fork.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/freezer.h>
  47. #include <linux/delayacct.h>
  48. #include <linux/taskstats_kern.h>
  49. #include <linux/random.h>
  50. #include <linux/tty.h>
  51. #include <asm/pgtable.h>
  52. #include <asm/pgalloc.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/mmu_context.h>
  55. #include <asm/cacheflush.h>
  56. #include <asm/tlbflush.h>
  57. /*
  58. * Protected counters by write_lock_irq(&tasklist_lock)
  59. */
  60. unsigned long total_forks; /* Handle normal Linux uptimes. */
  61. int nr_threads; /* The idle threads do not count.. */
  62. int max_threads; /* tunable limit on nr_threads */
  63. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  64. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  65. int nr_processes(void)
  66. {
  67. int cpu;
  68. int total = 0;
  69. for_each_online_cpu(cpu)
  70. total += per_cpu(process_counts, cpu);
  71. return total;
  72. }
  73. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  74. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  75. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  76. static struct kmem_cache *task_struct_cachep;
  77. #endif
  78. /* SLAB cache for signal_struct structures (tsk->signal) */
  79. static struct kmem_cache *signal_cachep;
  80. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  81. struct kmem_cache *sighand_cachep;
  82. /* SLAB cache for files_struct structures (tsk->files) */
  83. struct kmem_cache *files_cachep;
  84. /* SLAB cache for fs_struct structures (tsk->fs) */
  85. struct kmem_cache *fs_cachep;
  86. /* SLAB cache for vm_area_struct structures */
  87. struct kmem_cache *vm_area_cachep;
  88. /* SLAB cache for mm_struct structures (tsk->mm) */
  89. static struct kmem_cache *mm_cachep;
  90. void free_task(struct task_struct *tsk)
  91. {
  92. prop_local_destroy_single(&tsk->dirties);
  93. free_thread_info(tsk->stack);
  94. rt_mutex_debug_task_free(tsk);
  95. free_task_struct(tsk);
  96. }
  97. EXPORT_SYMBOL(free_task);
  98. void __put_task_struct(struct task_struct *tsk)
  99. {
  100. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  101. WARN_ON(atomic_read(&tsk->usage));
  102. WARN_ON(tsk == current);
  103. security_task_free(tsk);
  104. free_uid(tsk->user);
  105. put_group_info(tsk->group_info);
  106. delayacct_tsk_free(tsk);
  107. if (!profile_handoff_task(tsk))
  108. free_task(tsk);
  109. }
  110. void __init fork_init(unsigned long mempages)
  111. {
  112. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  113. #ifndef ARCH_MIN_TASKALIGN
  114. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  115. #endif
  116. /* create a slab on which task_structs can be allocated */
  117. task_struct_cachep =
  118. kmem_cache_create("task_struct", sizeof(struct task_struct),
  119. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
  120. #endif
  121. /*
  122. * The default maximum number of threads is set to a safe
  123. * value: the thread structures can take up at most half
  124. * of memory.
  125. */
  126. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  127. /*
  128. * we need to allow at least 20 threads to boot a system
  129. */
  130. if(max_threads < 20)
  131. max_threads = 20;
  132. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  133. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  134. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  135. init_task.signal->rlim[RLIMIT_NPROC];
  136. }
  137. static struct task_struct *dup_task_struct(struct task_struct *orig)
  138. {
  139. struct task_struct *tsk;
  140. struct thread_info *ti;
  141. int err;
  142. prepare_to_copy(orig);
  143. tsk = alloc_task_struct();
  144. if (!tsk)
  145. return NULL;
  146. ti = alloc_thread_info(tsk);
  147. if (!ti) {
  148. free_task_struct(tsk);
  149. return NULL;
  150. }
  151. *tsk = *orig;
  152. tsk->stack = ti;
  153. err = prop_local_init_single(&tsk->dirties);
  154. if (err) {
  155. free_thread_info(ti);
  156. free_task_struct(tsk);
  157. return NULL;
  158. }
  159. setup_thread_stack(tsk, orig);
  160. #ifdef CONFIG_CC_STACKPROTECTOR
  161. tsk->stack_canary = get_random_int();
  162. #endif
  163. /* One for us, one for whoever does the "release_task()" (usually parent) */
  164. atomic_set(&tsk->usage,2);
  165. atomic_set(&tsk->fs_excl, 0);
  166. #ifdef CONFIG_BLK_DEV_IO_TRACE
  167. tsk->btrace_seq = 0;
  168. #endif
  169. tsk->splice_pipe = NULL;
  170. return tsk;
  171. }
  172. #ifdef CONFIG_MMU
  173. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  174. {
  175. struct vm_area_struct *mpnt, *tmp, **pprev;
  176. struct rb_node **rb_link, *rb_parent;
  177. int retval;
  178. unsigned long charge;
  179. struct mempolicy *pol;
  180. down_write(&oldmm->mmap_sem);
  181. flush_cache_dup_mm(oldmm);
  182. /*
  183. * Not linked in yet - no deadlock potential:
  184. */
  185. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  186. mm->locked_vm = 0;
  187. mm->mmap = NULL;
  188. mm->mmap_cache = NULL;
  189. mm->free_area_cache = oldmm->mmap_base;
  190. mm->cached_hole_size = ~0UL;
  191. mm->map_count = 0;
  192. cpus_clear(mm->cpu_vm_mask);
  193. mm->mm_rb = RB_ROOT;
  194. rb_link = &mm->mm_rb.rb_node;
  195. rb_parent = NULL;
  196. pprev = &mm->mmap;
  197. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  198. struct file *file;
  199. if (mpnt->vm_flags & VM_DONTCOPY) {
  200. long pages = vma_pages(mpnt);
  201. mm->total_vm -= pages;
  202. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  203. -pages);
  204. continue;
  205. }
  206. charge = 0;
  207. if (mpnt->vm_flags & VM_ACCOUNT) {
  208. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  209. if (security_vm_enough_memory(len))
  210. goto fail_nomem;
  211. charge = len;
  212. }
  213. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  214. if (!tmp)
  215. goto fail_nomem;
  216. *tmp = *mpnt;
  217. pol = mpol_copy(vma_policy(mpnt));
  218. retval = PTR_ERR(pol);
  219. if (IS_ERR(pol))
  220. goto fail_nomem_policy;
  221. vma_set_policy(tmp, pol);
  222. tmp->vm_flags &= ~VM_LOCKED;
  223. tmp->vm_mm = mm;
  224. tmp->vm_next = NULL;
  225. anon_vma_link(tmp);
  226. file = tmp->vm_file;
  227. if (file) {
  228. struct inode *inode = file->f_path.dentry->d_inode;
  229. get_file(file);
  230. if (tmp->vm_flags & VM_DENYWRITE)
  231. atomic_dec(&inode->i_writecount);
  232. /* insert tmp into the share list, just after mpnt */
  233. spin_lock(&file->f_mapping->i_mmap_lock);
  234. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  235. flush_dcache_mmap_lock(file->f_mapping);
  236. vma_prio_tree_add(tmp, mpnt);
  237. flush_dcache_mmap_unlock(file->f_mapping);
  238. spin_unlock(&file->f_mapping->i_mmap_lock);
  239. }
  240. /*
  241. * Link in the new vma and copy the page table entries.
  242. */
  243. *pprev = tmp;
  244. pprev = &tmp->vm_next;
  245. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  246. rb_link = &tmp->vm_rb.rb_right;
  247. rb_parent = &tmp->vm_rb;
  248. mm->map_count++;
  249. retval = copy_page_range(mm, oldmm, mpnt);
  250. if (tmp->vm_ops && tmp->vm_ops->open)
  251. tmp->vm_ops->open(tmp);
  252. if (retval)
  253. goto out;
  254. }
  255. /* a new mm has just been created */
  256. arch_dup_mmap(oldmm, mm);
  257. retval = 0;
  258. out:
  259. up_write(&mm->mmap_sem);
  260. flush_tlb_mm(oldmm);
  261. up_write(&oldmm->mmap_sem);
  262. return retval;
  263. fail_nomem_policy:
  264. kmem_cache_free(vm_area_cachep, tmp);
  265. fail_nomem:
  266. retval = -ENOMEM;
  267. vm_unacct_memory(charge);
  268. goto out;
  269. }
  270. static inline int mm_alloc_pgd(struct mm_struct * mm)
  271. {
  272. mm->pgd = pgd_alloc(mm);
  273. if (unlikely(!mm->pgd))
  274. return -ENOMEM;
  275. return 0;
  276. }
  277. static inline void mm_free_pgd(struct mm_struct * mm)
  278. {
  279. pgd_free(mm->pgd);
  280. }
  281. #else
  282. #define dup_mmap(mm, oldmm) (0)
  283. #define mm_alloc_pgd(mm) (0)
  284. #define mm_free_pgd(mm)
  285. #endif /* CONFIG_MMU */
  286. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  287. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  288. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  289. #include <linux/init_task.h>
  290. static struct mm_struct * mm_init(struct mm_struct * mm)
  291. {
  292. atomic_set(&mm->mm_users, 1);
  293. atomic_set(&mm->mm_count, 1);
  294. init_rwsem(&mm->mmap_sem);
  295. INIT_LIST_HEAD(&mm->mmlist);
  296. mm->flags = (current->mm) ? current->mm->flags
  297. : MMF_DUMP_FILTER_DEFAULT;
  298. mm->core_waiters = 0;
  299. mm->nr_ptes = 0;
  300. set_mm_counter(mm, file_rss, 0);
  301. set_mm_counter(mm, anon_rss, 0);
  302. spin_lock_init(&mm->page_table_lock);
  303. rwlock_init(&mm->ioctx_list_lock);
  304. mm->ioctx_list = NULL;
  305. mm->free_area_cache = TASK_UNMAPPED_BASE;
  306. mm->cached_hole_size = ~0UL;
  307. if (likely(!mm_alloc_pgd(mm))) {
  308. mm->def_flags = 0;
  309. return mm;
  310. }
  311. free_mm(mm);
  312. return NULL;
  313. }
  314. /*
  315. * Allocate and initialize an mm_struct.
  316. */
  317. struct mm_struct * mm_alloc(void)
  318. {
  319. struct mm_struct * mm;
  320. mm = allocate_mm();
  321. if (mm) {
  322. memset(mm, 0, sizeof(*mm));
  323. mm = mm_init(mm);
  324. }
  325. return mm;
  326. }
  327. /*
  328. * Called when the last reference to the mm
  329. * is dropped: either by a lazy thread or by
  330. * mmput. Free the page directory and the mm.
  331. */
  332. void fastcall __mmdrop(struct mm_struct *mm)
  333. {
  334. BUG_ON(mm == &init_mm);
  335. mm_free_pgd(mm);
  336. destroy_context(mm);
  337. free_mm(mm);
  338. }
  339. /*
  340. * Decrement the use count and release all resources for an mm.
  341. */
  342. void mmput(struct mm_struct *mm)
  343. {
  344. might_sleep();
  345. if (atomic_dec_and_test(&mm->mm_users)) {
  346. exit_aio(mm);
  347. exit_mmap(mm);
  348. if (!list_empty(&mm->mmlist)) {
  349. spin_lock(&mmlist_lock);
  350. list_del(&mm->mmlist);
  351. spin_unlock(&mmlist_lock);
  352. }
  353. put_swap_token(mm);
  354. mmdrop(mm);
  355. }
  356. }
  357. EXPORT_SYMBOL_GPL(mmput);
  358. /**
  359. * get_task_mm - acquire a reference to the task's mm
  360. *
  361. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  362. * this kernel workthread has transiently adopted a user mm with use_mm,
  363. * to do its AIO) is not set and if so returns a reference to it, after
  364. * bumping up the use count. User must release the mm via mmput()
  365. * after use. Typically used by /proc and ptrace.
  366. */
  367. struct mm_struct *get_task_mm(struct task_struct *task)
  368. {
  369. struct mm_struct *mm;
  370. task_lock(task);
  371. mm = task->mm;
  372. if (mm) {
  373. if (task->flags & PF_BORROWED_MM)
  374. mm = NULL;
  375. else
  376. atomic_inc(&mm->mm_users);
  377. }
  378. task_unlock(task);
  379. return mm;
  380. }
  381. EXPORT_SYMBOL_GPL(get_task_mm);
  382. /* Please note the differences between mmput and mm_release.
  383. * mmput is called whenever we stop holding onto a mm_struct,
  384. * error success whatever.
  385. *
  386. * mm_release is called after a mm_struct has been removed
  387. * from the current process.
  388. *
  389. * This difference is important for error handling, when we
  390. * only half set up a mm_struct for a new process and need to restore
  391. * the old one. Because we mmput the new mm_struct before
  392. * restoring the old one. . .
  393. * Eric Biederman 10 January 1998
  394. */
  395. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  396. {
  397. struct completion *vfork_done = tsk->vfork_done;
  398. /* Get rid of any cached register state */
  399. deactivate_mm(tsk, mm);
  400. /* notify parent sleeping on vfork() */
  401. if (vfork_done) {
  402. tsk->vfork_done = NULL;
  403. complete(vfork_done);
  404. }
  405. /*
  406. * If we're exiting normally, clear a user-space tid field if
  407. * requested. We leave this alone when dying by signal, to leave
  408. * the value intact in a core dump, and to save the unnecessary
  409. * trouble otherwise. Userland only wants this done for a sys_exit.
  410. */
  411. if (tsk->clear_child_tid
  412. && !(tsk->flags & PF_SIGNALED)
  413. && atomic_read(&mm->mm_users) > 1) {
  414. u32 __user * tidptr = tsk->clear_child_tid;
  415. tsk->clear_child_tid = NULL;
  416. /*
  417. * We don't check the error code - if userspace has
  418. * not set up a proper pointer then tough luck.
  419. */
  420. put_user(0, tidptr);
  421. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  422. }
  423. }
  424. /*
  425. * Allocate a new mm structure and copy contents from the
  426. * mm structure of the passed in task structure.
  427. */
  428. static struct mm_struct *dup_mm(struct task_struct *tsk)
  429. {
  430. struct mm_struct *mm, *oldmm = current->mm;
  431. int err;
  432. if (!oldmm)
  433. return NULL;
  434. mm = allocate_mm();
  435. if (!mm)
  436. goto fail_nomem;
  437. memcpy(mm, oldmm, sizeof(*mm));
  438. /* Initializing for Swap token stuff */
  439. mm->token_priority = 0;
  440. mm->last_interval = 0;
  441. if (!mm_init(mm))
  442. goto fail_nomem;
  443. if (init_new_context(tsk, mm))
  444. goto fail_nocontext;
  445. err = dup_mmap(mm, oldmm);
  446. if (err)
  447. goto free_pt;
  448. mm->hiwater_rss = get_mm_rss(mm);
  449. mm->hiwater_vm = mm->total_vm;
  450. return mm;
  451. free_pt:
  452. mmput(mm);
  453. fail_nomem:
  454. return NULL;
  455. fail_nocontext:
  456. /*
  457. * If init_new_context() failed, we cannot use mmput() to free the mm
  458. * because it calls destroy_context()
  459. */
  460. mm_free_pgd(mm);
  461. free_mm(mm);
  462. return NULL;
  463. }
  464. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  465. {
  466. struct mm_struct * mm, *oldmm;
  467. int retval;
  468. tsk->min_flt = tsk->maj_flt = 0;
  469. tsk->nvcsw = tsk->nivcsw = 0;
  470. tsk->mm = NULL;
  471. tsk->active_mm = NULL;
  472. /*
  473. * Are we cloning a kernel thread?
  474. *
  475. * We need to steal a active VM for that..
  476. */
  477. oldmm = current->mm;
  478. if (!oldmm)
  479. return 0;
  480. if (clone_flags & CLONE_VM) {
  481. atomic_inc(&oldmm->mm_users);
  482. mm = oldmm;
  483. goto good_mm;
  484. }
  485. retval = -ENOMEM;
  486. mm = dup_mm(tsk);
  487. if (!mm)
  488. goto fail_nomem;
  489. good_mm:
  490. /* Initializing for Swap token stuff */
  491. mm->token_priority = 0;
  492. mm->last_interval = 0;
  493. tsk->mm = mm;
  494. tsk->active_mm = mm;
  495. return 0;
  496. fail_nomem:
  497. return retval;
  498. }
  499. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  500. {
  501. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  502. /* We don't need to lock fs - think why ;-) */
  503. if (fs) {
  504. atomic_set(&fs->count, 1);
  505. rwlock_init(&fs->lock);
  506. fs->umask = old->umask;
  507. read_lock(&old->lock);
  508. fs->rootmnt = mntget(old->rootmnt);
  509. fs->root = dget(old->root);
  510. fs->pwdmnt = mntget(old->pwdmnt);
  511. fs->pwd = dget(old->pwd);
  512. if (old->altroot) {
  513. fs->altrootmnt = mntget(old->altrootmnt);
  514. fs->altroot = dget(old->altroot);
  515. } else {
  516. fs->altrootmnt = NULL;
  517. fs->altroot = NULL;
  518. }
  519. read_unlock(&old->lock);
  520. }
  521. return fs;
  522. }
  523. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  524. {
  525. return __copy_fs_struct(old);
  526. }
  527. EXPORT_SYMBOL_GPL(copy_fs_struct);
  528. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  529. {
  530. if (clone_flags & CLONE_FS) {
  531. atomic_inc(&current->fs->count);
  532. return 0;
  533. }
  534. tsk->fs = __copy_fs_struct(current->fs);
  535. if (!tsk->fs)
  536. return -ENOMEM;
  537. return 0;
  538. }
  539. static int count_open_files(struct fdtable *fdt)
  540. {
  541. int size = fdt->max_fds;
  542. int i;
  543. /* Find the last open fd */
  544. for (i = size/(8*sizeof(long)); i > 0; ) {
  545. if (fdt->open_fds->fds_bits[--i])
  546. break;
  547. }
  548. i = (i+1) * 8 * sizeof(long);
  549. return i;
  550. }
  551. static struct files_struct *alloc_files(void)
  552. {
  553. struct files_struct *newf;
  554. struct fdtable *fdt;
  555. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  556. if (!newf)
  557. goto out;
  558. atomic_set(&newf->count, 1);
  559. spin_lock_init(&newf->file_lock);
  560. newf->next_fd = 0;
  561. fdt = &newf->fdtab;
  562. fdt->max_fds = NR_OPEN_DEFAULT;
  563. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  564. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  565. fdt->fd = &newf->fd_array[0];
  566. INIT_RCU_HEAD(&fdt->rcu);
  567. fdt->next = NULL;
  568. rcu_assign_pointer(newf->fdt, fdt);
  569. out:
  570. return newf;
  571. }
  572. /*
  573. * Allocate a new files structure and copy contents from the
  574. * passed in files structure.
  575. * errorp will be valid only when the returned files_struct is NULL.
  576. */
  577. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  578. {
  579. struct files_struct *newf;
  580. struct file **old_fds, **new_fds;
  581. int open_files, size, i;
  582. struct fdtable *old_fdt, *new_fdt;
  583. *errorp = -ENOMEM;
  584. newf = alloc_files();
  585. if (!newf)
  586. goto out;
  587. spin_lock(&oldf->file_lock);
  588. old_fdt = files_fdtable(oldf);
  589. new_fdt = files_fdtable(newf);
  590. open_files = count_open_files(old_fdt);
  591. /*
  592. * Check whether we need to allocate a larger fd array and fd set.
  593. * Note: we're not a clone task, so the open count won't change.
  594. */
  595. if (open_files > new_fdt->max_fds) {
  596. new_fdt->max_fds = 0;
  597. spin_unlock(&oldf->file_lock);
  598. spin_lock(&newf->file_lock);
  599. *errorp = expand_files(newf, open_files-1);
  600. spin_unlock(&newf->file_lock);
  601. if (*errorp < 0)
  602. goto out_release;
  603. new_fdt = files_fdtable(newf);
  604. /*
  605. * Reacquire the oldf lock and a pointer to its fd table
  606. * who knows it may have a new bigger fd table. We need
  607. * the latest pointer.
  608. */
  609. spin_lock(&oldf->file_lock);
  610. old_fdt = files_fdtable(oldf);
  611. }
  612. old_fds = old_fdt->fd;
  613. new_fds = new_fdt->fd;
  614. memcpy(new_fdt->open_fds->fds_bits,
  615. old_fdt->open_fds->fds_bits, open_files/8);
  616. memcpy(new_fdt->close_on_exec->fds_bits,
  617. old_fdt->close_on_exec->fds_bits, open_files/8);
  618. for (i = open_files; i != 0; i--) {
  619. struct file *f = *old_fds++;
  620. if (f) {
  621. get_file(f);
  622. } else {
  623. /*
  624. * The fd may be claimed in the fd bitmap but not yet
  625. * instantiated in the files array if a sibling thread
  626. * is partway through open(). So make sure that this
  627. * fd is available to the new process.
  628. */
  629. FD_CLR(open_files - i, new_fdt->open_fds);
  630. }
  631. rcu_assign_pointer(*new_fds++, f);
  632. }
  633. spin_unlock(&oldf->file_lock);
  634. /* compute the remainder to be cleared */
  635. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  636. /* This is long word aligned thus could use a optimized version */
  637. memset(new_fds, 0, size);
  638. if (new_fdt->max_fds > open_files) {
  639. int left = (new_fdt->max_fds-open_files)/8;
  640. int start = open_files / (8 * sizeof(unsigned long));
  641. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  642. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  643. }
  644. return newf;
  645. out_release:
  646. kmem_cache_free(files_cachep, newf);
  647. out:
  648. return NULL;
  649. }
  650. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  651. {
  652. struct files_struct *oldf, *newf;
  653. int error = 0;
  654. /*
  655. * A background process may not have any files ...
  656. */
  657. oldf = current->files;
  658. if (!oldf)
  659. goto out;
  660. if (clone_flags & CLONE_FILES) {
  661. atomic_inc(&oldf->count);
  662. goto out;
  663. }
  664. /*
  665. * Note: we may be using current for both targets (See exec.c)
  666. * This works because we cache current->files (old) as oldf. Don't
  667. * break this.
  668. */
  669. tsk->files = NULL;
  670. newf = dup_fd(oldf, &error);
  671. if (!newf)
  672. goto out;
  673. tsk->files = newf;
  674. error = 0;
  675. out:
  676. return error;
  677. }
  678. /*
  679. * Helper to unshare the files of the current task.
  680. * We don't want to expose copy_files internals to
  681. * the exec layer of the kernel.
  682. */
  683. int unshare_files(void)
  684. {
  685. struct files_struct *files = current->files;
  686. int rc;
  687. BUG_ON(!files);
  688. /* This can race but the race causes us to copy when we don't
  689. need to and drop the copy */
  690. if(atomic_read(&files->count) == 1)
  691. {
  692. atomic_inc(&files->count);
  693. return 0;
  694. }
  695. rc = copy_files(0, current);
  696. if(rc)
  697. current->files = files;
  698. return rc;
  699. }
  700. EXPORT_SYMBOL(unshare_files);
  701. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  702. {
  703. struct sighand_struct *sig;
  704. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  705. atomic_inc(&current->sighand->count);
  706. return 0;
  707. }
  708. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  709. rcu_assign_pointer(tsk->sighand, sig);
  710. if (!sig)
  711. return -ENOMEM;
  712. atomic_set(&sig->count, 1);
  713. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  714. return 0;
  715. }
  716. void __cleanup_sighand(struct sighand_struct *sighand)
  717. {
  718. if (atomic_dec_and_test(&sighand->count))
  719. kmem_cache_free(sighand_cachep, sighand);
  720. }
  721. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  722. {
  723. struct signal_struct *sig;
  724. int ret;
  725. if (clone_flags & CLONE_THREAD) {
  726. atomic_inc(&current->signal->count);
  727. atomic_inc(&current->signal->live);
  728. return 0;
  729. }
  730. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  731. tsk->signal = sig;
  732. if (!sig)
  733. return -ENOMEM;
  734. ret = copy_thread_group_keys(tsk);
  735. if (ret < 0) {
  736. kmem_cache_free(signal_cachep, sig);
  737. return ret;
  738. }
  739. atomic_set(&sig->count, 1);
  740. atomic_set(&sig->live, 1);
  741. init_waitqueue_head(&sig->wait_chldexit);
  742. sig->flags = 0;
  743. sig->group_exit_code = 0;
  744. sig->group_exit_task = NULL;
  745. sig->group_stop_count = 0;
  746. sig->curr_target = NULL;
  747. init_sigpending(&sig->shared_pending);
  748. INIT_LIST_HEAD(&sig->posix_timers);
  749. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  750. sig->it_real_incr.tv64 = 0;
  751. sig->real_timer.function = it_real_fn;
  752. sig->tsk = tsk;
  753. sig->it_virt_expires = cputime_zero;
  754. sig->it_virt_incr = cputime_zero;
  755. sig->it_prof_expires = cputime_zero;
  756. sig->it_prof_incr = cputime_zero;
  757. sig->leader = 0; /* session leadership doesn't inherit */
  758. sig->tty_old_pgrp = NULL;
  759. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  760. sig->gtime = cputime_zero;
  761. sig->cgtime = cputime_zero;
  762. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  763. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  764. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  765. sig->sum_sched_runtime = 0;
  766. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  767. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  768. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  769. taskstats_tgid_init(sig);
  770. task_lock(current->group_leader);
  771. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  772. task_unlock(current->group_leader);
  773. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  774. /*
  775. * New sole thread in the process gets an expiry time
  776. * of the whole CPU time limit.
  777. */
  778. tsk->it_prof_expires =
  779. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  780. }
  781. acct_init_pacct(&sig->pacct);
  782. tty_audit_fork(sig);
  783. return 0;
  784. }
  785. void __cleanup_signal(struct signal_struct *sig)
  786. {
  787. exit_thread_group_keys(sig);
  788. kmem_cache_free(signal_cachep, sig);
  789. }
  790. static inline void cleanup_signal(struct task_struct *tsk)
  791. {
  792. struct signal_struct *sig = tsk->signal;
  793. atomic_dec(&sig->live);
  794. if (atomic_dec_and_test(&sig->count))
  795. __cleanup_signal(sig);
  796. }
  797. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  798. {
  799. unsigned long new_flags = p->flags;
  800. new_flags &= ~PF_SUPERPRIV;
  801. new_flags |= PF_FORKNOEXEC;
  802. if (!(clone_flags & CLONE_PTRACE))
  803. p->ptrace = 0;
  804. p->flags = new_flags;
  805. }
  806. asmlinkage long sys_set_tid_address(int __user *tidptr)
  807. {
  808. current->clear_child_tid = tidptr;
  809. return current->pid;
  810. }
  811. static inline void rt_mutex_init_task(struct task_struct *p)
  812. {
  813. spin_lock_init(&p->pi_lock);
  814. #ifdef CONFIG_RT_MUTEXES
  815. plist_head_init(&p->pi_waiters, &p->pi_lock);
  816. p->pi_blocked_on = NULL;
  817. #endif
  818. }
  819. /*
  820. * This creates a new process as a copy of the old one,
  821. * but does not actually start it yet.
  822. *
  823. * It copies the registers, and all the appropriate
  824. * parts of the process environment (as per the clone
  825. * flags). The actual kick-off is left to the caller.
  826. */
  827. static struct task_struct *copy_process(unsigned long clone_flags,
  828. unsigned long stack_start,
  829. struct pt_regs *regs,
  830. unsigned long stack_size,
  831. int __user *parent_tidptr,
  832. int __user *child_tidptr,
  833. struct pid *pid)
  834. {
  835. int retval;
  836. struct task_struct *p = NULL;
  837. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  838. return ERR_PTR(-EINVAL);
  839. /*
  840. * Thread groups must share signals as well, and detached threads
  841. * can only be started up within the thread group.
  842. */
  843. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  844. return ERR_PTR(-EINVAL);
  845. /*
  846. * Shared signal handlers imply shared VM. By way of the above,
  847. * thread groups also imply shared VM. Blocking this case allows
  848. * for various simplifications in other code.
  849. */
  850. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  851. return ERR_PTR(-EINVAL);
  852. retval = security_task_create(clone_flags);
  853. if (retval)
  854. goto fork_out;
  855. retval = -ENOMEM;
  856. p = dup_task_struct(current);
  857. if (!p)
  858. goto fork_out;
  859. rt_mutex_init_task(p);
  860. #ifdef CONFIG_TRACE_IRQFLAGS
  861. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  862. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  863. #endif
  864. retval = -EAGAIN;
  865. if (atomic_read(&p->user->processes) >=
  866. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  867. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  868. p->user != current->nsproxy->user_ns->root_user)
  869. goto bad_fork_free;
  870. }
  871. atomic_inc(&p->user->__count);
  872. atomic_inc(&p->user->processes);
  873. get_group_info(p->group_info);
  874. /*
  875. * If multiple threads are within copy_process(), then this check
  876. * triggers too late. This doesn't hurt, the check is only there
  877. * to stop root fork bombs.
  878. */
  879. if (nr_threads >= max_threads)
  880. goto bad_fork_cleanup_count;
  881. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  882. goto bad_fork_cleanup_count;
  883. if (p->binfmt && !try_module_get(p->binfmt->module))
  884. goto bad_fork_cleanup_put_domain;
  885. p->did_exec = 0;
  886. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  887. copy_flags(clone_flags, p);
  888. p->pid = pid_nr(pid);
  889. retval = -EFAULT;
  890. if (clone_flags & CLONE_PARENT_SETTID)
  891. if (put_user(p->pid, parent_tidptr))
  892. goto bad_fork_cleanup_delays_binfmt;
  893. INIT_LIST_HEAD(&p->children);
  894. INIT_LIST_HEAD(&p->sibling);
  895. p->vfork_done = NULL;
  896. spin_lock_init(&p->alloc_lock);
  897. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  898. init_sigpending(&p->pending);
  899. p->utime = cputime_zero;
  900. p->stime = cputime_zero;
  901. p->gtime = cputime_zero;
  902. #ifdef CONFIG_TASK_XACCT
  903. p->rchar = 0; /* I/O counter: bytes read */
  904. p->wchar = 0; /* I/O counter: bytes written */
  905. p->syscr = 0; /* I/O counter: read syscalls */
  906. p->syscw = 0; /* I/O counter: write syscalls */
  907. #endif
  908. task_io_accounting_init(p);
  909. acct_clear_integrals(p);
  910. p->it_virt_expires = cputime_zero;
  911. p->it_prof_expires = cputime_zero;
  912. p->it_sched_expires = 0;
  913. INIT_LIST_HEAD(&p->cpu_timers[0]);
  914. INIT_LIST_HEAD(&p->cpu_timers[1]);
  915. INIT_LIST_HEAD(&p->cpu_timers[2]);
  916. p->lock_depth = -1; /* -1 = no lock */
  917. do_posix_clock_monotonic_gettime(&p->start_time);
  918. p->real_start_time = p->start_time;
  919. monotonic_to_bootbased(&p->real_start_time);
  920. #ifdef CONFIG_SECURITY
  921. p->security = NULL;
  922. #endif
  923. p->io_context = NULL;
  924. p->io_wait = NULL;
  925. p->audit_context = NULL;
  926. cpuset_fork(p);
  927. #ifdef CONFIG_NUMA
  928. p->mempolicy = mpol_copy(p->mempolicy);
  929. if (IS_ERR(p->mempolicy)) {
  930. retval = PTR_ERR(p->mempolicy);
  931. p->mempolicy = NULL;
  932. goto bad_fork_cleanup_cpuset;
  933. }
  934. mpol_fix_fork_child_flag(p);
  935. #endif
  936. #ifdef CONFIG_TRACE_IRQFLAGS
  937. p->irq_events = 0;
  938. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  939. p->hardirqs_enabled = 1;
  940. #else
  941. p->hardirqs_enabled = 0;
  942. #endif
  943. p->hardirq_enable_ip = 0;
  944. p->hardirq_enable_event = 0;
  945. p->hardirq_disable_ip = _THIS_IP_;
  946. p->hardirq_disable_event = 0;
  947. p->softirqs_enabled = 1;
  948. p->softirq_enable_ip = _THIS_IP_;
  949. p->softirq_enable_event = 0;
  950. p->softirq_disable_ip = 0;
  951. p->softirq_disable_event = 0;
  952. p->hardirq_context = 0;
  953. p->softirq_context = 0;
  954. #endif
  955. #ifdef CONFIG_LOCKDEP
  956. p->lockdep_depth = 0; /* no locks held yet */
  957. p->curr_chain_key = 0;
  958. p->lockdep_recursion = 0;
  959. #endif
  960. #ifdef CONFIG_DEBUG_MUTEXES
  961. p->blocked_on = NULL; /* not blocked yet */
  962. #endif
  963. p->tgid = p->pid;
  964. if (clone_flags & CLONE_THREAD)
  965. p->tgid = current->tgid;
  966. if ((retval = security_task_alloc(p)))
  967. goto bad_fork_cleanup_policy;
  968. if ((retval = audit_alloc(p)))
  969. goto bad_fork_cleanup_security;
  970. /* copy all the process information */
  971. if ((retval = copy_semundo(clone_flags, p)))
  972. goto bad_fork_cleanup_audit;
  973. if ((retval = copy_files(clone_flags, p)))
  974. goto bad_fork_cleanup_semundo;
  975. if ((retval = copy_fs(clone_flags, p)))
  976. goto bad_fork_cleanup_files;
  977. if ((retval = copy_sighand(clone_flags, p)))
  978. goto bad_fork_cleanup_fs;
  979. if ((retval = copy_signal(clone_flags, p)))
  980. goto bad_fork_cleanup_sighand;
  981. if ((retval = copy_mm(clone_flags, p)))
  982. goto bad_fork_cleanup_signal;
  983. if ((retval = copy_keys(clone_flags, p)))
  984. goto bad_fork_cleanup_mm;
  985. if ((retval = copy_namespaces(clone_flags, p)))
  986. goto bad_fork_cleanup_keys;
  987. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  988. if (retval)
  989. goto bad_fork_cleanup_namespaces;
  990. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  991. /*
  992. * Clear TID on mm_release()?
  993. */
  994. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  995. #ifdef CONFIG_FUTEX
  996. p->robust_list = NULL;
  997. #ifdef CONFIG_COMPAT
  998. p->compat_robust_list = NULL;
  999. #endif
  1000. INIT_LIST_HEAD(&p->pi_state_list);
  1001. p->pi_state_cache = NULL;
  1002. #endif
  1003. /*
  1004. * sigaltstack should be cleared when sharing the same VM
  1005. */
  1006. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1007. p->sas_ss_sp = p->sas_ss_size = 0;
  1008. /*
  1009. * Syscall tracing should be turned off in the child regardless
  1010. * of CLONE_PTRACE.
  1011. */
  1012. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1013. #ifdef TIF_SYSCALL_EMU
  1014. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1015. #endif
  1016. /* Our parent execution domain becomes current domain
  1017. These must match for thread signalling to apply */
  1018. p->parent_exec_id = p->self_exec_id;
  1019. /* ok, now we should be set up.. */
  1020. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1021. p->pdeath_signal = 0;
  1022. p->exit_state = 0;
  1023. /*
  1024. * Ok, make it visible to the rest of the system.
  1025. * We dont wake it up yet.
  1026. */
  1027. p->group_leader = p;
  1028. INIT_LIST_HEAD(&p->thread_group);
  1029. INIT_LIST_HEAD(&p->ptrace_children);
  1030. INIT_LIST_HEAD(&p->ptrace_list);
  1031. /* Perform scheduler related setup. Assign this task to a CPU. */
  1032. sched_fork(p, clone_flags);
  1033. /* Need tasklist lock for parent etc handling! */
  1034. write_lock_irq(&tasklist_lock);
  1035. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1036. p->ioprio = current->ioprio;
  1037. /*
  1038. * The task hasn't been attached yet, so its cpus_allowed mask will
  1039. * not be changed, nor will its assigned CPU.
  1040. *
  1041. * The cpus_allowed mask of the parent may have changed after it was
  1042. * copied first time - so re-copy it here, then check the child's CPU
  1043. * to ensure it is on a valid CPU (and if not, just force it back to
  1044. * parent's CPU). This avoids alot of nasty races.
  1045. */
  1046. p->cpus_allowed = current->cpus_allowed;
  1047. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1048. !cpu_online(task_cpu(p))))
  1049. set_task_cpu(p, smp_processor_id());
  1050. /* CLONE_PARENT re-uses the old parent */
  1051. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1052. p->real_parent = current->real_parent;
  1053. else
  1054. p->real_parent = current;
  1055. p->parent = p->real_parent;
  1056. spin_lock(&current->sighand->siglock);
  1057. /*
  1058. * Process group and session signals need to be delivered to just the
  1059. * parent before the fork or both the parent and the child after the
  1060. * fork. Restart if a signal comes in before we add the new process to
  1061. * it's process group.
  1062. * A fatal signal pending means that current will exit, so the new
  1063. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1064. */
  1065. recalc_sigpending();
  1066. if (signal_pending(current)) {
  1067. spin_unlock(&current->sighand->siglock);
  1068. write_unlock_irq(&tasklist_lock);
  1069. retval = -ERESTARTNOINTR;
  1070. goto bad_fork_cleanup_namespaces;
  1071. }
  1072. if (clone_flags & CLONE_THREAD) {
  1073. p->group_leader = current->group_leader;
  1074. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1075. if (!cputime_eq(current->signal->it_virt_expires,
  1076. cputime_zero) ||
  1077. !cputime_eq(current->signal->it_prof_expires,
  1078. cputime_zero) ||
  1079. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1080. !list_empty(&current->signal->cpu_timers[0]) ||
  1081. !list_empty(&current->signal->cpu_timers[1]) ||
  1082. !list_empty(&current->signal->cpu_timers[2])) {
  1083. /*
  1084. * Have child wake up on its first tick to check
  1085. * for process CPU timers.
  1086. */
  1087. p->it_prof_expires = jiffies_to_cputime(1);
  1088. }
  1089. }
  1090. if (likely(p->pid)) {
  1091. add_parent(p);
  1092. if (unlikely(p->ptrace & PT_PTRACED))
  1093. __ptrace_link(p, current->parent);
  1094. if (thread_group_leader(p)) {
  1095. p->signal->tty = current->signal->tty;
  1096. p->signal->pgrp = process_group(current);
  1097. set_signal_session(p->signal, process_session(current));
  1098. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1099. attach_pid(p, PIDTYPE_SID, task_session(current));
  1100. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1101. __get_cpu_var(process_counts)++;
  1102. }
  1103. attach_pid(p, PIDTYPE_PID, pid);
  1104. nr_threads++;
  1105. }
  1106. total_forks++;
  1107. spin_unlock(&current->sighand->siglock);
  1108. write_unlock_irq(&tasklist_lock);
  1109. proc_fork_connector(p);
  1110. return p;
  1111. bad_fork_cleanup_namespaces:
  1112. exit_task_namespaces(p);
  1113. bad_fork_cleanup_keys:
  1114. exit_keys(p);
  1115. bad_fork_cleanup_mm:
  1116. if (p->mm)
  1117. mmput(p->mm);
  1118. bad_fork_cleanup_signal:
  1119. cleanup_signal(p);
  1120. bad_fork_cleanup_sighand:
  1121. __cleanup_sighand(p->sighand);
  1122. bad_fork_cleanup_fs:
  1123. exit_fs(p); /* blocking */
  1124. bad_fork_cleanup_files:
  1125. exit_files(p); /* blocking */
  1126. bad_fork_cleanup_semundo:
  1127. exit_sem(p);
  1128. bad_fork_cleanup_audit:
  1129. audit_free(p);
  1130. bad_fork_cleanup_security:
  1131. security_task_free(p);
  1132. bad_fork_cleanup_policy:
  1133. #ifdef CONFIG_NUMA
  1134. mpol_free(p->mempolicy);
  1135. bad_fork_cleanup_cpuset:
  1136. #endif
  1137. cpuset_exit(p);
  1138. bad_fork_cleanup_delays_binfmt:
  1139. delayacct_tsk_free(p);
  1140. if (p->binfmt)
  1141. module_put(p->binfmt->module);
  1142. bad_fork_cleanup_put_domain:
  1143. module_put(task_thread_info(p)->exec_domain->module);
  1144. bad_fork_cleanup_count:
  1145. put_group_info(p->group_info);
  1146. atomic_dec(&p->user->processes);
  1147. free_uid(p->user);
  1148. bad_fork_free:
  1149. free_task(p);
  1150. fork_out:
  1151. return ERR_PTR(retval);
  1152. }
  1153. noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1154. {
  1155. memset(regs, 0, sizeof(struct pt_regs));
  1156. return regs;
  1157. }
  1158. struct task_struct * __cpuinit fork_idle(int cpu)
  1159. {
  1160. struct task_struct *task;
  1161. struct pt_regs regs;
  1162. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
  1163. &init_struct_pid);
  1164. if (!IS_ERR(task))
  1165. init_idle(task, cpu);
  1166. return task;
  1167. }
  1168. static inline int fork_traceflag (unsigned clone_flags)
  1169. {
  1170. if (clone_flags & CLONE_UNTRACED)
  1171. return 0;
  1172. else if (clone_flags & CLONE_VFORK) {
  1173. if (current->ptrace & PT_TRACE_VFORK)
  1174. return PTRACE_EVENT_VFORK;
  1175. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1176. if (current->ptrace & PT_TRACE_CLONE)
  1177. return PTRACE_EVENT_CLONE;
  1178. } else if (current->ptrace & PT_TRACE_FORK)
  1179. return PTRACE_EVENT_FORK;
  1180. return 0;
  1181. }
  1182. /*
  1183. * Ok, this is the main fork-routine.
  1184. *
  1185. * It copies the process, and if successful kick-starts
  1186. * it and waits for it to finish using the VM if required.
  1187. */
  1188. long do_fork(unsigned long clone_flags,
  1189. unsigned long stack_start,
  1190. struct pt_regs *regs,
  1191. unsigned long stack_size,
  1192. int __user *parent_tidptr,
  1193. int __user *child_tidptr)
  1194. {
  1195. struct task_struct *p;
  1196. int trace = 0;
  1197. struct pid *pid = alloc_pid();
  1198. long nr;
  1199. if (!pid)
  1200. return -EAGAIN;
  1201. nr = pid->nr;
  1202. if (unlikely(current->ptrace)) {
  1203. trace = fork_traceflag (clone_flags);
  1204. if (trace)
  1205. clone_flags |= CLONE_PTRACE;
  1206. }
  1207. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
  1208. /*
  1209. * Do this prior waking up the new thread - the thread pointer
  1210. * might get invalid after that point, if the thread exits quickly.
  1211. */
  1212. if (!IS_ERR(p)) {
  1213. struct completion vfork;
  1214. if (clone_flags & CLONE_VFORK) {
  1215. p->vfork_done = &vfork;
  1216. init_completion(&vfork);
  1217. }
  1218. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1219. /*
  1220. * We'll start up with an immediate SIGSTOP.
  1221. */
  1222. sigaddset(&p->pending.signal, SIGSTOP);
  1223. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1224. }
  1225. if (!(clone_flags & CLONE_STOPPED))
  1226. wake_up_new_task(p, clone_flags);
  1227. else
  1228. p->state = TASK_STOPPED;
  1229. if (unlikely (trace)) {
  1230. current->ptrace_message = nr;
  1231. ptrace_notify ((trace << 8) | SIGTRAP);
  1232. }
  1233. if (clone_flags & CLONE_VFORK) {
  1234. freezer_do_not_count();
  1235. wait_for_completion(&vfork);
  1236. freezer_count();
  1237. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1238. current->ptrace_message = nr;
  1239. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1240. }
  1241. }
  1242. } else {
  1243. free_pid(pid);
  1244. nr = PTR_ERR(p);
  1245. }
  1246. return nr;
  1247. }
  1248. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1249. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1250. #endif
  1251. static void sighand_ctor(struct kmem_cache *cachep, void *data)
  1252. {
  1253. struct sighand_struct *sighand = data;
  1254. spin_lock_init(&sighand->siglock);
  1255. init_waitqueue_head(&sighand->signalfd_wqh);
  1256. }
  1257. void __init proc_caches_init(void)
  1258. {
  1259. sighand_cachep = kmem_cache_create("sighand_cache",
  1260. sizeof(struct sighand_struct), 0,
  1261. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1262. sighand_ctor);
  1263. signal_cachep = kmem_cache_create("signal_cache",
  1264. sizeof(struct signal_struct), 0,
  1265. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1266. files_cachep = kmem_cache_create("files_cache",
  1267. sizeof(struct files_struct), 0,
  1268. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1269. fs_cachep = kmem_cache_create("fs_cache",
  1270. sizeof(struct fs_struct), 0,
  1271. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1272. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1273. sizeof(struct vm_area_struct), 0,
  1274. SLAB_PANIC, NULL);
  1275. mm_cachep = kmem_cache_create("mm_struct",
  1276. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1277. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1278. }
  1279. /*
  1280. * Check constraints on flags passed to the unshare system call and
  1281. * force unsharing of additional process context as appropriate.
  1282. */
  1283. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1284. {
  1285. /*
  1286. * If unsharing a thread from a thread group, must also
  1287. * unshare vm.
  1288. */
  1289. if (*flags_ptr & CLONE_THREAD)
  1290. *flags_ptr |= CLONE_VM;
  1291. /*
  1292. * If unsharing vm, must also unshare signal handlers.
  1293. */
  1294. if (*flags_ptr & CLONE_VM)
  1295. *flags_ptr |= CLONE_SIGHAND;
  1296. /*
  1297. * If unsharing signal handlers and the task was created
  1298. * using CLONE_THREAD, then must unshare the thread
  1299. */
  1300. if ((*flags_ptr & CLONE_SIGHAND) &&
  1301. (atomic_read(&current->signal->count) > 1))
  1302. *flags_ptr |= CLONE_THREAD;
  1303. /*
  1304. * If unsharing namespace, must also unshare filesystem information.
  1305. */
  1306. if (*flags_ptr & CLONE_NEWNS)
  1307. *flags_ptr |= CLONE_FS;
  1308. }
  1309. /*
  1310. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1311. */
  1312. static int unshare_thread(unsigned long unshare_flags)
  1313. {
  1314. if (unshare_flags & CLONE_THREAD)
  1315. return -EINVAL;
  1316. return 0;
  1317. }
  1318. /*
  1319. * Unshare the filesystem structure if it is being shared
  1320. */
  1321. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1322. {
  1323. struct fs_struct *fs = current->fs;
  1324. if ((unshare_flags & CLONE_FS) &&
  1325. (fs && atomic_read(&fs->count) > 1)) {
  1326. *new_fsp = __copy_fs_struct(current->fs);
  1327. if (!*new_fsp)
  1328. return -ENOMEM;
  1329. }
  1330. return 0;
  1331. }
  1332. /*
  1333. * Unsharing of sighand is not supported yet
  1334. */
  1335. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1336. {
  1337. struct sighand_struct *sigh = current->sighand;
  1338. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1339. return -EINVAL;
  1340. else
  1341. return 0;
  1342. }
  1343. /*
  1344. * Unshare vm if it is being shared
  1345. */
  1346. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1347. {
  1348. struct mm_struct *mm = current->mm;
  1349. if ((unshare_flags & CLONE_VM) &&
  1350. (mm && atomic_read(&mm->mm_users) > 1)) {
  1351. return -EINVAL;
  1352. }
  1353. return 0;
  1354. }
  1355. /*
  1356. * Unshare file descriptor table if it is being shared
  1357. */
  1358. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1359. {
  1360. struct files_struct *fd = current->files;
  1361. int error = 0;
  1362. if ((unshare_flags & CLONE_FILES) &&
  1363. (fd && atomic_read(&fd->count) > 1)) {
  1364. *new_fdp = dup_fd(fd, &error);
  1365. if (!*new_fdp)
  1366. return error;
  1367. }
  1368. return 0;
  1369. }
  1370. /*
  1371. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1372. * supported yet
  1373. */
  1374. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1375. {
  1376. if (unshare_flags & CLONE_SYSVSEM)
  1377. return -EINVAL;
  1378. return 0;
  1379. }
  1380. /*
  1381. * unshare allows a process to 'unshare' part of the process
  1382. * context which was originally shared using clone. copy_*
  1383. * functions used by do_fork() cannot be used here directly
  1384. * because they modify an inactive task_struct that is being
  1385. * constructed. Here we are modifying the current, active,
  1386. * task_struct.
  1387. */
  1388. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1389. {
  1390. int err = 0;
  1391. struct fs_struct *fs, *new_fs = NULL;
  1392. struct sighand_struct *new_sigh = NULL;
  1393. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1394. struct files_struct *fd, *new_fd = NULL;
  1395. struct sem_undo_list *new_ulist = NULL;
  1396. struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
  1397. check_unshare_flags(&unshare_flags);
  1398. /* Return -EINVAL for all unsupported flags */
  1399. err = -EINVAL;
  1400. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1401. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1402. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
  1403. CLONE_NEWNET))
  1404. goto bad_unshare_out;
  1405. if ((err = unshare_thread(unshare_flags)))
  1406. goto bad_unshare_out;
  1407. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1408. goto bad_unshare_cleanup_thread;
  1409. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1410. goto bad_unshare_cleanup_fs;
  1411. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1412. goto bad_unshare_cleanup_sigh;
  1413. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1414. goto bad_unshare_cleanup_vm;
  1415. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1416. goto bad_unshare_cleanup_fd;
  1417. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1418. new_fs)))
  1419. goto bad_unshare_cleanup_semundo;
  1420. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1421. task_lock(current);
  1422. if (new_nsproxy) {
  1423. old_nsproxy = current->nsproxy;
  1424. current->nsproxy = new_nsproxy;
  1425. new_nsproxy = old_nsproxy;
  1426. }
  1427. if (new_fs) {
  1428. fs = current->fs;
  1429. current->fs = new_fs;
  1430. new_fs = fs;
  1431. }
  1432. if (new_mm) {
  1433. mm = current->mm;
  1434. active_mm = current->active_mm;
  1435. current->mm = new_mm;
  1436. current->active_mm = new_mm;
  1437. activate_mm(active_mm, new_mm);
  1438. new_mm = mm;
  1439. }
  1440. if (new_fd) {
  1441. fd = current->files;
  1442. current->files = new_fd;
  1443. new_fd = fd;
  1444. }
  1445. task_unlock(current);
  1446. }
  1447. if (new_nsproxy)
  1448. put_nsproxy(new_nsproxy);
  1449. bad_unshare_cleanup_semundo:
  1450. bad_unshare_cleanup_fd:
  1451. if (new_fd)
  1452. put_files_struct(new_fd);
  1453. bad_unshare_cleanup_vm:
  1454. if (new_mm)
  1455. mmput(new_mm);
  1456. bad_unshare_cleanup_sigh:
  1457. if (new_sigh)
  1458. if (atomic_dec_and_test(&new_sigh->count))
  1459. kmem_cache_free(sighand_cachep, new_sigh);
  1460. bad_unshare_cleanup_fs:
  1461. if (new_fs)
  1462. put_fs_struct(new_fs);
  1463. bad_unshare_cleanup_thread:
  1464. bad_unshare_out:
  1465. return err;
  1466. }