i915_gem.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  41. bool write);
  42. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  43. uint64_t offset,
  44. uint64_t size);
  45. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  46. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  47. unsigned alignment,
  48. bool map_and_fenceable);
  49. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  50. struct drm_i915_fence_reg *reg);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev,
  52. struct drm_i915_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file);
  55. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  56. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  57. struct shrink_control *sc);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size -pinned;
  157. return 0;
  158. }
  159. static int
  160. i915_gem_create(struct drm_file *file,
  161. struct drm_device *dev,
  162. uint64_t size,
  163. uint32_t *handle_p)
  164. {
  165. struct drm_i915_gem_object *obj;
  166. int ret;
  167. u32 handle;
  168. size = roundup(size, PAGE_SIZE);
  169. /* Allocate the new object */
  170. obj = i915_gem_alloc_object(dev, size);
  171. if (obj == NULL)
  172. return -ENOMEM;
  173. ret = drm_gem_handle_create(file, &obj->base, &handle);
  174. if (ret) {
  175. drm_gem_object_release(&obj->base);
  176. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  177. kfree(obj);
  178. return ret;
  179. }
  180. /* drop reference from allocate - handle holds it now */
  181. drm_gem_object_unreference(&obj->base);
  182. trace_i915_gem_object_create(obj);
  183. *handle_p = handle;
  184. return 0;
  185. }
  186. int
  187. i915_gem_dumb_create(struct drm_file *file,
  188. struct drm_device *dev,
  189. struct drm_mode_create_dumb *args)
  190. {
  191. /* have to work out size/pitch and return them */
  192. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  193. args->size = args->pitch * args->height;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. int i915_gem_dumb_destroy(struct drm_file *file,
  198. struct drm_device *dev,
  199. uint32_t handle)
  200. {
  201. return drm_gem_handle_delete(file, handle);
  202. }
  203. /**
  204. * Creates a new mm object and returns a handle to it.
  205. */
  206. int
  207. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  208. struct drm_file *file)
  209. {
  210. struct drm_i915_gem_create *args = data;
  211. return i915_gem_create(file, dev,
  212. args->size, &args->handle);
  213. }
  214. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  215. {
  216. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  217. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  218. obj->tiling_mode != I915_TILING_NONE;
  219. }
  220. static inline void
  221. slow_shmem_copy(struct page *dst_page,
  222. int dst_offset,
  223. struct page *src_page,
  224. int src_offset,
  225. int length)
  226. {
  227. char *dst_vaddr, *src_vaddr;
  228. dst_vaddr = kmap(dst_page);
  229. src_vaddr = kmap(src_page);
  230. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  231. kunmap(src_page);
  232. kunmap(dst_page);
  233. }
  234. static inline void
  235. slow_shmem_bit17_copy(struct page *gpu_page,
  236. int gpu_offset,
  237. struct page *cpu_page,
  238. int cpu_offset,
  239. int length,
  240. int is_read)
  241. {
  242. char *gpu_vaddr, *cpu_vaddr;
  243. /* Use the unswizzled path if this page isn't affected. */
  244. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  245. if (is_read)
  246. return slow_shmem_copy(cpu_page, cpu_offset,
  247. gpu_page, gpu_offset, length);
  248. else
  249. return slow_shmem_copy(gpu_page, gpu_offset,
  250. cpu_page, cpu_offset, length);
  251. }
  252. gpu_vaddr = kmap(gpu_page);
  253. cpu_vaddr = kmap(cpu_page);
  254. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  255. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  256. */
  257. while (length > 0) {
  258. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  259. int this_length = min(cacheline_end - gpu_offset, length);
  260. int swizzled_gpu_offset = gpu_offset ^ 64;
  261. if (is_read) {
  262. memcpy(cpu_vaddr + cpu_offset,
  263. gpu_vaddr + swizzled_gpu_offset,
  264. this_length);
  265. } else {
  266. memcpy(gpu_vaddr + swizzled_gpu_offset,
  267. cpu_vaddr + cpu_offset,
  268. this_length);
  269. }
  270. cpu_offset += this_length;
  271. gpu_offset += this_length;
  272. length -= this_length;
  273. }
  274. kunmap(cpu_page);
  275. kunmap(gpu_page);
  276. }
  277. /**
  278. * This is the fast shmem pread path, which attempts to copy_from_user directly
  279. * from the backing pages of the object to the user's address space. On a
  280. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  281. */
  282. static int
  283. i915_gem_shmem_pread_fast(struct drm_device *dev,
  284. struct drm_i915_gem_object *obj,
  285. struct drm_i915_gem_pread *args,
  286. struct drm_file *file)
  287. {
  288. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  289. ssize_t remain;
  290. loff_t offset;
  291. char __user *user_data;
  292. int page_offset, page_length;
  293. user_data = (char __user *) (uintptr_t) args->data_ptr;
  294. remain = args->size;
  295. offset = args->offset;
  296. while (remain > 0) {
  297. struct page *page;
  298. char *vaddr;
  299. int ret;
  300. /* Operation in this page
  301. *
  302. * page_offset = offset within page
  303. * page_length = bytes to copy for this page
  304. */
  305. page_offset = offset_in_page(offset);
  306. page_length = remain;
  307. if ((page_offset + remain) > PAGE_SIZE)
  308. page_length = PAGE_SIZE - page_offset;
  309. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  310. if (IS_ERR(page))
  311. return PTR_ERR(page);
  312. vaddr = kmap_atomic(page);
  313. ret = __copy_to_user_inatomic(user_data,
  314. vaddr + page_offset,
  315. page_length);
  316. kunmap_atomic(vaddr);
  317. mark_page_accessed(page);
  318. page_cache_release(page);
  319. if (ret)
  320. return -EFAULT;
  321. remain -= page_length;
  322. user_data += page_length;
  323. offset += page_length;
  324. }
  325. return 0;
  326. }
  327. /**
  328. * This is the fallback shmem pread path, which allocates temporary storage
  329. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  330. * can copy out of the object's backing pages while holding the struct mutex
  331. * and not take page faults.
  332. */
  333. static int
  334. i915_gem_shmem_pread_slow(struct drm_device *dev,
  335. struct drm_i915_gem_object *obj,
  336. struct drm_i915_gem_pread *args,
  337. struct drm_file *file)
  338. {
  339. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  340. struct mm_struct *mm = current->mm;
  341. struct page **user_pages;
  342. ssize_t remain;
  343. loff_t offset, pinned_pages, i;
  344. loff_t first_data_page, last_data_page, num_pages;
  345. int shmem_page_offset;
  346. int data_page_index, data_page_offset;
  347. int page_length;
  348. int ret;
  349. uint64_t data_ptr = args->data_ptr;
  350. int do_bit17_swizzling;
  351. remain = args->size;
  352. /* Pin the user pages containing the data. We can't fault while
  353. * holding the struct mutex, yet we want to hold it while
  354. * dereferencing the user data.
  355. */
  356. first_data_page = data_ptr / PAGE_SIZE;
  357. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  358. num_pages = last_data_page - first_data_page + 1;
  359. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  360. if (user_pages == NULL)
  361. return -ENOMEM;
  362. mutex_unlock(&dev->struct_mutex);
  363. down_read(&mm->mmap_sem);
  364. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  365. num_pages, 1, 0, user_pages, NULL);
  366. up_read(&mm->mmap_sem);
  367. mutex_lock(&dev->struct_mutex);
  368. if (pinned_pages < num_pages) {
  369. ret = -EFAULT;
  370. goto out;
  371. }
  372. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  373. args->offset,
  374. args->size);
  375. if (ret)
  376. goto out;
  377. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  378. offset = args->offset;
  379. while (remain > 0) {
  380. struct page *page;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * data_page_index = page number in get_user_pages return
  385. * data_page_offset = offset with data_page_index page.
  386. * page_length = bytes to copy for this page
  387. */
  388. shmem_page_offset = offset_in_page(offset);
  389. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  390. data_page_offset = offset_in_page(data_ptr);
  391. page_length = remain;
  392. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  393. page_length = PAGE_SIZE - shmem_page_offset;
  394. if ((data_page_offset + page_length) > PAGE_SIZE)
  395. page_length = PAGE_SIZE - data_page_offset;
  396. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  397. if (IS_ERR(page)) {
  398. ret = PTR_ERR(page);
  399. goto out;
  400. }
  401. if (do_bit17_swizzling) {
  402. slow_shmem_bit17_copy(page,
  403. shmem_page_offset,
  404. user_pages[data_page_index],
  405. data_page_offset,
  406. page_length,
  407. 1);
  408. } else {
  409. slow_shmem_copy(user_pages[data_page_index],
  410. data_page_offset,
  411. page,
  412. shmem_page_offset,
  413. page_length);
  414. }
  415. mark_page_accessed(page);
  416. page_cache_release(page);
  417. remain -= page_length;
  418. data_ptr += page_length;
  419. offset += page_length;
  420. }
  421. out:
  422. for (i = 0; i < pinned_pages; i++) {
  423. SetPageDirty(user_pages[i]);
  424. mark_page_accessed(user_pages[i]);
  425. page_cache_release(user_pages[i]);
  426. }
  427. drm_free_large(user_pages);
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. (char __user *)(uintptr_t)args->data_ptr,
  446. args->size))
  447. return -EFAULT;
  448. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  449. args->size);
  450. if (ret)
  451. return -EFAULT;
  452. ret = i915_mutex_lock_interruptible(dev);
  453. if (ret)
  454. return ret;
  455. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  456. if (&obj->base == NULL) {
  457. ret = -ENOENT;
  458. goto unlock;
  459. }
  460. /* Bounds check source. */
  461. if (args->offset > obj->base.size ||
  462. args->size > obj->base.size - args->offset) {
  463. ret = -EINVAL;
  464. goto out;
  465. }
  466. trace_i915_gem_object_pread(obj, args->offset, args->size);
  467. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  468. args->offset,
  469. args->size);
  470. if (ret)
  471. goto out;
  472. ret = -EFAULT;
  473. if (!i915_gem_object_needs_bit17_swizzle(obj))
  474. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  475. if (ret == -EFAULT)
  476. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  477. out:
  478. drm_gem_object_unreference(&obj->base);
  479. unlock:
  480. mutex_unlock(&dev->struct_mutex);
  481. return ret;
  482. }
  483. /* This is the fast write path which cannot handle
  484. * page faults in the source data
  485. */
  486. static inline int
  487. fast_user_write(struct io_mapping *mapping,
  488. loff_t page_base, int page_offset,
  489. char __user *user_data,
  490. int length)
  491. {
  492. char *vaddr_atomic;
  493. unsigned long unwritten;
  494. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  495. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  496. user_data, length);
  497. io_mapping_unmap_atomic(vaddr_atomic);
  498. return unwritten;
  499. }
  500. /* Here's the write path which can sleep for
  501. * page faults
  502. */
  503. static inline void
  504. slow_kernel_write(struct io_mapping *mapping,
  505. loff_t gtt_base, int gtt_offset,
  506. struct page *user_page, int user_offset,
  507. int length)
  508. {
  509. char __iomem *dst_vaddr;
  510. char *src_vaddr;
  511. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  512. src_vaddr = kmap(user_page);
  513. memcpy_toio(dst_vaddr + gtt_offset,
  514. src_vaddr + user_offset,
  515. length);
  516. kunmap(user_page);
  517. io_mapping_unmap(dst_vaddr);
  518. }
  519. /**
  520. * This is the fast pwrite path, where we copy the data directly from the
  521. * user into the GTT, uncached.
  522. */
  523. static int
  524. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  525. struct drm_i915_gem_object *obj,
  526. struct drm_i915_gem_pwrite *args,
  527. struct drm_file *file)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. ssize_t remain;
  531. loff_t offset, page_base;
  532. char __user *user_data;
  533. int page_offset, page_length;
  534. user_data = (char __user *) (uintptr_t) args->data_ptr;
  535. remain = args->size;
  536. offset = obj->gtt_offset + args->offset;
  537. while (remain > 0) {
  538. /* Operation in this page
  539. *
  540. * page_base = page offset within aperture
  541. * page_offset = offset within page
  542. * page_length = bytes to copy for this page
  543. */
  544. page_base = offset & PAGE_MASK;
  545. page_offset = offset_in_page(offset);
  546. page_length = remain;
  547. if ((page_offset + remain) > PAGE_SIZE)
  548. page_length = PAGE_SIZE - page_offset;
  549. /* If we get a fault while copying data, then (presumably) our
  550. * source page isn't available. Return the error and we'll
  551. * retry in the slow path.
  552. */
  553. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  554. page_offset, user_data, page_length))
  555. return -EFAULT;
  556. remain -= page_length;
  557. user_data += page_length;
  558. offset += page_length;
  559. }
  560. return 0;
  561. }
  562. /**
  563. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  564. * the memory and maps it using kmap_atomic for copying.
  565. *
  566. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  567. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  568. */
  569. static int
  570. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  571. struct drm_i915_gem_object *obj,
  572. struct drm_i915_gem_pwrite *args,
  573. struct drm_file *file)
  574. {
  575. drm_i915_private_t *dev_priv = dev->dev_private;
  576. ssize_t remain;
  577. loff_t gtt_page_base, offset;
  578. loff_t first_data_page, last_data_page, num_pages;
  579. loff_t pinned_pages, i;
  580. struct page **user_pages;
  581. struct mm_struct *mm = current->mm;
  582. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  583. int ret;
  584. uint64_t data_ptr = args->data_ptr;
  585. remain = args->size;
  586. /* Pin the user pages containing the data. We can't fault while
  587. * holding the struct mutex, and all of the pwrite implementations
  588. * want to hold it while dereferencing the user data.
  589. */
  590. first_data_page = data_ptr / PAGE_SIZE;
  591. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  592. num_pages = last_data_page - first_data_page + 1;
  593. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  594. if (user_pages == NULL)
  595. return -ENOMEM;
  596. mutex_unlock(&dev->struct_mutex);
  597. down_read(&mm->mmap_sem);
  598. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  599. num_pages, 0, 0, user_pages, NULL);
  600. up_read(&mm->mmap_sem);
  601. mutex_lock(&dev->struct_mutex);
  602. if (pinned_pages < num_pages) {
  603. ret = -EFAULT;
  604. goto out_unpin_pages;
  605. }
  606. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  607. if (ret)
  608. goto out_unpin_pages;
  609. ret = i915_gem_object_put_fence(obj);
  610. if (ret)
  611. goto out_unpin_pages;
  612. offset = obj->gtt_offset + args->offset;
  613. while (remain > 0) {
  614. /* Operation in this page
  615. *
  616. * gtt_page_base = page offset within aperture
  617. * gtt_page_offset = offset within page in aperture
  618. * data_page_index = page number in get_user_pages return
  619. * data_page_offset = offset with data_page_index page.
  620. * page_length = bytes to copy for this page
  621. */
  622. gtt_page_base = offset & PAGE_MASK;
  623. gtt_page_offset = offset_in_page(offset);
  624. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  625. data_page_offset = offset_in_page(data_ptr);
  626. page_length = remain;
  627. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  628. page_length = PAGE_SIZE - gtt_page_offset;
  629. if ((data_page_offset + page_length) > PAGE_SIZE)
  630. page_length = PAGE_SIZE - data_page_offset;
  631. slow_kernel_write(dev_priv->mm.gtt_mapping,
  632. gtt_page_base, gtt_page_offset,
  633. user_pages[data_page_index],
  634. data_page_offset,
  635. page_length);
  636. remain -= page_length;
  637. offset += page_length;
  638. data_ptr += page_length;
  639. }
  640. out_unpin_pages:
  641. for (i = 0; i < pinned_pages; i++)
  642. page_cache_release(user_pages[i]);
  643. drm_free_large(user_pages);
  644. return ret;
  645. }
  646. /**
  647. * This is the fast shmem pwrite path, which attempts to directly
  648. * copy_from_user into the kmapped pages backing the object.
  649. */
  650. static int
  651. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  652. struct drm_i915_gem_object *obj,
  653. struct drm_i915_gem_pwrite *args,
  654. struct drm_file *file)
  655. {
  656. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  657. ssize_t remain;
  658. loff_t offset;
  659. char __user *user_data;
  660. int page_offset, page_length;
  661. user_data = (char __user *) (uintptr_t) args->data_ptr;
  662. remain = args->size;
  663. offset = args->offset;
  664. obj->dirty = 1;
  665. while (remain > 0) {
  666. struct page *page;
  667. char *vaddr;
  668. int ret;
  669. /* Operation in this page
  670. *
  671. * page_offset = offset within page
  672. * page_length = bytes to copy for this page
  673. */
  674. page_offset = offset_in_page(offset);
  675. page_length = remain;
  676. if ((page_offset + remain) > PAGE_SIZE)
  677. page_length = PAGE_SIZE - page_offset;
  678. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  679. if (IS_ERR(page))
  680. return PTR_ERR(page);
  681. vaddr = kmap_atomic(page, KM_USER0);
  682. ret = __copy_from_user_inatomic(vaddr + page_offset,
  683. user_data,
  684. page_length);
  685. kunmap_atomic(vaddr, KM_USER0);
  686. set_page_dirty(page);
  687. mark_page_accessed(page);
  688. page_cache_release(page);
  689. /* If we get a fault while copying data, then (presumably) our
  690. * source page isn't available. Return the error and we'll
  691. * retry in the slow path.
  692. */
  693. if (ret)
  694. return -EFAULT;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. return 0;
  700. }
  701. /**
  702. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  703. * the memory and maps it using kmap_atomic for copying.
  704. *
  705. * This avoids taking mmap_sem for faulting on the user's address while the
  706. * struct_mutex is held.
  707. */
  708. static int
  709. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  710. struct drm_i915_gem_object *obj,
  711. struct drm_i915_gem_pwrite *args,
  712. struct drm_file *file)
  713. {
  714. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  715. struct mm_struct *mm = current->mm;
  716. struct page **user_pages;
  717. ssize_t remain;
  718. loff_t offset, pinned_pages, i;
  719. loff_t first_data_page, last_data_page, num_pages;
  720. int shmem_page_offset;
  721. int data_page_index, data_page_offset;
  722. int page_length;
  723. int ret;
  724. uint64_t data_ptr = args->data_ptr;
  725. int do_bit17_swizzling;
  726. remain = args->size;
  727. /* Pin the user pages containing the data. We can't fault while
  728. * holding the struct mutex, and all of the pwrite implementations
  729. * want to hold it while dereferencing the user data.
  730. */
  731. first_data_page = data_ptr / PAGE_SIZE;
  732. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  733. num_pages = last_data_page - first_data_page + 1;
  734. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  735. if (user_pages == NULL)
  736. return -ENOMEM;
  737. mutex_unlock(&dev->struct_mutex);
  738. down_read(&mm->mmap_sem);
  739. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  740. num_pages, 0, 0, user_pages, NULL);
  741. up_read(&mm->mmap_sem);
  742. mutex_lock(&dev->struct_mutex);
  743. if (pinned_pages < num_pages) {
  744. ret = -EFAULT;
  745. goto out;
  746. }
  747. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  748. if (ret)
  749. goto out;
  750. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  751. offset = args->offset;
  752. obj->dirty = 1;
  753. while (remain > 0) {
  754. struct page *page;
  755. /* Operation in this page
  756. *
  757. * shmem_page_offset = offset within page in shmem file
  758. * data_page_index = page number in get_user_pages return
  759. * data_page_offset = offset with data_page_index page.
  760. * page_length = bytes to copy for this page
  761. */
  762. shmem_page_offset = offset_in_page(offset);
  763. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  764. data_page_offset = offset_in_page(data_ptr);
  765. page_length = remain;
  766. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  767. page_length = PAGE_SIZE - shmem_page_offset;
  768. if ((data_page_offset + page_length) > PAGE_SIZE)
  769. page_length = PAGE_SIZE - data_page_offset;
  770. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  771. if (IS_ERR(page)) {
  772. ret = PTR_ERR(page);
  773. goto out;
  774. }
  775. if (do_bit17_swizzling) {
  776. slow_shmem_bit17_copy(page,
  777. shmem_page_offset,
  778. user_pages[data_page_index],
  779. data_page_offset,
  780. page_length,
  781. 0);
  782. } else {
  783. slow_shmem_copy(page,
  784. shmem_page_offset,
  785. user_pages[data_page_index],
  786. data_page_offset,
  787. page_length);
  788. }
  789. set_page_dirty(page);
  790. mark_page_accessed(page);
  791. page_cache_release(page);
  792. remain -= page_length;
  793. data_ptr += page_length;
  794. offset += page_length;
  795. }
  796. out:
  797. for (i = 0; i < pinned_pages; i++)
  798. page_cache_release(user_pages[i]);
  799. drm_free_large(user_pages);
  800. return ret;
  801. }
  802. /**
  803. * Writes data to the object referenced by handle.
  804. *
  805. * On error, the contents of the buffer that were to be modified are undefined.
  806. */
  807. int
  808. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  809. struct drm_file *file)
  810. {
  811. struct drm_i915_gem_pwrite *args = data;
  812. struct drm_i915_gem_object *obj;
  813. int ret;
  814. if (args->size == 0)
  815. return 0;
  816. if (!access_ok(VERIFY_READ,
  817. (char __user *)(uintptr_t)args->data_ptr,
  818. args->size))
  819. return -EFAULT;
  820. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  821. args->size);
  822. if (ret)
  823. return -EFAULT;
  824. ret = i915_mutex_lock_interruptible(dev);
  825. if (ret)
  826. return ret;
  827. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  828. if (&obj->base == NULL) {
  829. ret = -ENOENT;
  830. goto unlock;
  831. }
  832. /* Bounds check destination. */
  833. if (args->offset > obj->base.size ||
  834. args->size > obj->base.size - args->offset) {
  835. ret = -EINVAL;
  836. goto out;
  837. }
  838. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  839. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  840. * it would end up going through the fenced access, and we'll get
  841. * different detiling behavior between reading and writing.
  842. * pread/pwrite currently are reading and writing from the CPU
  843. * perspective, requiring manual detiling by the client.
  844. */
  845. if (obj->phys_obj)
  846. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  847. else if (obj->gtt_space &&
  848. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  849. ret = i915_gem_object_pin(obj, 0, true);
  850. if (ret)
  851. goto out;
  852. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  853. if (ret)
  854. goto out_unpin;
  855. ret = i915_gem_object_put_fence(obj);
  856. if (ret)
  857. goto out_unpin;
  858. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  859. if (ret == -EFAULT)
  860. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  861. out_unpin:
  862. i915_gem_object_unpin(obj);
  863. } else {
  864. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  865. if (ret)
  866. goto out;
  867. ret = -EFAULT;
  868. if (!i915_gem_object_needs_bit17_swizzle(obj))
  869. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  870. if (ret == -EFAULT)
  871. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  872. }
  873. out:
  874. drm_gem_object_unreference(&obj->base);
  875. unlock:
  876. mutex_unlock(&dev->struct_mutex);
  877. return ret;
  878. }
  879. /**
  880. * Called when user space prepares to use an object with the CPU, either
  881. * through the mmap ioctl's mapping or a GTT mapping.
  882. */
  883. int
  884. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  885. struct drm_file *file)
  886. {
  887. struct drm_i915_gem_set_domain *args = data;
  888. struct drm_i915_gem_object *obj;
  889. uint32_t read_domains = args->read_domains;
  890. uint32_t write_domain = args->write_domain;
  891. int ret;
  892. if (!(dev->driver->driver_features & DRIVER_GEM))
  893. return -ENODEV;
  894. /* Only handle setting domains to types used by the CPU. */
  895. if (write_domain & I915_GEM_GPU_DOMAINS)
  896. return -EINVAL;
  897. if (read_domains & I915_GEM_GPU_DOMAINS)
  898. return -EINVAL;
  899. /* Having something in the write domain implies it's in the read
  900. * domain, and only that read domain. Enforce that in the request.
  901. */
  902. if (write_domain != 0 && read_domains != write_domain)
  903. return -EINVAL;
  904. ret = i915_mutex_lock_interruptible(dev);
  905. if (ret)
  906. return ret;
  907. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  908. if (&obj->base == NULL) {
  909. ret = -ENOENT;
  910. goto unlock;
  911. }
  912. if (read_domains & I915_GEM_DOMAIN_GTT) {
  913. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  914. /* Silently promote "you're not bound, there was nothing to do"
  915. * to success, since the client was just asking us to
  916. * make sure everything was done.
  917. */
  918. if (ret == -EINVAL)
  919. ret = 0;
  920. } else {
  921. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  922. }
  923. drm_gem_object_unreference(&obj->base);
  924. unlock:
  925. mutex_unlock(&dev->struct_mutex);
  926. return ret;
  927. }
  928. /**
  929. * Called when user space has done writes to this buffer
  930. */
  931. int
  932. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  933. struct drm_file *file)
  934. {
  935. struct drm_i915_gem_sw_finish *args = data;
  936. struct drm_i915_gem_object *obj;
  937. int ret = 0;
  938. if (!(dev->driver->driver_features & DRIVER_GEM))
  939. return -ENODEV;
  940. ret = i915_mutex_lock_interruptible(dev);
  941. if (ret)
  942. return ret;
  943. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  944. if (&obj->base == NULL) {
  945. ret = -ENOENT;
  946. goto unlock;
  947. }
  948. /* Pinned buffers may be scanout, so flush the cache */
  949. if (obj->pin_count)
  950. i915_gem_object_flush_cpu_write_domain(obj);
  951. drm_gem_object_unreference(&obj->base);
  952. unlock:
  953. mutex_unlock(&dev->struct_mutex);
  954. return ret;
  955. }
  956. /**
  957. * Maps the contents of an object, returning the address it is mapped
  958. * into.
  959. *
  960. * While the mapping holds a reference on the contents of the object, it doesn't
  961. * imply a ref on the object itself.
  962. */
  963. int
  964. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  965. struct drm_file *file)
  966. {
  967. struct drm_i915_private *dev_priv = dev->dev_private;
  968. struct drm_i915_gem_mmap *args = data;
  969. struct drm_gem_object *obj;
  970. unsigned long addr;
  971. if (!(dev->driver->driver_features & DRIVER_GEM))
  972. return -ENODEV;
  973. obj = drm_gem_object_lookup(dev, file, args->handle);
  974. if (obj == NULL)
  975. return -ENOENT;
  976. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  977. drm_gem_object_unreference_unlocked(obj);
  978. return -E2BIG;
  979. }
  980. down_write(&current->mm->mmap_sem);
  981. addr = do_mmap(obj->filp, 0, args->size,
  982. PROT_READ | PROT_WRITE, MAP_SHARED,
  983. args->offset);
  984. up_write(&current->mm->mmap_sem);
  985. drm_gem_object_unreference_unlocked(obj);
  986. if (IS_ERR((void *)addr))
  987. return addr;
  988. args->addr_ptr = (uint64_t) addr;
  989. return 0;
  990. }
  991. /**
  992. * i915_gem_fault - fault a page into the GTT
  993. * vma: VMA in question
  994. * vmf: fault info
  995. *
  996. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  997. * from userspace. The fault handler takes care of binding the object to
  998. * the GTT (if needed), allocating and programming a fence register (again,
  999. * only if needed based on whether the old reg is still valid or the object
  1000. * is tiled) and inserting a new PTE into the faulting process.
  1001. *
  1002. * Note that the faulting process may involve evicting existing objects
  1003. * from the GTT and/or fence registers to make room. So performance may
  1004. * suffer if the GTT working set is large or there are few fence registers
  1005. * left.
  1006. */
  1007. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1008. {
  1009. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1010. struct drm_device *dev = obj->base.dev;
  1011. drm_i915_private_t *dev_priv = dev->dev_private;
  1012. pgoff_t page_offset;
  1013. unsigned long pfn;
  1014. int ret = 0;
  1015. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1016. /* We don't use vmf->pgoff since that has the fake offset */
  1017. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1018. PAGE_SHIFT;
  1019. ret = i915_mutex_lock_interruptible(dev);
  1020. if (ret)
  1021. goto out;
  1022. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1023. /* Now bind it into the GTT if needed */
  1024. if (!obj->map_and_fenceable) {
  1025. ret = i915_gem_object_unbind(obj);
  1026. if (ret)
  1027. goto unlock;
  1028. }
  1029. if (!obj->gtt_space) {
  1030. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1031. if (ret)
  1032. goto unlock;
  1033. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1034. if (ret)
  1035. goto unlock;
  1036. }
  1037. if (obj->tiling_mode == I915_TILING_NONE)
  1038. ret = i915_gem_object_put_fence(obj);
  1039. else
  1040. ret = i915_gem_object_get_fence(obj, NULL);
  1041. if (ret)
  1042. goto unlock;
  1043. if (i915_gem_object_is_inactive(obj))
  1044. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1045. obj->fault_mappable = true;
  1046. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1047. page_offset;
  1048. /* Finally, remap it using the new GTT offset */
  1049. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1050. unlock:
  1051. mutex_unlock(&dev->struct_mutex);
  1052. out:
  1053. switch (ret) {
  1054. case -EIO:
  1055. case -EAGAIN:
  1056. /* Give the error handler a chance to run and move the
  1057. * objects off the GPU active list. Next time we service the
  1058. * fault, we should be able to transition the page into the
  1059. * GTT without touching the GPU (and so avoid further
  1060. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1061. * with coherency, just lost writes.
  1062. */
  1063. set_need_resched();
  1064. case 0:
  1065. case -ERESTARTSYS:
  1066. case -EINTR:
  1067. return VM_FAULT_NOPAGE;
  1068. case -ENOMEM:
  1069. return VM_FAULT_OOM;
  1070. default:
  1071. return VM_FAULT_SIGBUS;
  1072. }
  1073. }
  1074. /**
  1075. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1076. * @obj: obj in question
  1077. *
  1078. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1079. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1080. * up the object based on the offset and sets up the various memory mapping
  1081. * structures.
  1082. *
  1083. * This routine allocates and attaches a fake offset for @obj.
  1084. */
  1085. static int
  1086. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1087. {
  1088. struct drm_device *dev = obj->base.dev;
  1089. struct drm_gem_mm *mm = dev->mm_private;
  1090. struct drm_map_list *list;
  1091. struct drm_local_map *map;
  1092. int ret = 0;
  1093. /* Set the object up for mmap'ing */
  1094. list = &obj->base.map_list;
  1095. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1096. if (!list->map)
  1097. return -ENOMEM;
  1098. map = list->map;
  1099. map->type = _DRM_GEM;
  1100. map->size = obj->base.size;
  1101. map->handle = obj;
  1102. /* Get a DRM GEM mmap offset allocated... */
  1103. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1104. obj->base.size / PAGE_SIZE,
  1105. 0, 0);
  1106. if (!list->file_offset_node) {
  1107. DRM_ERROR("failed to allocate offset for bo %d\n",
  1108. obj->base.name);
  1109. ret = -ENOSPC;
  1110. goto out_free_list;
  1111. }
  1112. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1113. obj->base.size / PAGE_SIZE,
  1114. 0);
  1115. if (!list->file_offset_node) {
  1116. ret = -ENOMEM;
  1117. goto out_free_list;
  1118. }
  1119. list->hash.key = list->file_offset_node->start;
  1120. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1121. if (ret) {
  1122. DRM_ERROR("failed to add to map hash\n");
  1123. goto out_free_mm;
  1124. }
  1125. return 0;
  1126. out_free_mm:
  1127. drm_mm_put_block(list->file_offset_node);
  1128. out_free_list:
  1129. kfree(list->map);
  1130. list->map = NULL;
  1131. return ret;
  1132. }
  1133. /**
  1134. * i915_gem_release_mmap - remove physical page mappings
  1135. * @obj: obj in question
  1136. *
  1137. * Preserve the reservation of the mmapping with the DRM core code, but
  1138. * relinquish ownership of the pages back to the system.
  1139. *
  1140. * It is vital that we remove the page mapping if we have mapped a tiled
  1141. * object through the GTT and then lose the fence register due to
  1142. * resource pressure. Similarly if the object has been moved out of the
  1143. * aperture, than pages mapped into userspace must be revoked. Removing the
  1144. * mapping will then trigger a page fault on the next user access, allowing
  1145. * fixup by i915_gem_fault().
  1146. */
  1147. void
  1148. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1149. {
  1150. if (!obj->fault_mappable)
  1151. return;
  1152. if (obj->base.dev->dev_mapping)
  1153. unmap_mapping_range(obj->base.dev->dev_mapping,
  1154. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1155. obj->base.size, 1);
  1156. obj->fault_mappable = false;
  1157. }
  1158. static void
  1159. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1160. {
  1161. struct drm_device *dev = obj->base.dev;
  1162. struct drm_gem_mm *mm = dev->mm_private;
  1163. struct drm_map_list *list = &obj->base.map_list;
  1164. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1165. drm_mm_put_block(list->file_offset_node);
  1166. kfree(list->map);
  1167. list->map = NULL;
  1168. }
  1169. static uint32_t
  1170. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1171. {
  1172. struct drm_device *dev = obj->base.dev;
  1173. uint32_t size;
  1174. if (INTEL_INFO(dev)->gen >= 4 ||
  1175. obj->tiling_mode == I915_TILING_NONE)
  1176. return obj->base.size;
  1177. /* Previous chips need a power-of-two fence region when tiling */
  1178. if (INTEL_INFO(dev)->gen == 3)
  1179. size = 1024*1024;
  1180. else
  1181. size = 512*1024;
  1182. while (size < obj->base.size)
  1183. size <<= 1;
  1184. return size;
  1185. }
  1186. /**
  1187. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1188. * @obj: object to check
  1189. *
  1190. * Return the required GTT alignment for an object, taking into account
  1191. * potential fence register mapping.
  1192. */
  1193. static uint32_t
  1194. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1195. {
  1196. struct drm_device *dev = obj->base.dev;
  1197. /*
  1198. * Minimum alignment is 4k (GTT page size), but might be greater
  1199. * if a fence register is needed for the object.
  1200. */
  1201. if (INTEL_INFO(dev)->gen >= 4 ||
  1202. obj->tiling_mode == I915_TILING_NONE)
  1203. return 4096;
  1204. /*
  1205. * Previous chips need to be aligned to the size of the smallest
  1206. * fence register that can contain the object.
  1207. */
  1208. return i915_gem_get_gtt_size(obj);
  1209. }
  1210. /**
  1211. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1212. * unfenced object
  1213. * @obj: object to check
  1214. *
  1215. * Return the required GTT alignment for an object, only taking into account
  1216. * unfenced tiled surface requirements.
  1217. */
  1218. uint32_t
  1219. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1220. {
  1221. struct drm_device *dev = obj->base.dev;
  1222. int tile_height;
  1223. /*
  1224. * Minimum alignment is 4k (GTT page size) for sane hw.
  1225. */
  1226. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1227. obj->tiling_mode == I915_TILING_NONE)
  1228. return 4096;
  1229. /*
  1230. * Older chips need unfenced tiled buffers to be aligned to the left
  1231. * edge of an even tile row (where tile rows are counted as if the bo is
  1232. * placed in a fenced gtt region).
  1233. */
  1234. if (IS_GEN2(dev))
  1235. tile_height = 16;
  1236. else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1237. tile_height = 32;
  1238. else
  1239. tile_height = 8;
  1240. return tile_height * obj->stride * 2;
  1241. }
  1242. int
  1243. i915_gem_mmap_gtt(struct drm_file *file,
  1244. struct drm_device *dev,
  1245. uint32_t handle,
  1246. uint64_t *offset)
  1247. {
  1248. struct drm_i915_private *dev_priv = dev->dev_private;
  1249. struct drm_i915_gem_object *obj;
  1250. int ret;
  1251. if (!(dev->driver->driver_features & DRIVER_GEM))
  1252. return -ENODEV;
  1253. ret = i915_mutex_lock_interruptible(dev);
  1254. if (ret)
  1255. return ret;
  1256. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1257. if (&obj->base == NULL) {
  1258. ret = -ENOENT;
  1259. goto unlock;
  1260. }
  1261. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1262. ret = -E2BIG;
  1263. goto unlock;
  1264. }
  1265. if (obj->madv != I915_MADV_WILLNEED) {
  1266. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1267. ret = -EINVAL;
  1268. goto out;
  1269. }
  1270. if (!obj->base.map_list.map) {
  1271. ret = i915_gem_create_mmap_offset(obj);
  1272. if (ret)
  1273. goto out;
  1274. }
  1275. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1276. out:
  1277. drm_gem_object_unreference(&obj->base);
  1278. unlock:
  1279. mutex_unlock(&dev->struct_mutex);
  1280. return ret;
  1281. }
  1282. /**
  1283. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1284. * @dev: DRM device
  1285. * @data: GTT mapping ioctl data
  1286. * @file: GEM object info
  1287. *
  1288. * Simply returns the fake offset to userspace so it can mmap it.
  1289. * The mmap call will end up in drm_gem_mmap(), which will set things
  1290. * up so we can get faults in the handler above.
  1291. *
  1292. * The fault handler will take care of binding the object into the GTT
  1293. * (since it may have been evicted to make room for something), allocating
  1294. * a fence register, and mapping the appropriate aperture address into
  1295. * userspace.
  1296. */
  1297. int
  1298. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1299. struct drm_file *file)
  1300. {
  1301. struct drm_i915_gem_mmap_gtt *args = data;
  1302. if (!(dev->driver->driver_features & DRIVER_GEM))
  1303. return -ENODEV;
  1304. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1305. }
  1306. static int
  1307. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1308. gfp_t gfpmask)
  1309. {
  1310. int page_count, i;
  1311. struct address_space *mapping;
  1312. struct inode *inode;
  1313. struct page *page;
  1314. /* Get the list of pages out of our struct file. They'll be pinned
  1315. * at this point until we release them.
  1316. */
  1317. page_count = obj->base.size / PAGE_SIZE;
  1318. BUG_ON(obj->pages != NULL);
  1319. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1320. if (obj->pages == NULL)
  1321. return -ENOMEM;
  1322. inode = obj->base.filp->f_path.dentry->d_inode;
  1323. mapping = inode->i_mapping;
  1324. gfpmask |= mapping_gfp_mask(mapping);
  1325. for (i = 0; i < page_count; i++) {
  1326. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1327. if (IS_ERR(page))
  1328. goto err_pages;
  1329. obj->pages[i] = page;
  1330. }
  1331. if (obj->tiling_mode != I915_TILING_NONE)
  1332. i915_gem_object_do_bit_17_swizzle(obj);
  1333. return 0;
  1334. err_pages:
  1335. while (i--)
  1336. page_cache_release(obj->pages[i]);
  1337. drm_free_large(obj->pages);
  1338. obj->pages = NULL;
  1339. return PTR_ERR(page);
  1340. }
  1341. static void
  1342. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1343. {
  1344. int page_count = obj->base.size / PAGE_SIZE;
  1345. int i;
  1346. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1347. if (obj->tiling_mode != I915_TILING_NONE)
  1348. i915_gem_object_save_bit_17_swizzle(obj);
  1349. if (obj->madv == I915_MADV_DONTNEED)
  1350. obj->dirty = 0;
  1351. for (i = 0; i < page_count; i++) {
  1352. if (obj->dirty)
  1353. set_page_dirty(obj->pages[i]);
  1354. if (obj->madv == I915_MADV_WILLNEED)
  1355. mark_page_accessed(obj->pages[i]);
  1356. page_cache_release(obj->pages[i]);
  1357. }
  1358. obj->dirty = 0;
  1359. drm_free_large(obj->pages);
  1360. obj->pages = NULL;
  1361. }
  1362. void
  1363. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1364. struct intel_ring_buffer *ring,
  1365. u32 seqno)
  1366. {
  1367. struct drm_device *dev = obj->base.dev;
  1368. struct drm_i915_private *dev_priv = dev->dev_private;
  1369. BUG_ON(ring == NULL);
  1370. obj->ring = ring;
  1371. /* Add a reference if we're newly entering the active list. */
  1372. if (!obj->active) {
  1373. drm_gem_object_reference(&obj->base);
  1374. obj->active = 1;
  1375. }
  1376. /* Move from whatever list we were on to the tail of execution. */
  1377. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1378. list_move_tail(&obj->ring_list, &ring->active_list);
  1379. obj->last_rendering_seqno = seqno;
  1380. if (obj->fenced_gpu_access) {
  1381. struct drm_i915_fence_reg *reg;
  1382. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1383. obj->last_fenced_seqno = seqno;
  1384. obj->last_fenced_ring = ring;
  1385. reg = &dev_priv->fence_regs[obj->fence_reg];
  1386. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1387. }
  1388. }
  1389. static void
  1390. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1391. {
  1392. list_del_init(&obj->ring_list);
  1393. obj->last_rendering_seqno = 0;
  1394. }
  1395. static void
  1396. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1397. {
  1398. struct drm_device *dev = obj->base.dev;
  1399. drm_i915_private_t *dev_priv = dev->dev_private;
  1400. BUG_ON(!obj->active);
  1401. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1402. i915_gem_object_move_off_active(obj);
  1403. }
  1404. static void
  1405. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1406. {
  1407. struct drm_device *dev = obj->base.dev;
  1408. struct drm_i915_private *dev_priv = dev->dev_private;
  1409. if (obj->pin_count != 0)
  1410. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1411. else
  1412. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1413. BUG_ON(!list_empty(&obj->gpu_write_list));
  1414. BUG_ON(!obj->active);
  1415. obj->ring = NULL;
  1416. i915_gem_object_move_off_active(obj);
  1417. obj->fenced_gpu_access = false;
  1418. obj->active = 0;
  1419. obj->pending_gpu_write = false;
  1420. drm_gem_object_unreference(&obj->base);
  1421. WARN_ON(i915_verify_lists(dev));
  1422. }
  1423. /* Immediately discard the backing storage */
  1424. static void
  1425. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1426. {
  1427. struct inode *inode;
  1428. /* Our goal here is to return as much of the memory as
  1429. * is possible back to the system as we are called from OOM.
  1430. * To do this we must instruct the shmfs to drop all of its
  1431. * backing pages, *now*.
  1432. */
  1433. inode = obj->base.filp->f_path.dentry->d_inode;
  1434. shmem_truncate_range(inode, 0, (loff_t)-1);
  1435. obj->madv = __I915_MADV_PURGED;
  1436. }
  1437. static inline int
  1438. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1439. {
  1440. return obj->madv == I915_MADV_DONTNEED;
  1441. }
  1442. static void
  1443. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1444. uint32_t flush_domains)
  1445. {
  1446. struct drm_i915_gem_object *obj, *next;
  1447. list_for_each_entry_safe(obj, next,
  1448. &ring->gpu_write_list,
  1449. gpu_write_list) {
  1450. if (obj->base.write_domain & flush_domains) {
  1451. uint32_t old_write_domain = obj->base.write_domain;
  1452. obj->base.write_domain = 0;
  1453. list_del_init(&obj->gpu_write_list);
  1454. i915_gem_object_move_to_active(obj, ring,
  1455. i915_gem_next_request_seqno(ring));
  1456. trace_i915_gem_object_change_domain(obj,
  1457. obj->base.read_domains,
  1458. old_write_domain);
  1459. }
  1460. }
  1461. }
  1462. int
  1463. i915_add_request(struct intel_ring_buffer *ring,
  1464. struct drm_file *file,
  1465. struct drm_i915_gem_request *request)
  1466. {
  1467. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1468. uint32_t seqno;
  1469. int was_empty;
  1470. int ret;
  1471. BUG_ON(request == NULL);
  1472. ret = ring->add_request(ring, &seqno);
  1473. if (ret)
  1474. return ret;
  1475. trace_i915_gem_request_add(ring, seqno);
  1476. request->seqno = seqno;
  1477. request->ring = ring;
  1478. request->emitted_jiffies = jiffies;
  1479. was_empty = list_empty(&ring->request_list);
  1480. list_add_tail(&request->list, &ring->request_list);
  1481. if (file) {
  1482. struct drm_i915_file_private *file_priv = file->driver_priv;
  1483. spin_lock(&file_priv->mm.lock);
  1484. request->file_priv = file_priv;
  1485. list_add_tail(&request->client_list,
  1486. &file_priv->mm.request_list);
  1487. spin_unlock(&file_priv->mm.lock);
  1488. }
  1489. ring->outstanding_lazy_request = false;
  1490. if (!dev_priv->mm.suspended) {
  1491. if (i915_enable_hangcheck) {
  1492. mod_timer(&dev_priv->hangcheck_timer,
  1493. jiffies +
  1494. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1495. }
  1496. if (was_empty)
  1497. queue_delayed_work(dev_priv->wq,
  1498. &dev_priv->mm.retire_work, HZ);
  1499. }
  1500. return 0;
  1501. }
  1502. static inline void
  1503. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1504. {
  1505. struct drm_i915_file_private *file_priv = request->file_priv;
  1506. if (!file_priv)
  1507. return;
  1508. spin_lock(&file_priv->mm.lock);
  1509. if (request->file_priv) {
  1510. list_del(&request->client_list);
  1511. request->file_priv = NULL;
  1512. }
  1513. spin_unlock(&file_priv->mm.lock);
  1514. }
  1515. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1516. struct intel_ring_buffer *ring)
  1517. {
  1518. while (!list_empty(&ring->request_list)) {
  1519. struct drm_i915_gem_request *request;
  1520. request = list_first_entry(&ring->request_list,
  1521. struct drm_i915_gem_request,
  1522. list);
  1523. list_del(&request->list);
  1524. i915_gem_request_remove_from_client(request);
  1525. kfree(request);
  1526. }
  1527. while (!list_empty(&ring->active_list)) {
  1528. struct drm_i915_gem_object *obj;
  1529. obj = list_first_entry(&ring->active_list,
  1530. struct drm_i915_gem_object,
  1531. ring_list);
  1532. obj->base.write_domain = 0;
  1533. list_del_init(&obj->gpu_write_list);
  1534. i915_gem_object_move_to_inactive(obj);
  1535. }
  1536. }
  1537. static void i915_gem_reset_fences(struct drm_device *dev)
  1538. {
  1539. struct drm_i915_private *dev_priv = dev->dev_private;
  1540. int i;
  1541. for (i = 0; i < 16; i++) {
  1542. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1543. struct drm_i915_gem_object *obj = reg->obj;
  1544. if (!obj)
  1545. continue;
  1546. if (obj->tiling_mode)
  1547. i915_gem_release_mmap(obj);
  1548. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1549. reg->obj->fenced_gpu_access = false;
  1550. reg->obj->last_fenced_seqno = 0;
  1551. reg->obj->last_fenced_ring = NULL;
  1552. i915_gem_clear_fence_reg(dev, reg);
  1553. }
  1554. }
  1555. void i915_gem_reset(struct drm_device *dev)
  1556. {
  1557. struct drm_i915_private *dev_priv = dev->dev_private;
  1558. struct drm_i915_gem_object *obj;
  1559. int i;
  1560. for (i = 0; i < I915_NUM_RINGS; i++)
  1561. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1562. /* Remove anything from the flushing lists. The GPU cache is likely
  1563. * to be lost on reset along with the data, so simply move the
  1564. * lost bo to the inactive list.
  1565. */
  1566. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1567. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1568. struct drm_i915_gem_object,
  1569. mm_list);
  1570. obj->base.write_domain = 0;
  1571. list_del_init(&obj->gpu_write_list);
  1572. i915_gem_object_move_to_inactive(obj);
  1573. }
  1574. /* Move everything out of the GPU domains to ensure we do any
  1575. * necessary invalidation upon reuse.
  1576. */
  1577. list_for_each_entry(obj,
  1578. &dev_priv->mm.inactive_list,
  1579. mm_list)
  1580. {
  1581. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1582. }
  1583. /* The fence registers are invalidated so clear them out */
  1584. i915_gem_reset_fences(dev);
  1585. }
  1586. /**
  1587. * This function clears the request list as sequence numbers are passed.
  1588. */
  1589. static void
  1590. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1591. {
  1592. uint32_t seqno;
  1593. int i;
  1594. if (list_empty(&ring->request_list))
  1595. return;
  1596. WARN_ON(i915_verify_lists(ring->dev));
  1597. seqno = ring->get_seqno(ring);
  1598. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1599. if (seqno >= ring->sync_seqno[i])
  1600. ring->sync_seqno[i] = 0;
  1601. while (!list_empty(&ring->request_list)) {
  1602. struct drm_i915_gem_request *request;
  1603. request = list_first_entry(&ring->request_list,
  1604. struct drm_i915_gem_request,
  1605. list);
  1606. if (!i915_seqno_passed(seqno, request->seqno))
  1607. break;
  1608. trace_i915_gem_request_retire(ring, request->seqno);
  1609. list_del(&request->list);
  1610. i915_gem_request_remove_from_client(request);
  1611. kfree(request);
  1612. }
  1613. /* Move any buffers on the active list that are no longer referenced
  1614. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1615. */
  1616. while (!list_empty(&ring->active_list)) {
  1617. struct drm_i915_gem_object *obj;
  1618. obj= list_first_entry(&ring->active_list,
  1619. struct drm_i915_gem_object,
  1620. ring_list);
  1621. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1622. break;
  1623. if (obj->base.write_domain != 0)
  1624. i915_gem_object_move_to_flushing(obj);
  1625. else
  1626. i915_gem_object_move_to_inactive(obj);
  1627. }
  1628. if (unlikely(ring->trace_irq_seqno &&
  1629. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1630. ring->irq_put(ring);
  1631. ring->trace_irq_seqno = 0;
  1632. }
  1633. WARN_ON(i915_verify_lists(ring->dev));
  1634. }
  1635. void
  1636. i915_gem_retire_requests(struct drm_device *dev)
  1637. {
  1638. drm_i915_private_t *dev_priv = dev->dev_private;
  1639. int i;
  1640. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1641. struct drm_i915_gem_object *obj, *next;
  1642. /* We must be careful that during unbind() we do not
  1643. * accidentally infinitely recurse into retire requests.
  1644. * Currently:
  1645. * retire -> free -> unbind -> wait -> retire_ring
  1646. */
  1647. list_for_each_entry_safe(obj, next,
  1648. &dev_priv->mm.deferred_free_list,
  1649. mm_list)
  1650. i915_gem_free_object_tail(obj);
  1651. }
  1652. for (i = 0; i < I915_NUM_RINGS; i++)
  1653. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1654. }
  1655. static void
  1656. i915_gem_retire_work_handler(struct work_struct *work)
  1657. {
  1658. drm_i915_private_t *dev_priv;
  1659. struct drm_device *dev;
  1660. bool idle;
  1661. int i;
  1662. dev_priv = container_of(work, drm_i915_private_t,
  1663. mm.retire_work.work);
  1664. dev = dev_priv->dev;
  1665. /* Come back later if the device is busy... */
  1666. if (!mutex_trylock(&dev->struct_mutex)) {
  1667. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1668. return;
  1669. }
  1670. i915_gem_retire_requests(dev);
  1671. /* Send a periodic flush down the ring so we don't hold onto GEM
  1672. * objects indefinitely.
  1673. */
  1674. idle = true;
  1675. for (i = 0; i < I915_NUM_RINGS; i++) {
  1676. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1677. if (!list_empty(&ring->gpu_write_list)) {
  1678. struct drm_i915_gem_request *request;
  1679. int ret;
  1680. ret = i915_gem_flush_ring(ring,
  1681. 0, I915_GEM_GPU_DOMAINS);
  1682. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1683. if (ret || request == NULL ||
  1684. i915_add_request(ring, NULL, request))
  1685. kfree(request);
  1686. }
  1687. idle &= list_empty(&ring->request_list);
  1688. }
  1689. if (!dev_priv->mm.suspended && !idle)
  1690. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1691. mutex_unlock(&dev->struct_mutex);
  1692. }
  1693. /**
  1694. * Waits for a sequence number to be signaled, and cleans up the
  1695. * request and object lists appropriately for that event.
  1696. */
  1697. int
  1698. i915_wait_request(struct intel_ring_buffer *ring,
  1699. uint32_t seqno)
  1700. {
  1701. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1702. u32 ier;
  1703. int ret = 0;
  1704. BUG_ON(seqno == 0);
  1705. if (atomic_read(&dev_priv->mm.wedged)) {
  1706. struct completion *x = &dev_priv->error_completion;
  1707. bool recovery_complete;
  1708. unsigned long flags;
  1709. /* Give the error handler a chance to run. */
  1710. spin_lock_irqsave(&x->wait.lock, flags);
  1711. recovery_complete = x->done > 0;
  1712. spin_unlock_irqrestore(&x->wait.lock, flags);
  1713. return recovery_complete ? -EIO : -EAGAIN;
  1714. }
  1715. if (seqno == ring->outstanding_lazy_request) {
  1716. struct drm_i915_gem_request *request;
  1717. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1718. if (request == NULL)
  1719. return -ENOMEM;
  1720. ret = i915_add_request(ring, NULL, request);
  1721. if (ret) {
  1722. kfree(request);
  1723. return ret;
  1724. }
  1725. seqno = request->seqno;
  1726. }
  1727. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1728. if (HAS_PCH_SPLIT(ring->dev))
  1729. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1730. else
  1731. ier = I915_READ(IER);
  1732. if (!ier) {
  1733. DRM_ERROR("something (likely vbetool) disabled "
  1734. "interrupts, re-enabling\n");
  1735. ring->dev->driver->irq_preinstall(ring->dev);
  1736. ring->dev->driver->irq_postinstall(ring->dev);
  1737. }
  1738. trace_i915_gem_request_wait_begin(ring, seqno);
  1739. ring->waiting_seqno = seqno;
  1740. if (ring->irq_get(ring)) {
  1741. if (dev_priv->mm.interruptible)
  1742. ret = wait_event_interruptible(ring->irq_queue,
  1743. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1744. || atomic_read(&dev_priv->mm.wedged));
  1745. else
  1746. wait_event(ring->irq_queue,
  1747. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1748. || atomic_read(&dev_priv->mm.wedged));
  1749. ring->irq_put(ring);
  1750. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1751. seqno) ||
  1752. atomic_read(&dev_priv->mm.wedged), 3000))
  1753. ret = -EBUSY;
  1754. ring->waiting_seqno = 0;
  1755. trace_i915_gem_request_wait_end(ring, seqno);
  1756. }
  1757. if (atomic_read(&dev_priv->mm.wedged))
  1758. ret = -EAGAIN;
  1759. if (ret && ret != -ERESTARTSYS)
  1760. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1761. __func__, ret, seqno, ring->get_seqno(ring),
  1762. dev_priv->next_seqno);
  1763. /* Directly dispatch request retiring. While we have the work queue
  1764. * to handle this, the waiter on a request often wants an associated
  1765. * buffer to have made it to the inactive list, and we would need
  1766. * a separate wait queue to handle that.
  1767. */
  1768. if (ret == 0)
  1769. i915_gem_retire_requests_ring(ring);
  1770. return ret;
  1771. }
  1772. /**
  1773. * Ensures that all rendering to the object has completed and the object is
  1774. * safe to unbind from the GTT or access from the CPU.
  1775. */
  1776. int
  1777. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1778. {
  1779. int ret;
  1780. /* This function only exists to support waiting for existing rendering,
  1781. * not for emitting required flushes.
  1782. */
  1783. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1784. /* If there is rendering queued on the buffer being evicted, wait for
  1785. * it.
  1786. */
  1787. if (obj->active) {
  1788. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1789. if (ret)
  1790. return ret;
  1791. }
  1792. return 0;
  1793. }
  1794. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1795. {
  1796. u32 old_write_domain, old_read_domains;
  1797. /* Act a barrier for all accesses through the GTT */
  1798. mb();
  1799. /* Force a pagefault for domain tracking on next user access */
  1800. i915_gem_release_mmap(obj);
  1801. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1802. return;
  1803. old_read_domains = obj->base.read_domains;
  1804. old_write_domain = obj->base.write_domain;
  1805. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1806. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1807. trace_i915_gem_object_change_domain(obj,
  1808. old_read_domains,
  1809. old_write_domain);
  1810. }
  1811. /**
  1812. * Unbinds an object from the GTT aperture.
  1813. */
  1814. int
  1815. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1816. {
  1817. int ret = 0;
  1818. if (obj->gtt_space == NULL)
  1819. return 0;
  1820. if (obj->pin_count != 0) {
  1821. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1822. return -EINVAL;
  1823. }
  1824. ret = i915_gem_object_finish_gpu(obj);
  1825. if (ret == -ERESTARTSYS)
  1826. return ret;
  1827. /* Continue on if we fail due to EIO, the GPU is hung so we
  1828. * should be safe and we need to cleanup or else we might
  1829. * cause memory corruption through use-after-free.
  1830. */
  1831. i915_gem_object_finish_gtt(obj);
  1832. /* Move the object to the CPU domain to ensure that
  1833. * any possible CPU writes while it's not in the GTT
  1834. * are flushed when we go to remap it.
  1835. */
  1836. if (ret == 0)
  1837. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1838. if (ret == -ERESTARTSYS)
  1839. return ret;
  1840. if (ret) {
  1841. /* In the event of a disaster, abandon all caches and
  1842. * hope for the best.
  1843. */
  1844. i915_gem_clflush_object(obj);
  1845. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1846. }
  1847. /* release the fence reg _after_ flushing */
  1848. ret = i915_gem_object_put_fence(obj);
  1849. if (ret == -ERESTARTSYS)
  1850. return ret;
  1851. trace_i915_gem_object_unbind(obj);
  1852. i915_gem_gtt_unbind_object(obj);
  1853. i915_gem_object_put_pages_gtt(obj);
  1854. list_del_init(&obj->gtt_list);
  1855. list_del_init(&obj->mm_list);
  1856. /* Avoid an unnecessary call to unbind on rebind. */
  1857. obj->map_and_fenceable = true;
  1858. drm_mm_put_block(obj->gtt_space);
  1859. obj->gtt_space = NULL;
  1860. obj->gtt_offset = 0;
  1861. if (i915_gem_object_is_purgeable(obj))
  1862. i915_gem_object_truncate(obj);
  1863. return ret;
  1864. }
  1865. int
  1866. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1867. uint32_t invalidate_domains,
  1868. uint32_t flush_domains)
  1869. {
  1870. int ret;
  1871. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1872. return 0;
  1873. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1874. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1875. if (ret)
  1876. return ret;
  1877. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1878. i915_gem_process_flushing_list(ring, flush_domains);
  1879. return 0;
  1880. }
  1881. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1882. {
  1883. int ret;
  1884. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1885. return 0;
  1886. if (!list_empty(&ring->gpu_write_list)) {
  1887. ret = i915_gem_flush_ring(ring,
  1888. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1889. if (ret)
  1890. return ret;
  1891. }
  1892. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1893. }
  1894. int
  1895. i915_gpu_idle(struct drm_device *dev)
  1896. {
  1897. drm_i915_private_t *dev_priv = dev->dev_private;
  1898. bool lists_empty;
  1899. int ret, i;
  1900. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1901. list_empty(&dev_priv->mm.active_list));
  1902. if (lists_empty)
  1903. return 0;
  1904. /* Flush everything onto the inactive list. */
  1905. for (i = 0; i < I915_NUM_RINGS; i++) {
  1906. ret = i915_ring_idle(&dev_priv->ring[i]);
  1907. if (ret)
  1908. return ret;
  1909. }
  1910. return 0;
  1911. }
  1912. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1913. struct intel_ring_buffer *pipelined)
  1914. {
  1915. struct drm_device *dev = obj->base.dev;
  1916. drm_i915_private_t *dev_priv = dev->dev_private;
  1917. u32 size = obj->gtt_space->size;
  1918. int regnum = obj->fence_reg;
  1919. uint64_t val;
  1920. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1921. 0xfffff000) << 32;
  1922. val |= obj->gtt_offset & 0xfffff000;
  1923. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1924. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1925. if (obj->tiling_mode == I915_TILING_Y)
  1926. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1927. val |= I965_FENCE_REG_VALID;
  1928. if (pipelined) {
  1929. int ret = intel_ring_begin(pipelined, 6);
  1930. if (ret)
  1931. return ret;
  1932. intel_ring_emit(pipelined, MI_NOOP);
  1933. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1934. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1935. intel_ring_emit(pipelined, (u32)val);
  1936. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1937. intel_ring_emit(pipelined, (u32)(val >> 32));
  1938. intel_ring_advance(pipelined);
  1939. } else
  1940. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1941. return 0;
  1942. }
  1943. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1944. struct intel_ring_buffer *pipelined)
  1945. {
  1946. struct drm_device *dev = obj->base.dev;
  1947. drm_i915_private_t *dev_priv = dev->dev_private;
  1948. u32 size = obj->gtt_space->size;
  1949. int regnum = obj->fence_reg;
  1950. uint64_t val;
  1951. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1952. 0xfffff000) << 32;
  1953. val |= obj->gtt_offset & 0xfffff000;
  1954. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1955. if (obj->tiling_mode == I915_TILING_Y)
  1956. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1957. val |= I965_FENCE_REG_VALID;
  1958. if (pipelined) {
  1959. int ret = intel_ring_begin(pipelined, 6);
  1960. if (ret)
  1961. return ret;
  1962. intel_ring_emit(pipelined, MI_NOOP);
  1963. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1964. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1965. intel_ring_emit(pipelined, (u32)val);
  1966. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1967. intel_ring_emit(pipelined, (u32)(val >> 32));
  1968. intel_ring_advance(pipelined);
  1969. } else
  1970. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1971. return 0;
  1972. }
  1973. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1974. struct intel_ring_buffer *pipelined)
  1975. {
  1976. struct drm_device *dev = obj->base.dev;
  1977. drm_i915_private_t *dev_priv = dev->dev_private;
  1978. u32 size = obj->gtt_space->size;
  1979. u32 fence_reg, val, pitch_val;
  1980. int tile_width;
  1981. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1982. (size & -size) != size ||
  1983. (obj->gtt_offset & (size - 1)),
  1984. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1985. obj->gtt_offset, obj->map_and_fenceable, size))
  1986. return -EINVAL;
  1987. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1988. tile_width = 128;
  1989. else
  1990. tile_width = 512;
  1991. /* Note: pitch better be a power of two tile widths */
  1992. pitch_val = obj->stride / tile_width;
  1993. pitch_val = ffs(pitch_val) - 1;
  1994. val = obj->gtt_offset;
  1995. if (obj->tiling_mode == I915_TILING_Y)
  1996. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1997. val |= I915_FENCE_SIZE_BITS(size);
  1998. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1999. val |= I830_FENCE_REG_VALID;
  2000. fence_reg = obj->fence_reg;
  2001. if (fence_reg < 8)
  2002. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2003. else
  2004. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2005. if (pipelined) {
  2006. int ret = intel_ring_begin(pipelined, 4);
  2007. if (ret)
  2008. return ret;
  2009. intel_ring_emit(pipelined, MI_NOOP);
  2010. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2011. intel_ring_emit(pipelined, fence_reg);
  2012. intel_ring_emit(pipelined, val);
  2013. intel_ring_advance(pipelined);
  2014. } else
  2015. I915_WRITE(fence_reg, val);
  2016. return 0;
  2017. }
  2018. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  2019. struct intel_ring_buffer *pipelined)
  2020. {
  2021. struct drm_device *dev = obj->base.dev;
  2022. drm_i915_private_t *dev_priv = dev->dev_private;
  2023. u32 size = obj->gtt_space->size;
  2024. int regnum = obj->fence_reg;
  2025. uint32_t val;
  2026. uint32_t pitch_val;
  2027. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2028. (size & -size) != size ||
  2029. (obj->gtt_offset & (size - 1)),
  2030. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2031. obj->gtt_offset, size))
  2032. return -EINVAL;
  2033. pitch_val = obj->stride / 128;
  2034. pitch_val = ffs(pitch_val) - 1;
  2035. val = obj->gtt_offset;
  2036. if (obj->tiling_mode == I915_TILING_Y)
  2037. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2038. val |= I830_FENCE_SIZE_BITS(size);
  2039. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2040. val |= I830_FENCE_REG_VALID;
  2041. if (pipelined) {
  2042. int ret = intel_ring_begin(pipelined, 4);
  2043. if (ret)
  2044. return ret;
  2045. intel_ring_emit(pipelined, MI_NOOP);
  2046. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2047. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2048. intel_ring_emit(pipelined, val);
  2049. intel_ring_advance(pipelined);
  2050. } else
  2051. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2052. return 0;
  2053. }
  2054. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2055. {
  2056. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2057. }
  2058. static int
  2059. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2060. struct intel_ring_buffer *pipelined)
  2061. {
  2062. int ret;
  2063. if (obj->fenced_gpu_access) {
  2064. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2065. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  2066. 0, obj->base.write_domain);
  2067. if (ret)
  2068. return ret;
  2069. }
  2070. obj->fenced_gpu_access = false;
  2071. }
  2072. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2073. if (!ring_passed_seqno(obj->last_fenced_ring,
  2074. obj->last_fenced_seqno)) {
  2075. ret = i915_wait_request(obj->last_fenced_ring,
  2076. obj->last_fenced_seqno);
  2077. if (ret)
  2078. return ret;
  2079. }
  2080. obj->last_fenced_seqno = 0;
  2081. obj->last_fenced_ring = NULL;
  2082. }
  2083. /* Ensure that all CPU reads are completed before installing a fence
  2084. * and all writes before removing the fence.
  2085. */
  2086. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2087. mb();
  2088. return 0;
  2089. }
  2090. int
  2091. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2092. {
  2093. int ret;
  2094. if (obj->tiling_mode)
  2095. i915_gem_release_mmap(obj);
  2096. ret = i915_gem_object_flush_fence(obj, NULL);
  2097. if (ret)
  2098. return ret;
  2099. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2100. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2101. i915_gem_clear_fence_reg(obj->base.dev,
  2102. &dev_priv->fence_regs[obj->fence_reg]);
  2103. obj->fence_reg = I915_FENCE_REG_NONE;
  2104. }
  2105. return 0;
  2106. }
  2107. static struct drm_i915_fence_reg *
  2108. i915_find_fence_reg(struct drm_device *dev,
  2109. struct intel_ring_buffer *pipelined)
  2110. {
  2111. struct drm_i915_private *dev_priv = dev->dev_private;
  2112. struct drm_i915_fence_reg *reg, *first, *avail;
  2113. int i;
  2114. /* First try to find a free reg */
  2115. avail = NULL;
  2116. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2117. reg = &dev_priv->fence_regs[i];
  2118. if (!reg->obj)
  2119. return reg;
  2120. if (!reg->obj->pin_count)
  2121. avail = reg;
  2122. }
  2123. if (avail == NULL)
  2124. return NULL;
  2125. /* None available, try to steal one or wait for a user to finish */
  2126. avail = first = NULL;
  2127. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2128. if (reg->obj->pin_count)
  2129. continue;
  2130. if (first == NULL)
  2131. first = reg;
  2132. if (!pipelined ||
  2133. !reg->obj->last_fenced_ring ||
  2134. reg->obj->last_fenced_ring == pipelined) {
  2135. avail = reg;
  2136. break;
  2137. }
  2138. }
  2139. if (avail == NULL)
  2140. avail = first;
  2141. return avail;
  2142. }
  2143. /**
  2144. * i915_gem_object_get_fence - set up a fence reg for an object
  2145. * @obj: object to map through a fence reg
  2146. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2147. * @interruptible: must we wait uninterruptibly for the register to retire?
  2148. *
  2149. * When mapping objects through the GTT, userspace wants to be able to write
  2150. * to them without having to worry about swizzling if the object is tiled.
  2151. *
  2152. * This function walks the fence regs looking for a free one for @obj,
  2153. * stealing one if it can't find any.
  2154. *
  2155. * It then sets up the reg based on the object's properties: address, pitch
  2156. * and tiling format.
  2157. */
  2158. int
  2159. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2160. struct intel_ring_buffer *pipelined)
  2161. {
  2162. struct drm_device *dev = obj->base.dev;
  2163. struct drm_i915_private *dev_priv = dev->dev_private;
  2164. struct drm_i915_fence_reg *reg;
  2165. int ret;
  2166. /* XXX disable pipelining. There are bugs. Shocking. */
  2167. pipelined = NULL;
  2168. /* Just update our place in the LRU if our fence is getting reused. */
  2169. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2170. reg = &dev_priv->fence_regs[obj->fence_reg];
  2171. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2172. if (obj->tiling_changed) {
  2173. ret = i915_gem_object_flush_fence(obj, pipelined);
  2174. if (ret)
  2175. return ret;
  2176. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2177. pipelined = NULL;
  2178. if (pipelined) {
  2179. reg->setup_seqno =
  2180. i915_gem_next_request_seqno(pipelined);
  2181. obj->last_fenced_seqno = reg->setup_seqno;
  2182. obj->last_fenced_ring = pipelined;
  2183. }
  2184. goto update;
  2185. }
  2186. if (!pipelined) {
  2187. if (reg->setup_seqno) {
  2188. if (!ring_passed_seqno(obj->last_fenced_ring,
  2189. reg->setup_seqno)) {
  2190. ret = i915_wait_request(obj->last_fenced_ring,
  2191. reg->setup_seqno);
  2192. if (ret)
  2193. return ret;
  2194. }
  2195. reg->setup_seqno = 0;
  2196. }
  2197. } else if (obj->last_fenced_ring &&
  2198. obj->last_fenced_ring != pipelined) {
  2199. ret = i915_gem_object_flush_fence(obj, pipelined);
  2200. if (ret)
  2201. return ret;
  2202. }
  2203. return 0;
  2204. }
  2205. reg = i915_find_fence_reg(dev, pipelined);
  2206. if (reg == NULL)
  2207. return -ENOSPC;
  2208. ret = i915_gem_object_flush_fence(obj, pipelined);
  2209. if (ret)
  2210. return ret;
  2211. if (reg->obj) {
  2212. struct drm_i915_gem_object *old = reg->obj;
  2213. drm_gem_object_reference(&old->base);
  2214. if (old->tiling_mode)
  2215. i915_gem_release_mmap(old);
  2216. ret = i915_gem_object_flush_fence(old, pipelined);
  2217. if (ret) {
  2218. drm_gem_object_unreference(&old->base);
  2219. return ret;
  2220. }
  2221. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2222. pipelined = NULL;
  2223. old->fence_reg = I915_FENCE_REG_NONE;
  2224. old->last_fenced_ring = pipelined;
  2225. old->last_fenced_seqno =
  2226. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2227. drm_gem_object_unreference(&old->base);
  2228. } else if (obj->last_fenced_seqno == 0)
  2229. pipelined = NULL;
  2230. reg->obj = obj;
  2231. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2232. obj->fence_reg = reg - dev_priv->fence_regs;
  2233. obj->last_fenced_ring = pipelined;
  2234. reg->setup_seqno =
  2235. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2236. obj->last_fenced_seqno = reg->setup_seqno;
  2237. update:
  2238. obj->tiling_changed = false;
  2239. switch (INTEL_INFO(dev)->gen) {
  2240. case 7:
  2241. case 6:
  2242. ret = sandybridge_write_fence_reg(obj, pipelined);
  2243. break;
  2244. case 5:
  2245. case 4:
  2246. ret = i965_write_fence_reg(obj, pipelined);
  2247. break;
  2248. case 3:
  2249. ret = i915_write_fence_reg(obj, pipelined);
  2250. break;
  2251. case 2:
  2252. ret = i830_write_fence_reg(obj, pipelined);
  2253. break;
  2254. }
  2255. return ret;
  2256. }
  2257. /**
  2258. * i915_gem_clear_fence_reg - clear out fence register info
  2259. * @obj: object to clear
  2260. *
  2261. * Zeroes out the fence register itself and clears out the associated
  2262. * data structures in dev_priv and obj.
  2263. */
  2264. static void
  2265. i915_gem_clear_fence_reg(struct drm_device *dev,
  2266. struct drm_i915_fence_reg *reg)
  2267. {
  2268. drm_i915_private_t *dev_priv = dev->dev_private;
  2269. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2270. switch (INTEL_INFO(dev)->gen) {
  2271. case 7:
  2272. case 6:
  2273. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2274. break;
  2275. case 5:
  2276. case 4:
  2277. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2278. break;
  2279. case 3:
  2280. if (fence_reg >= 8)
  2281. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2282. else
  2283. case 2:
  2284. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2285. I915_WRITE(fence_reg, 0);
  2286. break;
  2287. }
  2288. list_del_init(&reg->lru_list);
  2289. reg->obj = NULL;
  2290. reg->setup_seqno = 0;
  2291. }
  2292. /**
  2293. * Finds free space in the GTT aperture and binds the object there.
  2294. */
  2295. static int
  2296. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2297. unsigned alignment,
  2298. bool map_and_fenceable)
  2299. {
  2300. struct drm_device *dev = obj->base.dev;
  2301. drm_i915_private_t *dev_priv = dev->dev_private;
  2302. struct drm_mm_node *free_space;
  2303. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2304. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2305. bool mappable, fenceable;
  2306. int ret;
  2307. if (obj->madv != I915_MADV_WILLNEED) {
  2308. DRM_ERROR("Attempting to bind a purgeable object\n");
  2309. return -EINVAL;
  2310. }
  2311. fence_size = i915_gem_get_gtt_size(obj);
  2312. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2313. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2314. if (alignment == 0)
  2315. alignment = map_and_fenceable ? fence_alignment :
  2316. unfenced_alignment;
  2317. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2318. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2319. return -EINVAL;
  2320. }
  2321. size = map_and_fenceable ? fence_size : obj->base.size;
  2322. /* If the object is bigger than the entire aperture, reject it early
  2323. * before evicting everything in a vain attempt to find space.
  2324. */
  2325. if (obj->base.size >
  2326. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2327. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2328. return -E2BIG;
  2329. }
  2330. search_free:
  2331. if (map_and_fenceable)
  2332. free_space =
  2333. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2334. size, alignment, 0,
  2335. dev_priv->mm.gtt_mappable_end,
  2336. 0);
  2337. else
  2338. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2339. size, alignment, 0);
  2340. if (free_space != NULL) {
  2341. if (map_and_fenceable)
  2342. obj->gtt_space =
  2343. drm_mm_get_block_range_generic(free_space,
  2344. size, alignment, 0,
  2345. dev_priv->mm.gtt_mappable_end,
  2346. 0);
  2347. else
  2348. obj->gtt_space =
  2349. drm_mm_get_block(free_space, size, alignment);
  2350. }
  2351. if (obj->gtt_space == NULL) {
  2352. /* If the gtt is empty and we're still having trouble
  2353. * fitting our object in, we're out of memory.
  2354. */
  2355. ret = i915_gem_evict_something(dev, size, alignment,
  2356. map_and_fenceable);
  2357. if (ret)
  2358. return ret;
  2359. goto search_free;
  2360. }
  2361. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2362. if (ret) {
  2363. drm_mm_put_block(obj->gtt_space);
  2364. obj->gtt_space = NULL;
  2365. if (ret == -ENOMEM) {
  2366. /* first try to reclaim some memory by clearing the GTT */
  2367. ret = i915_gem_evict_everything(dev, false);
  2368. if (ret) {
  2369. /* now try to shrink everyone else */
  2370. if (gfpmask) {
  2371. gfpmask = 0;
  2372. goto search_free;
  2373. }
  2374. return -ENOMEM;
  2375. }
  2376. goto search_free;
  2377. }
  2378. return ret;
  2379. }
  2380. ret = i915_gem_gtt_bind_object(obj);
  2381. if (ret) {
  2382. i915_gem_object_put_pages_gtt(obj);
  2383. drm_mm_put_block(obj->gtt_space);
  2384. obj->gtt_space = NULL;
  2385. if (i915_gem_evict_everything(dev, false))
  2386. return ret;
  2387. goto search_free;
  2388. }
  2389. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2390. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2391. /* Assert that the object is not currently in any GPU domain. As it
  2392. * wasn't in the GTT, there shouldn't be any way it could have been in
  2393. * a GPU cache
  2394. */
  2395. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2396. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2397. obj->gtt_offset = obj->gtt_space->start;
  2398. fenceable =
  2399. obj->gtt_space->size == fence_size &&
  2400. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2401. mappable =
  2402. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2403. obj->map_and_fenceable = mappable && fenceable;
  2404. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2405. return 0;
  2406. }
  2407. void
  2408. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2409. {
  2410. /* If we don't have a page list set up, then we're not pinned
  2411. * to GPU, and we can ignore the cache flush because it'll happen
  2412. * again at bind time.
  2413. */
  2414. if (obj->pages == NULL)
  2415. return;
  2416. /* If the GPU is snooping the contents of the CPU cache,
  2417. * we do not need to manually clear the CPU cache lines. However,
  2418. * the caches are only snooped when the render cache is
  2419. * flushed/invalidated. As we always have to emit invalidations
  2420. * and flushes when moving into and out of the RENDER domain, correct
  2421. * snooping behaviour occurs naturally as the result of our domain
  2422. * tracking.
  2423. */
  2424. if (obj->cache_level != I915_CACHE_NONE)
  2425. return;
  2426. trace_i915_gem_object_clflush(obj);
  2427. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2428. }
  2429. /** Flushes any GPU write domain for the object if it's dirty. */
  2430. static int
  2431. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2432. {
  2433. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2434. return 0;
  2435. /* Queue the GPU write cache flushing we need. */
  2436. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2437. }
  2438. /** Flushes the GTT write domain for the object if it's dirty. */
  2439. static void
  2440. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2441. {
  2442. uint32_t old_write_domain;
  2443. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2444. return;
  2445. /* No actual flushing is required for the GTT write domain. Writes
  2446. * to it immediately go to main memory as far as we know, so there's
  2447. * no chipset flush. It also doesn't land in render cache.
  2448. *
  2449. * However, we do have to enforce the order so that all writes through
  2450. * the GTT land before any writes to the device, such as updates to
  2451. * the GATT itself.
  2452. */
  2453. wmb();
  2454. old_write_domain = obj->base.write_domain;
  2455. obj->base.write_domain = 0;
  2456. trace_i915_gem_object_change_domain(obj,
  2457. obj->base.read_domains,
  2458. old_write_domain);
  2459. }
  2460. /** Flushes the CPU write domain for the object if it's dirty. */
  2461. static void
  2462. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2463. {
  2464. uint32_t old_write_domain;
  2465. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2466. return;
  2467. i915_gem_clflush_object(obj);
  2468. intel_gtt_chipset_flush();
  2469. old_write_domain = obj->base.write_domain;
  2470. obj->base.write_domain = 0;
  2471. trace_i915_gem_object_change_domain(obj,
  2472. obj->base.read_domains,
  2473. old_write_domain);
  2474. }
  2475. /**
  2476. * Moves a single object to the GTT read, and possibly write domain.
  2477. *
  2478. * This function returns when the move is complete, including waiting on
  2479. * flushes to occur.
  2480. */
  2481. int
  2482. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2483. {
  2484. uint32_t old_write_domain, old_read_domains;
  2485. int ret;
  2486. /* Not valid to be called on unbound objects. */
  2487. if (obj->gtt_space == NULL)
  2488. return -EINVAL;
  2489. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2490. return 0;
  2491. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2492. if (ret)
  2493. return ret;
  2494. if (obj->pending_gpu_write || write) {
  2495. ret = i915_gem_object_wait_rendering(obj);
  2496. if (ret)
  2497. return ret;
  2498. }
  2499. i915_gem_object_flush_cpu_write_domain(obj);
  2500. old_write_domain = obj->base.write_domain;
  2501. old_read_domains = obj->base.read_domains;
  2502. /* It should now be out of any other write domains, and we can update
  2503. * the domain values for our changes.
  2504. */
  2505. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2506. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2507. if (write) {
  2508. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2509. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2510. obj->dirty = 1;
  2511. }
  2512. trace_i915_gem_object_change_domain(obj,
  2513. old_read_domains,
  2514. old_write_domain);
  2515. return 0;
  2516. }
  2517. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2518. enum i915_cache_level cache_level)
  2519. {
  2520. int ret;
  2521. if (obj->cache_level == cache_level)
  2522. return 0;
  2523. if (obj->pin_count) {
  2524. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2525. return -EBUSY;
  2526. }
  2527. if (obj->gtt_space) {
  2528. ret = i915_gem_object_finish_gpu(obj);
  2529. if (ret)
  2530. return ret;
  2531. i915_gem_object_finish_gtt(obj);
  2532. /* Before SandyBridge, you could not use tiling or fence
  2533. * registers with snooped memory, so relinquish any fences
  2534. * currently pointing to our region in the aperture.
  2535. */
  2536. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2537. ret = i915_gem_object_put_fence(obj);
  2538. if (ret)
  2539. return ret;
  2540. }
  2541. i915_gem_gtt_rebind_object(obj, cache_level);
  2542. }
  2543. if (cache_level == I915_CACHE_NONE) {
  2544. u32 old_read_domains, old_write_domain;
  2545. /* If we're coming from LLC cached, then we haven't
  2546. * actually been tracking whether the data is in the
  2547. * CPU cache or not, since we only allow one bit set
  2548. * in obj->write_domain and have been skipping the clflushes.
  2549. * Just set it to the CPU cache for now.
  2550. */
  2551. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2552. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2553. old_read_domains = obj->base.read_domains;
  2554. old_write_domain = obj->base.write_domain;
  2555. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2556. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2557. trace_i915_gem_object_change_domain(obj,
  2558. old_read_domains,
  2559. old_write_domain);
  2560. }
  2561. obj->cache_level = cache_level;
  2562. return 0;
  2563. }
  2564. /*
  2565. * Prepare buffer for display plane (scanout, cursors, etc).
  2566. * Can be called from an uninterruptible phase (modesetting) and allows
  2567. * any flushes to be pipelined (for pageflips).
  2568. *
  2569. * For the display plane, we want to be in the GTT but out of any write
  2570. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2571. * ability to pipeline the waits, pinning and any additional subtleties
  2572. * that may differentiate the display plane from ordinary buffers.
  2573. */
  2574. int
  2575. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2576. u32 alignment,
  2577. struct intel_ring_buffer *pipelined)
  2578. {
  2579. u32 old_read_domains, old_write_domain;
  2580. int ret;
  2581. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2582. if (ret)
  2583. return ret;
  2584. if (pipelined != obj->ring) {
  2585. ret = i915_gem_object_wait_rendering(obj);
  2586. if (ret)
  2587. return ret;
  2588. }
  2589. /* The display engine is not coherent with the LLC cache on gen6. As
  2590. * a result, we make sure that the pinning that is about to occur is
  2591. * done with uncached PTEs. This is lowest common denominator for all
  2592. * chipsets.
  2593. *
  2594. * However for gen6+, we could do better by using the GFDT bit instead
  2595. * of uncaching, which would allow us to flush all the LLC-cached data
  2596. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2597. */
  2598. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2599. if (ret)
  2600. return ret;
  2601. /* As the user may map the buffer once pinned in the display plane
  2602. * (e.g. libkms for the bootup splash), we have to ensure that we
  2603. * always use map_and_fenceable for all scanout buffers.
  2604. */
  2605. ret = i915_gem_object_pin(obj, alignment, true);
  2606. if (ret)
  2607. return ret;
  2608. i915_gem_object_flush_cpu_write_domain(obj);
  2609. old_write_domain = obj->base.write_domain;
  2610. old_read_domains = obj->base.read_domains;
  2611. /* It should now be out of any other write domains, and we can update
  2612. * the domain values for our changes.
  2613. */
  2614. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2615. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2616. trace_i915_gem_object_change_domain(obj,
  2617. old_read_domains,
  2618. old_write_domain);
  2619. return 0;
  2620. }
  2621. int
  2622. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2623. {
  2624. int ret;
  2625. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2626. return 0;
  2627. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2628. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2629. if (ret)
  2630. return ret;
  2631. }
  2632. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2633. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2634. return i915_gem_object_wait_rendering(obj);
  2635. }
  2636. /**
  2637. * Moves a single object to the CPU read, and possibly write domain.
  2638. *
  2639. * This function returns when the move is complete, including waiting on
  2640. * flushes to occur.
  2641. */
  2642. static int
  2643. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2644. {
  2645. uint32_t old_write_domain, old_read_domains;
  2646. int ret;
  2647. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2648. return 0;
  2649. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2650. if (ret)
  2651. return ret;
  2652. ret = i915_gem_object_wait_rendering(obj);
  2653. if (ret)
  2654. return ret;
  2655. i915_gem_object_flush_gtt_write_domain(obj);
  2656. /* If we have a partially-valid cache of the object in the CPU,
  2657. * finish invalidating it and free the per-page flags.
  2658. */
  2659. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2660. old_write_domain = obj->base.write_domain;
  2661. old_read_domains = obj->base.read_domains;
  2662. /* Flush the CPU cache if it's still invalid. */
  2663. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2664. i915_gem_clflush_object(obj);
  2665. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2666. }
  2667. /* It should now be out of any other write domains, and we can update
  2668. * the domain values for our changes.
  2669. */
  2670. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2671. /* If we're writing through the CPU, then the GPU read domains will
  2672. * need to be invalidated at next use.
  2673. */
  2674. if (write) {
  2675. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2676. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2677. }
  2678. trace_i915_gem_object_change_domain(obj,
  2679. old_read_domains,
  2680. old_write_domain);
  2681. return 0;
  2682. }
  2683. /**
  2684. * Moves the object from a partially CPU read to a full one.
  2685. *
  2686. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2687. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2688. */
  2689. static void
  2690. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2691. {
  2692. if (!obj->page_cpu_valid)
  2693. return;
  2694. /* If we're partially in the CPU read domain, finish moving it in.
  2695. */
  2696. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2697. int i;
  2698. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2699. if (obj->page_cpu_valid[i])
  2700. continue;
  2701. drm_clflush_pages(obj->pages + i, 1);
  2702. }
  2703. }
  2704. /* Free the page_cpu_valid mappings which are now stale, whether
  2705. * or not we've got I915_GEM_DOMAIN_CPU.
  2706. */
  2707. kfree(obj->page_cpu_valid);
  2708. obj->page_cpu_valid = NULL;
  2709. }
  2710. /**
  2711. * Set the CPU read domain on a range of the object.
  2712. *
  2713. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2714. * not entirely valid. The page_cpu_valid member of the object flags which
  2715. * pages have been flushed, and will be respected by
  2716. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2717. * of the whole object.
  2718. *
  2719. * This function returns when the move is complete, including waiting on
  2720. * flushes to occur.
  2721. */
  2722. static int
  2723. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2724. uint64_t offset, uint64_t size)
  2725. {
  2726. uint32_t old_read_domains;
  2727. int i, ret;
  2728. if (offset == 0 && size == obj->base.size)
  2729. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2730. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2731. if (ret)
  2732. return ret;
  2733. ret = i915_gem_object_wait_rendering(obj);
  2734. if (ret)
  2735. return ret;
  2736. i915_gem_object_flush_gtt_write_domain(obj);
  2737. /* If we're already fully in the CPU read domain, we're done. */
  2738. if (obj->page_cpu_valid == NULL &&
  2739. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2740. return 0;
  2741. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2742. * newly adding I915_GEM_DOMAIN_CPU
  2743. */
  2744. if (obj->page_cpu_valid == NULL) {
  2745. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2746. GFP_KERNEL);
  2747. if (obj->page_cpu_valid == NULL)
  2748. return -ENOMEM;
  2749. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2750. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2751. /* Flush the cache on any pages that are still invalid from the CPU's
  2752. * perspective.
  2753. */
  2754. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2755. i++) {
  2756. if (obj->page_cpu_valid[i])
  2757. continue;
  2758. drm_clflush_pages(obj->pages + i, 1);
  2759. obj->page_cpu_valid[i] = 1;
  2760. }
  2761. /* It should now be out of any other write domains, and we can update
  2762. * the domain values for our changes.
  2763. */
  2764. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2765. old_read_domains = obj->base.read_domains;
  2766. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2767. trace_i915_gem_object_change_domain(obj,
  2768. old_read_domains,
  2769. obj->base.write_domain);
  2770. return 0;
  2771. }
  2772. /* Throttle our rendering by waiting until the ring has completed our requests
  2773. * emitted over 20 msec ago.
  2774. *
  2775. * Note that if we were to use the current jiffies each time around the loop,
  2776. * we wouldn't escape the function with any frames outstanding if the time to
  2777. * render a frame was over 20ms.
  2778. *
  2779. * This should get us reasonable parallelism between CPU and GPU but also
  2780. * relatively low latency when blocking on a particular request to finish.
  2781. */
  2782. static int
  2783. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2784. {
  2785. struct drm_i915_private *dev_priv = dev->dev_private;
  2786. struct drm_i915_file_private *file_priv = file->driver_priv;
  2787. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2788. struct drm_i915_gem_request *request;
  2789. struct intel_ring_buffer *ring = NULL;
  2790. u32 seqno = 0;
  2791. int ret;
  2792. if (atomic_read(&dev_priv->mm.wedged))
  2793. return -EIO;
  2794. spin_lock(&file_priv->mm.lock);
  2795. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2796. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2797. break;
  2798. ring = request->ring;
  2799. seqno = request->seqno;
  2800. }
  2801. spin_unlock(&file_priv->mm.lock);
  2802. if (seqno == 0)
  2803. return 0;
  2804. ret = 0;
  2805. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2806. /* And wait for the seqno passing without holding any locks and
  2807. * causing extra latency for others. This is safe as the irq
  2808. * generation is designed to be run atomically and so is
  2809. * lockless.
  2810. */
  2811. if (ring->irq_get(ring)) {
  2812. ret = wait_event_interruptible(ring->irq_queue,
  2813. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2814. || atomic_read(&dev_priv->mm.wedged));
  2815. ring->irq_put(ring);
  2816. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2817. ret = -EIO;
  2818. }
  2819. }
  2820. if (ret == 0)
  2821. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2822. return ret;
  2823. }
  2824. int
  2825. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2826. uint32_t alignment,
  2827. bool map_and_fenceable)
  2828. {
  2829. struct drm_device *dev = obj->base.dev;
  2830. struct drm_i915_private *dev_priv = dev->dev_private;
  2831. int ret;
  2832. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2833. WARN_ON(i915_verify_lists(dev));
  2834. if (obj->gtt_space != NULL) {
  2835. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2836. (map_and_fenceable && !obj->map_and_fenceable)) {
  2837. WARN(obj->pin_count,
  2838. "bo is already pinned with incorrect alignment:"
  2839. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2840. " obj->map_and_fenceable=%d\n",
  2841. obj->gtt_offset, alignment,
  2842. map_and_fenceable,
  2843. obj->map_and_fenceable);
  2844. ret = i915_gem_object_unbind(obj);
  2845. if (ret)
  2846. return ret;
  2847. }
  2848. }
  2849. if (obj->gtt_space == NULL) {
  2850. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2851. map_and_fenceable);
  2852. if (ret)
  2853. return ret;
  2854. }
  2855. if (obj->pin_count++ == 0) {
  2856. if (!obj->active)
  2857. list_move_tail(&obj->mm_list,
  2858. &dev_priv->mm.pinned_list);
  2859. }
  2860. obj->pin_mappable |= map_and_fenceable;
  2861. WARN_ON(i915_verify_lists(dev));
  2862. return 0;
  2863. }
  2864. void
  2865. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2866. {
  2867. struct drm_device *dev = obj->base.dev;
  2868. drm_i915_private_t *dev_priv = dev->dev_private;
  2869. WARN_ON(i915_verify_lists(dev));
  2870. BUG_ON(obj->pin_count == 0);
  2871. BUG_ON(obj->gtt_space == NULL);
  2872. if (--obj->pin_count == 0) {
  2873. if (!obj->active)
  2874. list_move_tail(&obj->mm_list,
  2875. &dev_priv->mm.inactive_list);
  2876. obj->pin_mappable = false;
  2877. }
  2878. WARN_ON(i915_verify_lists(dev));
  2879. }
  2880. int
  2881. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2882. struct drm_file *file)
  2883. {
  2884. struct drm_i915_gem_pin *args = data;
  2885. struct drm_i915_gem_object *obj;
  2886. int ret;
  2887. ret = i915_mutex_lock_interruptible(dev);
  2888. if (ret)
  2889. return ret;
  2890. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2891. if (&obj->base == NULL) {
  2892. ret = -ENOENT;
  2893. goto unlock;
  2894. }
  2895. if (obj->madv != I915_MADV_WILLNEED) {
  2896. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2897. ret = -EINVAL;
  2898. goto out;
  2899. }
  2900. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2901. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2902. args->handle);
  2903. ret = -EINVAL;
  2904. goto out;
  2905. }
  2906. obj->user_pin_count++;
  2907. obj->pin_filp = file;
  2908. if (obj->user_pin_count == 1) {
  2909. ret = i915_gem_object_pin(obj, args->alignment, true);
  2910. if (ret)
  2911. goto out;
  2912. }
  2913. /* XXX - flush the CPU caches for pinned objects
  2914. * as the X server doesn't manage domains yet
  2915. */
  2916. i915_gem_object_flush_cpu_write_domain(obj);
  2917. args->offset = obj->gtt_offset;
  2918. out:
  2919. drm_gem_object_unreference(&obj->base);
  2920. unlock:
  2921. mutex_unlock(&dev->struct_mutex);
  2922. return ret;
  2923. }
  2924. int
  2925. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2926. struct drm_file *file)
  2927. {
  2928. struct drm_i915_gem_pin *args = data;
  2929. struct drm_i915_gem_object *obj;
  2930. int ret;
  2931. ret = i915_mutex_lock_interruptible(dev);
  2932. if (ret)
  2933. return ret;
  2934. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2935. if (&obj->base == NULL) {
  2936. ret = -ENOENT;
  2937. goto unlock;
  2938. }
  2939. if (obj->pin_filp != file) {
  2940. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2941. args->handle);
  2942. ret = -EINVAL;
  2943. goto out;
  2944. }
  2945. obj->user_pin_count--;
  2946. if (obj->user_pin_count == 0) {
  2947. obj->pin_filp = NULL;
  2948. i915_gem_object_unpin(obj);
  2949. }
  2950. out:
  2951. drm_gem_object_unreference(&obj->base);
  2952. unlock:
  2953. mutex_unlock(&dev->struct_mutex);
  2954. return ret;
  2955. }
  2956. int
  2957. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2958. struct drm_file *file)
  2959. {
  2960. struct drm_i915_gem_busy *args = data;
  2961. struct drm_i915_gem_object *obj;
  2962. int ret;
  2963. ret = i915_mutex_lock_interruptible(dev);
  2964. if (ret)
  2965. return ret;
  2966. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2967. if (&obj->base == NULL) {
  2968. ret = -ENOENT;
  2969. goto unlock;
  2970. }
  2971. /* Count all active objects as busy, even if they are currently not used
  2972. * by the gpu. Users of this interface expect objects to eventually
  2973. * become non-busy without any further actions, therefore emit any
  2974. * necessary flushes here.
  2975. */
  2976. args->busy = obj->active;
  2977. if (args->busy) {
  2978. /* Unconditionally flush objects, even when the gpu still uses this
  2979. * object. Userspace calling this function indicates that it wants to
  2980. * use this buffer rather sooner than later, so issuing the required
  2981. * flush earlier is beneficial.
  2982. */
  2983. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2984. ret = i915_gem_flush_ring(obj->ring,
  2985. 0, obj->base.write_domain);
  2986. } else if (obj->ring->outstanding_lazy_request ==
  2987. obj->last_rendering_seqno) {
  2988. struct drm_i915_gem_request *request;
  2989. /* This ring is not being cleared by active usage,
  2990. * so emit a request to do so.
  2991. */
  2992. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2993. if (request)
  2994. ret = i915_add_request(obj->ring, NULL,request);
  2995. else
  2996. ret = -ENOMEM;
  2997. }
  2998. /* Update the active list for the hardware's current position.
  2999. * Otherwise this only updates on a delayed timer or when irqs
  3000. * are actually unmasked, and our working set ends up being
  3001. * larger than required.
  3002. */
  3003. i915_gem_retire_requests_ring(obj->ring);
  3004. args->busy = obj->active;
  3005. }
  3006. drm_gem_object_unreference(&obj->base);
  3007. unlock:
  3008. mutex_unlock(&dev->struct_mutex);
  3009. return ret;
  3010. }
  3011. int
  3012. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3013. struct drm_file *file_priv)
  3014. {
  3015. return i915_gem_ring_throttle(dev, file_priv);
  3016. }
  3017. int
  3018. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3019. struct drm_file *file_priv)
  3020. {
  3021. struct drm_i915_gem_madvise *args = data;
  3022. struct drm_i915_gem_object *obj;
  3023. int ret;
  3024. switch (args->madv) {
  3025. case I915_MADV_DONTNEED:
  3026. case I915_MADV_WILLNEED:
  3027. break;
  3028. default:
  3029. return -EINVAL;
  3030. }
  3031. ret = i915_mutex_lock_interruptible(dev);
  3032. if (ret)
  3033. return ret;
  3034. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3035. if (&obj->base == NULL) {
  3036. ret = -ENOENT;
  3037. goto unlock;
  3038. }
  3039. if (obj->pin_count) {
  3040. ret = -EINVAL;
  3041. goto out;
  3042. }
  3043. if (obj->madv != __I915_MADV_PURGED)
  3044. obj->madv = args->madv;
  3045. /* if the object is no longer bound, discard its backing storage */
  3046. if (i915_gem_object_is_purgeable(obj) &&
  3047. obj->gtt_space == NULL)
  3048. i915_gem_object_truncate(obj);
  3049. args->retained = obj->madv != __I915_MADV_PURGED;
  3050. out:
  3051. drm_gem_object_unreference(&obj->base);
  3052. unlock:
  3053. mutex_unlock(&dev->struct_mutex);
  3054. return ret;
  3055. }
  3056. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3057. size_t size)
  3058. {
  3059. struct drm_i915_private *dev_priv = dev->dev_private;
  3060. struct drm_i915_gem_object *obj;
  3061. struct address_space *mapping;
  3062. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3063. if (obj == NULL)
  3064. return NULL;
  3065. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3066. kfree(obj);
  3067. return NULL;
  3068. }
  3069. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3070. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3071. i915_gem_info_add_obj(dev_priv, size);
  3072. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3073. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3074. if (IS_GEN6(dev)) {
  3075. /* On Gen6, we can have the GPU use the LLC (the CPU
  3076. * cache) for about a 10% performance improvement
  3077. * compared to uncached. Graphics requests other than
  3078. * display scanout are coherent with the CPU in
  3079. * accessing this cache. This means in this mode we
  3080. * don't need to clflush on the CPU side, and on the
  3081. * GPU side we only need to flush internal caches to
  3082. * get data visible to the CPU.
  3083. *
  3084. * However, we maintain the display planes as UC, and so
  3085. * need to rebind when first used as such.
  3086. */
  3087. obj->cache_level = I915_CACHE_LLC;
  3088. } else
  3089. obj->cache_level = I915_CACHE_NONE;
  3090. obj->base.driver_private = NULL;
  3091. obj->fence_reg = I915_FENCE_REG_NONE;
  3092. INIT_LIST_HEAD(&obj->mm_list);
  3093. INIT_LIST_HEAD(&obj->gtt_list);
  3094. INIT_LIST_HEAD(&obj->ring_list);
  3095. INIT_LIST_HEAD(&obj->exec_list);
  3096. INIT_LIST_HEAD(&obj->gpu_write_list);
  3097. obj->madv = I915_MADV_WILLNEED;
  3098. /* Avoid an unnecessary call to unbind on the first bind. */
  3099. obj->map_and_fenceable = true;
  3100. return obj;
  3101. }
  3102. int i915_gem_init_object(struct drm_gem_object *obj)
  3103. {
  3104. BUG();
  3105. return 0;
  3106. }
  3107. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3108. {
  3109. struct drm_device *dev = obj->base.dev;
  3110. drm_i915_private_t *dev_priv = dev->dev_private;
  3111. int ret;
  3112. ret = i915_gem_object_unbind(obj);
  3113. if (ret == -ERESTARTSYS) {
  3114. list_move(&obj->mm_list,
  3115. &dev_priv->mm.deferred_free_list);
  3116. return;
  3117. }
  3118. trace_i915_gem_object_destroy(obj);
  3119. if (obj->base.map_list.map)
  3120. i915_gem_free_mmap_offset(obj);
  3121. drm_gem_object_release(&obj->base);
  3122. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3123. kfree(obj->page_cpu_valid);
  3124. kfree(obj->bit_17);
  3125. kfree(obj);
  3126. }
  3127. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3128. {
  3129. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3130. struct drm_device *dev = obj->base.dev;
  3131. while (obj->pin_count > 0)
  3132. i915_gem_object_unpin(obj);
  3133. if (obj->phys_obj)
  3134. i915_gem_detach_phys_object(dev, obj);
  3135. i915_gem_free_object_tail(obj);
  3136. }
  3137. int
  3138. i915_gem_idle(struct drm_device *dev)
  3139. {
  3140. drm_i915_private_t *dev_priv = dev->dev_private;
  3141. int ret;
  3142. mutex_lock(&dev->struct_mutex);
  3143. if (dev_priv->mm.suspended) {
  3144. mutex_unlock(&dev->struct_mutex);
  3145. return 0;
  3146. }
  3147. ret = i915_gpu_idle(dev);
  3148. if (ret) {
  3149. mutex_unlock(&dev->struct_mutex);
  3150. return ret;
  3151. }
  3152. /* Under UMS, be paranoid and evict. */
  3153. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3154. ret = i915_gem_evict_inactive(dev, false);
  3155. if (ret) {
  3156. mutex_unlock(&dev->struct_mutex);
  3157. return ret;
  3158. }
  3159. }
  3160. i915_gem_reset_fences(dev);
  3161. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3162. * We need to replace this with a semaphore, or something.
  3163. * And not confound mm.suspended!
  3164. */
  3165. dev_priv->mm.suspended = 1;
  3166. del_timer_sync(&dev_priv->hangcheck_timer);
  3167. i915_kernel_lost_context(dev);
  3168. i915_gem_cleanup_ringbuffer(dev);
  3169. mutex_unlock(&dev->struct_mutex);
  3170. /* Cancel the retire work handler, which should be idle now. */
  3171. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3172. return 0;
  3173. }
  3174. int
  3175. i915_gem_init_ringbuffer(struct drm_device *dev)
  3176. {
  3177. drm_i915_private_t *dev_priv = dev->dev_private;
  3178. int ret;
  3179. ret = intel_init_render_ring_buffer(dev);
  3180. if (ret)
  3181. return ret;
  3182. if (HAS_BSD(dev)) {
  3183. ret = intel_init_bsd_ring_buffer(dev);
  3184. if (ret)
  3185. goto cleanup_render_ring;
  3186. }
  3187. if (HAS_BLT(dev)) {
  3188. ret = intel_init_blt_ring_buffer(dev);
  3189. if (ret)
  3190. goto cleanup_bsd_ring;
  3191. }
  3192. dev_priv->next_seqno = 1;
  3193. return 0;
  3194. cleanup_bsd_ring:
  3195. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3196. cleanup_render_ring:
  3197. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3198. return ret;
  3199. }
  3200. void
  3201. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3202. {
  3203. drm_i915_private_t *dev_priv = dev->dev_private;
  3204. int i;
  3205. for (i = 0; i < I915_NUM_RINGS; i++)
  3206. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3207. }
  3208. int
  3209. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3210. struct drm_file *file_priv)
  3211. {
  3212. drm_i915_private_t *dev_priv = dev->dev_private;
  3213. int ret, i;
  3214. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3215. return 0;
  3216. if (atomic_read(&dev_priv->mm.wedged)) {
  3217. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3218. atomic_set(&dev_priv->mm.wedged, 0);
  3219. }
  3220. mutex_lock(&dev->struct_mutex);
  3221. dev_priv->mm.suspended = 0;
  3222. ret = i915_gem_init_ringbuffer(dev);
  3223. if (ret != 0) {
  3224. mutex_unlock(&dev->struct_mutex);
  3225. return ret;
  3226. }
  3227. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3228. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3229. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3230. for (i = 0; i < I915_NUM_RINGS; i++) {
  3231. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3232. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3233. }
  3234. mutex_unlock(&dev->struct_mutex);
  3235. ret = drm_irq_install(dev);
  3236. if (ret)
  3237. goto cleanup_ringbuffer;
  3238. return 0;
  3239. cleanup_ringbuffer:
  3240. mutex_lock(&dev->struct_mutex);
  3241. i915_gem_cleanup_ringbuffer(dev);
  3242. dev_priv->mm.suspended = 1;
  3243. mutex_unlock(&dev->struct_mutex);
  3244. return ret;
  3245. }
  3246. int
  3247. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3248. struct drm_file *file_priv)
  3249. {
  3250. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3251. return 0;
  3252. drm_irq_uninstall(dev);
  3253. return i915_gem_idle(dev);
  3254. }
  3255. void
  3256. i915_gem_lastclose(struct drm_device *dev)
  3257. {
  3258. int ret;
  3259. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3260. return;
  3261. ret = i915_gem_idle(dev);
  3262. if (ret)
  3263. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3264. }
  3265. static void
  3266. init_ring_lists(struct intel_ring_buffer *ring)
  3267. {
  3268. INIT_LIST_HEAD(&ring->active_list);
  3269. INIT_LIST_HEAD(&ring->request_list);
  3270. INIT_LIST_HEAD(&ring->gpu_write_list);
  3271. }
  3272. void
  3273. i915_gem_load(struct drm_device *dev)
  3274. {
  3275. int i;
  3276. drm_i915_private_t *dev_priv = dev->dev_private;
  3277. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3278. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3279. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3280. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3281. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3282. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3283. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3284. for (i = 0; i < I915_NUM_RINGS; i++)
  3285. init_ring_lists(&dev_priv->ring[i]);
  3286. for (i = 0; i < 16; i++)
  3287. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3288. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3289. i915_gem_retire_work_handler);
  3290. init_completion(&dev_priv->error_completion);
  3291. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3292. if (IS_GEN3(dev)) {
  3293. u32 tmp = I915_READ(MI_ARB_STATE);
  3294. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3295. /* arb state is a masked write, so set bit + bit in mask */
  3296. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3297. I915_WRITE(MI_ARB_STATE, tmp);
  3298. }
  3299. }
  3300. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3301. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3302. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3303. dev_priv->fence_reg_start = 3;
  3304. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3305. dev_priv->num_fence_regs = 16;
  3306. else
  3307. dev_priv->num_fence_regs = 8;
  3308. /* Initialize fence registers to zero */
  3309. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3310. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3311. }
  3312. i915_gem_detect_bit_6_swizzle(dev);
  3313. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3314. dev_priv->mm.interruptible = true;
  3315. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3316. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3317. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3318. }
  3319. /*
  3320. * Create a physically contiguous memory object for this object
  3321. * e.g. for cursor + overlay regs
  3322. */
  3323. static int i915_gem_init_phys_object(struct drm_device *dev,
  3324. int id, int size, int align)
  3325. {
  3326. drm_i915_private_t *dev_priv = dev->dev_private;
  3327. struct drm_i915_gem_phys_object *phys_obj;
  3328. int ret;
  3329. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3330. return 0;
  3331. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3332. if (!phys_obj)
  3333. return -ENOMEM;
  3334. phys_obj->id = id;
  3335. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3336. if (!phys_obj->handle) {
  3337. ret = -ENOMEM;
  3338. goto kfree_obj;
  3339. }
  3340. #ifdef CONFIG_X86
  3341. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3342. #endif
  3343. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3344. return 0;
  3345. kfree_obj:
  3346. kfree(phys_obj);
  3347. return ret;
  3348. }
  3349. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3350. {
  3351. drm_i915_private_t *dev_priv = dev->dev_private;
  3352. struct drm_i915_gem_phys_object *phys_obj;
  3353. if (!dev_priv->mm.phys_objs[id - 1])
  3354. return;
  3355. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3356. if (phys_obj->cur_obj) {
  3357. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3358. }
  3359. #ifdef CONFIG_X86
  3360. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3361. #endif
  3362. drm_pci_free(dev, phys_obj->handle);
  3363. kfree(phys_obj);
  3364. dev_priv->mm.phys_objs[id - 1] = NULL;
  3365. }
  3366. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3367. {
  3368. int i;
  3369. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3370. i915_gem_free_phys_object(dev, i);
  3371. }
  3372. void i915_gem_detach_phys_object(struct drm_device *dev,
  3373. struct drm_i915_gem_object *obj)
  3374. {
  3375. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3376. char *vaddr;
  3377. int i;
  3378. int page_count;
  3379. if (!obj->phys_obj)
  3380. return;
  3381. vaddr = obj->phys_obj->handle->vaddr;
  3382. page_count = obj->base.size / PAGE_SIZE;
  3383. for (i = 0; i < page_count; i++) {
  3384. struct page *page = shmem_read_mapping_page(mapping, i);
  3385. if (!IS_ERR(page)) {
  3386. char *dst = kmap_atomic(page);
  3387. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3388. kunmap_atomic(dst);
  3389. drm_clflush_pages(&page, 1);
  3390. set_page_dirty(page);
  3391. mark_page_accessed(page);
  3392. page_cache_release(page);
  3393. }
  3394. }
  3395. intel_gtt_chipset_flush();
  3396. obj->phys_obj->cur_obj = NULL;
  3397. obj->phys_obj = NULL;
  3398. }
  3399. int
  3400. i915_gem_attach_phys_object(struct drm_device *dev,
  3401. struct drm_i915_gem_object *obj,
  3402. int id,
  3403. int align)
  3404. {
  3405. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3406. drm_i915_private_t *dev_priv = dev->dev_private;
  3407. int ret = 0;
  3408. int page_count;
  3409. int i;
  3410. if (id > I915_MAX_PHYS_OBJECT)
  3411. return -EINVAL;
  3412. if (obj->phys_obj) {
  3413. if (obj->phys_obj->id == id)
  3414. return 0;
  3415. i915_gem_detach_phys_object(dev, obj);
  3416. }
  3417. /* create a new object */
  3418. if (!dev_priv->mm.phys_objs[id - 1]) {
  3419. ret = i915_gem_init_phys_object(dev, id,
  3420. obj->base.size, align);
  3421. if (ret) {
  3422. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3423. id, obj->base.size);
  3424. return ret;
  3425. }
  3426. }
  3427. /* bind to the object */
  3428. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3429. obj->phys_obj->cur_obj = obj;
  3430. page_count = obj->base.size / PAGE_SIZE;
  3431. for (i = 0; i < page_count; i++) {
  3432. struct page *page;
  3433. char *dst, *src;
  3434. page = shmem_read_mapping_page(mapping, i);
  3435. if (IS_ERR(page))
  3436. return PTR_ERR(page);
  3437. src = kmap_atomic(page);
  3438. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3439. memcpy(dst, src, PAGE_SIZE);
  3440. kunmap_atomic(src);
  3441. mark_page_accessed(page);
  3442. page_cache_release(page);
  3443. }
  3444. return 0;
  3445. }
  3446. static int
  3447. i915_gem_phys_pwrite(struct drm_device *dev,
  3448. struct drm_i915_gem_object *obj,
  3449. struct drm_i915_gem_pwrite *args,
  3450. struct drm_file *file_priv)
  3451. {
  3452. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3453. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3454. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3455. unsigned long unwritten;
  3456. /* The physical object once assigned is fixed for the lifetime
  3457. * of the obj, so we can safely drop the lock and continue
  3458. * to access vaddr.
  3459. */
  3460. mutex_unlock(&dev->struct_mutex);
  3461. unwritten = copy_from_user(vaddr, user_data, args->size);
  3462. mutex_lock(&dev->struct_mutex);
  3463. if (unwritten)
  3464. return -EFAULT;
  3465. }
  3466. intel_gtt_chipset_flush();
  3467. return 0;
  3468. }
  3469. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3470. {
  3471. struct drm_i915_file_private *file_priv = file->driver_priv;
  3472. /* Clean up our request list when the client is going away, so that
  3473. * later retire_requests won't dereference our soon-to-be-gone
  3474. * file_priv.
  3475. */
  3476. spin_lock(&file_priv->mm.lock);
  3477. while (!list_empty(&file_priv->mm.request_list)) {
  3478. struct drm_i915_gem_request *request;
  3479. request = list_first_entry(&file_priv->mm.request_list,
  3480. struct drm_i915_gem_request,
  3481. client_list);
  3482. list_del(&request->client_list);
  3483. request->file_priv = NULL;
  3484. }
  3485. spin_unlock(&file_priv->mm.lock);
  3486. }
  3487. static int
  3488. i915_gpu_is_active(struct drm_device *dev)
  3489. {
  3490. drm_i915_private_t *dev_priv = dev->dev_private;
  3491. int lists_empty;
  3492. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3493. list_empty(&dev_priv->mm.active_list);
  3494. return !lists_empty;
  3495. }
  3496. static int
  3497. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3498. {
  3499. struct drm_i915_private *dev_priv =
  3500. container_of(shrinker,
  3501. struct drm_i915_private,
  3502. mm.inactive_shrinker);
  3503. struct drm_device *dev = dev_priv->dev;
  3504. struct drm_i915_gem_object *obj, *next;
  3505. int nr_to_scan = sc->nr_to_scan;
  3506. int cnt;
  3507. if (!mutex_trylock(&dev->struct_mutex))
  3508. return 0;
  3509. /* "fast-path" to count number of available objects */
  3510. if (nr_to_scan == 0) {
  3511. cnt = 0;
  3512. list_for_each_entry(obj,
  3513. &dev_priv->mm.inactive_list,
  3514. mm_list)
  3515. cnt++;
  3516. mutex_unlock(&dev->struct_mutex);
  3517. return cnt / 100 * sysctl_vfs_cache_pressure;
  3518. }
  3519. rescan:
  3520. /* first scan for clean buffers */
  3521. i915_gem_retire_requests(dev);
  3522. list_for_each_entry_safe(obj, next,
  3523. &dev_priv->mm.inactive_list,
  3524. mm_list) {
  3525. if (i915_gem_object_is_purgeable(obj)) {
  3526. if (i915_gem_object_unbind(obj) == 0 &&
  3527. --nr_to_scan == 0)
  3528. break;
  3529. }
  3530. }
  3531. /* second pass, evict/count anything still on the inactive list */
  3532. cnt = 0;
  3533. list_for_each_entry_safe(obj, next,
  3534. &dev_priv->mm.inactive_list,
  3535. mm_list) {
  3536. if (nr_to_scan &&
  3537. i915_gem_object_unbind(obj) == 0)
  3538. nr_to_scan--;
  3539. else
  3540. cnt++;
  3541. }
  3542. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3543. /*
  3544. * We are desperate for pages, so as a last resort, wait
  3545. * for the GPU to finish and discard whatever we can.
  3546. * This has a dramatic impact to reduce the number of
  3547. * OOM-killer events whilst running the GPU aggressively.
  3548. */
  3549. if (i915_gpu_idle(dev) == 0)
  3550. goto rescan;
  3551. }
  3552. mutex_unlock(&dev->struct_mutex);
  3553. return cnt / 100 * sysctl_vfs_cache_pressure;
  3554. }