md.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. This program is free software; you can redistribute it and/or modify
  17. it under the terms of the GNU General Public License as published by
  18. the Free Software Foundation; either version 2, or (at your option)
  19. any later version.
  20. You should have received a copy of the GNU General Public License
  21. (for example /usr/src/linux/COPYING); if not, write to the Free
  22. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/config.h>
  26. #include <linux/linkage.h>
  27. #include <linux/raid/md.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/devfs_fs_kernel.h>
  30. #include <linux/buffer_head.h> /* for invalidate_bdev */
  31. #include <linux/suspend.h>
  32. #include <linux/init.h>
  33. #ifdef CONFIG_KMOD
  34. #include <linux/kmod.h>
  35. #endif
  36. #include <asm/unaligned.h>
  37. #define MAJOR_NR MD_MAJOR
  38. #define MD_DRIVER
  39. /* 63 partitions with the alternate major number (mdp) */
  40. #define MdpMinorShift 6
  41. #define DEBUG 0
  42. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  43. #ifndef MODULE
  44. static void autostart_arrays (int part);
  45. #endif
  46. static mdk_personality_t *pers[MAX_PERSONALITY];
  47. static DEFINE_SPINLOCK(pers_lock);
  48. /*
  49. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  50. * is 1000 KB/sec, so the extra system load does not show up that much.
  51. * Increase it if you want to have more _guaranteed_ speed. Note that
  52. * the RAID driver will use the maximum available bandwith if the IO
  53. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  54. * speed limit - in case reconstruction slows down your system despite
  55. * idle IO detection.
  56. *
  57. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  58. */
  59. static int sysctl_speed_limit_min = 1000;
  60. static int sysctl_speed_limit_max = 200000;
  61. static struct ctl_table_header *raid_table_header;
  62. static ctl_table raid_table[] = {
  63. {
  64. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  65. .procname = "speed_limit_min",
  66. .data = &sysctl_speed_limit_min,
  67. .maxlen = sizeof(int),
  68. .mode = 0644,
  69. .proc_handler = &proc_dointvec,
  70. },
  71. {
  72. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  73. .procname = "speed_limit_max",
  74. .data = &sysctl_speed_limit_max,
  75. .maxlen = sizeof(int),
  76. .mode = 0644,
  77. .proc_handler = &proc_dointvec,
  78. },
  79. { .ctl_name = 0 }
  80. };
  81. static ctl_table raid_dir_table[] = {
  82. {
  83. .ctl_name = DEV_RAID,
  84. .procname = "raid",
  85. .maxlen = 0,
  86. .mode = 0555,
  87. .child = raid_table,
  88. },
  89. { .ctl_name = 0 }
  90. };
  91. static ctl_table raid_root_table[] = {
  92. {
  93. .ctl_name = CTL_DEV,
  94. .procname = "dev",
  95. .maxlen = 0,
  96. .mode = 0555,
  97. .child = raid_dir_table,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static struct block_device_operations md_fops;
  102. /*
  103. * Enables to iterate over all existing md arrays
  104. * all_mddevs_lock protects this list.
  105. */
  106. static LIST_HEAD(all_mddevs);
  107. static DEFINE_SPINLOCK(all_mddevs_lock);
  108. /*
  109. * iterates through all used mddevs in the system.
  110. * We take care to grab the all_mddevs_lock whenever navigating
  111. * the list, and to always hold a refcount when unlocked.
  112. * Any code which breaks out of this loop while own
  113. * a reference to the current mddev and must mddev_put it.
  114. */
  115. #define ITERATE_MDDEV(mddev,tmp) \
  116. \
  117. for (({ spin_lock(&all_mddevs_lock); \
  118. tmp = all_mddevs.next; \
  119. mddev = NULL;}); \
  120. ({ if (tmp != &all_mddevs) \
  121. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  122. spin_unlock(&all_mddevs_lock); \
  123. if (mddev) mddev_put(mddev); \
  124. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  125. tmp != &all_mddevs;}); \
  126. ({ spin_lock(&all_mddevs_lock); \
  127. tmp = tmp->next;}) \
  128. )
  129. static int md_fail_request (request_queue_t *q, struct bio *bio)
  130. {
  131. bio_io_error(bio, bio->bi_size);
  132. return 0;
  133. }
  134. static inline mddev_t *mddev_get(mddev_t *mddev)
  135. {
  136. atomic_inc(&mddev->active);
  137. return mddev;
  138. }
  139. static void mddev_put(mddev_t *mddev)
  140. {
  141. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  142. return;
  143. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  144. list_del(&mddev->all_mddevs);
  145. blk_put_queue(mddev->queue);
  146. kfree(mddev);
  147. }
  148. spin_unlock(&all_mddevs_lock);
  149. }
  150. static mddev_t * mddev_find(dev_t unit)
  151. {
  152. mddev_t *mddev, *new = NULL;
  153. retry:
  154. spin_lock(&all_mddevs_lock);
  155. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  156. if (mddev->unit == unit) {
  157. mddev_get(mddev);
  158. spin_unlock(&all_mddevs_lock);
  159. if (new)
  160. kfree(new);
  161. return mddev;
  162. }
  163. if (new) {
  164. list_add(&new->all_mddevs, &all_mddevs);
  165. spin_unlock(&all_mddevs_lock);
  166. return new;
  167. }
  168. spin_unlock(&all_mddevs_lock);
  169. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  170. if (!new)
  171. return NULL;
  172. memset(new, 0, sizeof(*new));
  173. new->unit = unit;
  174. if (MAJOR(unit) == MD_MAJOR)
  175. new->md_minor = MINOR(unit);
  176. else
  177. new->md_minor = MINOR(unit) >> MdpMinorShift;
  178. init_MUTEX(&new->reconfig_sem);
  179. INIT_LIST_HEAD(&new->disks);
  180. INIT_LIST_HEAD(&new->all_mddevs);
  181. init_timer(&new->safemode_timer);
  182. atomic_set(&new->active, 1);
  183. bio_list_init(&new->write_list);
  184. spin_lock_init(&new->write_lock);
  185. new->queue = blk_alloc_queue(GFP_KERNEL);
  186. if (!new->queue) {
  187. kfree(new);
  188. return NULL;
  189. }
  190. blk_queue_make_request(new->queue, md_fail_request);
  191. goto retry;
  192. }
  193. static inline int mddev_lock(mddev_t * mddev)
  194. {
  195. return down_interruptible(&mddev->reconfig_sem);
  196. }
  197. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  198. {
  199. down(&mddev->reconfig_sem);
  200. }
  201. static inline int mddev_trylock(mddev_t * mddev)
  202. {
  203. return down_trylock(&mddev->reconfig_sem);
  204. }
  205. static inline void mddev_unlock(mddev_t * mddev)
  206. {
  207. up(&mddev->reconfig_sem);
  208. if (mddev->thread)
  209. md_wakeup_thread(mddev->thread);
  210. }
  211. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  212. {
  213. mdk_rdev_t * rdev;
  214. struct list_head *tmp;
  215. ITERATE_RDEV(mddev,rdev,tmp) {
  216. if (rdev->desc_nr == nr)
  217. return rdev;
  218. }
  219. return NULL;
  220. }
  221. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  222. {
  223. struct list_head *tmp;
  224. mdk_rdev_t *rdev;
  225. ITERATE_RDEV(mddev,rdev,tmp) {
  226. if (rdev->bdev->bd_dev == dev)
  227. return rdev;
  228. }
  229. return NULL;
  230. }
  231. inline static sector_t calc_dev_sboffset(struct block_device *bdev)
  232. {
  233. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  234. return MD_NEW_SIZE_BLOCKS(size);
  235. }
  236. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  237. {
  238. sector_t size;
  239. size = rdev->sb_offset;
  240. if (chunk_size)
  241. size &= ~((sector_t)chunk_size/1024 - 1);
  242. return size;
  243. }
  244. static int alloc_disk_sb(mdk_rdev_t * rdev)
  245. {
  246. if (rdev->sb_page)
  247. MD_BUG();
  248. rdev->sb_page = alloc_page(GFP_KERNEL);
  249. if (!rdev->sb_page) {
  250. printk(KERN_ALERT "md: out of memory.\n");
  251. return -EINVAL;
  252. }
  253. return 0;
  254. }
  255. static void free_disk_sb(mdk_rdev_t * rdev)
  256. {
  257. if (rdev->sb_page) {
  258. page_cache_release(rdev->sb_page);
  259. rdev->sb_loaded = 0;
  260. rdev->sb_page = NULL;
  261. rdev->sb_offset = 0;
  262. rdev->size = 0;
  263. }
  264. }
  265. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  266. {
  267. if (bio->bi_size)
  268. return 1;
  269. complete((struct completion*)bio->bi_private);
  270. return 0;
  271. }
  272. static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  273. struct page *page, int rw)
  274. {
  275. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  276. struct completion event;
  277. int ret;
  278. rw |= (1 << BIO_RW_SYNC);
  279. bio->bi_bdev = bdev;
  280. bio->bi_sector = sector;
  281. bio_add_page(bio, page, size, 0);
  282. init_completion(&event);
  283. bio->bi_private = &event;
  284. bio->bi_end_io = bi_complete;
  285. submit_bio(rw, bio);
  286. wait_for_completion(&event);
  287. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  288. bio_put(bio);
  289. return ret;
  290. }
  291. static int read_disk_sb(mdk_rdev_t * rdev)
  292. {
  293. char b[BDEVNAME_SIZE];
  294. if (!rdev->sb_page) {
  295. MD_BUG();
  296. return -EINVAL;
  297. }
  298. if (rdev->sb_loaded)
  299. return 0;
  300. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
  301. goto fail;
  302. rdev->sb_loaded = 1;
  303. return 0;
  304. fail:
  305. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  306. bdevname(rdev->bdev,b));
  307. return -EINVAL;
  308. }
  309. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  310. {
  311. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  312. (sb1->set_uuid1 == sb2->set_uuid1) &&
  313. (sb1->set_uuid2 == sb2->set_uuid2) &&
  314. (sb1->set_uuid3 == sb2->set_uuid3))
  315. return 1;
  316. return 0;
  317. }
  318. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  319. {
  320. int ret;
  321. mdp_super_t *tmp1, *tmp2;
  322. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  323. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  324. if (!tmp1 || !tmp2) {
  325. ret = 0;
  326. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  327. goto abort;
  328. }
  329. *tmp1 = *sb1;
  330. *tmp2 = *sb2;
  331. /*
  332. * nr_disks is not constant
  333. */
  334. tmp1->nr_disks = 0;
  335. tmp2->nr_disks = 0;
  336. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  337. ret = 0;
  338. else
  339. ret = 1;
  340. abort:
  341. if (tmp1)
  342. kfree(tmp1);
  343. if (tmp2)
  344. kfree(tmp2);
  345. return ret;
  346. }
  347. static unsigned int calc_sb_csum(mdp_super_t * sb)
  348. {
  349. unsigned int disk_csum, csum;
  350. disk_csum = sb->sb_csum;
  351. sb->sb_csum = 0;
  352. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  353. sb->sb_csum = disk_csum;
  354. return csum;
  355. }
  356. /*
  357. * Handle superblock details.
  358. * We want to be able to handle multiple superblock formats
  359. * so we have a common interface to them all, and an array of
  360. * different handlers.
  361. * We rely on user-space to write the initial superblock, and support
  362. * reading and updating of superblocks.
  363. * Interface methods are:
  364. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  365. * loads and validates a superblock on dev.
  366. * if refdev != NULL, compare superblocks on both devices
  367. * Return:
  368. * 0 - dev has a superblock that is compatible with refdev
  369. * 1 - dev has a superblock that is compatible and newer than refdev
  370. * so dev should be used as the refdev in future
  371. * -EINVAL superblock incompatible or invalid
  372. * -othererror e.g. -EIO
  373. *
  374. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  375. * Verify that dev is acceptable into mddev.
  376. * The first time, mddev->raid_disks will be 0, and data from
  377. * dev should be merged in. Subsequent calls check that dev
  378. * is new enough. Return 0 or -EINVAL
  379. *
  380. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  381. * Update the superblock for rdev with data in mddev
  382. * This does not write to disc.
  383. *
  384. */
  385. struct super_type {
  386. char *name;
  387. struct module *owner;
  388. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  389. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  390. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  391. };
  392. /*
  393. * load_super for 0.90.0
  394. */
  395. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  396. {
  397. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  398. mdp_super_t *sb;
  399. int ret;
  400. sector_t sb_offset;
  401. /*
  402. * Calculate the position of the superblock,
  403. * it's at the end of the disk.
  404. *
  405. * It also happens to be a multiple of 4Kb.
  406. */
  407. sb_offset = calc_dev_sboffset(rdev->bdev);
  408. rdev->sb_offset = sb_offset;
  409. ret = read_disk_sb(rdev);
  410. if (ret) return ret;
  411. ret = -EINVAL;
  412. bdevname(rdev->bdev, b);
  413. sb = (mdp_super_t*)page_address(rdev->sb_page);
  414. if (sb->md_magic != MD_SB_MAGIC) {
  415. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  416. b);
  417. goto abort;
  418. }
  419. if (sb->major_version != 0 ||
  420. sb->minor_version != 90) {
  421. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  422. sb->major_version, sb->minor_version,
  423. b);
  424. goto abort;
  425. }
  426. if (sb->raid_disks <= 0)
  427. goto abort;
  428. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  429. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  430. b);
  431. goto abort;
  432. }
  433. rdev->preferred_minor = sb->md_minor;
  434. rdev->data_offset = 0;
  435. if (sb->level == LEVEL_MULTIPATH)
  436. rdev->desc_nr = -1;
  437. else
  438. rdev->desc_nr = sb->this_disk.number;
  439. if (refdev == 0)
  440. ret = 1;
  441. else {
  442. __u64 ev1, ev2;
  443. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  444. if (!uuid_equal(refsb, sb)) {
  445. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  446. b, bdevname(refdev->bdev,b2));
  447. goto abort;
  448. }
  449. if (!sb_equal(refsb, sb)) {
  450. printk(KERN_WARNING "md: %s has same UUID"
  451. " but different superblock to %s\n",
  452. b, bdevname(refdev->bdev, b2));
  453. goto abort;
  454. }
  455. ev1 = md_event(sb);
  456. ev2 = md_event(refsb);
  457. if (ev1 > ev2)
  458. ret = 1;
  459. else
  460. ret = 0;
  461. }
  462. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  463. abort:
  464. return ret;
  465. }
  466. /*
  467. * validate_super for 0.90.0
  468. */
  469. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  470. {
  471. mdp_disk_t *desc;
  472. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  473. if (mddev->raid_disks == 0) {
  474. mddev->major_version = 0;
  475. mddev->minor_version = sb->minor_version;
  476. mddev->patch_version = sb->patch_version;
  477. mddev->persistent = ! sb->not_persistent;
  478. mddev->chunk_size = sb->chunk_size;
  479. mddev->ctime = sb->ctime;
  480. mddev->utime = sb->utime;
  481. mddev->level = sb->level;
  482. mddev->layout = sb->layout;
  483. mddev->raid_disks = sb->raid_disks;
  484. mddev->size = sb->size;
  485. mddev->events = md_event(sb);
  486. if (sb->state & (1<<MD_SB_CLEAN))
  487. mddev->recovery_cp = MaxSector;
  488. else {
  489. if (sb->events_hi == sb->cp_events_hi &&
  490. sb->events_lo == sb->cp_events_lo) {
  491. mddev->recovery_cp = sb->recovery_cp;
  492. } else
  493. mddev->recovery_cp = 0;
  494. }
  495. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  496. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  497. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  498. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  499. mddev->max_disks = MD_SB_DISKS;
  500. } else {
  501. __u64 ev1;
  502. ev1 = md_event(sb);
  503. ++ev1;
  504. if (ev1 < mddev->events)
  505. return -EINVAL;
  506. }
  507. if (mddev->level != LEVEL_MULTIPATH) {
  508. rdev->raid_disk = -1;
  509. rdev->in_sync = rdev->faulty = 0;
  510. desc = sb->disks + rdev->desc_nr;
  511. if (desc->state & (1<<MD_DISK_FAULTY))
  512. rdev->faulty = 1;
  513. else if (desc->state & (1<<MD_DISK_SYNC) &&
  514. desc->raid_disk < mddev->raid_disks) {
  515. rdev->in_sync = 1;
  516. rdev->raid_disk = desc->raid_disk;
  517. }
  518. }
  519. return 0;
  520. }
  521. /*
  522. * sync_super for 0.90.0
  523. */
  524. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  525. {
  526. mdp_super_t *sb;
  527. struct list_head *tmp;
  528. mdk_rdev_t *rdev2;
  529. int next_spare = mddev->raid_disks;
  530. /* make rdev->sb match mddev data..
  531. *
  532. * 1/ zero out disks
  533. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  534. * 3/ any empty disks < next_spare become removed
  535. *
  536. * disks[0] gets initialised to REMOVED because
  537. * we cannot be sure from other fields if it has
  538. * been initialised or not.
  539. */
  540. int i;
  541. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  542. sb = (mdp_super_t*)page_address(rdev->sb_page);
  543. memset(sb, 0, sizeof(*sb));
  544. sb->md_magic = MD_SB_MAGIC;
  545. sb->major_version = mddev->major_version;
  546. sb->minor_version = mddev->minor_version;
  547. sb->patch_version = mddev->patch_version;
  548. sb->gvalid_words = 0; /* ignored */
  549. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  550. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  551. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  552. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  553. sb->ctime = mddev->ctime;
  554. sb->level = mddev->level;
  555. sb->size = mddev->size;
  556. sb->raid_disks = mddev->raid_disks;
  557. sb->md_minor = mddev->md_minor;
  558. sb->not_persistent = !mddev->persistent;
  559. sb->utime = mddev->utime;
  560. sb->state = 0;
  561. sb->events_hi = (mddev->events>>32);
  562. sb->events_lo = (u32)mddev->events;
  563. if (mddev->in_sync)
  564. {
  565. sb->recovery_cp = mddev->recovery_cp;
  566. sb->cp_events_hi = (mddev->events>>32);
  567. sb->cp_events_lo = (u32)mddev->events;
  568. if (mddev->recovery_cp == MaxSector)
  569. sb->state = (1<< MD_SB_CLEAN);
  570. } else
  571. sb->recovery_cp = 0;
  572. sb->layout = mddev->layout;
  573. sb->chunk_size = mddev->chunk_size;
  574. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  575. ITERATE_RDEV(mddev,rdev2,tmp) {
  576. mdp_disk_t *d;
  577. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  578. rdev2->desc_nr = rdev2->raid_disk;
  579. else
  580. rdev2->desc_nr = next_spare++;
  581. d = &sb->disks[rdev2->desc_nr];
  582. nr_disks++;
  583. d->number = rdev2->desc_nr;
  584. d->major = MAJOR(rdev2->bdev->bd_dev);
  585. d->minor = MINOR(rdev2->bdev->bd_dev);
  586. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  587. d->raid_disk = rdev2->raid_disk;
  588. else
  589. d->raid_disk = rdev2->desc_nr; /* compatibility */
  590. if (rdev2->faulty) {
  591. d->state = (1<<MD_DISK_FAULTY);
  592. failed++;
  593. } else if (rdev2->in_sync) {
  594. d->state = (1<<MD_DISK_ACTIVE);
  595. d->state |= (1<<MD_DISK_SYNC);
  596. active++;
  597. working++;
  598. } else {
  599. d->state = 0;
  600. spare++;
  601. working++;
  602. }
  603. }
  604. /* now set the "removed" and "faulty" bits on any missing devices */
  605. for (i=0 ; i < mddev->raid_disks ; i++) {
  606. mdp_disk_t *d = &sb->disks[i];
  607. if (d->state == 0 && d->number == 0) {
  608. d->number = i;
  609. d->raid_disk = i;
  610. d->state = (1<<MD_DISK_REMOVED);
  611. d->state |= (1<<MD_DISK_FAULTY);
  612. failed++;
  613. }
  614. }
  615. sb->nr_disks = nr_disks;
  616. sb->active_disks = active;
  617. sb->working_disks = working;
  618. sb->failed_disks = failed;
  619. sb->spare_disks = spare;
  620. sb->this_disk = sb->disks[rdev->desc_nr];
  621. sb->sb_csum = calc_sb_csum(sb);
  622. }
  623. /*
  624. * version 1 superblock
  625. */
  626. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  627. {
  628. unsigned int disk_csum, csum;
  629. unsigned long long newcsum;
  630. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  631. unsigned int *isuper = (unsigned int*)sb;
  632. int i;
  633. disk_csum = sb->sb_csum;
  634. sb->sb_csum = 0;
  635. newcsum = 0;
  636. for (i=0; size>=4; size -= 4 )
  637. newcsum += le32_to_cpu(*isuper++);
  638. if (size == 2)
  639. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  640. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  641. sb->sb_csum = disk_csum;
  642. return cpu_to_le32(csum);
  643. }
  644. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  645. {
  646. struct mdp_superblock_1 *sb;
  647. int ret;
  648. sector_t sb_offset;
  649. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  650. /*
  651. * Calculate the position of the superblock.
  652. * It is always aligned to a 4K boundary and
  653. * depeding on minor_version, it can be:
  654. * 0: At least 8K, but less than 12K, from end of device
  655. * 1: At start of device
  656. * 2: 4K from start of device.
  657. */
  658. switch(minor_version) {
  659. case 0:
  660. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  661. sb_offset -= 8*2;
  662. sb_offset &= ~(4*2-1);
  663. /* convert from sectors to K */
  664. sb_offset /= 2;
  665. break;
  666. case 1:
  667. sb_offset = 0;
  668. break;
  669. case 2:
  670. sb_offset = 4;
  671. break;
  672. default:
  673. return -EINVAL;
  674. }
  675. rdev->sb_offset = sb_offset;
  676. ret = read_disk_sb(rdev);
  677. if (ret) return ret;
  678. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  679. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  680. sb->major_version != cpu_to_le32(1) ||
  681. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  682. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  683. sb->feature_map != 0)
  684. return -EINVAL;
  685. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  686. printk("md: invalid superblock checksum on %s\n",
  687. bdevname(rdev->bdev,b));
  688. return -EINVAL;
  689. }
  690. if (le64_to_cpu(sb->data_size) < 10) {
  691. printk("md: data_size too small on %s\n",
  692. bdevname(rdev->bdev,b));
  693. return -EINVAL;
  694. }
  695. rdev->preferred_minor = 0xffff;
  696. rdev->data_offset = le64_to_cpu(sb->data_offset);
  697. if (refdev == 0)
  698. return 1;
  699. else {
  700. __u64 ev1, ev2;
  701. struct mdp_superblock_1 *refsb =
  702. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  703. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  704. sb->level != refsb->level ||
  705. sb->layout != refsb->layout ||
  706. sb->chunksize != refsb->chunksize) {
  707. printk(KERN_WARNING "md: %s has strangely different"
  708. " superblock to %s\n",
  709. bdevname(rdev->bdev,b),
  710. bdevname(refdev->bdev,b2));
  711. return -EINVAL;
  712. }
  713. ev1 = le64_to_cpu(sb->events);
  714. ev2 = le64_to_cpu(refsb->events);
  715. if (ev1 > ev2)
  716. return 1;
  717. }
  718. if (minor_version)
  719. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  720. else
  721. rdev->size = rdev->sb_offset;
  722. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  723. return -EINVAL;
  724. rdev->size = le64_to_cpu(sb->data_size)/2;
  725. if (le32_to_cpu(sb->chunksize))
  726. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  727. return 0;
  728. }
  729. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  730. {
  731. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  732. if (mddev->raid_disks == 0) {
  733. mddev->major_version = 1;
  734. mddev->patch_version = 0;
  735. mddev->persistent = 1;
  736. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  737. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  738. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  739. mddev->level = le32_to_cpu(sb->level);
  740. mddev->layout = le32_to_cpu(sb->layout);
  741. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  742. mddev->size = le64_to_cpu(sb->size)/2;
  743. mddev->events = le64_to_cpu(sb->events);
  744. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  745. memcpy(mddev->uuid, sb->set_uuid, 16);
  746. mddev->max_disks = (4096-256)/2;
  747. } else {
  748. __u64 ev1;
  749. ev1 = le64_to_cpu(sb->events);
  750. ++ev1;
  751. if (ev1 < mddev->events)
  752. return -EINVAL;
  753. }
  754. if (mddev->level != LEVEL_MULTIPATH) {
  755. int role;
  756. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  757. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  758. switch(role) {
  759. case 0xffff: /* spare */
  760. rdev->in_sync = 0;
  761. rdev->faulty = 0;
  762. rdev->raid_disk = -1;
  763. break;
  764. case 0xfffe: /* faulty */
  765. rdev->in_sync = 0;
  766. rdev->faulty = 1;
  767. rdev->raid_disk = -1;
  768. break;
  769. default:
  770. rdev->in_sync = 1;
  771. rdev->faulty = 0;
  772. rdev->raid_disk = role;
  773. break;
  774. }
  775. }
  776. return 0;
  777. }
  778. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  779. {
  780. struct mdp_superblock_1 *sb;
  781. struct list_head *tmp;
  782. mdk_rdev_t *rdev2;
  783. int max_dev, i;
  784. /* make rdev->sb match mddev and rdev data. */
  785. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  786. sb->feature_map = 0;
  787. sb->pad0 = 0;
  788. memset(sb->pad1, 0, sizeof(sb->pad1));
  789. memset(sb->pad2, 0, sizeof(sb->pad2));
  790. memset(sb->pad3, 0, sizeof(sb->pad3));
  791. sb->utime = cpu_to_le64((__u64)mddev->utime);
  792. sb->events = cpu_to_le64(mddev->events);
  793. if (mddev->in_sync)
  794. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  795. else
  796. sb->resync_offset = cpu_to_le64(0);
  797. max_dev = 0;
  798. ITERATE_RDEV(mddev,rdev2,tmp)
  799. if (rdev2->desc_nr+1 > max_dev)
  800. max_dev = rdev2->desc_nr+1;
  801. sb->max_dev = cpu_to_le32(max_dev);
  802. for (i=0; i<max_dev;i++)
  803. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  804. ITERATE_RDEV(mddev,rdev2,tmp) {
  805. i = rdev2->desc_nr;
  806. if (rdev2->faulty)
  807. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  808. else if (rdev2->in_sync)
  809. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  810. else
  811. sb->dev_roles[i] = cpu_to_le16(0xffff);
  812. }
  813. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  814. sb->sb_csum = calc_sb_1_csum(sb);
  815. }
  816. static struct super_type super_types[] = {
  817. [0] = {
  818. .name = "0.90.0",
  819. .owner = THIS_MODULE,
  820. .load_super = super_90_load,
  821. .validate_super = super_90_validate,
  822. .sync_super = super_90_sync,
  823. },
  824. [1] = {
  825. .name = "md-1",
  826. .owner = THIS_MODULE,
  827. .load_super = super_1_load,
  828. .validate_super = super_1_validate,
  829. .sync_super = super_1_sync,
  830. },
  831. };
  832. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  833. {
  834. struct list_head *tmp;
  835. mdk_rdev_t *rdev;
  836. ITERATE_RDEV(mddev,rdev,tmp)
  837. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  838. return rdev;
  839. return NULL;
  840. }
  841. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  842. {
  843. struct list_head *tmp;
  844. mdk_rdev_t *rdev;
  845. ITERATE_RDEV(mddev1,rdev,tmp)
  846. if (match_dev_unit(mddev2, rdev))
  847. return 1;
  848. return 0;
  849. }
  850. static LIST_HEAD(pending_raid_disks);
  851. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  852. {
  853. mdk_rdev_t *same_pdev;
  854. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  855. if (rdev->mddev) {
  856. MD_BUG();
  857. return -EINVAL;
  858. }
  859. same_pdev = match_dev_unit(mddev, rdev);
  860. if (same_pdev)
  861. printk(KERN_WARNING
  862. "%s: WARNING: %s appears to be on the same physical"
  863. " disk as %s. True\n protection against single-disk"
  864. " failure might be compromised.\n",
  865. mdname(mddev), bdevname(rdev->bdev,b),
  866. bdevname(same_pdev->bdev,b2));
  867. /* Verify rdev->desc_nr is unique.
  868. * If it is -1, assign a free number, else
  869. * check number is not in use
  870. */
  871. if (rdev->desc_nr < 0) {
  872. int choice = 0;
  873. if (mddev->pers) choice = mddev->raid_disks;
  874. while (find_rdev_nr(mddev, choice))
  875. choice++;
  876. rdev->desc_nr = choice;
  877. } else {
  878. if (find_rdev_nr(mddev, rdev->desc_nr))
  879. return -EBUSY;
  880. }
  881. list_add(&rdev->same_set, &mddev->disks);
  882. rdev->mddev = mddev;
  883. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  884. return 0;
  885. }
  886. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  887. {
  888. char b[BDEVNAME_SIZE];
  889. if (!rdev->mddev) {
  890. MD_BUG();
  891. return;
  892. }
  893. list_del_init(&rdev->same_set);
  894. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  895. rdev->mddev = NULL;
  896. }
  897. /*
  898. * prevent the device from being mounted, repartitioned or
  899. * otherwise reused by a RAID array (or any other kernel
  900. * subsystem), by bd_claiming the device.
  901. */
  902. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  903. {
  904. int err = 0;
  905. struct block_device *bdev;
  906. char b[BDEVNAME_SIZE];
  907. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  908. if (IS_ERR(bdev)) {
  909. printk(KERN_ERR "md: could not open %s.\n",
  910. __bdevname(dev, b));
  911. return PTR_ERR(bdev);
  912. }
  913. err = bd_claim(bdev, rdev);
  914. if (err) {
  915. printk(KERN_ERR "md: could not bd_claim %s.\n",
  916. bdevname(bdev, b));
  917. blkdev_put(bdev);
  918. return err;
  919. }
  920. rdev->bdev = bdev;
  921. return err;
  922. }
  923. static void unlock_rdev(mdk_rdev_t *rdev)
  924. {
  925. struct block_device *bdev = rdev->bdev;
  926. rdev->bdev = NULL;
  927. if (!bdev)
  928. MD_BUG();
  929. bd_release(bdev);
  930. blkdev_put(bdev);
  931. }
  932. void md_autodetect_dev(dev_t dev);
  933. static void export_rdev(mdk_rdev_t * rdev)
  934. {
  935. char b[BDEVNAME_SIZE];
  936. printk(KERN_INFO "md: export_rdev(%s)\n",
  937. bdevname(rdev->bdev,b));
  938. if (rdev->mddev)
  939. MD_BUG();
  940. free_disk_sb(rdev);
  941. list_del_init(&rdev->same_set);
  942. #ifndef MODULE
  943. md_autodetect_dev(rdev->bdev->bd_dev);
  944. #endif
  945. unlock_rdev(rdev);
  946. kfree(rdev);
  947. }
  948. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  949. {
  950. unbind_rdev_from_array(rdev);
  951. export_rdev(rdev);
  952. }
  953. static void export_array(mddev_t *mddev)
  954. {
  955. struct list_head *tmp;
  956. mdk_rdev_t *rdev;
  957. ITERATE_RDEV(mddev,rdev,tmp) {
  958. if (!rdev->mddev) {
  959. MD_BUG();
  960. continue;
  961. }
  962. kick_rdev_from_array(rdev);
  963. }
  964. if (!list_empty(&mddev->disks))
  965. MD_BUG();
  966. mddev->raid_disks = 0;
  967. mddev->major_version = 0;
  968. }
  969. static void print_desc(mdp_disk_t *desc)
  970. {
  971. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  972. desc->major,desc->minor,desc->raid_disk,desc->state);
  973. }
  974. static void print_sb(mdp_super_t *sb)
  975. {
  976. int i;
  977. printk(KERN_INFO
  978. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  979. sb->major_version, sb->minor_version, sb->patch_version,
  980. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  981. sb->ctime);
  982. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  983. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  984. sb->md_minor, sb->layout, sb->chunk_size);
  985. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  986. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  987. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  988. sb->failed_disks, sb->spare_disks,
  989. sb->sb_csum, (unsigned long)sb->events_lo);
  990. printk(KERN_INFO);
  991. for (i = 0; i < MD_SB_DISKS; i++) {
  992. mdp_disk_t *desc;
  993. desc = sb->disks + i;
  994. if (desc->number || desc->major || desc->minor ||
  995. desc->raid_disk || (desc->state && (desc->state != 4))) {
  996. printk(" D %2d: ", i);
  997. print_desc(desc);
  998. }
  999. }
  1000. printk(KERN_INFO "md: THIS: ");
  1001. print_desc(&sb->this_disk);
  1002. }
  1003. static void print_rdev(mdk_rdev_t *rdev)
  1004. {
  1005. char b[BDEVNAME_SIZE];
  1006. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1007. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1008. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1009. if (rdev->sb_loaded) {
  1010. printk(KERN_INFO "md: rdev superblock:\n");
  1011. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1012. } else
  1013. printk(KERN_INFO "md: no rdev superblock!\n");
  1014. }
  1015. void md_print_devices(void)
  1016. {
  1017. struct list_head *tmp, *tmp2;
  1018. mdk_rdev_t *rdev;
  1019. mddev_t *mddev;
  1020. char b[BDEVNAME_SIZE];
  1021. printk("\n");
  1022. printk("md: **********************************\n");
  1023. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1024. printk("md: **********************************\n");
  1025. ITERATE_MDDEV(mddev,tmp) {
  1026. printk("%s: ", mdname(mddev));
  1027. ITERATE_RDEV(mddev,rdev,tmp2)
  1028. printk("<%s>", bdevname(rdev->bdev,b));
  1029. printk("\n");
  1030. ITERATE_RDEV(mddev,rdev,tmp2)
  1031. print_rdev(rdev);
  1032. }
  1033. printk("md: **********************************\n");
  1034. printk("\n");
  1035. }
  1036. static int write_disk_sb(mdk_rdev_t * rdev)
  1037. {
  1038. char b[BDEVNAME_SIZE];
  1039. if (!rdev->sb_loaded) {
  1040. MD_BUG();
  1041. return 1;
  1042. }
  1043. if (rdev->faulty) {
  1044. MD_BUG();
  1045. return 1;
  1046. }
  1047. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1048. bdevname(rdev->bdev,b),
  1049. (unsigned long long)rdev->sb_offset);
  1050. if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
  1051. return 0;
  1052. printk("md: write_disk_sb failed for device %s\n",
  1053. bdevname(rdev->bdev,b));
  1054. return 1;
  1055. }
  1056. static void sync_sbs(mddev_t * mddev)
  1057. {
  1058. mdk_rdev_t *rdev;
  1059. struct list_head *tmp;
  1060. ITERATE_RDEV(mddev,rdev,tmp) {
  1061. super_types[mddev->major_version].
  1062. sync_super(mddev, rdev);
  1063. rdev->sb_loaded = 1;
  1064. }
  1065. }
  1066. static void md_update_sb(mddev_t * mddev)
  1067. {
  1068. int err, count = 100;
  1069. struct list_head *tmp;
  1070. mdk_rdev_t *rdev;
  1071. int sync_req;
  1072. repeat:
  1073. spin_lock(&mddev->write_lock);
  1074. sync_req = mddev->in_sync;
  1075. mddev->utime = get_seconds();
  1076. mddev->events ++;
  1077. if (!mddev->events) {
  1078. /*
  1079. * oops, this 64-bit counter should never wrap.
  1080. * Either we are in around ~1 trillion A.C., assuming
  1081. * 1 reboot per second, or we have a bug:
  1082. */
  1083. MD_BUG();
  1084. mddev->events --;
  1085. }
  1086. sync_sbs(mddev);
  1087. /*
  1088. * do not write anything to disk if using
  1089. * nonpersistent superblocks
  1090. */
  1091. if (!mddev->persistent) {
  1092. mddev->sb_dirty = 0;
  1093. spin_unlock(&mddev->write_lock);
  1094. return;
  1095. }
  1096. spin_unlock(&mddev->write_lock);
  1097. dprintk(KERN_INFO
  1098. "md: updating %s RAID superblock on device (in sync %d)\n",
  1099. mdname(mddev),mddev->in_sync);
  1100. err = 0;
  1101. ITERATE_RDEV(mddev,rdev,tmp) {
  1102. char b[BDEVNAME_SIZE];
  1103. dprintk(KERN_INFO "md: ");
  1104. if (rdev->faulty)
  1105. dprintk("(skipping faulty ");
  1106. dprintk("%s ", bdevname(rdev->bdev,b));
  1107. if (!rdev->faulty) {
  1108. err += write_disk_sb(rdev);
  1109. } else
  1110. dprintk(")\n");
  1111. if (!err && mddev->level == LEVEL_MULTIPATH)
  1112. /* only need to write one superblock... */
  1113. break;
  1114. }
  1115. if (err) {
  1116. if (--count) {
  1117. printk(KERN_ERR "md: errors occurred during superblock"
  1118. " update, repeating\n");
  1119. goto repeat;
  1120. }
  1121. printk(KERN_ERR \
  1122. "md: excessive errors occurred during superblock update, exiting\n");
  1123. }
  1124. spin_lock(&mddev->write_lock);
  1125. if (mddev->in_sync != sync_req) {
  1126. /* have to write it out again */
  1127. spin_unlock(&mddev->write_lock);
  1128. goto repeat;
  1129. }
  1130. mddev->sb_dirty = 0;
  1131. spin_unlock(&mddev->write_lock);
  1132. }
  1133. /*
  1134. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1135. *
  1136. * mark the device faulty if:
  1137. *
  1138. * - the device is nonexistent (zero size)
  1139. * - the device has no valid superblock
  1140. *
  1141. * a faulty rdev _never_ has rdev->sb set.
  1142. */
  1143. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1144. {
  1145. char b[BDEVNAME_SIZE];
  1146. int err;
  1147. mdk_rdev_t *rdev;
  1148. sector_t size;
  1149. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1150. if (!rdev) {
  1151. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1152. return ERR_PTR(-ENOMEM);
  1153. }
  1154. memset(rdev, 0, sizeof(*rdev));
  1155. if ((err = alloc_disk_sb(rdev)))
  1156. goto abort_free;
  1157. err = lock_rdev(rdev, newdev);
  1158. if (err)
  1159. goto abort_free;
  1160. rdev->desc_nr = -1;
  1161. rdev->faulty = 0;
  1162. rdev->in_sync = 0;
  1163. rdev->data_offset = 0;
  1164. atomic_set(&rdev->nr_pending, 0);
  1165. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1166. if (!size) {
  1167. printk(KERN_WARNING
  1168. "md: %s has zero or unknown size, marking faulty!\n",
  1169. bdevname(rdev->bdev,b));
  1170. err = -EINVAL;
  1171. goto abort_free;
  1172. }
  1173. if (super_format >= 0) {
  1174. err = super_types[super_format].
  1175. load_super(rdev, NULL, super_minor);
  1176. if (err == -EINVAL) {
  1177. printk(KERN_WARNING
  1178. "md: %s has invalid sb, not importing!\n",
  1179. bdevname(rdev->bdev,b));
  1180. goto abort_free;
  1181. }
  1182. if (err < 0) {
  1183. printk(KERN_WARNING
  1184. "md: could not read %s's sb, not importing!\n",
  1185. bdevname(rdev->bdev,b));
  1186. goto abort_free;
  1187. }
  1188. }
  1189. INIT_LIST_HEAD(&rdev->same_set);
  1190. return rdev;
  1191. abort_free:
  1192. if (rdev->sb_page) {
  1193. if (rdev->bdev)
  1194. unlock_rdev(rdev);
  1195. free_disk_sb(rdev);
  1196. }
  1197. kfree(rdev);
  1198. return ERR_PTR(err);
  1199. }
  1200. /*
  1201. * Check a full RAID array for plausibility
  1202. */
  1203. static void analyze_sbs(mddev_t * mddev)
  1204. {
  1205. int i;
  1206. struct list_head *tmp;
  1207. mdk_rdev_t *rdev, *freshest;
  1208. char b[BDEVNAME_SIZE];
  1209. freshest = NULL;
  1210. ITERATE_RDEV(mddev,rdev,tmp)
  1211. switch (super_types[mddev->major_version].
  1212. load_super(rdev, freshest, mddev->minor_version)) {
  1213. case 1:
  1214. freshest = rdev;
  1215. break;
  1216. case 0:
  1217. break;
  1218. default:
  1219. printk( KERN_ERR \
  1220. "md: fatal superblock inconsistency in %s"
  1221. " -- removing from array\n",
  1222. bdevname(rdev->bdev,b));
  1223. kick_rdev_from_array(rdev);
  1224. }
  1225. super_types[mddev->major_version].
  1226. validate_super(mddev, freshest);
  1227. i = 0;
  1228. ITERATE_RDEV(mddev,rdev,tmp) {
  1229. if (rdev != freshest)
  1230. if (super_types[mddev->major_version].
  1231. validate_super(mddev, rdev)) {
  1232. printk(KERN_WARNING "md: kicking non-fresh %s"
  1233. " from array!\n",
  1234. bdevname(rdev->bdev,b));
  1235. kick_rdev_from_array(rdev);
  1236. continue;
  1237. }
  1238. if (mddev->level == LEVEL_MULTIPATH) {
  1239. rdev->desc_nr = i++;
  1240. rdev->raid_disk = rdev->desc_nr;
  1241. rdev->in_sync = 1;
  1242. }
  1243. }
  1244. if (mddev->recovery_cp != MaxSector &&
  1245. mddev->level >= 1)
  1246. printk(KERN_ERR "md: %s: raid array is not clean"
  1247. " -- starting background reconstruction\n",
  1248. mdname(mddev));
  1249. }
  1250. int mdp_major = 0;
  1251. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1252. {
  1253. static DECLARE_MUTEX(disks_sem);
  1254. mddev_t *mddev = mddev_find(dev);
  1255. struct gendisk *disk;
  1256. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1257. int shift = partitioned ? MdpMinorShift : 0;
  1258. int unit = MINOR(dev) >> shift;
  1259. if (!mddev)
  1260. return NULL;
  1261. down(&disks_sem);
  1262. if (mddev->gendisk) {
  1263. up(&disks_sem);
  1264. mddev_put(mddev);
  1265. return NULL;
  1266. }
  1267. disk = alloc_disk(1 << shift);
  1268. if (!disk) {
  1269. up(&disks_sem);
  1270. mddev_put(mddev);
  1271. return NULL;
  1272. }
  1273. disk->major = MAJOR(dev);
  1274. disk->first_minor = unit << shift;
  1275. if (partitioned) {
  1276. sprintf(disk->disk_name, "md_d%d", unit);
  1277. sprintf(disk->devfs_name, "md/d%d", unit);
  1278. } else {
  1279. sprintf(disk->disk_name, "md%d", unit);
  1280. sprintf(disk->devfs_name, "md/%d", unit);
  1281. }
  1282. disk->fops = &md_fops;
  1283. disk->private_data = mddev;
  1284. disk->queue = mddev->queue;
  1285. add_disk(disk);
  1286. mddev->gendisk = disk;
  1287. up(&disks_sem);
  1288. return NULL;
  1289. }
  1290. void md_wakeup_thread(mdk_thread_t *thread);
  1291. static void md_safemode_timeout(unsigned long data)
  1292. {
  1293. mddev_t *mddev = (mddev_t *) data;
  1294. mddev->safemode = 1;
  1295. md_wakeup_thread(mddev->thread);
  1296. }
  1297. static int do_md_run(mddev_t * mddev)
  1298. {
  1299. int pnum, err;
  1300. int chunk_size;
  1301. struct list_head *tmp;
  1302. mdk_rdev_t *rdev;
  1303. struct gendisk *disk;
  1304. char b[BDEVNAME_SIZE];
  1305. if (list_empty(&mddev->disks))
  1306. /* cannot run an array with no devices.. */
  1307. return -EINVAL;
  1308. if (mddev->pers)
  1309. return -EBUSY;
  1310. /*
  1311. * Analyze all RAID superblock(s)
  1312. */
  1313. if (!mddev->raid_disks)
  1314. analyze_sbs(mddev);
  1315. chunk_size = mddev->chunk_size;
  1316. pnum = level_to_pers(mddev->level);
  1317. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1318. if (!chunk_size) {
  1319. /*
  1320. * 'default chunksize' in the old md code used to
  1321. * be PAGE_SIZE, baaad.
  1322. * we abort here to be on the safe side. We don't
  1323. * want to continue the bad practice.
  1324. */
  1325. printk(KERN_ERR
  1326. "no chunksize specified, see 'man raidtab'\n");
  1327. return -EINVAL;
  1328. }
  1329. if (chunk_size > MAX_CHUNK_SIZE) {
  1330. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1331. chunk_size, MAX_CHUNK_SIZE);
  1332. return -EINVAL;
  1333. }
  1334. /*
  1335. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1336. */
  1337. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1338. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1339. return -EINVAL;
  1340. }
  1341. if (chunk_size < PAGE_SIZE) {
  1342. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1343. chunk_size, PAGE_SIZE);
  1344. return -EINVAL;
  1345. }
  1346. /* devices must have minimum size of one chunk */
  1347. ITERATE_RDEV(mddev,rdev,tmp) {
  1348. if (rdev->faulty)
  1349. continue;
  1350. if (rdev->size < chunk_size / 1024) {
  1351. printk(KERN_WARNING
  1352. "md: Dev %s smaller than chunk_size:"
  1353. " %lluk < %dk\n",
  1354. bdevname(rdev->bdev,b),
  1355. (unsigned long long)rdev->size,
  1356. chunk_size / 1024);
  1357. return -EINVAL;
  1358. }
  1359. }
  1360. }
  1361. #ifdef CONFIG_KMOD
  1362. if (!pers[pnum])
  1363. {
  1364. request_module("md-personality-%d", pnum);
  1365. }
  1366. #endif
  1367. /*
  1368. * Drop all container device buffers, from now on
  1369. * the only valid external interface is through the md
  1370. * device.
  1371. * Also find largest hardsector size
  1372. */
  1373. ITERATE_RDEV(mddev,rdev,tmp) {
  1374. if (rdev->faulty)
  1375. continue;
  1376. sync_blockdev(rdev->bdev);
  1377. invalidate_bdev(rdev->bdev, 0);
  1378. }
  1379. md_probe(mddev->unit, NULL, NULL);
  1380. disk = mddev->gendisk;
  1381. if (!disk)
  1382. return -ENOMEM;
  1383. spin_lock(&pers_lock);
  1384. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1385. spin_unlock(&pers_lock);
  1386. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1387. pnum);
  1388. return -EINVAL;
  1389. }
  1390. mddev->pers = pers[pnum];
  1391. spin_unlock(&pers_lock);
  1392. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1393. err = mddev->pers->run(mddev);
  1394. if (err) {
  1395. printk(KERN_ERR "md: pers->run() failed ...\n");
  1396. module_put(mddev->pers->owner);
  1397. mddev->pers = NULL;
  1398. return -EINVAL;
  1399. }
  1400. atomic_set(&mddev->writes_pending,0);
  1401. mddev->safemode = 0;
  1402. mddev->safemode_timer.function = md_safemode_timeout;
  1403. mddev->safemode_timer.data = (unsigned long) mddev;
  1404. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1405. mddev->in_sync = 1;
  1406. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1407. if (mddev->sb_dirty)
  1408. md_update_sb(mddev);
  1409. set_capacity(disk, mddev->array_size<<1);
  1410. /* If we call blk_queue_make_request here, it will
  1411. * re-initialise max_sectors etc which may have been
  1412. * refined inside -> run. So just set the bits we need to set.
  1413. * Most initialisation happended when we called
  1414. * blk_queue_make_request(..., md_fail_request)
  1415. * earlier.
  1416. */
  1417. mddev->queue->queuedata = mddev;
  1418. mddev->queue->make_request_fn = mddev->pers->make_request;
  1419. mddev->changed = 1;
  1420. return 0;
  1421. }
  1422. static int restart_array(mddev_t *mddev)
  1423. {
  1424. struct gendisk *disk = mddev->gendisk;
  1425. int err;
  1426. /*
  1427. * Complain if it has no devices
  1428. */
  1429. err = -ENXIO;
  1430. if (list_empty(&mddev->disks))
  1431. goto out;
  1432. if (mddev->pers) {
  1433. err = -EBUSY;
  1434. if (!mddev->ro)
  1435. goto out;
  1436. mddev->safemode = 0;
  1437. mddev->ro = 0;
  1438. set_disk_ro(disk, 0);
  1439. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1440. mdname(mddev));
  1441. /*
  1442. * Kick recovery or resync if necessary
  1443. */
  1444. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1445. md_wakeup_thread(mddev->thread);
  1446. err = 0;
  1447. } else {
  1448. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1449. mdname(mddev));
  1450. err = -EINVAL;
  1451. }
  1452. out:
  1453. return err;
  1454. }
  1455. static int do_md_stop(mddev_t * mddev, int ro)
  1456. {
  1457. int err = 0;
  1458. struct gendisk *disk = mddev->gendisk;
  1459. if (mddev->pers) {
  1460. if (atomic_read(&mddev->active)>2) {
  1461. printk("md: %s still in use.\n",mdname(mddev));
  1462. return -EBUSY;
  1463. }
  1464. if (mddev->sync_thread) {
  1465. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1466. md_unregister_thread(mddev->sync_thread);
  1467. mddev->sync_thread = NULL;
  1468. }
  1469. del_timer_sync(&mddev->safemode_timer);
  1470. invalidate_partition(disk, 0);
  1471. if (ro) {
  1472. err = -ENXIO;
  1473. if (mddev->ro)
  1474. goto out;
  1475. mddev->ro = 1;
  1476. } else {
  1477. if (mddev->ro)
  1478. set_disk_ro(disk, 0);
  1479. blk_queue_make_request(mddev->queue, md_fail_request);
  1480. mddev->pers->stop(mddev);
  1481. module_put(mddev->pers->owner);
  1482. mddev->pers = NULL;
  1483. if (mddev->ro)
  1484. mddev->ro = 0;
  1485. }
  1486. if (!mddev->in_sync) {
  1487. /* mark array as shutdown cleanly */
  1488. mddev->in_sync = 1;
  1489. md_update_sb(mddev);
  1490. }
  1491. if (ro)
  1492. set_disk_ro(disk, 1);
  1493. }
  1494. /*
  1495. * Free resources if final stop
  1496. */
  1497. if (!ro) {
  1498. struct gendisk *disk;
  1499. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1500. export_array(mddev);
  1501. mddev->array_size = 0;
  1502. disk = mddev->gendisk;
  1503. if (disk)
  1504. set_capacity(disk, 0);
  1505. mddev->changed = 1;
  1506. } else
  1507. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1508. mdname(mddev));
  1509. err = 0;
  1510. out:
  1511. return err;
  1512. }
  1513. static void autorun_array(mddev_t *mddev)
  1514. {
  1515. mdk_rdev_t *rdev;
  1516. struct list_head *tmp;
  1517. int err;
  1518. if (list_empty(&mddev->disks))
  1519. return;
  1520. printk(KERN_INFO "md: running: ");
  1521. ITERATE_RDEV(mddev,rdev,tmp) {
  1522. char b[BDEVNAME_SIZE];
  1523. printk("<%s>", bdevname(rdev->bdev,b));
  1524. }
  1525. printk("\n");
  1526. err = do_md_run (mddev);
  1527. if (err) {
  1528. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1529. do_md_stop (mddev, 0);
  1530. }
  1531. }
  1532. /*
  1533. * lets try to run arrays based on all disks that have arrived
  1534. * until now. (those are in pending_raid_disks)
  1535. *
  1536. * the method: pick the first pending disk, collect all disks with
  1537. * the same UUID, remove all from the pending list and put them into
  1538. * the 'same_array' list. Then order this list based on superblock
  1539. * update time (freshest comes first), kick out 'old' disks and
  1540. * compare superblocks. If everything's fine then run it.
  1541. *
  1542. * If "unit" is allocated, then bump its reference count
  1543. */
  1544. static void autorun_devices(int part)
  1545. {
  1546. struct list_head candidates;
  1547. struct list_head *tmp;
  1548. mdk_rdev_t *rdev0, *rdev;
  1549. mddev_t *mddev;
  1550. char b[BDEVNAME_SIZE];
  1551. printk(KERN_INFO "md: autorun ...\n");
  1552. while (!list_empty(&pending_raid_disks)) {
  1553. dev_t dev;
  1554. rdev0 = list_entry(pending_raid_disks.next,
  1555. mdk_rdev_t, same_set);
  1556. printk(KERN_INFO "md: considering %s ...\n",
  1557. bdevname(rdev0->bdev,b));
  1558. INIT_LIST_HEAD(&candidates);
  1559. ITERATE_RDEV_PENDING(rdev,tmp)
  1560. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1561. printk(KERN_INFO "md: adding %s ...\n",
  1562. bdevname(rdev->bdev,b));
  1563. list_move(&rdev->same_set, &candidates);
  1564. }
  1565. /*
  1566. * now we have a set of devices, with all of them having
  1567. * mostly sane superblocks. It's time to allocate the
  1568. * mddev.
  1569. */
  1570. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1571. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1572. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1573. break;
  1574. }
  1575. if (part)
  1576. dev = MKDEV(mdp_major,
  1577. rdev0->preferred_minor << MdpMinorShift);
  1578. else
  1579. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1580. md_probe(dev, NULL, NULL);
  1581. mddev = mddev_find(dev);
  1582. if (!mddev) {
  1583. printk(KERN_ERR
  1584. "md: cannot allocate memory for md drive.\n");
  1585. break;
  1586. }
  1587. if (mddev_lock(mddev))
  1588. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1589. mdname(mddev));
  1590. else if (mddev->raid_disks || mddev->major_version
  1591. || !list_empty(&mddev->disks)) {
  1592. printk(KERN_WARNING
  1593. "md: %s already running, cannot run %s\n",
  1594. mdname(mddev), bdevname(rdev0->bdev,b));
  1595. mddev_unlock(mddev);
  1596. } else {
  1597. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1598. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1599. list_del_init(&rdev->same_set);
  1600. if (bind_rdev_to_array(rdev, mddev))
  1601. export_rdev(rdev);
  1602. }
  1603. autorun_array(mddev);
  1604. mddev_unlock(mddev);
  1605. }
  1606. /* on success, candidates will be empty, on error
  1607. * it won't...
  1608. */
  1609. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1610. export_rdev(rdev);
  1611. mddev_put(mddev);
  1612. }
  1613. printk(KERN_INFO "md: ... autorun DONE.\n");
  1614. }
  1615. /*
  1616. * import RAID devices based on one partition
  1617. * if possible, the array gets run as well.
  1618. */
  1619. static int autostart_array(dev_t startdev)
  1620. {
  1621. char b[BDEVNAME_SIZE];
  1622. int err = -EINVAL, i;
  1623. mdp_super_t *sb = NULL;
  1624. mdk_rdev_t *start_rdev = NULL, *rdev;
  1625. start_rdev = md_import_device(startdev, 0, 0);
  1626. if (IS_ERR(start_rdev))
  1627. return err;
  1628. /* NOTE: this can only work for 0.90.0 superblocks */
  1629. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1630. if (sb->major_version != 0 ||
  1631. sb->minor_version != 90 ) {
  1632. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1633. export_rdev(start_rdev);
  1634. return err;
  1635. }
  1636. if (start_rdev->faulty) {
  1637. printk(KERN_WARNING
  1638. "md: can not autostart based on faulty %s!\n",
  1639. bdevname(start_rdev->bdev,b));
  1640. export_rdev(start_rdev);
  1641. return err;
  1642. }
  1643. list_add(&start_rdev->same_set, &pending_raid_disks);
  1644. for (i = 0; i < MD_SB_DISKS; i++) {
  1645. mdp_disk_t *desc = sb->disks + i;
  1646. dev_t dev = MKDEV(desc->major, desc->minor);
  1647. if (!dev)
  1648. continue;
  1649. if (dev == startdev)
  1650. continue;
  1651. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1652. continue;
  1653. rdev = md_import_device(dev, 0, 0);
  1654. if (IS_ERR(rdev))
  1655. continue;
  1656. list_add(&rdev->same_set, &pending_raid_disks);
  1657. }
  1658. /*
  1659. * possibly return codes
  1660. */
  1661. autorun_devices(0);
  1662. return 0;
  1663. }
  1664. static int get_version(void __user * arg)
  1665. {
  1666. mdu_version_t ver;
  1667. ver.major = MD_MAJOR_VERSION;
  1668. ver.minor = MD_MINOR_VERSION;
  1669. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1670. if (copy_to_user(arg, &ver, sizeof(ver)))
  1671. return -EFAULT;
  1672. return 0;
  1673. }
  1674. static int get_array_info(mddev_t * mddev, void __user * arg)
  1675. {
  1676. mdu_array_info_t info;
  1677. int nr,working,active,failed,spare;
  1678. mdk_rdev_t *rdev;
  1679. struct list_head *tmp;
  1680. nr=working=active=failed=spare=0;
  1681. ITERATE_RDEV(mddev,rdev,tmp) {
  1682. nr++;
  1683. if (rdev->faulty)
  1684. failed++;
  1685. else {
  1686. working++;
  1687. if (rdev->in_sync)
  1688. active++;
  1689. else
  1690. spare++;
  1691. }
  1692. }
  1693. info.major_version = mddev->major_version;
  1694. info.minor_version = mddev->minor_version;
  1695. info.patch_version = MD_PATCHLEVEL_VERSION;
  1696. info.ctime = mddev->ctime;
  1697. info.level = mddev->level;
  1698. info.size = mddev->size;
  1699. info.nr_disks = nr;
  1700. info.raid_disks = mddev->raid_disks;
  1701. info.md_minor = mddev->md_minor;
  1702. info.not_persistent= !mddev->persistent;
  1703. info.utime = mddev->utime;
  1704. info.state = 0;
  1705. if (mddev->in_sync)
  1706. info.state = (1<<MD_SB_CLEAN);
  1707. info.active_disks = active;
  1708. info.working_disks = working;
  1709. info.failed_disks = failed;
  1710. info.spare_disks = spare;
  1711. info.layout = mddev->layout;
  1712. info.chunk_size = mddev->chunk_size;
  1713. if (copy_to_user(arg, &info, sizeof(info)))
  1714. return -EFAULT;
  1715. return 0;
  1716. }
  1717. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1718. {
  1719. mdu_disk_info_t info;
  1720. unsigned int nr;
  1721. mdk_rdev_t *rdev;
  1722. if (copy_from_user(&info, arg, sizeof(info)))
  1723. return -EFAULT;
  1724. nr = info.number;
  1725. rdev = find_rdev_nr(mddev, nr);
  1726. if (rdev) {
  1727. info.major = MAJOR(rdev->bdev->bd_dev);
  1728. info.minor = MINOR(rdev->bdev->bd_dev);
  1729. info.raid_disk = rdev->raid_disk;
  1730. info.state = 0;
  1731. if (rdev->faulty)
  1732. info.state |= (1<<MD_DISK_FAULTY);
  1733. else if (rdev->in_sync) {
  1734. info.state |= (1<<MD_DISK_ACTIVE);
  1735. info.state |= (1<<MD_DISK_SYNC);
  1736. }
  1737. } else {
  1738. info.major = info.minor = 0;
  1739. info.raid_disk = -1;
  1740. info.state = (1<<MD_DISK_REMOVED);
  1741. }
  1742. if (copy_to_user(arg, &info, sizeof(info)))
  1743. return -EFAULT;
  1744. return 0;
  1745. }
  1746. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1747. {
  1748. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1749. mdk_rdev_t *rdev;
  1750. dev_t dev = MKDEV(info->major,info->minor);
  1751. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1752. return -EOVERFLOW;
  1753. if (!mddev->raid_disks) {
  1754. int err;
  1755. /* expecting a device which has a superblock */
  1756. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1757. if (IS_ERR(rdev)) {
  1758. printk(KERN_WARNING
  1759. "md: md_import_device returned %ld\n",
  1760. PTR_ERR(rdev));
  1761. return PTR_ERR(rdev);
  1762. }
  1763. if (!list_empty(&mddev->disks)) {
  1764. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1765. mdk_rdev_t, same_set);
  1766. int err = super_types[mddev->major_version]
  1767. .load_super(rdev, rdev0, mddev->minor_version);
  1768. if (err < 0) {
  1769. printk(KERN_WARNING
  1770. "md: %s has different UUID to %s\n",
  1771. bdevname(rdev->bdev,b),
  1772. bdevname(rdev0->bdev,b2));
  1773. export_rdev(rdev);
  1774. return -EINVAL;
  1775. }
  1776. }
  1777. err = bind_rdev_to_array(rdev, mddev);
  1778. if (err)
  1779. export_rdev(rdev);
  1780. return err;
  1781. }
  1782. /*
  1783. * add_new_disk can be used once the array is assembled
  1784. * to add "hot spares". They must already have a superblock
  1785. * written
  1786. */
  1787. if (mddev->pers) {
  1788. int err;
  1789. if (!mddev->pers->hot_add_disk) {
  1790. printk(KERN_WARNING
  1791. "%s: personality does not support diskops!\n",
  1792. mdname(mddev));
  1793. return -EINVAL;
  1794. }
  1795. rdev = md_import_device(dev, mddev->major_version,
  1796. mddev->minor_version);
  1797. if (IS_ERR(rdev)) {
  1798. printk(KERN_WARNING
  1799. "md: md_import_device returned %ld\n",
  1800. PTR_ERR(rdev));
  1801. return PTR_ERR(rdev);
  1802. }
  1803. rdev->in_sync = 0; /* just to be sure */
  1804. rdev->raid_disk = -1;
  1805. err = bind_rdev_to_array(rdev, mddev);
  1806. if (err)
  1807. export_rdev(rdev);
  1808. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1809. if (mddev->thread)
  1810. md_wakeup_thread(mddev->thread);
  1811. return err;
  1812. }
  1813. /* otherwise, add_new_disk is only allowed
  1814. * for major_version==0 superblocks
  1815. */
  1816. if (mddev->major_version != 0) {
  1817. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1818. mdname(mddev));
  1819. return -EINVAL;
  1820. }
  1821. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1822. int err;
  1823. rdev = md_import_device (dev, -1, 0);
  1824. if (IS_ERR(rdev)) {
  1825. printk(KERN_WARNING
  1826. "md: error, md_import_device() returned %ld\n",
  1827. PTR_ERR(rdev));
  1828. return PTR_ERR(rdev);
  1829. }
  1830. rdev->desc_nr = info->number;
  1831. if (info->raid_disk < mddev->raid_disks)
  1832. rdev->raid_disk = info->raid_disk;
  1833. else
  1834. rdev->raid_disk = -1;
  1835. rdev->faulty = 0;
  1836. if (rdev->raid_disk < mddev->raid_disks)
  1837. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1838. else
  1839. rdev->in_sync = 0;
  1840. err = bind_rdev_to_array(rdev, mddev);
  1841. if (err) {
  1842. export_rdev(rdev);
  1843. return err;
  1844. }
  1845. if (!mddev->persistent) {
  1846. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1847. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1848. } else
  1849. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1850. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1851. if (!mddev->size || (mddev->size > rdev->size))
  1852. mddev->size = rdev->size;
  1853. }
  1854. return 0;
  1855. }
  1856. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  1857. {
  1858. char b[BDEVNAME_SIZE];
  1859. mdk_rdev_t *rdev;
  1860. if (!mddev->pers)
  1861. return -ENODEV;
  1862. rdev = find_rdev(mddev, dev);
  1863. if (!rdev)
  1864. return -ENXIO;
  1865. if (rdev->raid_disk >= 0)
  1866. goto busy;
  1867. kick_rdev_from_array(rdev);
  1868. md_update_sb(mddev);
  1869. return 0;
  1870. busy:
  1871. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  1872. bdevname(rdev->bdev,b), mdname(mddev));
  1873. return -EBUSY;
  1874. }
  1875. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  1876. {
  1877. char b[BDEVNAME_SIZE];
  1878. int err;
  1879. unsigned int size;
  1880. mdk_rdev_t *rdev;
  1881. if (!mddev->pers)
  1882. return -ENODEV;
  1883. if (mddev->major_version != 0) {
  1884. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  1885. " version-0 superblocks.\n",
  1886. mdname(mddev));
  1887. return -EINVAL;
  1888. }
  1889. if (!mddev->pers->hot_add_disk) {
  1890. printk(KERN_WARNING
  1891. "%s: personality does not support diskops!\n",
  1892. mdname(mddev));
  1893. return -EINVAL;
  1894. }
  1895. rdev = md_import_device (dev, -1, 0);
  1896. if (IS_ERR(rdev)) {
  1897. printk(KERN_WARNING
  1898. "md: error, md_import_device() returned %ld\n",
  1899. PTR_ERR(rdev));
  1900. return -EINVAL;
  1901. }
  1902. if (mddev->persistent)
  1903. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1904. else
  1905. rdev->sb_offset =
  1906. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1907. size = calc_dev_size(rdev, mddev->chunk_size);
  1908. rdev->size = size;
  1909. if (size < mddev->size) {
  1910. printk(KERN_WARNING
  1911. "%s: disk size %llu blocks < array size %llu\n",
  1912. mdname(mddev), (unsigned long long)size,
  1913. (unsigned long long)mddev->size);
  1914. err = -ENOSPC;
  1915. goto abort_export;
  1916. }
  1917. if (rdev->faulty) {
  1918. printk(KERN_WARNING
  1919. "md: can not hot-add faulty %s disk to %s!\n",
  1920. bdevname(rdev->bdev,b), mdname(mddev));
  1921. err = -EINVAL;
  1922. goto abort_export;
  1923. }
  1924. rdev->in_sync = 0;
  1925. rdev->desc_nr = -1;
  1926. bind_rdev_to_array(rdev, mddev);
  1927. /*
  1928. * The rest should better be atomic, we can have disk failures
  1929. * noticed in interrupt contexts ...
  1930. */
  1931. if (rdev->desc_nr == mddev->max_disks) {
  1932. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  1933. mdname(mddev));
  1934. err = -EBUSY;
  1935. goto abort_unbind_export;
  1936. }
  1937. rdev->raid_disk = -1;
  1938. md_update_sb(mddev);
  1939. /*
  1940. * Kick recovery, maybe this spare has to be added to the
  1941. * array immediately.
  1942. */
  1943. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1944. md_wakeup_thread(mddev->thread);
  1945. return 0;
  1946. abort_unbind_export:
  1947. unbind_rdev_from_array(rdev);
  1948. abort_export:
  1949. export_rdev(rdev);
  1950. return err;
  1951. }
  1952. /*
  1953. * set_array_info is used two different ways
  1954. * The original usage is when creating a new array.
  1955. * In this usage, raid_disks is > 0 and it together with
  1956. * level, size, not_persistent,layout,chunksize determine the
  1957. * shape of the array.
  1958. * This will always create an array with a type-0.90.0 superblock.
  1959. * The newer usage is when assembling an array.
  1960. * In this case raid_disks will be 0, and the major_version field is
  1961. * use to determine which style super-blocks are to be found on the devices.
  1962. * The minor and patch _version numbers are also kept incase the
  1963. * super_block handler wishes to interpret them.
  1964. */
  1965. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  1966. {
  1967. if (info->raid_disks == 0) {
  1968. /* just setting version number for superblock loading */
  1969. if (info->major_version < 0 ||
  1970. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  1971. super_types[info->major_version].name == NULL) {
  1972. /* maybe try to auto-load a module? */
  1973. printk(KERN_INFO
  1974. "md: superblock version %d not known\n",
  1975. info->major_version);
  1976. return -EINVAL;
  1977. }
  1978. mddev->major_version = info->major_version;
  1979. mddev->minor_version = info->minor_version;
  1980. mddev->patch_version = info->patch_version;
  1981. return 0;
  1982. }
  1983. mddev->major_version = MD_MAJOR_VERSION;
  1984. mddev->minor_version = MD_MINOR_VERSION;
  1985. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  1986. mddev->ctime = get_seconds();
  1987. mddev->level = info->level;
  1988. mddev->size = info->size;
  1989. mddev->raid_disks = info->raid_disks;
  1990. /* don't set md_minor, it is determined by which /dev/md* was
  1991. * openned
  1992. */
  1993. if (info->state & (1<<MD_SB_CLEAN))
  1994. mddev->recovery_cp = MaxSector;
  1995. else
  1996. mddev->recovery_cp = 0;
  1997. mddev->persistent = ! info->not_persistent;
  1998. mddev->layout = info->layout;
  1999. mddev->chunk_size = info->chunk_size;
  2000. mddev->max_disks = MD_SB_DISKS;
  2001. mddev->sb_dirty = 1;
  2002. /*
  2003. * Generate a 128 bit UUID
  2004. */
  2005. get_random_bytes(mddev->uuid, 16);
  2006. return 0;
  2007. }
  2008. /*
  2009. * update_array_info is used to change the configuration of an
  2010. * on-line array.
  2011. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2012. * fields in the info are checked against the array.
  2013. * Any differences that cannot be handled will cause an error.
  2014. * Normally, only one change can be managed at a time.
  2015. */
  2016. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2017. {
  2018. int rv = 0;
  2019. int cnt = 0;
  2020. if (mddev->major_version != info->major_version ||
  2021. mddev->minor_version != info->minor_version ||
  2022. /* mddev->patch_version != info->patch_version || */
  2023. mddev->ctime != info->ctime ||
  2024. mddev->level != info->level ||
  2025. /* mddev->layout != info->layout || */
  2026. !mddev->persistent != info->not_persistent||
  2027. mddev->chunk_size != info->chunk_size )
  2028. return -EINVAL;
  2029. /* Check there is only one change */
  2030. if (mddev->size != info->size) cnt++;
  2031. if (mddev->raid_disks != info->raid_disks) cnt++;
  2032. if (mddev->layout != info->layout) cnt++;
  2033. if (cnt == 0) return 0;
  2034. if (cnt > 1) return -EINVAL;
  2035. if (mddev->layout != info->layout) {
  2036. /* Change layout
  2037. * we don't need to do anything at the md level, the
  2038. * personality will take care of it all.
  2039. */
  2040. if (mddev->pers->reconfig == NULL)
  2041. return -EINVAL;
  2042. else
  2043. return mddev->pers->reconfig(mddev, info->layout, -1);
  2044. }
  2045. if (mddev->size != info->size) {
  2046. mdk_rdev_t * rdev;
  2047. struct list_head *tmp;
  2048. if (mddev->pers->resize == NULL)
  2049. return -EINVAL;
  2050. /* The "size" is the amount of each device that is used.
  2051. * This can only make sense for arrays with redundancy.
  2052. * linear and raid0 always use whatever space is available
  2053. * We can only consider changing the size if no resync
  2054. * or reconstruction is happening, and if the new size
  2055. * is acceptable. It must fit before the sb_offset or,
  2056. * if that is <data_offset, it must fit before the
  2057. * size of each device.
  2058. * If size is zero, we find the largest size that fits.
  2059. */
  2060. if (mddev->sync_thread)
  2061. return -EBUSY;
  2062. ITERATE_RDEV(mddev,rdev,tmp) {
  2063. sector_t avail;
  2064. int fit = (info->size == 0);
  2065. if (rdev->sb_offset > rdev->data_offset)
  2066. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2067. else
  2068. avail = get_capacity(rdev->bdev->bd_disk)
  2069. - rdev->data_offset;
  2070. if (fit && (info->size == 0 || info->size > avail/2))
  2071. info->size = avail/2;
  2072. if (avail < ((sector_t)info->size << 1))
  2073. return -ENOSPC;
  2074. }
  2075. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2076. if (!rv) {
  2077. struct block_device *bdev;
  2078. bdev = bdget_disk(mddev->gendisk, 0);
  2079. if (bdev) {
  2080. down(&bdev->bd_inode->i_sem);
  2081. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2082. up(&bdev->bd_inode->i_sem);
  2083. bdput(bdev);
  2084. }
  2085. }
  2086. }
  2087. if (mddev->raid_disks != info->raid_disks) {
  2088. /* change the number of raid disks */
  2089. if (mddev->pers->reshape == NULL)
  2090. return -EINVAL;
  2091. if (info->raid_disks <= 0 ||
  2092. info->raid_disks >= mddev->max_disks)
  2093. return -EINVAL;
  2094. if (mddev->sync_thread)
  2095. return -EBUSY;
  2096. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2097. if (!rv) {
  2098. struct block_device *bdev;
  2099. bdev = bdget_disk(mddev->gendisk, 0);
  2100. if (bdev) {
  2101. down(&bdev->bd_inode->i_sem);
  2102. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2103. up(&bdev->bd_inode->i_sem);
  2104. bdput(bdev);
  2105. }
  2106. }
  2107. }
  2108. md_update_sb(mddev);
  2109. return rv;
  2110. }
  2111. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2112. {
  2113. mdk_rdev_t *rdev;
  2114. if (mddev->pers == NULL)
  2115. return -ENODEV;
  2116. rdev = find_rdev(mddev, dev);
  2117. if (!rdev)
  2118. return -ENODEV;
  2119. md_error(mddev, rdev);
  2120. return 0;
  2121. }
  2122. static int md_ioctl(struct inode *inode, struct file *file,
  2123. unsigned int cmd, unsigned long arg)
  2124. {
  2125. int err = 0;
  2126. void __user *argp = (void __user *)arg;
  2127. struct hd_geometry __user *loc = argp;
  2128. mddev_t *mddev = NULL;
  2129. if (!capable(CAP_SYS_ADMIN))
  2130. return -EACCES;
  2131. /*
  2132. * Commands dealing with the RAID driver but not any
  2133. * particular array:
  2134. */
  2135. switch (cmd)
  2136. {
  2137. case RAID_VERSION:
  2138. err = get_version(argp);
  2139. goto done;
  2140. case PRINT_RAID_DEBUG:
  2141. err = 0;
  2142. md_print_devices();
  2143. goto done;
  2144. #ifndef MODULE
  2145. case RAID_AUTORUN:
  2146. err = 0;
  2147. autostart_arrays(arg);
  2148. goto done;
  2149. #endif
  2150. default:;
  2151. }
  2152. /*
  2153. * Commands creating/starting a new array:
  2154. */
  2155. mddev = inode->i_bdev->bd_disk->private_data;
  2156. if (!mddev) {
  2157. BUG();
  2158. goto abort;
  2159. }
  2160. if (cmd == START_ARRAY) {
  2161. /* START_ARRAY doesn't need to lock the array as autostart_array
  2162. * does the locking, and it could even be a different array
  2163. */
  2164. static int cnt = 3;
  2165. if (cnt > 0 ) {
  2166. printk(KERN_WARNING
  2167. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2168. "This will not be supported beyond 2.6\n",
  2169. current->comm, current->pid);
  2170. cnt--;
  2171. }
  2172. err = autostart_array(new_decode_dev(arg));
  2173. if (err) {
  2174. printk(KERN_WARNING "md: autostart failed!\n");
  2175. goto abort;
  2176. }
  2177. goto done;
  2178. }
  2179. err = mddev_lock(mddev);
  2180. if (err) {
  2181. printk(KERN_INFO
  2182. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2183. err, cmd);
  2184. goto abort;
  2185. }
  2186. switch (cmd)
  2187. {
  2188. case SET_ARRAY_INFO:
  2189. {
  2190. mdu_array_info_t info;
  2191. if (!arg)
  2192. memset(&info, 0, sizeof(info));
  2193. else if (copy_from_user(&info, argp, sizeof(info))) {
  2194. err = -EFAULT;
  2195. goto abort_unlock;
  2196. }
  2197. if (mddev->pers) {
  2198. err = update_array_info(mddev, &info);
  2199. if (err) {
  2200. printk(KERN_WARNING "md: couldn't update"
  2201. " array info. %d\n", err);
  2202. goto abort_unlock;
  2203. }
  2204. goto done_unlock;
  2205. }
  2206. if (!list_empty(&mddev->disks)) {
  2207. printk(KERN_WARNING
  2208. "md: array %s already has disks!\n",
  2209. mdname(mddev));
  2210. err = -EBUSY;
  2211. goto abort_unlock;
  2212. }
  2213. if (mddev->raid_disks) {
  2214. printk(KERN_WARNING
  2215. "md: array %s already initialised!\n",
  2216. mdname(mddev));
  2217. err = -EBUSY;
  2218. goto abort_unlock;
  2219. }
  2220. err = set_array_info(mddev, &info);
  2221. if (err) {
  2222. printk(KERN_WARNING "md: couldn't set"
  2223. " array info. %d\n", err);
  2224. goto abort_unlock;
  2225. }
  2226. }
  2227. goto done_unlock;
  2228. default:;
  2229. }
  2230. /*
  2231. * Commands querying/configuring an existing array:
  2232. */
  2233. /* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */
  2234. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY) {
  2235. err = -ENODEV;
  2236. goto abort_unlock;
  2237. }
  2238. /*
  2239. * Commands even a read-only array can execute:
  2240. */
  2241. switch (cmd)
  2242. {
  2243. case GET_ARRAY_INFO:
  2244. err = get_array_info(mddev, argp);
  2245. goto done_unlock;
  2246. case GET_DISK_INFO:
  2247. err = get_disk_info(mddev, argp);
  2248. goto done_unlock;
  2249. case RESTART_ARRAY_RW:
  2250. err = restart_array(mddev);
  2251. goto done_unlock;
  2252. case STOP_ARRAY:
  2253. err = do_md_stop (mddev, 0);
  2254. goto done_unlock;
  2255. case STOP_ARRAY_RO:
  2256. err = do_md_stop (mddev, 1);
  2257. goto done_unlock;
  2258. /*
  2259. * We have a problem here : there is no easy way to give a CHS
  2260. * virtual geometry. We currently pretend that we have a 2 heads
  2261. * 4 sectors (with a BIG number of cylinders...). This drives
  2262. * dosfs just mad... ;-)
  2263. */
  2264. case HDIO_GETGEO:
  2265. if (!loc) {
  2266. err = -EINVAL;
  2267. goto abort_unlock;
  2268. }
  2269. err = put_user (2, (char __user *) &loc->heads);
  2270. if (err)
  2271. goto abort_unlock;
  2272. err = put_user (4, (char __user *) &loc->sectors);
  2273. if (err)
  2274. goto abort_unlock;
  2275. err = put_user(get_capacity(mddev->gendisk)/8,
  2276. (short __user *) &loc->cylinders);
  2277. if (err)
  2278. goto abort_unlock;
  2279. err = put_user (get_start_sect(inode->i_bdev),
  2280. (long __user *) &loc->start);
  2281. goto done_unlock;
  2282. }
  2283. /*
  2284. * The remaining ioctls are changing the state of the
  2285. * superblock, so we do not allow read-only arrays
  2286. * here:
  2287. */
  2288. if (mddev->ro) {
  2289. err = -EROFS;
  2290. goto abort_unlock;
  2291. }
  2292. switch (cmd)
  2293. {
  2294. case ADD_NEW_DISK:
  2295. {
  2296. mdu_disk_info_t info;
  2297. if (copy_from_user(&info, argp, sizeof(info)))
  2298. err = -EFAULT;
  2299. else
  2300. err = add_new_disk(mddev, &info);
  2301. goto done_unlock;
  2302. }
  2303. case HOT_REMOVE_DISK:
  2304. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2305. goto done_unlock;
  2306. case HOT_ADD_DISK:
  2307. err = hot_add_disk(mddev, new_decode_dev(arg));
  2308. goto done_unlock;
  2309. case SET_DISK_FAULTY:
  2310. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2311. goto done_unlock;
  2312. case RUN_ARRAY:
  2313. err = do_md_run (mddev);
  2314. goto done_unlock;
  2315. default:
  2316. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2317. printk(KERN_WARNING "md: %s(pid %d) used"
  2318. " obsolete MD ioctl, upgrade your"
  2319. " software to use new ictls.\n",
  2320. current->comm, current->pid);
  2321. err = -EINVAL;
  2322. goto abort_unlock;
  2323. }
  2324. done_unlock:
  2325. abort_unlock:
  2326. mddev_unlock(mddev);
  2327. return err;
  2328. done:
  2329. if (err)
  2330. MD_BUG();
  2331. abort:
  2332. return err;
  2333. }
  2334. static int md_open(struct inode *inode, struct file *file)
  2335. {
  2336. /*
  2337. * Succeed if we can lock the mddev, which confirms that
  2338. * it isn't being stopped right now.
  2339. */
  2340. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2341. int err;
  2342. if ((err = mddev_lock(mddev)))
  2343. goto out;
  2344. err = 0;
  2345. mddev_get(mddev);
  2346. mddev_unlock(mddev);
  2347. check_disk_change(inode->i_bdev);
  2348. out:
  2349. return err;
  2350. }
  2351. static int md_release(struct inode *inode, struct file * file)
  2352. {
  2353. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2354. if (!mddev)
  2355. BUG();
  2356. mddev_put(mddev);
  2357. return 0;
  2358. }
  2359. static int md_media_changed(struct gendisk *disk)
  2360. {
  2361. mddev_t *mddev = disk->private_data;
  2362. return mddev->changed;
  2363. }
  2364. static int md_revalidate(struct gendisk *disk)
  2365. {
  2366. mddev_t *mddev = disk->private_data;
  2367. mddev->changed = 0;
  2368. return 0;
  2369. }
  2370. static struct block_device_operations md_fops =
  2371. {
  2372. .owner = THIS_MODULE,
  2373. .open = md_open,
  2374. .release = md_release,
  2375. .ioctl = md_ioctl,
  2376. .media_changed = md_media_changed,
  2377. .revalidate_disk= md_revalidate,
  2378. };
  2379. static int md_thread(void * arg)
  2380. {
  2381. mdk_thread_t *thread = arg;
  2382. lock_kernel();
  2383. /*
  2384. * Detach thread
  2385. */
  2386. daemonize(thread->name, mdname(thread->mddev));
  2387. current->exit_signal = SIGCHLD;
  2388. allow_signal(SIGKILL);
  2389. thread->tsk = current;
  2390. /*
  2391. * md_thread is a 'system-thread', it's priority should be very
  2392. * high. We avoid resource deadlocks individually in each
  2393. * raid personality. (RAID5 does preallocation) We also use RR and
  2394. * the very same RT priority as kswapd, thus we will never get
  2395. * into a priority inversion deadlock.
  2396. *
  2397. * we definitely have to have equal or higher priority than
  2398. * bdflush, otherwise bdflush will deadlock if there are too
  2399. * many dirty RAID5 blocks.
  2400. */
  2401. unlock_kernel();
  2402. complete(thread->event);
  2403. while (thread->run) {
  2404. void (*run)(mddev_t *);
  2405. wait_event_interruptible(thread->wqueue,
  2406. test_bit(THREAD_WAKEUP, &thread->flags));
  2407. if (current->flags & PF_FREEZE)
  2408. refrigerator(PF_FREEZE);
  2409. clear_bit(THREAD_WAKEUP, &thread->flags);
  2410. run = thread->run;
  2411. if (run)
  2412. run(thread->mddev);
  2413. if (signal_pending(current))
  2414. flush_signals(current);
  2415. }
  2416. complete(thread->event);
  2417. return 0;
  2418. }
  2419. void md_wakeup_thread(mdk_thread_t *thread)
  2420. {
  2421. if (thread) {
  2422. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2423. set_bit(THREAD_WAKEUP, &thread->flags);
  2424. wake_up(&thread->wqueue);
  2425. }
  2426. }
  2427. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2428. const char *name)
  2429. {
  2430. mdk_thread_t *thread;
  2431. int ret;
  2432. struct completion event;
  2433. thread = (mdk_thread_t *) kmalloc
  2434. (sizeof(mdk_thread_t), GFP_KERNEL);
  2435. if (!thread)
  2436. return NULL;
  2437. memset(thread, 0, sizeof(mdk_thread_t));
  2438. init_waitqueue_head(&thread->wqueue);
  2439. init_completion(&event);
  2440. thread->event = &event;
  2441. thread->run = run;
  2442. thread->mddev = mddev;
  2443. thread->name = name;
  2444. ret = kernel_thread(md_thread, thread, 0);
  2445. if (ret < 0) {
  2446. kfree(thread);
  2447. return NULL;
  2448. }
  2449. wait_for_completion(&event);
  2450. return thread;
  2451. }
  2452. void md_unregister_thread(mdk_thread_t *thread)
  2453. {
  2454. struct completion event;
  2455. init_completion(&event);
  2456. thread->event = &event;
  2457. /* As soon as ->run is set to NULL, the task could disappear,
  2458. * so we need to hold tasklist_lock until we have sent the signal
  2459. */
  2460. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2461. read_lock(&tasklist_lock);
  2462. thread->run = NULL;
  2463. send_sig(SIGKILL, thread->tsk, 1);
  2464. read_unlock(&tasklist_lock);
  2465. wait_for_completion(&event);
  2466. kfree(thread);
  2467. }
  2468. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2469. {
  2470. if (!mddev) {
  2471. MD_BUG();
  2472. return;
  2473. }
  2474. if (!rdev || rdev->faulty)
  2475. return;
  2476. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2477. mdname(mddev),
  2478. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2479. __builtin_return_address(0),__builtin_return_address(1),
  2480. __builtin_return_address(2),__builtin_return_address(3));
  2481. if (!mddev->pers->error_handler)
  2482. return;
  2483. mddev->pers->error_handler(mddev,rdev);
  2484. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2485. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2486. md_wakeup_thread(mddev->thread);
  2487. }
  2488. /* seq_file implementation /proc/mdstat */
  2489. static void status_unused(struct seq_file *seq)
  2490. {
  2491. int i = 0;
  2492. mdk_rdev_t *rdev;
  2493. struct list_head *tmp;
  2494. seq_printf(seq, "unused devices: ");
  2495. ITERATE_RDEV_PENDING(rdev,tmp) {
  2496. char b[BDEVNAME_SIZE];
  2497. i++;
  2498. seq_printf(seq, "%s ",
  2499. bdevname(rdev->bdev,b));
  2500. }
  2501. if (!i)
  2502. seq_printf(seq, "<none>");
  2503. seq_printf(seq, "\n");
  2504. }
  2505. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2506. {
  2507. unsigned long max_blocks, resync, res, dt, db, rt;
  2508. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2509. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2510. max_blocks = mddev->resync_max_sectors >> 1;
  2511. else
  2512. max_blocks = mddev->size;
  2513. /*
  2514. * Should not happen.
  2515. */
  2516. if (!max_blocks) {
  2517. MD_BUG();
  2518. return;
  2519. }
  2520. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2521. {
  2522. int i, x = res/50, y = 20-x;
  2523. seq_printf(seq, "[");
  2524. for (i = 0; i < x; i++)
  2525. seq_printf(seq, "=");
  2526. seq_printf(seq, ">");
  2527. for (i = 0; i < y; i++)
  2528. seq_printf(seq, ".");
  2529. seq_printf(seq, "] ");
  2530. }
  2531. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2532. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2533. "resync" : "recovery"),
  2534. res/10, res % 10, resync, max_blocks);
  2535. /*
  2536. * We do not want to overflow, so the order of operands and
  2537. * the * 100 / 100 trick are important. We do a +1 to be
  2538. * safe against division by zero. We only estimate anyway.
  2539. *
  2540. * dt: time from mark until now
  2541. * db: blocks written from mark until now
  2542. * rt: remaining time
  2543. */
  2544. dt = ((jiffies - mddev->resync_mark) / HZ);
  2545. if (!dt) dt++;
  2546. db = resync - (mddev->resync_mark_cnt/2);
  2547. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2548. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2549. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2550. }
  2551. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2552. {
  2553. struct list_head *tmp;
  2554. loff_t l = *pos;
  2555. mddev_t *mddev;
  2556. if (l >= 0x10000)
  2557. return NULL;
  2558. if (!l--)
  2559. /* header */
  2560. return (void*)1;
  2561. spin_lock(&all_mddevs_lock);
  2562. list_for_each(tmp,&all_mddevs)
  2563. if (!l--) {
  2564. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2565. mddev_get(mddev);
  2566. spin_unlock(&all_mddevs_lock);
  2567. return mddev;
  2568. }
  2569. spin_unlock(&all_mddevs_lock);
  2570. if (!l--)
  2571. return (void*)2;/* tail */
  2572. return NULL;
  2573. }
  2574. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2575. {
  2576. struct list_head *tmp;
  2577. mddev_t *next_mddev, *mddev = v;
  2578. ++*pos;
  2579. if (v == (void*)2)
  2580. return NULL;
  2581. spin_lock(&all_mddevs_lock);
  2582. if (v == (void*)1)
  2583. tmp = all_mddevs.next;
  2584. else
  2585. tmp = mddev->all_mddevs.next;
  2586. if (tmp != &all_mddevs)
  2587. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2588. else {
  2589. next_mddev = (void*)2;
  2590. *pos = 0x10000;
  2591. }
  2592. spin_unlock(&all_mddevs_lock);
  2593. if (v != (void*)1)
  2594. mddev_put(mddev);
  2595. return next_mddev;
  2596. }
  2597. static void md_seq_stop(struct seq_file *seq, void *v)
  2598. {
  2599. mddev_t *mddev = v;
  2600. if (mddev && v != (void*)1 && v != (void*)2)
  2601. mddev_put(mddev);
  2602. }
  2603. static int md_seq_show(struct seq_file *seq, void *v)
  2604. {
  2605. mddev_t *mddev = v;
  2606. sector_t size;
  2607. struct list_head *tmp2;
  2608. mdk_rdev_t *rdev;
  2609. int i;
  2610. if (v == (void*)1) {
  2611. seq_printf(seq, "Personalities : ");
  2612. spin_lock(&pers_lock);
  2613. for (i = 0; i < MAX_PERSONALITY; i++)
  2614. if (pers[i])
  2615. seq_printf(seq, "[%s] ", pers[i]->name);
  2616. spin_unlock(&pers_lock);
  2617. seq_printf(seq, "\n");
  2618. return 0;
  2619. }
  2620. if (v == (void*)2) {
  2621. status_unused(seq);
  2622. return 0;
  2623. }
  2624. if (mddev_lock(mddev)!=0)
  2625. return -EINTR;
  2626. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2627. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2628. mddev->pers ? "" : "in");
  2629. if (mddev->pers) {
  2630. if (mddev->ro)
  2631. seq_printf(seq, " (read-only)");
  2632. seq_printf(seq, " %s", mddev->pers->name);
  2633. }
  2634. size = 0;
  2635. ITERATE_RDEV(mddev,rdev,tmp2) {
  2636. char b[BDEVNAME_SIZE];
  2637. seq_printf(seq, " %s[%d]",
  2638. bdevname(rdev->bdev,b), rdev->desc_nr);
  2639. if (rdev->faulty) {
  2640. seq_printf(seq, "(F)");
  2641. continue;
  2642. }
  2643. size += rdev->size;
  2644. }
  2645. if (!list_empty(&mddev->disks)) {
  2646. if (mddev->pers)
  2647. seq_printf(seq, "\n %llu blocks",
  2648. (unsigned long long)mddev->array_size);
  2649. else
  2650. seq_printf(seq, "\n %llu blocks",
  2651. (unsigned long long)size);
  2652. }
  2653. if (mddev->pers) {
  2654. mddev->pers->status (seq, mddev);
  2655. seq_printf(seq, "\n ");
  2656. if (mddev->curr_resync > 2)
  2657. status_resync (seq, mddev);
  2658. else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2659. seq_printf(seq, " resync=DELAYED");
  2660. }
  2661. seq_printf(seq, "\n");
  2662. }
  2663. mddev_unlock(mddev);
  2664. return 0;
  2665. }
  2666. static struct seq_operations md_seq_ops = {
  2667. .start = md_seq_start,
  2668. .next = md_seq_next,
  2669. .stop = md_seq_stop,
  2670. .show = md_seq_show,
  2671. };
  2672. static int md_seq_open(struct inode *inode, struct file *file)
  2673. {
  2674. int error;
  2675. error = seq_open(file, &md_seq_ops);
  2676. return error;
  2677. }
  2678. static struct file_operations md_seq_fops = {
  2679. .open = md_seq_open,
  2680. .read = seq_read,
  2681. .llseek = seq_lseek,
  2682. .release = seq_release,
  2683. };
  2684. int register_md_personality(int pnum, mdk_personality_t *p)
  2685. {
  2686. if (pnum >= MAX_PERSONALITY) {
  2687. printk(KERN_ERR
  2688. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2689. p->name, pnum, MAX_PERSONALITY-1);
  2690. return -EINVAL;
  2691. }
  2692. spin_lock(&pers_lock);
  2693. if (pers[pnum]) {
  2694. spin_unlock(&pers_lock);
  2695. return -EBUSY;
  2696. }
  2697. pers[pnum] = p;
  2698. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2699. spin_unlock(&pers_lock);
  2700. return 0;
  2701. }
  2702. int unregister_md_personality(int pnum)
  2703. {
  2704. if (pnum >= MAX_PERSONALITY)
  2705. return -EINVAL;
  2706. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2707. spin_lock(&pers_lock);
  2708. pers[pnum] = NULL;
  2709. spin_unlock(&pers_lock);
  2710. return 0;
  2711. }
  2712. static int is_mddev_idle(mddev_t *mddev)
  2713. {
  2714. mdk_rdev_t * rdev;
  2715. struct list_head *tmp;
  2716. int idle;
  2717. unsigned long curr_events;
  2718. idle = 1;
  2719. ITERATE_RDEV(mddev,rdev,tmp) {
  2720. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2721. curr_events = disk_stat_read(disk, read_sectors) +
  2722. disk_stat_read(disk, write_sectors) -
  2723. atomic_read(&disk->sync_io);
  2724. /* Allow some slack between valud of curr_events and last_events,
  2725. * as there are some uninteresting races.
  2726. * Note: the following is an unsigned comparison.
  2727. */
  2728. if ((curr_events - rdev->last_events + 32) > 64) {
  2729. rdev->last_events = curr_events;
  2730. idle = 0;
  2731. }
  2732. }
  2733. return idle;
  2734. }
  2735. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  2736. {
  2737. /* another "blocks" (512byte) blocks have been synced */
  2738. atomic_sub(blocks, &mddev->recovery_active);
  2739. wake_up(&mddev->recovery_wait);
  2740. if (!ok) {
  2741. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2742. md_wakeup_thread(mddev->thread);
  2743. // stop recovery, signal do_sync ....
  2744. }
  2745. }
  2746. /* md_write_start(mddev, bi)
  2747. * If we need to update some array metadata (e.g. 'active' flag
  2748. * in superblock) before writing, queue bi for later writing
  2749. * and return 0, else return 1 and it will be written now
  2750. */
  2751. int md_write_start(mddev_t *mddev, struct bio *bi)
  2752. {
  2753. if (bio_data_dir(bi) != WRITE)
  2754. return 1;
  2755. atomic_inc(&mddev->writes_pending);
  2756. spin_lock(&mddev->write_lock);
  2757. if (mddev->in_sync == 0 && mddev->sb_dirty == 0) {
  2758. spin_unlock(&mddev->write_lock);
  2759. return 1;
  2760. }
  2761. bio_list_add(&mddev->write_list, bi);
  2762. if (mddev->in_sync) {
  2763. mddev->in_sync = 0;
  2764. mddev->sb_dirty = 1;
  2765. }
  2766. spin_unlock(&mddev->write_lock);
  2767. md_wakeup_thread(mddev->thread);
  2768. return 0;
  2769. }
  2770. void md_write_end(mddev_t *mddev)
  2771. {
  2772. if (atomic_dec_and_test(&mddev->writes_pending)) {
  2773. if (mddev->safemode == 2)
  2774. md_wakeup_thread(mddev->thread);
  2775. else
  2776. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  2777. }
  2778. }
  2779. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  2780. #define SYNC_MARKS 10
  2781. #define SYNC_MARK_STEP (3*HZ)
  2782. static void md_do_sync(mddev_t *mddev)
  2783. {
  2784. mddev_t *mddev2;
  2785. unsigned int currspeed = 0,
  2786. window;
  2787. sector_t max_sectors,j, io_sectors;
  2788. unsigned long mark[SYNC_MARKS];
  2789. sector_t mark_cnt[SYNC_MARKS];
  2790. int last_mark,m;
  2791. struct list_head *tmp;
  2792. sector_t last_check;
  2793. int skipped = 0;
  2794. /* just incase thread restarts... */
  2795. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  2796. return;
  2797. /* we overload curr_resync somewhat here.
  2798. * 0 == not engaged in resync at all
  2799. * 2 == checking that there is no conflict with another sync
  2800. * 1 == like 2, but have yielded to allow conflicting resync to
  2801. * commense
  2802. * other == active in resync - this many blocks
  2803. *
  2804. * Before starting a resync we must have set curr_resync to
  2805. * 2, and then checked that every "conflicting" array has curr_resync
  2806. * less than ours. When we find one that is the same or higher
  2807. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  2808. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  2809. * This will mean we have to start checking from the beginning again.
  2810. *
  2811. */
  2812. do {
  2813. mddev->curr_resync = 2;
  2814. try_again:
  2815. if (signal_pending(current)) {
  2816. flush_signals(current);
  2817. goto skip;
  2818. }
  2819. ITERATE_MDDEV(mddev2,tmp) {
  2820. printk(".");
  2821. if (mddev2 == mddev)
  2822. continue;
  2823. if (mddev2->curr_resync &&
  2824. match_mddev_units(mddev,mddev2)) {
  2825. DEFINE_WAIT(wq);
  2826. if (mddev < mddev2 && mddev->curr_resync == 2) {
  2827. /* arbitrarily yield */
  2828. mddev->curr_resync = 1;
  2829. wake_up(&resync_wait);
  2830. }
  2831. if (mddev > mddev2 && mddev->curr_resync == 1)
  2832. /* no need to wait here, we can wait the next
  2833. * time 'round when curr_resync == 2
  2834. */
  2835. continue;
  2836. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  2837. if (!signal_pending(current)
  2838. && mddev2->curr_resync >= mddev->curr_resync) {
  2839. printk(KERN_INFO "md: delaying resync of %s"
  2840. " until %s has finished resync (they"
  2841. " share one or more physical units)\n",
  2842. mdname(mddev), mdname(mddev2));
  2843. mddev_put(mddev2);
  2844. schedule();
  2845. finish_wait(&resync_wait, &wq);
  2846. goto try_again;
  2847. }
  2848. finish_wait(&resync_wait, &wq);
  2849. }
  2850. }
  2851. } while (mddev->curr_resync < 2);
  2852. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2853. /* resync follows the size requested by the personality,
  2854. * which defaults to physical size, but can be virtual size
  2855. */
  2856. max_sectors = mddev->resync_max_sectors;
  2857. else
  2858. /* recovery follows the physical size of devices */
  2859. max_sectors = mddev->size << 1;
  2860. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  2861. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  2862. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  2863. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  2864. "(but not more than %d KB/sec) for reconstruction.\n",
  2865. sysctl_speed_limit_max);
  2866. is_mddev_idle(mddev); /* this also initializes IO event counters */
  2867. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2868. j = mddev->recovery_cp;
  2869. else
  2870. j = 0;
  2871. io_sectors = 0;
  2872. for (m = 0; m < SYNC_MARKS; m++) {
  2873. mark[m] = jiffies;
  2874. mark_cnt[m] = io_sectors;
  2875. }
  2876. last_mark = 0;
  2877. mddev->resync_mark = mark[last_mark];
  2878. mddev->resync_mark_cnt = mark_cnt[last_mark];
  2879. /*
  2880. * Tune reconstruction:
  2881. */
  2882. window = 32*(PAGE_SIZE/512);
  2883. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  2884. window/2,(unsigned long long) max_sectors/2);
  2885. atomic_set(&mddev->recovery_active, 0);
  2886. init_waitqueue_head(&mddev->recovery_wait);
  2887. last_check = 0;
  2888. if (j>2) {
  2889. printk(KERN_INFO
  2890. "md: resuming recovery of %s from checkpoint.\n",
  2891. mdname(mddev));
  2892. mddev->curr_resync = j;
  2893. }
  2894. while (j < max_sectors) {
  2895. sector_t sectors;
  2896. skipped = 0;
  2897. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  2898. currspeed < sysctl_speed_limit_min);
  2899. if (sectors == 0) {
  2900. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2901. goto out;
  2902. }
  2903. if (!skipped) { /* actual IO requested */
  2904. io_sectors += sectors;
  2905. atomic_add(sectors, &mddev->recovery_active);
  2906. }
  2907. j += sectors;
  2908. if (j>1) mddev->curr_resync = j;
  2909. if (last_check + window > io_sectors || j == max_sectors)
  2910. continue;
  2911. last_check = io_sectors;
  2912. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  2913. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  2914. break;
  2915. repeat:
  2916. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  2917. /* step marks */
  2918. int next = (last_mark+1) % SYNC_MARKS;
  2919. mddev->resync_mark = mark[next];
  2920. mddev->resync_mark_cnt = mark_cnt[next];
  2921. mark[next] = jiffies;
  2922. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  2923. last_mark = next;
  2924. }
  2925. if (signal_pending(current)) {
  2926. /*
  2927. * got a signal, exit.
  2928. */
  2929. printk(KERN_INFO
  2930. "md: md_do_sync() got signal ... exiting\n");
  2931. flush_signals(current);
  2932. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2933. goto out;
  2934. }
  2935. /*
  2936. * this loop exits only if either when we are slower than
  2937. * the 'hard' speed limit, or the system was IO-idle for
  2938. * a jiffy.
  2939. * the system might be non-idle CPU-wise, but we only care
  2940. * about not overloading the IO subsystem. (things like an
  2941. * e2fsck being done on the RAID array should execute fast)
  2942. */
  2943. mddev->queue->unplug_fn(mddev->queue);
  2944. cond_resched();
  2945. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  2946. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  2947. if (currspeed > sysctl_speed_limit_min) {
  2948. if ((currspeed > sysctl_speed_limit_max) ||
  2949. !is_mddev_idle(mddev)) {
  2950. msleep_interruptible(250);
  2951. goto repeat;
  2952. }
  2953. }
  2954. }
  2955. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  2956. /*
  2957. * this also signals 'finished resyncing' to md_stop
  2958. */
  2959. out:
  2960. mddev->queue->unplug_fn(mddev->queue);
  2961. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  2962. /* tell personality that we are finished */
  2963. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  2964. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  2965. mddev->curr_resync > 2 &&
  2966. mddev->curr_resync >= mddev->recovery_cp) {
  2967. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  2968. printk(KERN_INFO
  2969. "md: checkpointing recovery of %s.\n",
  2970. mdname(mddev));
  2971. mddev->recovery_cp = mddev->curr_resync;
  2972. } else
  2973. mddev->recovery_cp = MaxSector;
  2974. }
  2975. skip:
  2976. mddev->curr_resync = 0;
  2977. wake_up(&resync_wait);
  2978. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  2979. md_wakeup_thread(mddev->thread);
  2980. }
  2981. /*
  2982. * This routine is regularly called by all per-raid-array threads to
  2983. * deal with generic issues like resync and super-block update.
  2984. * Raid personalities that don't have a thread (linear/raid0) do not
  2985. * need this as they never do any recovery or update the superblock.
  2986. *
  2987. * It does not do any resync itself, but rather "forks" off other threads
  2988. * to do that as needed.
  2989. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  2990. * "->recovery" and create a thread at ->sync_thread.
  2991. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  2992. * and wakeups up this thread which will reap the thread and finish up.
  2993. * This thread also removes any faulty devices (with nr_pending == 0).
  2994. *
  2995. * The overall approach is:
  2996. * 1/ if the superblock needs updating, update it.
  2997. * 2/ If a recovery thread is running, don't do anything else.
  2998. * 3/ If recovery has finished, clean up, possibly marking spares active.
  2999. * 4/ If there are any faulty devices, remove them.
  3000. * 5/ If array is degraded, try to add spares devices
  3001. * 6/ If array has spares or is not in-sync, start a resync thread.
  3002. */
  3003. void md_check_recovery(mddev_t *mddev)
  3004. {
  3005. mdk_rdev_t *rdev;
  3006. struct list_head *rtmp;
  3007. dprintk(KERN_INFO "md: recovery thread got woken up ...\n");
  3008. if (mddev->ro)
  3009. return;
  3010. if (signal_pending(current)) {
  3011. if (mddev->pers->sync_request) {
  3012. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3013. mdname(mddev));
  3014. mddev->safemode = 2;
  3015. }
  3016. flush_signals(current);
  3017. }
  3018. if ( ! (
  3019. mddev->sb_dirty ||
  3020. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3021. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3022. mddev->write_list.head ||
  3023. (mddev->safemode == 1) ||
  3024. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3025. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3026. ))
  3027. return;
  3028. if (mddev_trylock(mddev)==0) {
  3029. int spares =0;
  3030. struct bio *blist;
  3031. spin_lock(&mddev->write_lock);
  3032. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3033. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3034. mddev->in_sync = 1;
  3035. mddev->sb_dirty = 1;
  3036. }
  3037. if (mddev->safemode == 1)
  3038. mddev->safemode = 0;
  3039. blist = bio_list_get(&mddev->write_list);
  3040. spin_unlock(&mddev->write_lock);
  3041. if (mddev->sb_dirty)
  3042. md_update_sb(mddev);
  3043. while (blist) {
  3044. struct bio *b = blist;
  3045. blist = blist->bi_next;
  3046. b->bi_next = NULL;
  3047. generic_make_request(b);
  3048. /* we already counted this, so need to un-count */
  3049. md_write_end(mddev);
  3050. }
  3051. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3052. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3053. /* resync/recovery still happening */
  3054. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3055. goto unlock;
  3056. }
  3057. if (mddev->sync_thread) {
  3058. /* resync has finished, collect result */
  3059. md_unregister_thread(mddev->sync_thread);
  3060. mddev->sync_thread = NULL;
  3061. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3062. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3063. /* success...*/
  3064. /* activate any spares */
  3065. mddev->pers->spare_active(mddev);
  3066. }
  3067. md_update_sb(mddev);
  3068. mddev->recovery = 0;
  3069. /* flag recovery needed just to double check */
  3070. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3071. goto unlock;
  3072. }
  3073. if (mddev->recovery)
  3074. /* probably just the RECOVERY_NEEDED flag */
  3075. mddev->recovery = 0;
  3076. /* no recovery is running.
  3077. * remove any failed drives, then
  3078. * add spares if possible.
  3079. * Spare are also removed and re-added, to allow
  3080. * the personality to fail the re-add.
  3081. */
  3082. ITERATE_RDEV(mddev,rdev,rtmp)
  3083. if (rdev->raid_disk >= 0 &&
  3084. (rdev->faulty || ! rdev->in_sync) &&
  3085. atomic_read(&rdev->nr_pending)==0) {
  3086. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3087. rdev->raid_disk = -1;
  3088. }
  3089. if (mddev->degraded) {
  3090. ITERATE_RDEV(mddev,rdev,rtmp)
  3091. if (rdev->raid_disk < 0
  3092. && !rdev->faulty) {
  3093. if (mddev->pers->hot_add_disk(mddev,rdev))
  3094. spares++;
  3095. else
  3096. break;
  3097. }
  3098. }
  3099. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3100. /* nothing we can do ... */
  3101. goto unlock;
  3102. }
  3103. if (mddev->pers->sync_request) {
  3104. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3105. if (!spares)
  3106. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3107. mddev->sync_thread = md_register_thread(md_do_sync,
  3108. mddev,
  3109. "%s_resync");
  3110. if (!mddev->sync_thread) {
  3111. printk(KERN_ERR "%s: could not start resync"
  3112. " thread...\n",
  3113. mdname(mddev));
  3114. /* leave the spares where they are, it shouldn't hurt */
  3115. mddev->recovery = 0;
  3116. } else {
  3117. md_wakeup_thread(mddev->sync_thread);
  3118. }
  3119. }
  3120. unlock:
  3121. mddev_unlock(mddev);
  3122. }
  3123. }
  3124. static int md_notify_reboot(struct notifier_block *this,
  3125. unsigned long code, void *x)
  3126. {
  3127. struct list_head *tmp;
  3128. mddev_t *mddev;
  3129. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3130. printk(KERN_INFO "md: stopping all md devices.\n");
  3131. ITERATE_MDDEV(mddev,tmp)
  3132. if (mddev_trylock(mddev)==0)
  3133. do_md_stop (mddev, 1);
  3134. /*
  3135. * certain more exotic SCSI devices are known to be
  3136. * volatile wrt too early system reboots. While the
  3137. * right place to handle this issue is the given
  3138. * driver, we do want to have a safe RAID driver ...
  3139. */
  3140. mdelay(1000*1);
  3141. }
  3142. return NOTIFY_DONE;
  3143. }
  3144. static struct notifier_block md_notifier = {
  3145. .notifier_call = md_notify_reboot,
  3146. .next = NULL,
  3147. .priority = INT_MAX, /* before any real devices */
  3148. };
  3149. static void md_geninit(void)
  3150. {
  3151. struct proc_dir_entry *p;
  3152. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3153. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3154. if (p)
  3155. p->proc_fops = &md_seq_fops;
  3156. }
  3157. static int __init md_init(void)
  3158. {
  3159. int minor;
  3160. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3161. " MD_SB_DISKS=%d\n",
  3162. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3163. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3164. if (register_blkdev(MAJOR_NR, "md"))
  3165. return -1;
  3166. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3167. unregister_blkdev(MAJOR_NR, "md");
  3168. return -1;
  3169. }
  3170. devfs_mk_dir("md");
  3171. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3172. md_probe, NULL, NULL);
  3173. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3174. md_probe, NULL, NULL);
  3175. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3176. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3177. S_IFBLK|S_IRUSR|S_IWUSR,
  3178. "md/%d", minor);
  3179. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3180. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3181. S_IFBLK|S_IRUSR|S_IWUSR,
  3182. "md/mdp%d", minor);
  3183. register_reboot_notifier(&md_notifier);
  3184. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3185. md_geninit();
  3186. return (0);
  3187. }
  3188. #ifndef MODULE
  3189. /*
  3190. * Searches all registered partitions for autorun RAID arrays
  3191. * at boot time.
  3192. */
  3193. static dev_t detected_devices[128];
  3194. static int dev_cnt;
  3195. void md_autodetect_dev(dev_t dev)
  3196. {
  3197. if (dev_cnt >= 0 && dev_cnt < 127)
  3198. detected_devices[dev_cnt++] = dev;
  3199. }
  3200. static void autostart_arrays(int part)
  3201. {
  3202. mdk_rdev_t *rdev;
  3203. int i;
  3204. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3205. for (i = 0; i < dev_cnt; i++) {
  3206. dev_t dev = detected_devices[i];
  3207. rdev = md_import_device(dev,0, 0);
  3208. if (IS_ERR(rdev))
  3209. continue;
  3210. if (rdev->faulty) {
  3211. MD_BUG();
  3212. continue;
  3213. }
  3214. list_add(&rdev->same_set, &pending_raid_disks);
  3215. }
  3216. dev_cnt = 0;
  3217. autorun_devices(part);
  3218. }
  3219. #endif
  3220. static __exit void md_exit(void)
  3221. {
  3222. mddev_t *mddev;
  3223. struct list_head *tmp;
  3224. int i;
  3225. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3226. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3227. for (i=0; i < MAX_MD_DEVS; i++)
  3228. devfs_remove("md/%d", i);
  3229. for (i=0; i < MAX_MD_DEVS; i++)
  3230. devfs_remove("md/d%d", i);
  3231. devfs_remove("md");
  3232. unregister_blkdev(MAJOR_NR,"md");
  3233. unregister_blkdev(mdp_major, "mdp");
  3234. unregister_reboot_notifier(&md_notifier);
  3235. unregister_sysctl_table(raid_table_header);
  3236. remove_proc_entry("mdstat", NULL);
  3237. ITERATE_MDDEV(mddev,tmp) {
  3238. struct gendisk *disk = mddev->gendisk;
  3239. if (!disk)
  3240. continue;
  3241. export_array(mddev);
  3242. del_gendisk(disk);
  3243. put_disk(disk);
  3244. mddev->gendisk = NULL;
  3245. mddev_put(mddev);
  3246. }
  3247. }
  3248. module_init(md_init)
  3249. module_exit(md_exit)
  3250. EXPORT_SYMBOL(register_md_personality);
  3251. EXPORT_SYMBOL(unregister_md_personality);
  3252. EXPORT_SYMBOL(md_error);
  3253. EXPORT_SYMBOL(md_done_sync);
  3254. EXPORT_SYMBOL(md_write_start);
  3255. EXPORT_SYMBOL(md_write_end);
  3256. EXPORT_SYMBOL(md_register_thread);
  3257. EXPORT_SYMBOL(md_unregister_thread);
  3258. EXPORT_SYMBOL(md_wakeup_thread);
  3259. EXPORT_SYMBOL(md_print_devices);
  3260. EXPORT_SYMBOL(md_check_recovery);
  3261. MODULE_LICENSE("GPL");