
  1070. pse->avg_overlap < sysctl_sched_migration_cost) {
  1071. resched_task(curr);
  1072. return;
  1073. }
  1074. delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1075. if (delta_exec > wakeup_gran(pse))
  1076. resched_task(curr);
  1077. }
  1078. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1079. {
  1080. struct task_struct *p;
  1081. struct cfs_rq *cfs_rq = &rq->cfs;
  1082. struct sched_entity *se;
  1083. if (unlikely(!cfs_rq->nr_running))
  1084. return NULL;
  1085. do {
  1086. se = pick_next_entity(cfs_rq);
  1087. cfs_rq = group_cfs_rq(se);
  1088. } while (cfs_rq);
  1089. p = task_of(se);
  1090. hrtick_start_fair(rq, p);
  1091. return p;
  1092. }
  1093. /*
  1094. * Account for a descheduled task:
  1095. */
  1096. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1097. {
  1098. struct sched_entity *se = &prev->se;
  1099. struct cfs_rq *cfs_rq;
  1100. for_each_sched_entity(se) {
  1101. cfs_rq = cfs_rq_of(se);
  1102. put_prev_entity(cfs_rq, se);
  1103. }
  1104. }
  1105. #ifdef CONFIG_SMP
  1106. /**************************************************
  1107. * Fair scheduling class load-balancing methods:
  1108. */
  1109. /*
  1110. * Load-balancing iterator. Note: while the runqueue stays locked
  1111. * during the whole iteration, the current task might be
  1112. * dequeued so the iterator has to be dequeue-safe. Here we
  1113. * achieve that by always pre-iterating before returning
  1114. * the current task:
  1115. */
  1116. static struct task_struct *
  1117. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1118. {
  1119. struct task_struct *p = NULL;
  1120. struct sched_entity *se;
  1121. if (next == &cfs_rq->tasks)
  1122. return NULL;
  1123. /* Skip over entities that are not tasks */
  1124. do {
  1125. se = list_entry(next, struct sched_entity, group_node);
  1126. next = next->next;
  1127. } while (next != &cfs_rq->tasks && !entity_is_task(se));
  1128. if (next == &cfs_rq->tasks && !entity_is_task(se))
  1129. return NULL;
  1130. cfs_rq->balance_iterator = next;
  1131. if (entity_is_task(se))
  1132. p = task_of(se);
  1133. return p;
  1134. }
  1135. static struct task_struct *load_balance_start_fair(void *arg)
  1136. {
  1137. struct cfs_rq *cfs_rq = arg;
  1138. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1139. }
  1140. static struct task_struct *load_balance_next_fair(void *arg)
  1141. {
  1142. struct cfs_rq *cfs_rq = arg;
  1143. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1144. }
  1145. static unsigned long
  1146. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1147. unsigned long max_load_move, struct sched_domain *sd,
  1148. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1149. struct cfs_rq *cfs_rq)
  1150. {
  1151. struct rq_iterator cfs_rq_iterator;
  1152. cfs_rq_iterator.start = load_balance_start_fair;
  1153. cfs_rq_iterator.next = load_balance_next_fair;
  1154. cfs_rq_iterator.arg = cfs_rq;
  1155. return balance_tasks(this_rq, this_cpu, busiest,
  1156. max_load_move, sd, idle, all_pinned,
  1157. this_best_prio, &cfs_rq_iterator);
  1158. }
  1159. #ifdef CONFIG_FAIR_GROUP_SCHED
  1160. static unsigned long
  1161. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1162. unsigned long max_load_move,
  1163. struct sched_domain *sd, enum cpu_idle_type idle,
  1164. int *all_pinned, int *this_best_prio)
  1165. {
  1166. long rem_load_move = max_load_move;
  1167. int busiest_cpu = cpu_of(busiest);
  1168. struct task_group *tg;
  1169. rcu_read_lock();
  1170. update_h_load(busiest_cpu);
  1171. list_for_each_entry_rcu(tg, &task_groups, list) {
  1172. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1173. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1174. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1175. u64 rem_load, moved_load;
  1176. /*
  1177. * empty group
  1178. */
  1179. if (!busiest_cfs_rq->task_weight)
  1180. continue;
  1181. rem_load = (u64)rem_load_move * busiest_weight;
  1182. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1183. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1184. rem_load, sd, idle, all_pinned, this_best_prio,
  1185. tg->cfs_rq[busiest_cpu]);
  1186. if (!moved_load)
  1187. continue;
  1188. moved_load *= busiest_h_load;
  1189. moved_load = div_u64(moved_load, busiest_weight + 1);
  1190. rem_load_move -= moved_load;
  1191. if (rem_load_move < 0)
  1192. break;
  1193. }
  1194. rcu_read_unlock();
  1195. return max_load_move - rem_load_move;
  1196. }
  1197. #else
  1198. static unsigned long
  1199. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1200. unsigned long max_load_move,
  1201. struct sched_domain *sd, enum cpu_idle_type idle,
  1202. int *all_pinned, int *this_best_prio)
  1203. {
  1204. return __load_balance_fair(this_rq, this_cpu, busiest,
  1205. max_load_move, sd, idle, all_pinned,
  1206. this_best_prio, &busiest->cfs);
  1207. }
  1208. #endif
  1209. static int
  1210. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1211. struct sched_domain *sd, enum cpu_idle_type idle)
  1212. {
  1213. struct cfs_rq *busy_cfs_rq;
  1214. struct rq_iterator cfs_rq_iterator;
  1215. cfs_rq_iterator.start = load_balance_start_fair;
  1216. cfs_rq_iterator.next = load_balance_next_fair;
  1217. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1218. /*
  1219. * pass busy_cfs_rq argument into
  1220. * load_balance_[start|next]_fair iterators
  1221. */
  1222. cfs_rq_iterator.arg = busy_cfs_rq;
  1223. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1224. &cfs_rq_iterator))
  1225. return 1;
  1226. }
  1227. return 0;
  1228. }
  1229. #endif /* CONFIG_SMP */
  1230. /*
  1231. * scheduler tick hitting a task of our scheduling class:
  1232. */
  1233. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1234. {
  1235. struct cfs_rq *cfs_rq;
  1236. struct sched_entity *se = &curr->se;
  1237. for_each_sched_entity(se) {
  1238. cfs_rq = cfs_rq_of(se);
  1239. entity_tick(cfs_rq, se, queued);
  1240. }
  1241. }
  1242. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1243. /*
  1244. * Share the fairness runtime between parent and child, thus the
  1245. * total amount of pressure for CPU stays equal - new tasks
  1246. * get a chance to run but frequent forkers are not allowed to
  1247. * monopolize the CPU. Note: the parent runqueue is locked,
  1248. * the child is not running yet.
  1249. */
  1250. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1251. {
  1252. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1253. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1254. int this_cpu = smp_processor_id();
  1255. sched_info_queued(p);
  1256. update_curr(cfs_rq);
  1257. place_entity(cfs_rq, se, 1);
  1258. /* 'curr' will be NULL if the child belongs to a different group */
  1259. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1260. curr && curr->vruntime < se->vruntime) {
  1261. /*
  1262. * Upon rescheduling, sched_class::put_prev_task() will place
  1263. * 'current' within the tree based on its new key value.
  1264. */
  1265. swap(curr->vruntime, se->vruntime);
  1266. resched_task(rq->curr);
  1267. }
  1268. enqueue_task_fair(rq, p, 0);
  1269. }
  1270. /*
  1271. * Priority of the task has changed. Check to see if we preempt
  1272. * the current task.
  1273. */
  1274. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1275. int oldprio, int running)
  1276. {
  1277. /*
  1278. * Reschedule if we are currently running on this runqueue and
  1279. * our priority decreased, or if we are not currently running on
  1280. * this runqueue and our priority is higher than the current's
  1281. */
  1282. if (running) {
  1283. if (p->prio > oldprio)
  1284. resched_task(rq->curr);
  1285. } else
  1286. check_preempt_curr(rq, p, 0);
  1287. }
  1288. /*
  1289. * We switched to the sched_fair class.
  1290. */
  1291. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1292. int running)
  1293. {
  1294. /*
  1295. * We were most likely switched from sched_rt, so
  1296. * kick off the schedule if running, otherwise just see
  1297. * if we can still preempt the current task.
  1298. */
  1299. if (running)
  1300. resched_task(rq->curr);
  1301. else
  1302. check_preempt_curr(rq, p, 0);
  1303. }
  1304. /* Account for a task changing its policy or group.
  1305. *
  1306. * This routine is mostly called to set cfs_rq->curr field when a task
  1307. * migrates between groups/classes.
  1308. */
  1309. static void set_curr_task_fair(struct rq *rq)
  1310. {
  1311. struct sched_entity *se = &rq->curr->se;
  1312. for_each_sched_entity(se)
  1313. set_next_entity(cfs_rq_of(se), se);
  1314. }
  1315. #ifdef CONFIG_FAIR_GROUP_SCHED
  1316. static void moved_group_fair(struct task_struct *p)
  1317. {
  1318. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1319. update_curr(cfs_rq);
  1320. place_entity(cfs_rq, &p->se, 1);
  1321. }
  1322. #endif
  1323. /*
  1324. * All the scheduling class methods:
  1325. */
  1326. static const struct sched_class fair_sched_class = {
  1327. .next = &idle_sched_class,
  1328. .enqueue_task = enqueue_task_fair,
  1329. .dequeue_task = dequeue_task_fair,
  1330. .yield_task = yield_task_fair,
  1331. #ifdef CONFIG_SMP
  1332. .select_task_rq = select_task_rq_fair,
  1333. #endif /* CONFIG_SMP */
  1334. .check_preempt_curr = check_preempt_wakeup,
  1335. .pick_next_task = pick_next_task_fair,
  1336. .put_prev_task = put_prev_task_fair,
  1337. #ifdef CONFIG_SMP
  1338. .load_balance = load_balance_fair,
  1339. .move_one_task = move_one_task_fair,
  1340. #endif
  1341. .set_curr_task = set_curr_task_fair,
  1342. .task_tick = task_tick_fair,
  1343. .task_new = task_new_fair,
  1344. .prio_changed = prio_changed_fair,
  1345. .switched_to = switched_to_fair,
  1346. #ifdef CONFIG_FAIR_GROUP_SCHED
  1347. .moved_group = moved_group_fair,
  1348. #endif
  1349. };
  1350. #ifdef CONFIG_SCHED_DEBUG
  1351. static void print_cfs_stats(struct seq_file *m, int cpu)
  1352. {
  1353. struct cfs_rq *cfs_rq;
  1354. rcu_read_lock();
  1355. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1356. print_cfs_rq(m, cpu, cfs_rq);
  1357. rcu_read_unlock();
  1358. }
  1359. #endif