output.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. /*
  2. * net/dccp/output.c
  3. *
  4. * An implementation of the DCCP protocol
  5. * Arnaldo Carvalho de Melo <acme@conectiva.com.br>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/config.h>
  13. #include <linux/dccp.h>
  14. #include <linux/kernel.h>
  15. #include <linux/skbuff.h>
  16. #include <net/sock.h>
  17. #include "ackvec.h"
  18. #include "ccid.h"
  19. #include "dccp.h"
  20. static inline void dccp_event_ack_sent(struct sock *sk)
  21. {
  22. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  23. }
  24. static inline void dccp_skb_entail(struct sock *sk, struct sk_buff *skb)
  25. {
  26. skb_set_owner_w(skb, sk);
  27. WARN_ON(sk->sk_send_head);
  28. sk->sk_send_head = skb;
  29. }
  30. /*
  31. * All SKB's seen here are completely headerless. It is our
  32. * job to build the DCCP header, and pass the packet down to
  33. * IP so it can do the same plus pass the packet off to the
  34. * device.
  35. */
  36. static int dccp_transmit_skb(struct sock *sk, struct sk_buff *skb)
  37. {
  38. if (likely(skb != NULL)) {
  39. const struct inet_sock *inet = inet_sk(sk);
  40. const struct inet_connection_sock *icsk = inet_csk(sk);
  41. struct dccp_sock *dp = dccp_sk(sk);
  42. struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
  43. struct dccp_hdr *dh;
  44. /* XXX For now we're using only 48 bits sequence numbers */
  45. const int dccp_header_size = sizeof(*dh) +
  46. sizeof(struct dccp_hdr_ext) +
  47. dccp_packet_hdr_len(dcb->dccpd_type);
  48. int err, set_ack = 1;
  49. u64 ackno = dp->dccps_gsr;
  50. dccp_inc_seqno(&dp->dccps_gss);
  51. switch (dcb->dccpd_type) {
  52. case DCCP_PKT_DATA:
  53. set_ack = 0;
  54. /* fall through */
  55. case DCCP_PKT_DATAACK:
  56. break;
  57. case DCCP_PKT_SYNC:
  58. case DCCP_PKT_SYNCACK:
  59. ackno = dcb->dccpd_seq;
  60. /* fall through */
  61. default:
  62. /*
  63. * Only data packets should come through with skb->sk
  64. * set.
  65. */
  66. WARN_ON(skb->sk);
  67. skb_set_owner_w(skb, sk);
  68. break;
  69. }
  70. dcb->dccpd_seq = dp->dccps_gss;
  71. dccp_insert_options(sk, skb);
  72. skb->h.raw = skb_push(skb, dccp_header_size);
  73. dh = dccp_hdr(skb);
  74. /* Build DCCP header and checksum it. */
  75. memset(dh, 0, dccp_header_size);
  76. dh->dccph_type = dcb->dccpd_type;
  77. dh->dccph_sport = inet->sport;
  78. dh->dccph_dport = inet->dport;
  79. dh->dccph_doff = (dccp_header_size + dcb->dccpd_opt_len) / 4;
  80. dh->dccph_ccval = dcb->dccpd_ccval;
  81. /* XXX For now we're using only 48 bits sequence numbers */
  82. dh->dccph_x = 1;
  83. dp->dccps_awh = dp->dccps_gss;
  84. dccp_hdr_set_seq(dh, dp->dccps_gss);
  85. if (set_ack)
  86. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), ackno);
  87. switch (dcb->dccpd_type) {
  88. case DCCP_PKT_REQUEST:
  89. dccp_hdr_request(skb)->dccph_req_service =
  90. dp->dccps_service;
  91. break;
  92. case DCCP_PKT_RESET:
  93. dccp_hdr_reset(skb)->dccph_reset_code =
  94. dcb->dccpd_reset_code;
  95. break;
  96. }
  97. icsk->icsk_af_ops->send_check(sk, skb->len, skb);
  98. if (set_ack)
  99. dccp_event_ack_sent(sk);
  100. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  101. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  102. err = icsk->icsk_af_ops->queue_xmit(skb, 0);
  103. if (err <= 0)
  104. return err;
  105. /* NET_XMIT_CN is special. It does not guarantee,
  106. * that this packet is lost. It tells that device
  107. * is about to start to drop packets or already
  108. * drops some packets of the same priority and
  109. * invokes us to send less aggressively.
  110. */
  111. return err == NET_XMIT_CN ? 0 : err;
  112. }
  113. return -ENOBUFS;
  114. }
  115. unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu)
  116. {
  117. struct dccp_sock *dp = dccp_sk(sk);
  118. /*
  119. * FIXME: we really should be using the af_specific thing to support
  120. * IPv6.
  121. * mss_now = pmtu - tp->af_specific->net_header_len -
  122. * sizeof(struct dccp_hdr) - sizeof(struct dccp_hdr_ext);
  123. */
  124. int mss_now = (pmtu - inet_csk(sk)->icsk_af_ops->net_header_len -
  125. sizeof(struct dccp_hdr) - sizeof(struct dccp_hdr_ext));
  126. /* Now subtract optional transport overhead */
  127. mss_now -= dp->dccps_ext_header_len;
  128. /*
  129. * FIXME: this should come from the CCID infrastructure, where, say,
  130. * TFRC will say it wants TIMESTAMPS, ELAPSED time, etc, for now lets
  131. * put a rough estimate for NDP + TIMESTAMP + TIMESTAMP_ECHO + ELAPSED
  132. * TIME + TFRC_OPT_LOSS_EVENT_RATE + TFRC_OPT_RECEIVE_RATE + padding to
  133. * make it a multiple of 4
  134. */
  135. mss_now -= ((5 + 6 + 10 + 6 + 6 + 6 + 3) / 4) * 4;
  136. /* And store cached results */
  137. dp->dccps_pmtu_cookie = pmtu;
  138. dp->dccps_mss_cache = mss_now;
  139. return mss_now;
  140. }
  141. void dccp_write_space(struct sock *sk)
  142. {
  143. read_lock(&sk->sk_callback_lock);
  144. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  145. wake_up_interruptible(sk->sk_sleep);
  146. /* Should agree with poll, otherwise some programs break */
  147. if (sock_writeable(sk))
  148. sk_wake_async(sk, 2, POLL_OUT);
  149. read_unlock(&sk->sk_callback_lock);
  150. }
  151. /**
  152. * dccp_wait_for_ccid - Wait for ccid to tell us we can send a packet
  153. * @sk: socket to wait for
  154. * @timeo: for how long
  155. */
  156. static int dccp_wait_for_ccid(struct sock *sk, struct sk_buff *skb,
  157. long *timeo)
  158. {
  159. struct dccp_sock *dp = dccp_sk(sk);
  160. DEFINE_WAIT(wait);
  161. long delay;
  162. int rc;
  163. while (1) {
  164. prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
  165. if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
  166. goto do_error;
  167. if (!*timeo)
  168. goto do_nonblock;
  169. if (signal_pending(current))
  170. goto do_interrupted;
  171. rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb,
  172. skb->len);
  173. if (rc <= 0)
  174. break;
  175. delay = msecs_to_jiffies(rc);
  176. if (delay > *timeo || delay < 0)
  177. goto do_nonblock;
  178. sk->sk_write_pending++;
  179. release_sock(sk);
  180. *timeo -= schedule_timeout(delay);
  181. lock_sock(sk);
  182. sk->sk_write_pending--;
  183. }
  184. out:
  185. finish_wait(sk->sk_sleep, &wait);
  186. return rc;
  187. do_error:
  188. rc = -EPIPE;
  189. goto out;
  190. do_nonblock:
  191. rc = -EAGAIN;
  192. goto out;
  193. do_interrupted:
  194. rc = sock_intr_errno(*timeo);
  195. goto out;
  196. }
  197. int dccp_write_xmit(struct sock *sk, struct sk_buff *skb, long *timeo)
  198. {
  199. const struct dccp_sock *dp = dccp_sk(sk);
  200. int err = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb,
  201. skb->len);
  202. if (err > 0)
  203. err = dccp_wait_for_ccid(sk, skb, timeo);
  204. if (err == 0) {
  205. struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
  206. const int len = skb->len;
  207. if (sk->sk_state == DCCP_PARTOPEN) {
  208. /* See 8.1.5. Handshake Completion */
  209. inet_csk_schedule_ack(sk);
  210. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  211. inet_csk(sk)->icsk_rto,
  212. DCCP_RTO_MAX);
  213. dcb->dccpd_type = DCCP_PKT_DATAACK;
  214. } else if (dccp_ack_pending(sk))
  215. dcb->dccpd_type = DCCP_PKT_DATAACK;
  216. else
  217. dcb->dccpd_type = DCCP_PKT_DATA;
  218. err = dccp_transmit_skb(sk, skb);
  219. ccid_hc_tx_packet_sent(dp->dccps_hc_tx_ccid, sk, 0, len);
  220. } else
  221. kfree_skb(skb);
  222. return err;
  223. }
  224. int dccp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
  225. {
  226. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk) != 0)
  227. return -EHOSTUNREACH; /* Routing failure or similar. */
  228. return dccp_transmit_skb(sk, (skb_cloned(skb) ?
  229. pskb_copy(skb, GFP_ATOMIC):
  230. skb_clone(skb, GFP_ATOMIC)));
  231. }
  232. struct sk_buff *dccp_make_response(struct sock *sk, struct dst_entry *dst,
  233. struct request_sock *req)
  234. {
  235. struct dccp_hdr *dh;
  236. struct dccp_request_sock *dreq;
  237. const int dccp_header_size = sizeof(struct dccp_hdr) +
  238. sizeof(struct dccp_hdr_ext) +
  239. sizeof(struct dccp_hdr_response);
  240. struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN +
  241. dccp_header_size, 1,
  242. GFP_ATOMIC);
  243. if (skb == NULL)
  244. return NULL;
  245. /* Reserve space for headers. */
  246. skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size);
  247. skb->dst = dst_clone(dst);
  248. skb->csum = 0;
  249. dreq = dccp_rsk(req);
  250. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESPONSE;
  251. DCCP_SKB_CB(skb)->dccpd_seq = dreq->dreq_iss;
  252. dccp_insert_options(sk, skb);
  253. skb->h.raw = skb_push(skb, dccp_header_size);
  254. dh = dccp_hdr(skb);
  255. memset(dh, 0, dccp_header_size);
  256. dh->dccph_sport = inet_sk(sk)->sport;
  257. dh->dccph_dport = inet_rsk(req)->rmt_port;
  258. dh->dccph_doff = (dccp_header_size +
  259. DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
  260. dh->dccph_type = DCCP_PKT_RESPONSE;
  261. dh->dccph_x = 1;
  262. dccp_hdr_set_seq(dh, dreq->dreq_iss);
  263. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dreq->dreq_isr);
  264. dccp_hdr_response(skb)->dccph_resp_service = dreq->dreq_service;
  265. dh->dccph_checksum = dccp_v4_checksum(skb, inet_rsk(req)->loc_addr,
  266. inet_rsk(req)->rmt_addr);
  267. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  268. return skb;
  269. }
  270. struct sk_buff *dccp_make_reset(struct sock *sk, struct dst_entry *dst,
  271. const enum dccp_reset_codes code)
  272. {
  273. struct dccp_hdr *dh;
  274. struct dccp_sock *dp = dccp_sk(sk);
  275. const int dccp_header_size = sizeof(struct dccp_hdr) +
  276. sizeof(struct dccp_hdr_ext) +
  277. sizeof(struct dccp_hdr_reset);
  278. struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN +
  279. dccp_header_size, 1,
  280. GFP_ATOMIC);
  281. if (skb == NULL)
  282. return NULL;
  283. /* Reserve space for headers. */
  284. skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size);
  285. skb->dst = dst_clone(dst);
  286. skb->csum = 0;
  287. dccp_inc_seqno(&dp->dccps_gss);
  288. DCCP_SKB_CB(skb)->dccpd_reset_code = code;
  289. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESET;
  290. DCCP_SKB_CB(skb)->dccpd_seq = dp->dccps_gss;
  291. dccp_insert_options(sk, skb);
  292. skb->h.raw = skb_push(skb, dccp_header_size);
  293. dh = dccp_hdr(skb);
  294. memset(dh, 0, dccp_header_size);
  295. dh->dccph_sport = inet_sk(sk)->sport;
  296. dh->dccph_dport = inet_sk(sk)->dport;
  297. dh->dccph_doff = (dccp_header_size +
  298. DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
  299. dh->dccph_type = DCCP_PKT_RESET;
  300. dh->dccph_x = 1;
  301. dccp_hdr_set_seq(dh, dp->dccps_gss);
  302. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dp->dccps_gsr);
  303. dccp_hdr_reset(skb)->dccph_reset_code = code;
  304. dh->dccph_checksum = dccp_v4_checksum(skb, inet_sk(sk)->saddr,
  305. inet_sk(sk)->daddr);
  306. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  307. return skb;
  308. }
  309. /*
  310. * Do all connect socket setups that can be done AF independent.
  311. */
  312. static inline void dccp_connect_init(struct sock *sk)
  313. {
  314. struct dst_entry *dst = __sk_dst_get(sk);
  315. struct inet_connection_sock *icsk = inet_csk(sk);
  316. sk->sk_err = 0;
  317. sock_reset_flag(sk, SOCK_DONE);
  318. dccp_sync_mss(sk, dst_mtu(dst));
  319. /*
  320. * FIXME: set dp->{dccps_swh,dccps_swl}, with
  321. * something like dccp_inc_seq
  322. */
  323. icsk->icsk_retransmits = 0;
  324. }
  325. int dccp_connect(struct sock *sk)
  326. {
  327. struct sk_buff *skb;
  328. struct inet_connection_sock *icsk = inet_csk(sk);
  329. dccp_connect_init(sk);
  330. skb = alloc_skb(MAX_DCCP_HEADER + 15, sk->sk_allocation);
  331. if (unlikely(skb == NULL))
  332. return -ENOBUFS;
  333. /* Reserve space for headers. */
  334. skb_reserve(skb, MAX_DCCP_HEADER);
  335. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_REQUEST;
  336. skb->csum = 0;
  337. dccp_skb_entail(sk, skb);
  338. dccp_transmit_skb(sk, skb_clone(skb, GFP_KERNEL));
  339. DCCP_INC_STATS(DCCP_MIB_ACTIVEOPENS);
  340. /* Timer for repeating the REQUEST until an answer. */
  341. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  342. icsk->icsk_rto, DCCP_RTO_MAX);
  343. return 0;
  344. }
  345. void dccp_send_ack(struct sock *sk)
  346. {
  347. /* If we have been reset, we may not send again. */
  348. if (sk->sk_state != DCCP_CLOSED) {
  349. struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC);
  350. if (skb == NULL) {
  351. inet_csk_schedule_ack(sk);
  352. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  353. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  354. TCP_DELACK_MAX,
  355. DCCP_RTO_MAX);
  356. return;
  357. }
  358. /* Reserve space for headers */
  359. skb_reserve(skb, MAX_DCCP_HEADER);
  360. skb->csum = 0;
  361. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_ACK;
  362. dccp_transmit_skb(sk, skb);
  363. }
  364. }
  365. EXPORT_SYMBOL_GPL(dccp_send_ack);
  366. void dccp_send_delayed_ack(struct sock *sk)
  367. {
  368. struct inet_connection_sock *icsk = inet_csk(sk);
  369. /*
  370. * FIXME: tune this timer. elapsed time fixes the skew, so no problem
  371. * with using 2s, and active senders also piggyback the ACK into a
  372. * DATAACK packet, so this is really for quiescent senders.
  373. */
  374. unsigned long timeout = jiffies + 2 * HZ;
  375. /* Use new timeout only if there wasn't a older one earlier. */
  376. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  377. /* If delack timer was blocked or is about to expire,
  378. * send ACK now.
  379. *
  380. * FIXME: check the "about to expire" part
  381. */
  382. if (icsk->icsk_ack.blocked) {
  383. dccp_send_ack(sk);
  384. return;
  385. }
  386. if (!time_before(timeout, icsk->icsk_ack.timeout))
  387. timeout = icsk->icsk_ack.timeout;
  388. }
  389. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  390. icsk->icsk_ack.timeout = timeout;
  391. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  392. }
  393. void dccp_send_sync(struct sock *sk, const u64 seq,
  394. const enum dccp_pkt_type pkt_type)
  395. {
  396. /*
  397. * We are not putting this on the write queue, so
  398. * dccp_transmit_skb() will set the ownership to this
  399. * sock.
  400. */
  401. struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC);
  402. if (skb == NULL)
  403. /* FIXME: how to make sure the sync is sent? */
  404. return;
  405. /* Reserve space for headers and prepare control bits. */
  406. skb_reserve(skb, MAX_DCCP_HEADER);
  407. skb->csum = 0;
  408. DCCP_SKB_CB(skb)->dccpd_type = pkt_type;
  409. DCCP_SKB_CB(skb)->dccpd_seq = seq;
  410. dccp_transmit_skb(sk, skb);
  411. }
  412. /*
  413. * Send a DCCP_PKT_CLOSE/CLOSEREQ. The caller locks the socket for us. This
  414. * cannot be allowed to fail queueing a DCCP_PKT_CLOSE/CLOSEREQ frame under
  415. * any circumstances.
  416. */
  417. void dccp_send_close(struct sock *sk, const int active)
  418. {
  419. struct dccp_sock *dp = dccp_sk(sk);
  420. struct sk_buff *skb;
  421. const gfp_t prio = active ? GFP_KERNEL : GFP_ATOMIC;
  422. skb = alloc_skb(sk->sk_prot->max_header, prio);
  423. if (skb == NULL)
  424. return;
  425. /* Reserve space for headers and prepare control bits. */
  426. skb_reserve(skb, sk->sk_prot->max_header);
  427. skb->csum = 0;
  428. DCCP_SKB_CB(skb)->dccpd_type = dp->dccps_role == DCCP_ROLE_CLIENT ?
  429. DCCP_PKT_CLOSE : DCCP_PKT_CLOSEREQ;
  430. if (active) {
  431. dccp_skb_entail(sk, skb);
  432. dccp_transmit_skb(sk, skb_clone(skb, prio));
  433. } else
  434. dccp_transmit_skb(sk, skb);
  435. }