ide-io.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747
  1. /*
  2. * IDE I/O functions
  3. *
  4. * Basic PIO and command management functionality.
  5. *
  6. * This code was split off from ide.c. See ide.c for history and original
  7. * copyrights.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2, or (at your option) any
  12. * later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * For the avoidance of doubt the "preferred form" of this code is one which
  20. * is in an open non patent encumbered format. Where cryptographic key signing
  21. * forms part of the process of creating an executable the information
  22. * including keys needed to generate an equivalently functional executable
  23. * are deemed to be part of the source code.
  24. */
  25. #include <linux/module.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/kernel.h>
  29. #include <linux/timer.h>
  30. #include <linux/mm.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/major.h>
  33. #include <linux/errno.h>
  34. #include <linux/genhd.h>
  35. #include <linux/blkpg.h>
  36. #include <linux/slab.h>
  37. #include <linux/init.h>
  38. #include <linux/pci.h>
  39. #include <linux/delay.h>
  40. #include <linux/ide.h>
  41. #include <linux/completion.h>
  42. #include <linux/reboot.h>
  43. #include <linux/cdrom.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/device.h>
  46. #include <linux/kmod.h>
  47. #include <linux/scatterlist.h>
  48. #include <linux/bitops.h>
  49. #include <asm/byteorder.h>
  50. #include <asm/irq.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/io.h>
  53. static int __ide_end_request(ide_drive_t *drive, struct request *rq,
  54. int uptodate, unsigned int nr_bytes, int dequeue)
  55. {
  56. int ret = 1;
  57. /*
  58. * if failfast is set on a request, override number of sectors and
  59. * complete the whole request right now
  60. */
  61. if (blk_noretry_request(rq) && end_io_error(uptodate))
  62. nr_bytes = rq->hard_nr_sectors << 9;
  63. if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
  64. rq->errors = -EIO;
  65. /*
  66. * decide whether to reenable DMA -- 3 is a random magic for now,
  67. * if we DMA timeout more than 3 times, just stay in PIO
  68. */
  69. if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
  70. drive->state = 0;
  71. HWGROUP(drive)->hwif->ide_dma_on(drive);
  72. }
  73. if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
  74. add_disk_randomness(rq->rq_disk);
  75. if (dequeue) {
  76. if (!list_empty(&rq->queuelist))
  77. blkdev_dequeue_request(rq);
  78. HWGROUP(drive)->rq = NULL;
  79. }
  80. end_that_request_last(rq, uptodate);
  81. ret = 0;
  82. }
  83. return ret;
  84. }
  85. /**
  86. * ide_end_request - complete an IDE I/O
  87. * @drive: IDE device for the I/O
  88. * @uptodate:
  89. * @nr_sectors: number of sectors completed
  90. *
  91. * This is our end_request wrapper function. We complete the I/O
  92. * update random number input and dequeue the request, which if
  93. * it was tagged may be out of order.
  94. */
  95. int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
  96. {
  97. unsigned int nr_bytes = nr_sectors << 9;
  98. struct request *rq;
  99. unsigned long flags;
  100. int ret = 1;
  101. /*
  102. * room for locking improvements here, the calls below don't
  103. * need the queue lock held at all
  104. */
  105. spin_lock_irqsave(&ide_lock, flags);
  106. rq = HWGROUP(drive)->rq;
  107. if (!nr_bytes) {
  108. if (blk_pc_request(rq))
  109. nr_bytes = rq->data_len;
  110. else
  111. nr_bytes = rq->hard_cur_sectors << 9;
  112. }
  113. ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
  114. spin_unlock_irqrestore(&ide_lock, flags);
  115. return ret;
  116. }
  117. EXPORT_SYMBOL(ide_end_request);
  118. /*
  119. * Power Management state machine. This one is rather trivial for now,
  120. * we should probably add more, like switching back to PIO on suspend
  121. * to help some BIOSes, re-do the door locking on resume, etc...
  122. */
  123. enum {
  124. ide_pm_flush_cache = ide_pm_state_start_suspend,
  125. idedisk_pm_standby,
  126. idedisk_pm_restore_pio = ide_pm_state_start_resume,
  127. idedisk_pm_idle,
  128. ide_pm_restore_dma,
  129. };
  130. static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
  131. {
  132. struct request_pm_state *pm = rq->data;
  133. if (drive->media != ide_disk)
  134. return;
  135. switch (pm->pm_step) {
  136. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
  137. if (pm->pm_state == PM_EVENT_FREEZE)
  138. pm->pm_step = ide_pm_state_completed;
  139. else
  140. pm->pm_step = idedisk_pm_standby;
  141. break;
  142. case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
  143. pm->pm_step = ide_pm_state_completed;
  144. break;
  145. case idedisk_pm_restore_pio: /* Resume step 1 complete */
  146. pm->pm_step = idedisk_pm_idle;
  147. break;
  148. case idedisk_pm_idle: /* Resume step 2 (idle) complete */
  149. pm->pm_step = ide_pm_restore_dma;
  150. break;
  151. }
  152. }
  153. static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
  154. {
  155. struct request_pm_state *pm = rq->data;
  156. ide_task_t *args = rq->special;
  157. memset(args, 0, sizeof(*args));
  158. switch (pm->pm_step) {
  159. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
  160. if (drive->media != ide_disk)
  161. break;
  162. /* Not supported? Switch to next step now. */
  163. if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
  164. ide_complete_power_step(drive, rq, 0, 0);
  165. return ide_stopped;
  166. }
  167. if (ide_id_has_flush_cache_ext(drive->id))
  168. args->tf.command = WIN_FLUSH_CACHE_EXT;
  169. else
  170. args->tf.command = WIN_FLUSH_CACHE;
  171. goto out_do_tf;
  172. case idedisk_pm_standby: /* Suspend step 2 (standby) */
  173. args->tf.command = WIN_STANDBYNOW1;
  174. goto out_do_tf;
  175. case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
  176. ide_set_max_pio(drive);
  177. /*
  178. * skip idedisk_pm_idle for ATAPI devices
  179. */
  180. if (drive->media != ide_disk)
  181. pm->pm_step = ide_pm_restore_dma;
  182. else
  183. ide_complete_power_step(drive, rq, 0, 0);
  184. return ide_stopped;
  185. case idedisk_pm_idle: /* Resume step 2 (idle) */
  186. args->tf.command = WIN_IDLEIMMEDIATE;
  187. goto out_do_tf;
  188. case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
  189. /*
  190. * Right now, all we do is call ide_set_dma(drive),
  191. * we could be smarter and check for current xfer_speed
  192. * in struct drive etc...
  193. */
  194. if (drive->hwif->ide_dma_on == NULL)
  195. break;
  196. drive->hwif->dma_off_quietly(drive);
  197. /*
  198. * TODO: respect ->using_dma setting
  199. */
  200. ide_set_dma(drive);
  201. break;
  202. }
  203. pm->pm_step = ide_pm_state_completed;
  204. return ide_stopped;
  205. out_do_tf:
  206. args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
  207. args->data_phase = TASKFILE_NO_DATA;
  208. return do_rw_taskfile(drive, args);
  209. }
  210. /**
  211. * ide_end_dequeued_request - complete an IDE I/O
  212. * @drive: IDE device for the I/O
  213. * @uptodate:
  214. * @nr_sectors: number of sectors completed
  215. *
  216. * Complete an I/O that is no longer on the request queue. This
  217. * typically occurs when we pull the request and issue a REQUEST_SENSE.
  218. * We must still finish the old request but we must not tamper with the
  219. * queue in the meantime.
  220. *
  221. * NOTE: This path does not handle barrier, but barrier is not supported
  222. * on ide-cd anyway.
  223. */
  224. int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
  225. int uptodate, int nr_sectors)
  226. {
  227. unsigned long flags;
  228. int ret;
  229. spin_lock_irqsave(&ide_lock, flags);
  230. BUG_ON(!blk_rq_started(rq));
  231. ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
  232. spin_unlock_irqrestore(&ide_lock, flags);
  233. return ret;
  234. }
  235. EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
  236. /**
  237. * ide_complete_pm_request - end the current Power Management request
  238. * @drive: target drive
  239. * @rq: request
  240. *
  241. * This function cleans up the current PM request and stops the queue
  242. * if necessary.
  243. */
  244. static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
  245. {
  246. unsigned long flags;
  247. #ifdef DEBUG_PM
  248. printk("%s: completing PM request, %s\n", drive->name,
  249. blk_pm_suspend_request(rq) ? "suspend" : "resume");
  250. #endif
  251. spin_lock_irqsave(&ide_lock, flags);
  252. if (blk_pm_suspend_request(rq)) {
  253. blk_stop_queue(drive->queue);
  254. } else {
  255. drive->blocked = 0;
  256. blk_start_queue(drive->queue);
  257. }
  258. blkdev_dequeue_request(rq);
  259. HWGROUP(drive)->rq = NULL;
  260. end_that_request_last(rq, 1);
  261. spin_unlock_irqrestore(&ide_lock, flags);
  262. }
  263. /**
  264. * ide_end_drive_cmd - end an explicit drive command
  265. * @drive: command
  266. * @stat: status bits
  267. * @err: error bits
  268. *
  269. * Clean up after success/failure of an explicit drive command.
  270. * These get thrown onto the queue so they are synchronized with
  271. * real I/O operations on the drive.
  272. *
  273. * In LBA48 mode we have to read the register set twice to get
  274. * all the extra information out.
  275. */
  276. void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
  277. {
  278. ide_hwif_t *hwif = HWIF(drive);
  279. unsigned long flags;
  280. struct request *rq;
  281. spin_lock_irqsave(&ide_lock, flags);
  282. rq = HWGROUP(drive)->rq;
  283. spin_unlock_irqrestore(&ide_lock, flags);
  284. if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
  285. u8 *args = (u8 *) rq->buffer;
  286. if (rq->errors == 0)
  287. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  288. if (args) {
  289. args[0] = stat;
  290. args[1] = err;
  291. args[2] = hwif->INB(IDE_NSECTOR_REG);
  292. }
  293. } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
  294. ide_task_t *args = (ide_task_t *) rq->special;
  295. if (rq->errors == 0)
  296. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  297. if (args) {
  298. struct ide_taskfile *tf = &args->tf;
  299. if (args->tf_flags & IDE_TFLAG_IN_DATA) {
  300. u16 data = hwif->INW(IDE_DATA_REG);
  301. tf->data = data & 0xff;
  302. tf->hob_data = (data >> 8) & 0xff;
  303. }
  304. tf->error = err;
  305. /* be sure we're looking at the low order bits */
  306. hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
  307. tf->nsect = hwif->INB(IDE_NSECTOR_REG);
  308. tf->lbal = hwif->INB(IDE_SECTOR_REG);
  309. tf->lbam = hwif->INB(IDE_LCYL_REG);
  310. tf->lbah = hwif->INB(IDE_HCYL_REG);
  311. tf->device = hwif->INB(IDE_SELECT_REG);
  312. tf->status = stat;
  313. if (args->tf_flags & IDE_TFLAG_LBA48) {
  314. hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  315. tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
  316. tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
  317. tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
  318. tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
  319. tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
  320. }
  321. }
  322. } else if (blk_pm_request(rq)) {
  323. struct request_pm_state *pm = rq->data;
  324. #ifdef DEBUG_PM
  325. printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
  326. drive->name, rq->pm->pm_step, stat, err);
  327. #endif
  328. ide_complete_power_step(drive, rq, stat, err);
  329. if (pm->pm_step == ide_pm_state_completed)
  330. ide_complete_pm_request(drive, rq);
  331. return;
  332. }
  333. spin_lock_irqsave(&ide_lock, flags);
  334. blkdev_dequeue_request(rq);
  335. HWGROUP(drive)->rq = NULL;
  336. rq->errors = err;
  337. end_that_request_last(rq, !rq->errors);
  338. spin_unlock_irqrestore(&ide_lock, flags);
  339. }
  340. EXPORT_SYMBOL(ide_end_drive_cmd);
  341. /**
  342. * try_to_flush_leftover_data - flush junk
  343. * @drive: drive to flush
  344. *
  345. * try_to_flush_leftover_data() is invoked in response to a drive
  346. * unexpectedly having its DRQ_STAT bit set. As an alternative to
  347. * resetting the drive, this routine tries to clear the condition
  348. * by read a sector's worth of data from the drive. Of course,
  349. * this may not help if the drive is *waiting* for data from *us*.
  350. */
  351. static void try_to_flush_leftover_data (ide_drive_t *drive)
  352. {
  353. int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
  354. if (drive->media != ide_disk)
  355. return;
  356. while (i > 0) {
  357. u32 buffer[16];
  358. u32 wcount = (i > 16) ? 16 : i;
  359. i -= wcount;
  360. HWIF(drive)->ata_input_data(drive, buffer, wcount);
  361. }
  362. }
  363. static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
  364. {
  365. if (rq->rq_disk) {
  366. ide_driver_t *drv;
  367. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  368. drv->end_request(drive, 0, 0);
  369. } else
  370. ide_end_request(drive, 0, 0);
  371. }
  372. static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  373. {
  374. ide_hwif_t *hwif = drive->hwif;
  375. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  376. /* other bits are useless when BUSY */
  377. rq->errors |= ERROR_RESET;
  378. } else if (stat & ERR_STAT) {
  379. /* err has different meaning on cdrom and tape */
  380. if (err == ABRT_ERR) {
  381. if (drive->select.b.lba &&
  382. /* some newer drives don't support WIN_SPECIFY */
  383. hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
  384. return ide_stopped;
  385. } else if ((err & BAD_CRC) == BAD_CRC) {
  386. /* UDMA crc error, just retry the operation */
  387. drive->crc_count++;
  388. } else if (err & (BBD_ERR | ECC_ERR)) {
  389. /* retries won't help these */
  390. rq->errors = ERROR_MAX;
  391. } else if (err & TRK0_ERR) {
  392. /* help it find track zero */
  393. rq->errors |= ERROR_RECAL;
  394. }
  395. }
  396. if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
  397. (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
  398. try_to_flush_leftover_data(drive);
  399. if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
  400. ide_kill_rq(drive, rq);
  401. return ide_stopped;
  402. }
  403. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  404. rq->errors |= ERROR_RESET;
  405. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  406. ++rq->errors;
  407. return ide_do_reset(drive);
  408. }
  409. if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
  410. drive->special.b.recalibrate = 1;
  411. ++rq->errors;
  412. return ide_stopped;
  413. }
  414. static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  415. {
  416. ide_hwif_t *hwif = drive->hwif;
  417. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  418. /* other bits are useless when BUSY */
  419. rq->errors |= ERROR_RESET;
  420. } else {
  421. /* add decoding error stuff */
  422. }
  423. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  424. /* force an abort */
  425. hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
  426. if (rq->errors >= ERROR_MAX) {
  427. ide_kill_rq(drive, rq);
  428. } else {
  429. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  430. ++rq->errors;
  431. return ide_do_reset(drive);
  432. }
  433. ++rq->errors;
  434. }
  435. return ide_stopped;
  436. }
  437. ide_startstop_t
  438. __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  439. {
  440. if (drive->media == ide_disk)
  441. return ide_ata_error(drive, rq, stat, err);
  442. return ide_atapi_error(drive, rq, stat, err);
  443. }
  444. EXPORT_SYMBOL_GPL(__ide_error);
  445. /**
  446. * ide_error - handle an error on the IDE
  447. * @drive: drive the error occurred on
  448. * @msg: message to report
  449. * @stat: status bits
  450. *
  451. * ide_error() takes action based on the error returned by the drive.
  452. * For normal I/O that may well include retries. We deal with
  453. * both new-style (taskfile) and old style command handling here.
  454. * In the case of taskfile command handling there is work left to
  455. * do
  456. */
  457. ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
  458. {
  459. struct request *rq;
  460. u8 err;
  461. err = ide_dump_status(drive, msg, stat);
  462. if ((rq = HWGROUP(drive)->rq) == NULL)
  463. return ide_stopped;
  464. /* retry only "normal" I/O: */
  465. if (!blk_fs_request(rq)) {
  466. rq->errors = 1;
  467. ide_end_drive_cmd(drive, stat, err);
  468. return ide_stopped;
  469. }
  470. if (rq->rq_disk) {
  471. ide_driver_t *drv;
  472. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  473. return drv->error(drive, rq, stat, err);
  474. } else
  475. return __ide_error(drive, rq, stat, err);
  476. }
  477. EXPORT_SYMBOL_GPL(ide_error);
  478. ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
  479. {
  480. if (drive->media != ide_disk)
  481. rq->errors |= ERROR_RESET;
  482. ide_kill_rq(drive, rq);
  483. return ide_stopped;
  484. }
  485. EXPORT_SYMBOL_GPL(__ide_abort);
  486. /**
  487. * ide_abort - abort pending IDE operations
  488. * @drive: drive the error occurred on
  489. * @msg: message to report
  490. *
  491. * ide_abort kills and cleans up when we are about to do a
  492. * host initiated reset on active commands. Longer term we
  493. * want handlers to have sensible abort handling themselves
  494. *
  495. * This differs fundamentally from ide_error because in
  496. * this case the command is doing just fine when we
  497. * blow it away.
  498. */
  499. ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
  500. {
  501. struct request *rq;
  502. if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
  503. return ide_stopped;
  504. /* retry only "normal" I/O: */
  505. if (!blk_fs_request(rq)) {
  506. rq->errors = 1;
  507. ide_end_drive_cmd(drive, BUSY_STAT, 0);
  508. return ide_stopped;
  509. }
  510. if (rq->rq_disk) {
  511. ide_driver_t *drv;
  512. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  513. return drv->abort(drive, rq);
  514. } else
  515. return __ide_abort(drive, rq);
  516. }
  517. /**
  518. * drive_cmd_intr - drive command completion interrupt
  519. * @drive: drive the completion interrupt occurred on
  520. *
  521. * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
  522. * We do any necessary data reading and then wait for the drive to
  523. * go non busy. At that point we may read the error data and complete
  524. * the request
  525. */
  526. static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
  527. {
  528. struct request *rq = HWGROUP(drive)->rq;
  529. ide_hwif_t *hwif = HWIF(drive);
  530. u8 *args = (u8 *) rq->buffer;
  531. u8 stat = hwif->INB(IDE_STATUS_REG);
  532. int retries = 10;
  533. local_irq_enable_in_hardirq();
  534. if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
  535. (stat & DRQ_STAT) && args && args[3]) {
  536. u8 io_32bit = drive->io_32bit;
  537. drive->io_32bit = 0;
  538. hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
  539. drive->io_32bit = io_32bit;
  540. while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
  541. udelay(100);
  542. }
  543. if (!OK_STAT(stat, READY_STAT, BAD_STAT))
  544. return ide_error(drive, "drive_cmd", stat);
  545. /* calls ide_end_drive_cmd */
  546. ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
  547. return ide_stopped;
  548. }
  549. static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
  550. {
  551. tf->nsect = drive->sect;
  552. tf->lbal = drive->sect;
  553. tf->lbam = drive->cyl;
  554. tf->lbah = drive->cyl >> 8;
  555. tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
  556. tf->command = WIN_SPECIFY;
  557. }
  558. static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
  559. {
  560. tf->nsect = drive->sect;
  561. tf->command = WIN_RESTORE;
  562. }
  563. static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
  564. {
  565. tf->nsect = drive->mult_req;
  566. tf->command = WIN_SETMULT;
  567. }
  568. static ide_startstop_t ide_disk_special(ide_drive_t *drive)
  569. {
  570. special_t *s = &drive->special;
  571. ide_task_t args;
  572. memset(&args, 0, sizeof(ide_task_t));
  573. args.data_phase = TASKFILE_NO_DATA;
  574. if (s->b.set_geometry) {
  575. s->b.set_geometry = 0;
  576. ide_tf_set_specify_cmd(drive, &args.tf);
  577. } else if (s->b.recalibrate) {
  578. s->b.recalibrate = 0;
  579. ide_tf_set_restore_cmd(drive, &args.tf);
  580. } else if (s->b.set_multmode) {
  581. s->b.set_multmode = 0;
  582. if (drive->mult_req > drive->id->max_multsect)
  583. drive->mult_req = drive->id->max_multsect;
  584. ide_tf_set_setmult_cmd(drive, &args.tf);
  585. } else if (s->all) {
  586. int special = s->all;
  587. s->all = 0;
  588. printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
  589. return ide_stopped;
  590. }
  591. args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE |
  592. IDE_TFLAG_CUSTOM_HANDLER;
  593. do_rw_taskfile(drive, &args);
  594. return ide_started;
  595. }
  596. /*
  597. * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
  598. */
  599. static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
  600. {
  601. switch (req_pio) {
  602. case 202:
  603. case 201:
  604. case 200:
  605. case 102:
  606. case 101:
  607. case 100:
  608. return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
  609. case 9:
  610. case 8:
  611. return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
  612. case 7:
  613. case 6:
  614. return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
  615. default:
  616. return 0;
  617. }
  618. }
  619. /**
  620. * do_special - issue some special commands
  621. * @drive: drive the command is for
  622. *
  623. * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
  624. * commands to a drive. It used to do much more, but has been scaled
  625. * back.
  626. */
  627. static ide_startstop_t do_special (ide_drive_t *drive)
  628. {
  629. special_t *s = &drive->special;
  630. #ifdef DEBUG
  631. printk("%s: do_special: 0x%02x\n", drive->name, s->all);
  632. #endif
  633. if (s->b.set_tune) {
  634. ide_hwif_t *hwif = drive->hwif;
  635. u8 req_pio = drive->tune_req;
  636. s->b.set_tune = 0;
  637. if (set_pio_mode_abuse(drive->hwif, req_pio)) {
  638. if (hwif->set_pio_mode == NULL)
  639. return ide_stopped;
  640. /*
  641. * take ide_lock for drive->[no_]unmask/[no_]io_32bit
  642. */
  643. if (req_pio == 8 || req_pio == 9) {
  644. unsigned long flags;
  645. spin_lock_irqsave(&ide_lock, flags);
  646. hwif->set_pio_mode(drive, req_pio);
  647. spin_unlock_irqrestore(&ide_lock, flags);
  648. } else
  649. hwif->set_pio_mode(drive, req_pio);
  650. } else {
  651. int keep_dma = drive->using_dma;
  652. ide_set_pio(drive, req_pio);
  653. if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
  654. if (keep_dma)
  655. hwif->ide_dma_on(drive);
  656. }
  657. }
  658. return ide_stopped;
  659. } else {
  660. if (drive->media == ide_disk)
  661. return ide_disk_special(drive);
  662. s->all = 0;
  663. drive->mult_req = 0;
  664. return ide_stopped;
  665. }
  666. }
  667. void ide_map_sg(ide_drive_t *drive, struct request *rq)
  668. {
  669. ide_hwif_t *hwif = drive->hwif;
  670. struct scatterlist *sg = hwif->sg_table;
  671. if (hwif->sg_mapped) /* needed by ide-scsi */
  672. return;
  673. if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
  674. hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
  675. } else {
  676. sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
  677. hwif->sg_nents = 1;
  678. }
  679. }
  680. EXPORT_SYMBOL_GPL(ide_map_sg);
  681. void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
  682. {
  683. ide_hwif_t *hwif = drive->hwif;
  684. hwif->nsect = hwif->nleft = rq->nr_sectors;
  685. hwif->cursg_ofs = 0;
  686. hwif->cursg = NULL;
  687. }
  688. EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
  689. /**
  690. * execute_drive_command - issue special drive command
  691. * @drive: the drive to issue the command on
  692. * @rq: the request structure holding the command
  693. *
  694. * execute_drive_cmd() issues a special drive command, usually
  695. * initiated by ioctl() from the external hdparm program. The
  696. * command can be a drive command, drive task or taskfile
  697. * operation. Weirdly you can call it with NULL to wait for
  698. * all commands to finish. Don't do this as that is due to change
  699. */
  700. static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
  701. struct request *rq)
  702. {
  703. ide_hwif_t *hwif = HWIF(drive);
  704. u8 *args = rq->buffer;
  705. ide_task_t ltask;
  706. struct ide_taskfile *tf = &ltask.tf;
  707. if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
  708. ide_task_t *task = rq->special;
  709. if (task == NULL)
  710. goto done;
  711. hwif->data_phase = task->data_phase;
  712. switch (hwif->data_phase) {
  713. case TASKFILE_MULTI_OUT:
  714. case TASKFILE_OUT:
  715. case TASKFILE_MULTI_IN:
  716. case TASKFILE_IN:
  717. ide_init_sg_cmd(drive, rq);
  718. ide_map_sg(drive, rq);
  719. default:
  720. break;
  721. }
  722. return do_rw_taskfile(drive, task);
  723. }
  724. if (args == NULL)
  725. goto done;
  726. memset(&ltask, 0, sizeof(ltask));
  727. if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
  728. #ifdef DEBUG
  729. printk("%s: DRIVE_CMD\n", drive->name);
  730. #endif
  731. tf->feature = args[2];
  732. if (args[0] == WIN_SMART) {
  733. tf->nsect = args[3];
  734. tf->lbal = args[1];
  735. tf->lbam = 0x4f;
  736. tf->lbah = 0xc2;
  737. ltask.tf_flags = IDE_TFLAG_OUT_TF;
  738. } else {
  739. tf->nsect = args[1];
  740. ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
  741. IDE_TFLAG_OUT_NSECT;
  742. }
  743. }
  744. tf->command = args[0];
  745. ide_tf_load(drive, &ltask);
  746. ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
  747. return ide_started;
  748. done:
  749. /*
  750. * NULL is actually a valid way of waiting for
  751. * all current requests to be flushed from the queue.
  752. */
  753. #ifdef DEBUG
  754. printk("%s: DRIVE_CMD (null)\n", drive->name);
  755. #endif
  756. ide_end_drive_cmd(drive,
  757. hwif->INB(IDE_STATUS_REG),
  758. hwif->INB(IDE_ERROR_REG));
  759. return ide_stopped;
  760. }
  761. static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
  762. {
  763. struct request_pm_state *pm = rq->data;
  764. if (blk_pm_suspend_request(rq) &&
  765. pm->pm_step == ide_pm_state_start_suspend)
  766. /* Mark drive blocked when starting the suspend sequence. */
  767. drive->blocked = 1;
  768. else if (blk_pm_resume_request(rq) &&
  769. pm->pm_step == ide_pm_state_start_resume) {
  770. /*
  771. * The first thing we do on wakeup is to wait for BSY bit to
  772. * go away (with a looong timeout) as a drive on this hwif may
  773. * just be POSTing itself.
  774. * We do that before even selecting as the "other" device on
  775. * the bus may be broken enough to walk on our toes at this
  776. * point.
  777. */
  778. int rc;
  779. #ifdef DEBUG_PM
  780. printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
  781. #endif
  782. rc = ide_wait_not_busy(HWIF(drive), 35000);
  783. if (rc)
  784. printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
  785. SELECT_DRIVE(drive);
  786. if (IDE_CONTROL_REG)
  787. HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
  788. rc = ide_wait_not_busy(HWIF(drive), 100000);
  789. if (rc)
  790. printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
  791. }
  792. }
  793. /**
  794. * start_request - start of I/O and command issuing for IDE
  795. *
  796. * start_request() initiates handling of a new I/O request. It
  797. * accepts commands and I/O (read/write) requests. It also does
  798. * the final remapping for weird stuff like EZDrive. Once
  799. * device mapper can work sector level the EZDrive stuff can go away
  800. *
  801. * FIXME: this function needs a rename
  802. */
  803. static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
  804. {
  805. ide_startstop_t startstop;
  806. sector_t block;
  807. BUG_ON(!blk_rq_started(rq));
  808. #ifdef DEBUG
  809. printk("%s: start_request: current=0x%08lx\n",
  810. HWIF(drive)->name, (unsigned long) rq);
  811. #endif
  812. /* bail early if we've exceeded max_failures */
  813. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  814. rq->cmd_flags |= REQ_FAILED;
  815. goto kill_rq;
  816. }
  817. block = rq->sector;
  818. if (blk_fs_request(rq) &&
  819. (drive->media == ide_disk || drive->media == ide_floppy)) {
  820. block += drive->sect0;
  821. }
  822. /* Yecch - this will shift the entire interval,
  823. possibly killing some innocent following sector */
  824. if (block == 0 && drive->remap_0_to_1 == 1)
  825. block = 1; /* redirect MBR access to EZ-Drive partn table */
  826. if (blk_pm_request(rq))
  827. ide_check_pm_state(drive, rq);
  828. SELECT_DRIVE(drive);
  829. if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
  830. printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
  831. return startstop;
  832. }
  833. if (!drive->special.all) {
  834. ide_driver_t *drv;
  835. /*
  836. * We reset the drive so we need to issue a SETFEATURES.
  837. * Do it _after_ do_special() restored device parameters.
  838. */
  839. if (drive->current_speed == 0xff)
  840. ide_config_drive_speed(drive, drive->desired_speed);
  841. if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
  842. rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
  843. return execute_drive_cmd(drive, rq);
  844. else if (blk_pm_request(rq)) {
  845. struct request_pm_state *pm = rq->data;
  846. #ifdef DEBUG_PM
  847. printk("%s: start_power_step(step: %d)\n",
  848. drive->name, rq->pm->pm_step);
  849. #endif
  850. startstop = ide_start_power_step(drive, rq);
  851. if (startstop == ide_stopped &&
  852. pm->pm_step == ide_pm_state_completed)
  853. ide_complete_pm_request(drive, rq);
  854. return startstop;
  855. }
  856. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  857. return drv->do_request(drive, rq, block);
  858. }
  859. return do_special(drive);
  860. kill_rq:
  861. ide_kill_rq(drive, rq);
  862. return ide_stopped;
  863. }
  864. /**
  865. * ide_stall_queue - pause an IDE device
  866. * @drive: drive to stall
  867. * @timeout: time to stall for (jiffies)
  868. *
  869. * ide_stall_queue() can be used by a drive to give excess bandwidth back
  870. * to the hwgroup by sleeping for timeout jiffies.
  871. */
  872. void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
  873. {
  874. if (timeout > WAIT_WORSTCASE)
  875. timeout = WAIT_WORSTCASE;
  876. drive->sleep = timeout + jiffies;
  877. drive->sleeping = 1;
  878. }
  879. EXPORT_SYMBOL(ide_stall_queue);
  880. #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
  881. /**
  882. * choose_drive - select a drive to service
  883. * @hwgroup: hardware group to select on
  884. *
  885. * choose_drive() selects the next drive which will be serviced.
  886. * This is necessary because the IDE layer can't issue commands
  887. * to both drives on the same cable, unlike SCSI.
  888. */
  889. static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
  890. {
  891. ide_drive_t *drive, *best;
  892. repeat:
  893. best = NULL;
  894. drive = hwgroup->drive;
  895. /*
  896. * drive is doing pre-flush, ordered write, post-flush sequence. even
  897. * though that is 3 requests, it must be seen as a single transaction.
  898. * we must not preempt this drive until that is complete
  899. */
  900. if (blk_queue_flushing(drive->queue)) {
  901. /*
  902. * small race where queue could get replugged during
  903. * the 3-request flush cycle, just yank the plug since
  904. * we want it to finish asap
  905. */
  906. blk_remove_plug(drive->queue);
  907. return drive;
  908. }
  909. do {
  910. if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
  911. && !elv_queue_empty(drive->queue)) {
  912. if (!best
  913. || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
  914. || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
  915. {
  916. if (!blk_queue_plugged(drive->queue))
  917. best = drive;
  918. }
  919. }
  920. } while ((drive = drive->next) != hwgroup->drive);
  921. if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
  922. long t = (signed long)(WAKEUP(best) - jiffies);
  923. if (t >= WAIT_MIN_SLEEP) {
  924. /*
  925. * We *may* have some time to spare, but first let's see if
  926. * someone can potentially benefit from our nice mood today..
  927. */
  928. drive = best->next;
  929. do {
  930. if (!drive->sleeping
  931. && time_before(jiffies - best->service_time, WAKEUP(drive))
  932. && time_before(WAKEUP(drive), jiffies + t))
  933. {
  934. ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
  935. goto repeat;
  936. }
  937. } while ((drive = drive->next) != best);
  938. }
  939. }
  940. return best;
  941. }
  942. /*
  943. * Issue a new request to a drive from hwgroup
  944. * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
  945. *
  946. * A hwgroup is a serialized group of IDE interfaces. Usually there is
  947. * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
  948. * may have both interfaces in a single hwgroup to "serialize" access.
  949. * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
  950. * together into one hwgroup for serialized access.
  951. *
  952. * Note also that several hwgroups can end up sharing a single IRQ,
  953. * possibly along with many other devices. This is especially common in
  954. * PCI-based systems with off-board IDE controller cards.
  955. *
  956. * The IDE driver uses the single global ide_lock spinlock to protect
  957. * access to the request queues, and to protect the hwgroup->busy flag.
  958. *
  959. * The first thread into the driver for a particular hwgroup sets the
  960. * hwgroup->busy flag to indicate that this hwgroup is now active,
  961. * and then initiates processing of the top request from the request queue.
  962. *
  963. * Other threads attempting entry notice the busy setting, and will simply
  964. * queue their new requests and exit immediately. Note that hwgroup->busy
  965. * remains set even when the driver is merely awaiting the next interrupt.
  966. * Thus, the meaning is "this hwgroup is busy processing a request".
  967. *
  968. * When processing of a request completes, the completing thread or IRQ-handler
  969. * will start the next request from the queue. If no more work remains,
  970. * the driver will clear the hwgroup->busy flag and exit.
  971. *
  972. * The ide_lock (spinlock) is used to protect all access to the
  973. * hwgroup->busy flag, but is otherwise not needed for most processing in
  974. * the driver. This makes the driver much more friendlier to shared IRQs
  975. * than previous designs, while remaining 100% (?) SMP safe and capable.
  976. */
  977. static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
  978. {
  979. ide_drive_t *drive;
  980. ide_hwif_t *hwif;
  981. struct request *rq;
  982. ide_startstop_t startstop;
  983. int loops = 0;
  984. /* for atari only: POSSIBLY BROKEN HERE(?) */
  985. ide_get_lock(ide_intr, hwgroup);
  986. /* caller must own ide_lock */
  987. BUG_ON(!irqs_disabled());
  988. while (!hwgroup->busy) {
  989. hwgroup->busy = 1;
  990. drive = choose_drive(hwgroup);
  991. if (drive == NULL) {
  992. int sleeping = 0;
  993. unsigned long sleep = 0; /* shut up, gcc */
  994. hwgroup->rq = NULL;
  995. drive = hwgroup->drive;
  996. do {
  997. if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
  998. sleeping = 1;
  999. sleep = drive->sleep;
  1000. }
  1001. } while ((drive = drive->next) != hwgroup->drive);
  1002. if (sleeping) {
  1003. /*
  1004. * Take a short snooze, and then wake up this hwgroup again.
  1005. * This gives other hwgroups on the same a chance to
  1006. * play fairly with us, just in case there are big differences
  1007. * in relative throughputs.. don't want to hog the cpu too much.
  1008. */
  1009. if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
  1010. sleep = jiffies + WAIT_MIN_SLEEP;
  1011. #if 1
  1012. if (timer_pending(&hwgroup->timer))
  1013. printk(KERN_CRIT "ide_set_handler: timer already active\n");
  1014. #endif
  1015. /* so that ide_timer_expiry knows what to do */
  1016. hwgroup->sleeping = 1;
  1017. hwgroup->req_gen_timer = hwgroup->req_gen;
  1018. mod_timer(&hwgroup->timer, sleep);
  1019. /* we purposely leave hwgroup->busy==1
  1020. * while sleeping */
  1021. } else {
  1022. /* Ugly, but how can we sleep for the lock
  1023. * otherwise? perhaps from tq_disk?
  1024. */
  1025. /* for atari only */
  1026. ide_release_lock();
  1027. hwgroup->busy = 0;
  1028. }
  1029. /* no more work for this hwgroup (for now) */
  1030. return;
  1031. }
  1032. again:
  1033. hwif = HWIF(drive);
  1034. if (hwgroup->hwif->sharing_irq &&
  1035. hwif != hwgroup->hwif &&
  1036. hwif->io_ports[IDE_CONTROL_OFFSET]) {
  1037. /*
  1038. * set nIEN for previous hwif, drives in the
  1039. * quirk_list may not like intr setups/cleanups
  1040. */
  1041. if (drive->quirk_list != 1)
  1042. hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
  1043. }
  1044. hwgroup->hwif = hwif;
  1045. hwgroup->drive = drive;
  1046. drive->sleeping = 0;
  1047. drive->service_start = jiffies;
  1048. if (blk_queue_plugged(drive->queue)) {
  1049. printk(KERN_ERR "ide: huh? queue was plugged!\n");
  1050. break;
  1051. }
  1052. /*
  1053. * we know that the queue isn't empty, but this can happen
  1054. * if the q->prep_rq_fn() decides to kill a request
  1055. */
  1056. rq = elv_next_request(drive->queue);
  1057. if (!rq) {
  1058. hwgroup->busy = 0;
  1059. break;
  1060. }
  1061. /*
  1062. * Sanity: don't accept a request that isn't a PM request
  1063. * if we are currently power managed. This is very important as
  1064. * blk_stop_queue() doesn't prevent the elv_next_request()
  1065. * above to return us whatever is in the queue. Since we call
  1066. * ide_do_request() ourselves, we end up taking requests while
  1067. * the queue is blocked...
  1068. *
  1069. * We let requests forced at head of queue with ide-preempt
  1070. * though. I hope that doesn't happen too much, hopefully not
  1071. * unless the subdriver triggers such a thing in its own PM
  1072. * state machine.
  1073. *
  1074. * We count how many times we loop here to make sure we service
  1075. * all drives in the hwgroup without looping for ever
  1076. */
  1077. if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
  1078. drive = drive->next ? drive->next : hwgroup->drive;
  1079. if (loops++ < 4 && !blk_queue_plugged(drive->queue))
  1080. goto again;
  1081. /* We clear busy, there should be no pending ATA command at this point. */
  1082. hwgroup->busy = 0;
  1083. break;
  1084. }
  1085. hwgroup->rq = rq;
  1086. /*
  1087. * Some systems have trouble with IDE IRQs arriving while
  1088. * the driver is still setting things up. So, here we disable
  1089. * the IRQ used by this interface while the request is being started.
  1090. * This may look bad at first, but pretty much the same thing
  1091. * happens anyway when any interrupt comes in, IDE or otherwise
  1092. * -- the kernel masks the IRQ while it is being handled.
  1093. */
  1094. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1095. disable_irq_nosync(hwif->irq);
  1096. spin_unlock(&ide_lock);
  1097. local_irq_enable_in_hardirq();
  1098. /* allow other IRQs while we start this request */
  1099. startstop = start_request(drive, rq);
  1100. spin_lock_irq(&ide_lock);
  1101. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1102. enable_irq(hwif->irq);
  1103. if (startstop == ide_stopped)
  1104. hwgroup->busy = 0;
  1105. }
  1106. }
  1107. /*
  1108. * Passes the stuff to ide_do_request
  1109. */
  1110. void do_ide_request(struct request_queue *q)
  1111. {
  1112. ide_drive_t *drive = q->queuedata;
  1113. ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
  1114. }
  1115. /*
  1116. * un-busy the hwgroup etc, and clear any pending DMA status. we want to
  1117. * retry the current request in pio mode instead of risking tossing it
  1118. * all away
  1119. */
  1120. static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
  1121. {
  1122. ide_hwif_t *hwif = HWIF(drive);
  1123. struct request *rq;
  1124. ide_startstop_t ret = ide_stopped;
  1125. /*
  1126. * end current dma transaction
  1127. */
  1128. if (error < 0) {
  1129. printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
  1130. (void)HWIF(drive)->ide_dma_end(drive);
  1131. ret = ide_error(drive, "dma timeout error",
  1132. hwif->INB(IDE_STATUS_REG));
  1133. } else {
  1134. printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
  1135. hwif->dma_timeout(drive);
  1136. }
  1137. /*
  1138. * disable dma for now, but remember that we did so because of
  1139. * a timeout -- we'll reenable after we finish this next request
  1140. * (or rather the first chunk of it) in pio.
  1141. */
  1142. drive->retry_pio++;
  1143. drive->state = DMA_PIO_RETRY;
  1144. hwif->dma_off_quietly(drive);
  1145. /*
  1146. * un-busy drive etc (hwgroup->busy is cleared on return) and
  1147. * make sure request is sane
  1148. */
  1149. rq = HWGROUP(drive)->rq;
  1150. if (!rq)
  1151. goto out;
  1152. HWGROUP(drive)->rq = NULL;
  1153. rq->errors = 0;
  1154. if (!rq->bio)
  1155. goto out;
  1156. rq->sector = rq->bio->bi_sector;
  1157. rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
  1158. rq->hard_cur_sectors = rq->current_nr_sectors;
  1159. rq->buffer = bio_data(rq->bio);
  1160. out:
  1161. return ret;
  1162. }
  1163. /**
  1164. * ide_timer_expiry - handle lack of an IDE interrupt
  1165. * @data: timer callback magic (hwgroup)
  1166. *
  1167. * An IDE command has timed out before the expected drive return
  1168. * occurred. At this point we attempt to clean up the current
  1169. * mess. If the current handler includes an expiry handler then
  1170. * we invoke the expiry handler, and providing it is happy the
  1171. * work is done. If that fails we apply generic recovery rules
  1172. * invoking the handler and checking the drive DMA status. We
  1173. * have an excessively incestuous relationship with the DMA
  1174. * logic that wants cleaning up.
  1175. */
  1176. void ide_timer_expiry (unsigned long data)
  1177. {
  1178. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
  1179. ide_handler_t *handler;
  1180. ide_expiry_t *expiry;
  1181. unsigned long flags;
  1182. unsigned long wait = -1;
  1183. spin_lock_irqsave(&ide_lock, flags);
  1184. if (((handler = hwgroup->handler) == NULL) ||
  1185. (hwgroup->req_gen != hwgroup->req_gen_timer)) {
  1186. /*
  1187. * Either a marginal timeout occurred
  1188. * (got the interrupt just as timer expired),
  1189. * or we were "sleeping" to give other devices a chance.
  1190. * Either way, we don't really want to complain about anything.
  1191. */
  1192. if (hwgroup->sleeping) {
  1193. hwgroup->sleeping = 0;
  1194. hwgroup->busy = 0;
  1195. }
  1196. } else {
  1197. ide_drive_t *drive = hwgroup->drive;
  1198. if (!drive) {
  1199. printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
  1200. hwgroup->handler = NULL;
  1201. } else {
  1202. ide_hwif_t *hwif;
  1203. ide_startstop_t startstop = ide_stopped;
  1204. if (!hwgroup->busy) {
  1205. hwgroup->busy = 1; /* paranoia */
  1206. printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
  1207. }
  1208. if ((expiry = hwgroup->expiry) != NULL) {
  1209. /* continue */
  1210. if ((wait = expiry(drive)) > 0) {
  1211. /* reset timer */
  1212. hwgroup->timer.expires = jiffies + wait;
  1213. hwgroup->req_gen_timer = hwgroup->req_gen;
  1214. add_timer(&hwgroup->timer);
  1215. spin_unlock_irqrestore(&ide_lock, flags);
  1216. return;
  1217. }
  1218. }
  1219. hwgroup->handler = NULL;
  1220. /*
  1221. * We need to simulate a real interrupt when invoking
  1222. * the handler() function, which means we need to
  1223. * globally mask the specific IRQ:
  1224. */
  1225. spin_unlock(&ide_lock);
  1226. hwif = HWIF(drive);
  1227. /* disable_irq_nosync ?? */
  1228. disable_irq(hwif->irq);
  1229. /* local CPU only,
  1230. * as if we were handling an interrupt */
  1231. local_irq_disable();
  1232. if (hwgroup->polling) {
  1233. startstop = handler(drive);
  1234. } else if (drive_is_ready(drive)) {
  1235. if (drive->waiting_for_dma)
  1236. hwgroup->hwif->dma_lost_irq(drive);
  1237. (void)ide_ack_intr(hwif);
  1238. printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
  1239. startstop = handler(drive);
  1240. } else {
  1241. if (drive->waiting_for_dma) {
  1242. startstop = ide_dma_timeout_retry(drive, wait);
  1243. } else
  1244. startstop =
  1245. ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
  1246. }
  1247. drive->service_time = jiffies - drive->service_start;
  1248. spin_lock_irq(&ide_lock);
  1249. enable_irq(hwif->irq);
  1250. if (startstop == ide_stopped)
  1251. hwgroup->busy = 0;
  1252. }
  1253. }
  1254. ide_do_request(hwgroup, IDE_NO_IRQ);
  1255. spin_unlock_irqrestore(&ide_lock, flags);
  1256. }
  1257. /**
  1258. * unexpected_intr - handle an unexpected IDE interrupt
  1259. * @irq: interrupt line
  1260. * @hwgroup: hwgroup being processed
  1261. *
  1262. * There's nothing really useful we can do with an unexpected interrupt,
  1263. * other than reading the status register (to clear it), and logging it.
  1264. * There should be no way that an irq can happen before we're ready for it,
  1265. * so we needn't worry much about losing an "important" interrupt here.
  1266. *
  1267. * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
  1268. * the drive enters "idle", "standby", or "sleep" mode, so if the status
  1269. * looks "good", we just ignore the interrupt completely.
  1270. *
  1271. * This routine assumes __cli() is in effect when called.
  1272. *
  1273. * If an unexpected interrupt happens on irq15 while we are handling irq14
  1274. * and if the two interfaces are "serialized" (CMD640), then it looks like
  1275. * we could screw up by interfering with a new request being set up for
  1276. * irq15.
  1277. *
  1278. * In reality, this is a non-issue. The new command is not sent unless
  1279. * the drive is ready to accept one, in which case we know the drive is
  1280. * not trying to interrupt us. And ide_set_handler() is always invoked
  1281. * before completing the issuance of any new drive command, so we will not
  1282. * be accidentally invoked as a result of any valid command completion
  1283. * interrupt.
  1284. *
  1285. * Note that we must walk the entire hwgroup here. We know which hwif
  1286. * is doing the current command, but we don't know which hwif burped
  1287. * mysteriously.
  1288. */
  1289. static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
  1290. {
  1291. u8 stat;
  1292. ide_hwif_t *hwif = hwgroup->hwif;
  1293. /*
  1294. * handle the unexpected interrupt
  1295. */
  1296. do {
  1297. if (hwif->irq == irq) {
  1298. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1299. if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
  1300. /* Try to not flood the console with msgs */
  1301. static unsigned long last_msgtime, count;
  1302. ++count;
  1303. if (time_after(jiffies, last_msgtime + HZ)) {
  1304. last_msgtime = jiffies;
  1305. printk(KERN_ERR "%s%s: unexpected interrupt, "
  1306. "status=0x%02x, count=%ld\n",
  1307. hwif->name,
  1308. (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
  1309. }
  1310. }
  1311. }
  1312. } while ((hwif = hwif->next) != hwgroup->hwif);
  1313. }
  1314. /**
  1315. * ide_intr - default IDE interrupt handler
  1316. * @irq: interrupt number
  1317. * @dev_id: hwif group
  1318. * @regs: unused weirdness from the kernel irq layer
  1319. *
  1320. * This is the default IRQ handler for the IDE layer. You should
  1321. * not need to override it. If you do be aware it is subtle in
  1322. * places
  1323. *
  1324. * hwgroup->hwif is the interface in the group currently performing
  1325. * a command. hwgroup->drive is the drive and hwgroup->handler is
  1326. * the IRQ handler to call. As we issue a command the handlers
  1327. * step through multiple states, reassigning the handler to the
  1328. * next step in the process. Unlike a smart SCSI controller IDE
  1329. * expects the main processor to sequence the various transfer
  1330. * stages. We also manage a poll timer to catch up with most
  1331. * timeout situations. There are still a few where the handlers
  1332. * don't ever decide to give up.
  1333. *
  1334. * The handler eventually returns ide_stopped to indicate the
  1335. * request completed. At this point we issue the next request
  1336. * on the hwgroup and the process begins again.
  1337. */
  1338. irqreturn_t ide_intr (int irq, void *dev_id)
  1339. {
  1340. unsigned long flags;
  1341. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
  1342. ide_hwif_t *hwif;
  1343. ide_drive_t *drive;
  1344. ide_handler_t *handler;
  1345. ide_startstop_t startstop;
  1346. spin_lock_irqsave(&ide_lock, flags);
  1347. hwif = hwgroup->hwif;
  1348. if (!ide_ack_intr(hwif)) {
  1349. spin_unlock_irqrestore(&ide_lock, flags);
  1350. return IRQ_NONE;
  1351. }
  1352. if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
  1353. /*
  1354. * Not expecting an interrupt from this drive.
  1355. * That means this could be:
  1356. * (1) an interrupt from another PCI device
  1357. * sharing the same PCI INT# as us.
  1358. * or (2) a drive just entered sleep or standby mode,
  1359. * and is interrupting to let us know.
  1360. * or (3) a spurious interrupt of unknown origin.
  1361. *
  1362. * For PCI, we cannot tell the difference,
  1363. * so in that case we just ignore it and hope it goes away.
  1364. *
  1365. * FIXME: unexpected_intr should be hwif-> then we can
  1366. * remove all the ifdef PCI crap
  1367. */
  1368. #ifdef CONFIG_BLK_DEV_IDEPCI
  1369. if (hwif->pci_dev && !hwif->pci_dev->vendor)
  1370. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1371. {
  1372. /*
  1373. * Probably not a shared PCI interrupt,
  1374. * so we can safely try to do something about it:
  1375. */
  1376. unexpected_intr(irq, hwgroup);
  1377. #ifdef CONFIG_BLK_DEV_IDEPCI
  1378. } else {
  1379. /*
  1380. * Whack the status register, just in case
  1381. * we have a leftover pending IRQ.
  1382. */
  1383. (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1384. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1385. }
  1386. spin_unlock_irqrestore(&ide_lock, flags);
  1387. return IRQ_NONE;
  1388. }
  1389. drive = hwgroup->drive;
  1390. if (!drive) {
  1391. /*
  1392. * This should NEVER happen, and there isn't much
  1393. * we could do about it here.
  1394. *
  1395. * [Note - this can occur if the drive is hot unplugged]
  1396. */
  1397. spin_unlock_irqrestore(&ide_lock, flags);
  1398. return IRQ_HANDLED;
  1399. }
  1400. if (!drive_is_ready(drive)) {
  1401. /*
  1402. * This happens regularly when we share a PCI IRQ with
  1403. * another device. Unfortunately, it can also happen
  1404. * with some buggy drives that trigger the IRQ before
  1405. * their status register is up to date. Hopefully we have
  1406. * enough advance overhead that the latter isn't a problem.
  1407. */
  1408. spin_unlock_irqrestore(&ide_lock, flags);
  1409. return IRQ_NONE;
  1410. }
  1411. if (!hwgroup->busy) {
  1412. hwgroup->busy = 1; /* paranoia */
  1413. printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
  1414. }
  1415. hwgroup->handler = NULL;
  1416. hwgroup->req_gen++;
  1417. del_timer(&hwgroup->timer);
  1418. spin_unlock(&ide_lock);
  1419. /* Some controllers might set DMA INTR no matter DMA or PIO;
  1420. * bmdma status might need to be cleared even for
  1421. * PIO interrupts to prevent spurious/lost irq.
  1422. */
  1423. if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
  1424. /* ide_dma_end() needs bmdma status for error checking.
  1425. * So, skip clearing bmdma status here and leave it
  1426. * to ide_dma_end() if this is dma interrupt.
  1427. */
  1428. hwif->ide_dma_clear_irq(drive);
  1429. if (drive->unmask)
  1430. local_irq_enable_in_hardirq();
  1431. /* service this interrupt, may set handler for next interrupt */
  1432. startstop = handler(drive);
  1433. spin_lock_irq(&ide_lock);
  1434. /*
  1435. * Note that handler() may have set things up for another
  1436. * interrupt to occur soon, but it cannot happen until
  1437. * we exit from this routine, because it will be the
  1438. * same irq as is currently being serviced here, and Linux
  1439. * won't allow another of the same (on any CPU) until we return.
  1440. */
  1441. drive->service_time = jiffies - drive->service_start;
  1442. if (startstop == ide_stopped) {
  1443. if (hwgroup->handler == NULL) { /* paranoia */
  1444. hwgroup->busy = 0;
  1445. ide_do_request(hwgroup, hwif->irq);
  1446. } else {
  1447. printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
  1448. "on exit\n", drive->name);
  1449. }
  1450. }
  1451. spin_unlock_irqrestore(&ide_lock, flags);
  1452. return IRQ_HANDLED;
  1453. }
  1454. /**
  1455. * ide_init_drive_cmd - initialize a drive command request
  1456. * @rq: request object
  1457. *
  1458. * Initialize a request before we fill it in and send it down to
  1459. * ide_do_drive_cmd. Commands must be set up by this function. Right
  1460. * now it doesn't do a lot, but if that changes abusers will have a
  1461. * nasty surprise.
  1462. */
  1463. void ide_init_drive_cmd (struct request *rq)
  1464. {
  1465. memset(rq, 0, sizeof(*rq));
  1466. rq->cmd_type = REQ_TYPE_ATA_CMD;
  1467. rq->ref_count = 1;
  1468. }
  1469. EXPORT_SYMBOL(ide_init_drive_cmd);
  1470. /**
  1471. * ide_do_drive_cmd - issue IDE special command
  1472. * @drive: device to issue command
  1473. * @rq: request to issue
  1474. * @action: action for processing
  1475. *
  1476. * This function issues a special IDE device request
  1477. * onto the request queue.
  1478. *
  1479. * If action is ide_wait, then the rq is queued at the end of the
  1480. * request queue, and the function sleeps until it has been processed.
  1481. * This is for use when invoked from an ioctl handler.
  1482. *
  1483. * If action is ide_preempt, then the rq is queued at the head of
  1484. * the request queue, displacing the currently-being-processed
  1485. * request and this function returns immediately without waiting
  1486. * for the new rq to be completed. This is VERY DANGEROUS, and is
  1487. * intended for careful use by the ATAPI tape/cdrom driver code.
  1488. *
  1489. * If action is ide_end, then the rq is queued at the end of the
  1490. * request queue, and the function returns immediately without waiting
  1491. * for the new rq to be completed. This is again intended for careful
  1492. * use by the ATAPI tape/cdrom driver code.
  1493. */
  1494. int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
  1495. {
  1496. unsigned long flags;
  1497. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  1498. DECLARE_COMPLETION_ONSTACK(wait);
  1499. int where = ELEVATOR_INSERT_BACK, err;
  1500. int must_wait = (action == ide_wait || action == ide_head_wait);
  1501. rq->errors = 0;
  1502. /*
  1503. * we need to hold an extra reference to request for safe inspection
  1504. * after completion
  1505. */
  1506. if (must_wait) {
  1507. rq->ref_count++;
  1508. rq->end_io_data = &wait;
  1509. rq->end_io = blk_end_sync_rq;
  1510. }
  1511. spin_lock_irqsave(&ide_lock, flags);
  1512. if (action == ide_preempt)
  1513. hwgroup->rq = NULL;
  1514. if (action == ide_preempt || action == ide_head_wait) {
  1515. where = ELEVATOR_INSERT_FRONT;
  1516. rq->cmd_flags |= REQ_PREEMPT;
  1517. }
  1518. __elv_add_request(drive->queue, rq, where, 0);
  1519. ide_do_request(hwgroup, IDE_NO_IRQ);
  1520. spin_unlock_irqrestore(&ide_lock, flags);
  1521. err = 0;
  1522. if (must_wait) {
  1523. wait_for_completion(&wait);
  1524. if (rq->errors)
  1525. err = -EIO;
  1526. blk_put_request(rq);
  1527. }
  1528. return err;
  1529. }
  1530. EXPORT_SYMBOL(ide_do_drive_cmd);
  1531. void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
  1532. {
  1533. ide_task_t task;
  1534. memset(&task, 0, sizeof(task));
  1535. task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
  1536. IDE_TFLAG_OUT_FEATURE | tf_flags;
  1537. task.tf.feature = dma; /* Use PIO/DMA */
  1538. task.tf.lbam = bcount & 0xff;
  1539. task.tf.lbah = (bcount >> 8) & 0xff;
  1540. ide_tf_load(drive, &task);
  1541. }
  1542. EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);