disk-io.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include "compat.h"
  29. #include "crc32c.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "ref-cache.h"
  39. #include "tree-log.h"
  40. static struct extent_io_ops btree_extent_io_ops;
  41. static void end_workqueue_fn(struct btrfs_work *work);
  42. /*
  43. * end_io_wq structs are used to do processing in task context when an IO is
  44. * complete. This is used during reads to verify checksums, and it is used
  45. * by writes to insert metadata for new file extents after IO is complete.
  46. */
  47. struct end_io_wq {
  48. struct bio *bio;
  49. bio_end_io_t *end_io;
  50. void *private;
  51. struct btrfs_fs_info *info;
  52. int error;
  53. int metadata;
  54. struct list_head list;
  55. struct btrfs_work work;
  56. };
  57. /*
  58. * async submit bios are used to offload expensive checksumming
  59. * onto the worker threads. They checksum file and metadata bios
  60. * just before they are sent down the IO stack.
  61. */
  62. struct async_submit_bio {
  63. struct inode *inode;
  64. struct bio *bio;
  65. struct list_head list;
  66. extent_submit_bio_hook_t *submit_bio_start;
  67. extent_submit_bio_hook_t *submit_bio_done;
  68. int rw;
  69. int mirror_num;
  70. unsigned long bio_flags;
  71. struct btrfs_work work;
  72. };
  73. /*
  74. * extents on the btree inode are pretty simple, there's one extent
  75. * that covers the entire device
  76. */
  77. static struct extent_map *btree_get_extent(struct inode *inode,
  78. struct page *page, size_t page_offset, u64 start, u64 len,
  79. int create)
  80. {
  81. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  82. struct extent_map *em;
  83. int ret;
  84. spin_lock(&em_tree->lock);
  85. em = lookup_extent_mapping(em_tree, start, len);
  86. if (em) {
  87. em->bdev =
  88. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  89. spin_unlock(&em_tree->lock);
  90. goto out;
  91. }
  92. spin_unlock(&em_tree->lock);
  93. em = alloc_extent_map(GFP_NOFS);
  94. if (!em) {
  95. em = ERR_PTR(-ENOMEM);
  96. goto out;
  97. }
  98. em->start = 0;
  99. em->len = (u64)-1;
  100. em->block_len = (u64)-1;
  101. em->block_start = 0;
  102. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  103. spin_lock(&em_tree->lock);
  104. ret = add_extent_mapping(em_tree, em);
  105. if (ret == -EEXIST) {
  106. u64 failed_start = em->start;
  107. u64 failed_len = em->len;
  108. free_extent_map(em);
  109. em = lookup_extent_mapping(em_tree, start, len);
  110. if (em) {
  111. ret = 0;
  112. } else {
  113. em = lookup_extent_mapping(em_tree, failed_start,
  114. failed_len);
  115. ret = -EIO;
  116. }
  117. } else if (ret) {
  118. free_extent_map(em);
  119. em = NULL;
  120. }
  121. spin_unlock(&em_tree->lock);
  122. if (ret)
  123. em = ERR_PTR(ret);
  124. out:
  125. return em;
  126. }
  127. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  128. {
  129. return btrfs_crc32c(seed, data, len);
  130. }
  131. void btrfs_csum_final(u32 crc, char *result)
  132. {
  133. *(__le32 *)result = ~cpu_to_le32(crc);
  134. }
  135. /*
  136. * compute the csum for a btree block, and either verify it or write it
  137. * into the csum field of the block.
  138. */
  139. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  140. int verify)
  141. {
  142. u16 csum_size =
  143. btrfs_super_csum_size(&root->fs_info->super_copy);
  144. char *result = NULL;
  145. unsigned long len;
  146. unsigned long cur_len;
  147. unsigned long offset = BTRFS_CSUM_SIZE;
  148. char *map_token = NULL;
  149. char *kaddr;
  150. unsigned long map_start;
  151. unsigned long map_len;
  152. int err;
  153. u32 crc = ~(u32)0;
  154. unsigned long inline_result;
  155. len = buf->len - offset;
  156. while (len > 0) {
  157. err = map_private_extent_buffer(buf, offset, 32,
  158. &map_token, &kaddr,
  159. &map_start, &map_len, KM_USER0);
  160. if (err)
  161. return 1;
  162. cur_len = min(len, map_len - (offset - map_start));
  163. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  164. crc, cur_len);
  165. len -= cur_len;
  166. offset += cur_len;
  167. unmap_extent_buffer(buf, map_token, KM_USER0);
  168. }
  169. if (csum_size > sizeof(inline_result)) {
  170. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  171. if (!result)
  172. return 1;
  173. } else {
  174. result = (char *)&inline_result;
  175. }
  176. btrfs_csum_final(crc, result);
  177. if (verify) {
  178. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  179. u32 val;
  180. u32 found = 0;
  181. memcpy(&found, result, csum_size);
  182. read_extent_buffer(buf, &val, 0, csum_size);
  183. printk(KERN_INFO "btrfs: %s checksum verify failed "
  184. "on %llu wanted %X found %X level %d\n",
  185. root->fs_info->sb->s_id,
  186. buf->start, val, found, btrfs_header_level(buf));
  187. if (result != (char *)&inline_result)
  188. kfree(result);
  189. return 1;
  190. }
  191. } else {
  192. write_extent_buffer(buf, result, 0, csum_size);
  193. }
  194. if (result != (char *)&inline_result)
  195. kfree(result);
  196. return 0;
  197. }
  198. /*
  199. * we can't consider a given block up to date unless the transid of the
  200. * block matches the transid in the parent node's pointer. This is how we
  201. * detect blocks that either didn't get written at all or got written
  202. * in the wrong place.
  203. */
  204. static int verify_parent_transid(struct extent_io_tree *io_tree,
  205. struct extent_buffer *eb, u64 parent_transid)
  206. {
  207. int ret;
  208. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  209. return 0;
  210. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  211. if (extent_buffer_uptodate(io_tree, eb) &&
  212. btrfs_header_generation(eb) == parent_transid) {
  213. ret = 0;
  214. goto out;
  215. }
  216. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  217. (unsigned long long)eb->start,
  218. (unsigned long long)parent_transid,
  219. (unsigned long long)btrfs_header_generation(eb));
  220. ret = 1;
  221. clear_extent_buffer_uptodate(io_tree, eb);
  222. out:
  223. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  224. GFP_NOFS);
  225. return ret;
  226. }
  227. /*
  228. * helper to read a given tree block, doing retries as required when
  229. * the checksums don't match and we have alternate mirrors to try.
  230. */
  231. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  232. struct extent_buffer *eb,
  233. u64 start, u64 parent_transid)
  234. {
  235. struct extent_io_tree *io_tree;
  236. int ret;
  237. int num_copies = 0;
  238. int mirror_num = 0;
  239. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  240. while (1) {
  241. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  242. btree_get_extent, mirror_num);
  243. if (!ret &&
  244. !verify_parent_transid(io_tree, eb, parent_transid))
  245. return ret;
  246. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  247. eb->start, eb->len);
  248. if (num_copies == 1)
  249. return ret;
  250. mirror_num++;
  251. if (mirror_num > num_copies)
  252. return ret;
  253. }
  254. return -EIO;
  255. }
  256. /*
  257. * checksum a dirty tree block before IO. This has extra checks to make sure
  258. * we only fill in the checksum field in the first page of a multi-page block
  259. */
  260. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  261. {
  262. struct extent_io_tree *tree;
  263. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  264. u64 found_start;
  265. int found_level;
  266. unsigned long len;
  267. struct extent_buffer *eb;
  268. int ret;
  269. tree = &BTRFS_I(page->mapping->host)->io_tree;
  270. if (page->private == EXTENT_PAGE_PRIVATE)
  271. goto out;
  272. if (!page->private)
  273. goto out;
  274. len = page->private >> 2;
  275. WARN_ON(len == 0);
  276. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  277. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  278. btrfs_header_generation(eb));
  279. BUG_ON(ret);
  280. found_start = btrfs_header_bytenr(eb);
  281. if (found_start != start) {
  282. WARN_ON(1);
  283. goto err;
  284. }
  285. if (eb->first_page != page) {
  286. WARN_ON(1);
  287. goto err;
  288. }
  289. if (!PageUptodate(page)) {
  290. WARN_ON(1);
  291. goto err;
  292. }
  293. found_level = btrfs_header_level(eb);
  294. csum_tree_block(root, eb, 0);
  295. err:
  296. free_extent_buffer(eb);
  297. out:
  298. return 0;
  299. }
  300. static int check_tree_block_fsid(struct btrfs_root *root,
  301. struct extent_buffer *eb)
  302. {
  303. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  304. u8 fsid[BTRFS_UUID_SIZE];
  305. int ret = 1;
  306. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  307. BTRFS_FSID_SIZE);
  308. while (fs_devices) {
  309. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  310. ret = 0;
  311. break;
  312. }
  313. fs_devices = fs_devices->seed;
  314. }
  315. return ret;
  316. }
  317. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  318. struct extent_state *state)
  319. {
  320. struct extent_io_tree *tree;
  321. u64 found_start;
  322. int found_level;
  323. unsigned long len;
  324. struct extent_buffer *eb;
  325. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  326. int ret = 0;
  327. tree = &BTRFS_I(page->mapping->host)->io_tree;
  328. if (page->private == EXTENT_PAGE_PRIVATE)
  329. goto out;
  330. if (!page->private)
  331. goto out;
  332. len = page->private >> 2;
  333. WARN_ON(len == 0);
  334. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  335. found_start = btrfs_header_bytenr(eb);
  336. if (found_start != start) {
  337. printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
  338. (unsigned long long)found_start,
  339. (unsigned long long)eb->start);
  340. ret = -EIO;
  341. goto err;
  342. }
  343. if (eb->first_page != page) {
  344. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  345. eb->first_page->index, page->index);
  346. WARN_ON(1);
  347. ret = -EIO;
  348. goto err;
  349. }
  350. if (check_tree_block_fsid(root, eb)) {
  351. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  352. (unsigned long long)eb->start);
  353. ret = -EIO;
  354. goto err;
  355. }
  356. found_level = btrfs_header_level(eb);
  357. ret = csum_tree_block(root, eb, 1);
  358. if (ret)
  359. ret = -EIO;
  360. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  361. end = eb->start + end - 1;
  362. err:
  363. free_extent_buffer(eb);
  364. out:
  365. return ret;
  366. }
  367. static void end_workqueue_bio(struct bio *bio, int err)
  368. {
  369. struct end_io_wq *end_io_wq = bio->bi_private;
  370. struct btrfs_fs_info *fs_info;
  371. fs_info = end_io_wq->info;
  372. end_io_wq->error = err;
  373. end_io_wq->work.func = end_workqueue_fn;
  374. end_io_wq->work.flags = 0;
  375. if (bio->bi_rw & (1 << BIO_RW)) {
  376. if (end_io_wq->metadata)
  377. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  378. &end_io_wq->work);
  379. else
  380. btrfs_queue_worker(&fs_info->endio_write_workers,
  381. &end_io_wq->work);
  382. } else {
  383. if (end_io_wq->metadata)
  384. btrfs_queue_worker(&fs_info->endio_meta_workers,
  385. &end_io_wq->work);
  386. else
  387. btrfs_queue_worker(&fs_info->endio_workers,
  388. &end_io_wq->work);
  389. }
  390. }
  391. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  392. int metadata)
  393. {
  394. struct end_io_wq *end_io_wq;
  395. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  396. if (!end_io_wq)
  397. return -ENOMEM;
  398. end_io_wq->private = bio->bi_private;
  399. end_io_wq->end_io = bio->bi_end_io;
  400. end_io_wq->info = info;
  401. end_io_wq->error = 0;
  402. end_io_wq->bio = bio;
  403. end_io_wq->metadata = metadata;
  404. bio->bi_private = end_io_wq;
  405. bio->bi_end_io = end_workqueue_bio;
  406. return 0;
  407. }
  408. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  409. {
  410. unsigned long limit = min_t(unsigned long,
  411. info->workers.max_workers,
  412. info->fs_devices->open_devices);
  413. return 256 * limit;
  414. }
  415. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  416. {
  417. return atomic_read(&info->nr_async_bios) >
  418. btrfs_async_submit_limit(info);
  419. }
  420. static void run_one_async_start(struct btrfs_work *work)
  421. {
  422. struct btrfs_fs_info *fs_info;
  423. struct async_submit_bio *async;
  424. async = container_of(work, struct async_submit_bio, work);
  425. fs_info = BTRFS_I(async->inode)->root->fs_info;
  426. async->submit_bio_start(async->inode, async->rw, async->bio,
  427. async->mirror_num, async->bio_flags);
  428. }
  429. static void run_one_async_done(struct btrfs_work *work)
  430. {
  431. struct btrfs_fs_info *fs_info;
  432. struct async_submit_bio *async;
  433. int limit;
  434. async = container_of(work, struct async_submit_bio, work);
  435. fs_info = BTRFS_I(async->inode)->root->fs_info;
  436. limit = btrfs_async_submit_limit(fs_info);
  437. limit = limit * 2 / 3;
  438. atomic_dec(&fs_info->nr_async_submits);
  439. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  440. waitqueue_active(&fs_info->async_submit_wait))
  441. wake_up(&fs_info->async_submit_wait);
  442. async->submit_bio_done(async->inode, async->rw, async->bio,
  443. async->mirror_num, async->bio_flags);
  444. }
  445. static void run_one_async_free(struct btrfs_work *work)
  446. {
  447. struct async_submit_bio *async;
  448. async = container_of(work, struct async_submit_bio, work);
  449. kfree(async);
  450. }
  451. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  452. int rw, struct bio *bio, int mirror_num,
  453. unsigned long bio_flags,
  454. extent_submit_bio_hook_t *submit_bio_start,
  455. extent_submit_bio_hook_t *submit_bio_done)
  456. {
  457. struct async_submit_bio *async;
  458. async = kmalloc(sizeof(*async), GFP_NOFS);
  459. if (!async)
  460. return -ENOMEM;
  461. async->inode = inode;
  462. async->rw = rw;
  463. async->bio = bio;
  464. async->mirror_num = mirror_num;
  465. async->submit_bio_start = submit_bio_start;
  466. async->submit_bio_done = submit_bio_done;
  467. async->work.func = run_one_async_start;
  468. async->work.ordered_func = run_one_async_done;
  469. async->work.ordered_free = run_one_async_free;
  470. async->work.flags = 0;
  471. async->bio_flags = bio_flags;
  472. atomic_inc(&fs_info->nr_async_submits);
  473. btrfs_queue_worker(&fs_info->workers, &async->work);
  474. #if 0
  475. int limit = btrfs_async_submit_limit(fs_info);
  476. if (atomic_read(&fs_info->nr_async_submits) > limit) {
  477. wait_event_timeout(fs_info->async_submit_wait,
  478. (atomic_read(&fs_info->nr_async_submits) < limit),
  479. HZ/10);
  480. wait_event_timeout(fs_info->async_submit_wait,
  481. (atomic_read(&fs_info->nr_async_bios) < limit),
  482. HZ/10);
  483. }
  484. #endif
  485. while (atomic_read(&fs_info->async_submit_draining) &&
  486. atomic_read(&fs_info->nr_async_submits)) {
  487. wait_event(fs_info->async_submit_wait,
  488. (atomic_read(&fs_info->nr_async_submits) == 0));
  489. }
  490. return 0;
  491. }
  492. static int btree_csum_one_bio(struct bio *bio)
  493. {
  494. struct bio_vec *bvec = bio->bi_io_vec;
  495. int bio_index = 0;
  496. struct btrfs_root *root;
  497. WARN_ON(bio->bi_vcnt <= 0);
  498. while (bio_index < bio->bi_vcnt) {
  499. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  500. csum_dirty_buffer(root, bvec->bv_page);
  501. bio_index++;
  502. bvec++;
  503. }
  504. return 0;
  505. }
  506. static int __btree_submit_bio_start(struct inode *inode, int rw,
  507. struct bio *bio, int mirror_num,
  508. unsigned long bio_flags)
  509. {
  510. /*
  511. * when we're called for a write, we're already in the async
  512. * submission context. Just jump into btrfs_map_bio
  513. */
  514. btree_csum_one_bio(bio);
  515. return 0;
  516. }
  517. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  518. int mirror_num, unsigned long bio_flags)
  519. {
  520. /*
  521. * when we're called for a write, we're already in the async
  522. * submission context. Just jump into btrfs_map_bio
  523. */
  524. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  525. }
  526. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  527. int mirror_num, unsigned long bio_flags)
  528. {
  529. int ret;
  530. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  531. bio, 1);
  532. BUG_ON(ret);
  533. if (!(rw & (1 << BIO_RW))) {
  534. /*
  535. * called for a read, do the setup so that checksum validation
  536. * can happen in the async kernel threads
  537. */
  538. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  539. mirror_num, 0);
  540. }
  541. /*
  542. * kthread helpers are used to submit writes so that checksumming
  543. * can happen in parallel across all CPUs
  544. */
  545. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  546. inode, rw, bio, mirror_num, 0,
  547. __btree_submit_bio_start,
  548. __btree_submit_bio_done);
  549. }
  550. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  551. {
  552. struct extent_io_tree *tree;
  553. tree = &BTRFS_I(page->mapping->host)->io_tree;
  554. if (current->flags & PF_MEMALLOC) {
  555. redirty_page_for_writepage(wbc, page);
  556. unlock_page(page);
  557. return 0;
  558. }
  559. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  560. }
  561. static int btree_writepages(struct address_space *mapping,
  562. struct writeback_control *wbc)
  563. {
  564. struct extent_io_tree *tree;
  565. tree = &BTRFS_I(mapping->host)->io_tree;
  566. if (wbc->sync_mode == WB_SYNC_NONE) {
  567. u64 num_dirty;
  568. u64 start = 0;
  569. unsigned long thresh = 32 * 1024 * 1024;
  570. if (wbc->for_kupdate)
  571. return 0;
  572. num_dirty = count_range_bits(tree, &start, (u64)-1,
  573. thresh, EXTENT_DIRTY);
  574. if (num_dirty < thresh)
  575. return 0;
  576. }
  577. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  578. }
  579. static int btree_readpage(struct file *file, struct page *page)
  580. {
  581. struct extent_io_tree *tree;
  582. tree = &BTRFS_I(page->mapping->host)->io_tree;
  583. return extent_read_full_page(tree, page, btree_get_extent);
  584. }
  585. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  586. {
  587. struct extent_io_tree *tree;
  588. struct extent_map_tree *map;
  589. int ret;
  590. if (PageWriteback(page) || PageDirty(page))
  591. return 0;
  592. tree = &BTRFS_I(page->mapping->host)->io_tree;
  593. map = &BTRFS_I(page->mapping->host)->extent_tree;
  594. ret = try_release_extent_state(map, tree, page, gfp_flags);
  595. if (!ret)
  596. return 0;
  597. ret = try_release_extent_buffer(tree, page);
  598. if (ret == 1) {
  599. ClearPagePrivate(page);
  600. set_page_private(page, 0);
  601. page_cache_release(page);
  602. }
  603. return ret;
  604. }
  605. static void btree_invalidatepage(struct page *page, unsigned long offset)
  606. {
  607. struct extent_io_tree *tree;
  608. tree = &BTRFS_I(page->mapping->host)->io_tree;
  609. extent_invalidatepage(tree, page, offset);
  610. btree_releasepage(page, GFP_NOFS);
  611. if (PagePrivate(page)) {
  612. printk(KERN_WARNING "btrfs warning page private not zero "
  613. "on page %llu\n", (unsigned long long)page_offset(page));
  614. ClearPagePrivate(page);
  615. set_page_private(page, 0);
  616. page_cache_release(page);
  617. }
  618. }
  619. #if 0
  620. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  621. {
  622. struct buffer_head *bh;
  623. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  624. struct buffer_head *head;
  625. if (!page_has_buffers(page)) {
  626. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  627. (1 << BH_Dirty)|(1 << BH_Uptodate));
  628. }
  629. head = page_buffers(page);
  630. bh = head;
  631. do {
  632. if (buffer_dirty(bh))
  633. csum_tree_block(root, bh, 0);
  634. bh = bh->b_this_page;
  635. } while (bh != head);
  636. return block_write_full_page(page, btree_get_block, wbc);
  637. }
  638. #endif
  639. static struct address_space_operations btree_aops = {
  640. .readpage = btree_readpage,
  641. .writepage = btree_writepage,
  642. .writepages = btree_writepages,
  643. .releasepage = btree_releasepage,
  644. .invalidatepage = btree_invalidatepage,
  645. .sync_page = block_sync_page,
  646. };
  647. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  648. u64 parent_transid)
  649. {
  650. struct extent_buffer *buf = NULL;
  651. struct inode *btree_inode = root->fs_info->btree_inode;
  652. int ret = 0;
  653. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  654. if (!buf)
  655. return 0;
  656. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  657. buf, 0, 0, btree_get_extent, 0);
  658. free_extent_buffer(buf);
  659. return ret;
  660. }
  661. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  662. u64 bytenr, u32 blocksize)
  663. {
  664. struct inode *btree_inode = root->fs_info->btree_inode;
  665. struct extent_buffer *eb;
  666. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  667. bytenr, blocksize, GFP_NOFS);
  668. return eb;
  669. }
  670. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  671. u64 bytenr, u32 blocksize)
  672. {
  673. struct inode *btree_inode = root->fs_info->btree_inode;
  674. struct extent_buffer *eb;
  675. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  676. bytenr, blocksize, NULL, GFP_NOFS);
  677. return eb;
  678. }
  679. int btrfs_write_tree_block(struct extent_buffer *buf)
  680. {
  681. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  682. buf->start + buf->len - 1, WB_SYNC_ALL);
  683. }
  684. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  685. {
  686. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  687. buf->start, buf->start + buf->len - 1);
  688. }
  689. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  690. u32 blocksize, u64 parent_transid)
  691. {
  692. struct extent_buffer *buf = NULL;
  693. struct inode *btree_inode = root->fs_info->btree_inode;
  694. struct extent_io_tree *io_tree;
  695. int ret;
  696. io_tree = &BTRFS_I(btree_inode)->io_tree;
  697. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  698. if (!buf)
  699. return NULL;
  700. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  701. if (ret == 0)
  702. buf->flags |= EXTENT_UPTODATE;
  703. else
  704. WARN_ON(1);
  705. return buf;
  706. }
  707. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  708. struct extent_buffer *buf)
  709. {
  710. struct inode *btree_inode = root->fs_info->btree_inode;
  711. if (btrfs_header_generation(buf) ==
  712. root->fs_info->running_transaction->transid) {
  713. WARN_ON(!btrfs_tree_locked(buf));
  714. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  715. buf);
  716. }
  717. return 0;
  718. }
  719. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  720. u32 stripesize, struct btrfs_root *root,
  721. struct btrfs_fs_info *fs_info,
  722. u64 objectid)
  723. {
  724. root->node = NULL;
  725. root->commit_root = NULL;
  726. root->ref_tree = NULL;
  727. root->sectorsize = sectorsize;
  728. root->nodesize = nodesize;
  729. root->leafsize = leafsize;
  730. root->stripesize = stripesize;
  731. root->ref_cows = 0;
  732. root->track_dirty = 0;
  733. root->fs_info = fs_info;
  734. root->objectid = objectid;
  735. root->last_trans = 0;
  736. root->highest_inode = 0;
  737. root->last_inode_alloc = 0;
  738. root->name = NULL;
  739. root->in_sysfs = 0;
  740. INIT_LIST_HEAD(&root->dirty_list);
  741. INIT_LIST_HEAD(&root->orphan_list);
  742. INIT_LIST_HEAD(&root->dead_list);
  743. spin_lock_init(&root->node_lock);
  744. spin_lock_init(&root->list_lock);
  745. mutex_init(&root->objectid_mutex);
  746. mutex_init(&root->log_mutex);
  747. extent_io_tree_init(&root->dirty_log_pages,
  748. fs_info->btree_inode->i_mapping, GFP_NOFS);
  749. btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
  750. root->ref_tree = &root->ref_tree_struct;
  751. memset(&root->root_key, 0, sizeof(root->root_key));
  752. memset(&root->root_item, 0, sizeof(root->root_item));
  753. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  754. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  755. root->defrag_trans_start = fs_info->generation;
  756. init_completion(&root->kobj_unregister);
  757. root->defrag_running = 0;
  758. root->defrag_level = 0;
  759. root->root_key.objectid = objectid;
  760. root->anon_super.s_root = NULL;
  761. root->anon_super.s_dev = 0;
  762. INIT_LIST_HEAD(&root->anon_super.s_list);
  763. INIT_LIST_HEAD(&root->anon_super.s_instances);
  764. init_rwsem(&root->anon_super.s_umount);
  765. return 0;
  766. }
  767. static int find_and_setup_root(struct btrfs_root *tree_root,
  768. struct btrfs_fs_info *fs_info,
  769. u64 objectid,
  770. struct btrfs_root *root)
  771. {
  772. int ret;
  773. u32 blocksize;
  774. u64 generation;
  775. __setup_root(tree_root->nodesize, tree_root->leafsize,
  776. tree_root->sectorsize, tree_root->stripesize,
  777. root, fs_info, objectid);
  778. ret = btrfs_find_last_root(tree_root, objectid,
  779. &root->root_item, &root->root_key);
  780. BUG_ON(ret);
  781. generation = btrfs_root_generation(&root->root_item);
  782. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  783. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  784. blocksize, generation);
  785. BUG_ON(!root->node);
  786. return 0;
  787. }
  788. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  789. struct btrfs_fs_info *fs_info)
  790. {
  791. struct extent_buffer *eb;
  792. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  793. u64 start = 0;
  794. u64 end = 0;
  795. int ret;
  796. if (!log_root_tree)
  797. return 0;
  798. while (1) {
  799. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  800. 0, &start, &end, EXTENT_DIRTY);
  801. if (ret)
  802. break;
  803. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  804. start, end, GFP_NOFS);
  805. }
  806. eb = fs_info->log_root_tree->node;
  807. WARN_ON(btrfs_header_level(eb) != 0);
  808. WARN_ON(btrfs_header_nritems(eb) != 0);
  809. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  810. eb->start, eb->len);
  811. BUG_ON(ret);
  812. free_extent_buffer(eb);
  813. kfree(fs_info->log_root_tree);
  814. fs_info->log_root_tree = NULL;
  815. return 0;
  816. }
  817. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  818. struct btrfs_fs_info *fs_info)
  819. {
  820. struct btrfs_root *root;
  821. struct btrfs_root *tree_root = fs_info->tree_root;
  822. root = kzalloc(sizeof(*root), GFP_NOFS);
  823. if (!root)
  824. return -ENOMEM;
  825. __setup_root(tree_root->nodesize, tree_root->leafsize,
  826. tree_root->sectorsize, tree_root->stripesize,
  827. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  828. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  829. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  830. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  831. root->ref_cows = 0;
  832. root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
  833. 0, BTRFS_TREE_LOG_OBJECTID,
  834. trans->transid, 0, 0, 0);
  835. btrfs_set_header_nritems(root->node, 0);
  836. btrfs_set_header_level(root->node, 0);
  837. btrfs_set_header_bytenr(root->node, root->node->start);
  838. btrfs_set_header_generation(root->node, trans->transid);
  839. btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
  840. write_extent_buffer(root->node, root->fs_info->fsid,
  841. (unsigned long)btrfs_header_fsid(root->node),
  842. BTRFS_FSID_SIZE);
  843. btrfs_mark_buffer_dirty(root->node);
  844. btrfs_tree_unlock(root->node);
  845. fs_info->log_root_tree = root;
  846. return 0;
  847. }
  848. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  849. struct btrfs_key *location)
  850. {
  851. struct btrfs_root *root;
  852. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  853. struct btrfs_path *path;
  854. struct extent_buffer *l;
  855. u64 highest_inode;
  856. u64 generation;
  857. u32 blocksize;
  858. int ret = 0;
  859. root = kzalloc(sizeof(*root), GFP_NOFS);
  860. if (!root)
  861. return ERR_PTR(-ENOMEM);
  862. if (location->offset == (u64)-1) {
  863. ret = find_and_setup_root(tree_root, fs_info,
  864. location->objectid, root);
  865. if (ret) {
  866. kfree(root);
  867. return ERR_PTR(ret);
  868. }
  869. goto insert;
  870. }
  871. __setup_root(tree_root->nodesize, tree_root->leafsize,
  872. tree_root->sectorsize, tree_root->stripesize,
  873. root, fs_info, location->objectid);
  874. path = btrfs_alloc_path();
  875. BUG_ON(!path);
  876. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  877. if (ret != 0) {
  878. if (ret > 0)
  879. ret = -ENOENT;
  880. goto out;
  881. }
  882. l = path->nodes[0];
  883. read_extent_buffer(l, &root->root_item,
  884. btrfs_item_ptr_offset(l, path->slots[0]),
  885. sizeof(root->root_item));
  886. memcpy(&root->root_key, location, sizeof(*location));
  887. ret = 0;
  888. out:
  889. btrfs_release_path(root, path);
  890. btrfs_free_path(path);
  891. if (ret) {
  892. kfree(root);
  893. return ERR_PTR(ret);
  894. }
  895. generation = btrfs_root_generation(&root->root_item);
  896. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  897. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  898. blocksize, generation);
  899. BUG_ON(!root->node);
  900. insert:
  901. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  902. root->ref_cows = 1;
  903. ret = btrfs_find_highest_inode(root, &highest_inode);
  904. if (ret == 0) {
  905. root->highest_inode = highest_inode;
  906. root->last_inode_alloc = highest_inode;
  907. }
  908. }
  909. return root;
  910. }
  911. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  912. u64 root_objectid)
  913. {
  914. struct btrfs_root *root;
  915. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  916. return fs_info->tree_root;
  917. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  918. return fs_info->extent_root;
  919. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  920. (unsigned long)root_objectid);
  921. return root;
  922. }
  923. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  924. struct btrfs_key *location)
  925. {
  926. struct btrfs_root *root;
  927. int ret;
  928. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  929. return fs_info->tree_root;
  930. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  931. return fs_info->extent_root;
  932. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  933. return fs_info->chunk_root;
  934. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  935. return fs_info->dev_root;
  936. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  937. return fs_info->csum_root;
  938. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  939. (unsigned long)location->objectid);
  940. if (root)
  941. return root;
  942. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  943. if (IS_ERR(root))
  944. return root;
  945. set_anon_super(&root->anon_super, NULL);
  946. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  947. (unsigned long)root->root_key.objectid,
  948. root);
  949. if (ret) {
  950. free_extent_buffer(root->node);
  951. kfree(root);
  952. return ERR_PTR(ret);
  953. }
  954. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  955. ret = btrfs_find_dead_roots(fs_info->tree_root,
  956. root->root_key.objectid, root);
  957. BUG_ON(ret);
  958. btrfs_orphan_cleanup(root);
  959. }
  960. return root;
  961. }
  962. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  963. struct btrfs_key *location,
  964. const char *name, int namelen)
  965. {
  966. struct btrfs_root *root;
  967. int ret;
  968. root = btrfs_read_fs_root_no_name(fs_info, location);
  969. if (!root)
  970. return NULL;
  971. if (root->in_sysfs)
  972. return root;
  973. ret = btrfs_set_root_name(root, name, namelen);
  974. if (ret) {
  975. free_extent_buffer(root->node);
  976. kfree(root);
  977. return ERR_PTR(ret);
  978. }
  979. #if 0
  980. ret = btrfs_sysfs_add_root(root);
  981. if (ret) {
  982. free_extent_buffer(root->node);
  983. kfree(root->name);
  984. kfree(root);
  985. return ERR_PTR(ret);
  986. }
  987. #endif
  988. root->in_sysfs = 1;
  989. return root;
  990. }
  991. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  992. {
  993. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  994. int ret = 0;
  995. struct list_head *cur;
  996. struct btrfs_device *device;
  997. struct backing_dev_info *bdi;
  998. #if 0
  999. if ((bdi_bits & (1 << BDI_write_congested)) &&
  1000. btrfs_congested_async(info, 0))
  1001. return 1;
  1002. #endif
  1003. list_for_each(cur, &info->fs_devices->devices) {
  1004. device = list_entry(cur, struct btrfs_device, dev_list);
  1005. if (!device->bdev)
  1006. continue;
  1007. bdi = blk_get_backing_dev_info(device->bdev);
  1008. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1009. ret = 1;
  1010. break;
  1011. }
  1012. }
  1013. return ret;
  1014. }
  1015. /*
  1016. * this unplugs every device on the box, and it is only used when page
  1017. * is null
  1018. */
  1019. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1020. {
  1021. struct list_head *cur;
  1022. struct btrfs_device *device;
  1023. struct btrfs_fs_info *info;
  1024. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1025. list_for_each(cur, &info->fs_devices->devices) {
  1026. device = list_entry(cur, struct btrfs_device, dev_list);
  1027. if (!device->bdev)
  1028. continue;
  1029. bdi = blk_get_backing_dev_info(device->bdev);
  1030. if (bdi->unplug_io_fn)
  1031. bdi->unplug_io_fn(bdi, page);
  1032. }
  1033. }
  1034. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1035. {
  1036. struct inode *inode;
  1037. struct extent_map_tree *em_tree;
  1038. struct extent_map *em;
  1039. struct address_space *mapping;
  1040. u64 offset;
  1041. /* the generic O_DIRECT read code does this */
  1042. if (1 || !page) {
  1043. __unplug_io_fn(bdi, page);
  1044. return;
  1045. }
  1046. /*
  1047. * page->mapping may change at any time. Get a consistent copy
  1048. * and use that for everything below
  1049. */
  1050. smp_mb();
  1051. mapping = page->mapping;
  1052. if (!mapping)
  1053. return;
  1054. inode = mapping->host;
  1055. /*
  1056. * don't do the expensive searching for a small number of
  1057. * devices
  1058. */
  1059. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1060. __unplug_io_fn(bdi, page);
  1061. return;
  1062. }
  1063. offset = page_offset(page);
  1064. em_tree = &BTRFS_I(inode)->extent_tree;
  1065. spin_lock(&em_tree->lock);
  1066. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1067. spin_unlock(&em_tree->lock);
  1068. if (!em) {
  1069. __unplug_io_fn(bdi, page);
  1070. return;
  1071. }
  1072. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1073. free_extent_map(em);
  1074. __unplug_io_fn(bdi, page);
  1075. return;
  1076. }
  1077. offset = offset - em->start;
  1078. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1079. em->block_start + offset, page);
  1080. free_extent_map(em);
  1081. }
  1082. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1083. {
  1084. bdi_init(bdi);
  1085. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1086. bdi->state = 0;
  1087. bdi->capabilities = default_backing_dev_info.capabilities;
  1088. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1089. bdi->unplug_io_data = info;
  1090. bdi->congested_fn = btrfs_congested_fn;
  1091. bdi->congested_data = info;
  1092. return 0;
  1093. }
  1094. static int bio_ready_for_csum(struct bio *bio)
  1095. {
  1096. u64 length = 0;
  1097. u64 buf_len = 0;
  1098. u64 start = 0;
  1099. struct page *page;
  1100. struct extent_io_tree *io_tree = NULL;
  1101. struct btrfs_fs_info *info = NULL;
  1102. struct bio_vec *bvec;
  1103. int i;
  1104. int ret;
  1105. bio_for_each_segment(bvec, bio, i) {
  1106. page = bvec->bv_page;
  1107. if (page->private == EXTENT_PAGE_PRIVATE) {
  1108. length += bvec->bv_len;
  1109. continue;
  1110. }
  1111. if (!page->private) {
  1112. length += bvec->bv_len;
  1113. continue;
  1114. }
  1115. length = bvec->bv_len;
  1116. buf_len = page->private >> 2;
  1117. start = page_offset(page) + bvec->bv_offset;
  1118. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1119. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1120. }
  1121. /* are we fully contained in this bio? */
  1122. if (buf_len <= length)
  1123. return 1;
  1124. ret = extent_range_uptodate(io_tree, start + length,
  1125. start + buf_len - 1);
  1126. if (ret == 1)
  1127. return ret;
  1128. return ret;
  1129. }
  1130. /*
  1131. * called by the kthread helper functions to finally call the bio end_io
  1132. * functions. This is where read checksum verification actually happens
  1133. */
  1134. static void end_workqueue_fn(struct btrfs_work *work)
  1135. {
  1136. struct bio *bio;
  1137. struct end_io_wq *end_io_wq;
  1138. struct btrfs_fs_info *fs_info;
  1139. int error;
  1140. end_io_wq = container_of(work, struct end_io_wq, work);
  1141. bio = end_io_wq->bio;
  1142. fs_info = end_io_wq->info;
  1143. /* metadata bio reads are special because the whole tree block must
  1144. * be checksummed at once. This makes sure the entire block is in
  1145. * ram and up to date before trying to verify things. For
  1146. * blocksize <= pagesize, it is basically a noop
  1147. */
  1148. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1149. !bio_ready_for_csum(bio)) {
  1150. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1151. &end_io_wq->work);
  1152. return;
  1153. }
  1154. error = end_io_wq->error;
  1155. bio->bi_private = end_io_wq->private;
  1156. bio->bi_end_io = end_io_wq->end_io;
  1157. kfree(end_io_wq);
  1158. bio_endio(bio, error);
  1159. }
  1160. static int cleaner_kthread(void *arg)
  1161. {
  1162. struct btrfs_root *root = arg;
  1163. do {
  1164. smp_mb();
  1165. if (root->fs_info->closing)
  1166. break;
  1167. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1168. mutex_lock(&root->fs_info->cleaner_mutex);
  1169. btrfs_clean_old_snapshots(root);
  1170. mutex_unlock(&root->fs_info->cleaner_mutex);
  1171. if (freezing(current)) {
  1172. refrigerator();
  1173. } else {
  1174. smp_mb();
  1175. if (root->fs_info->closing)
  1176. break;
  1177. set_current_state(TASK_INTERRUPTIBLE);
  1178. schedule();
  1179. __set_current_state(TASK_RUNNING);
  1180. }
  1181. } while (!kthread_should_stop());
  1182. return 0;
  1183. }
  1184. static int transaction_kthread(void *arg)
  1185. {
  1186. struct btrfs_root *root = arg;
  1187. struct btrfs_trans_handle *trans;
  1188. struct btrfs_transaction *cur;
  1189. unsigned long now;
  1190. unsigned long delay;
  1191. int ret;
  1192. do {
  1193. smp_mb();
  1194. if (root->fs_info->closing)
  1195. break;
  1196. delay = HZ * 30;
  1197. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1198. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1199. if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
  1200. printk(KERN_INFO "btrfs: total reference cache "
  1201. "size %llu\n",
  1202. root->fs_info->total_ref_cache_size);
  1203. }
  1204. mutex_lock(&root->fs_info->trans_mutex);
  1205. cur = root->fs_info->running_transaction;
  1206. if (!cur) {
  1207. mutex_unlock(&root->fs_info->trans_mutex);
  1208. goto sleep;
  1209. }
  1210. now = get_seconds();
  1211. if (now < cur->start_time || now - cur->start_time < 30) {
  1212. mutex_unlock(&root->fs_info->trans_mutex);
  1213. delay = HZ * 5;
  1214. goto sleep;
  1215. }
  1216. mutex_unlock(&root->fs_info->trans_mutex);
  1217. trans = btrfs_start_transaction(root, 1);
  1218. ret = btrfs_commit_transaction(trans, root);
  1219. sleep:
  1220. wake_up_process(root->fs_info->cleaner_kthread);
  1221. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1222. if (freezing(current)) {
  1223. refrigerator();
  1224. } else {
  1225. if (root->fs_info->closing)
  1226. break;
  1227. set_current_state(TASK_INTERRUPTIBLE);
  1228. schedule_timeout(delay);
  1229. __set_current_state(TASK_RUNNING);
  1230. }
  1231. } while (!kthread_should_stop());
  1232. return 0;
  1233. }
  1234. struct btrfs_root *open_ctree(struct super_block *sb,
  1235. struct btrfs_fs_devices *fs_devices,
  1236. char *options)
  1237. {
  1238. u32 sectorsize;
  1239. u32 nodesize;
  1240. u32 leafsize;
  1241. u32 blocksize;
  1242. u32 stripesize;
  1243. u64 generation;
  1244. u64 features;
  1245. struct btrfs_key location;
  1246. struct buffer_head *bh;
  1247. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1248. GFP_NOFS);
  1249. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1250. GFP_NOFS);
  1251. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1252. GFP_NOFS);
  1253. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1254. GFP_NOFS);
  1255. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1256. GFP_NOFS);
  1257. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1258. GFP_NOFS);
  1259. struct btrfs_root *log_tree_root;
  1260. int ret;
  1261. int err = -EINVAL;
  1262. struct btrfs_super_block *disk_super;
  1263. if (!extent_root || !tree_root || !fs_info ||
  1264. !chunk_root || !dev_root || !csum_root) {
  1265. err = -ENOMEM;
  1266. goto fail;
  1267. }
  1268. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1269. INIT_LIST_HEAD(&fs_info->trans_list);
  1270. INIT_LIST_HEAD(&fs_info->dead_roots);
  1271. INIT_LIST_HEAD(&fs_info->hashers);
  1272. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1273. spin_lock_init(&fs_info->hash_lock);
  1274. spin_lock_init(&fs_info->delalloc_lock);
  1275. spin_lock_init(&fs_info->new_trans_lock);
  1276. spin_lock_init(&fs_info->ref_cache_lock);
  1277. init_completion(&fs_info->kobj_unregister);
  1278. fs_info->tree_root = tree_root;
  1279. fs_info->extent_root = extent_root;
  1280. fs_info->csum_root = csum_root;
  1281. fs_info->chunk_root = chunk_root;
  1282. fs_info->dev_root = dev_root;
  1283. fs_info->fs_devices = fs_devices;
  1284. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1285. INIT_LIST_HEAD(&fs_info->space_info);
  1286. btrfs_mapping_init(&fs_info->mapping_tree);
  1287. atomic_set(&fs_info->nr_async_submits, 0);
  1288. atomic_set(&fs_info->async_delalloc_pages, 0);
  1289. atomic_set(&fs_info->async_submit_draining, 0);
  1290. atomic_set(&fs_info->nr_async_bios, 0);
  1291. atomic_set(&fs_info->throttles, 0);
  1292. atomic_set(&fs_info->throttle_gen, 0);
  1293. fs_info->sb = sb;
  1294. fs_info->max_extent = (u64)-1;
  1295. fs_info->max_inline = 8192 * 1024;
  1296. setup_bdi(fs_info, &fs_info->bdi);
  1297. fs_info->btree_inode = new_inode(sb);
  1298. fs_info->btree_inode->i_ino = 1;
  1299. fs_info->btree_inode->i_nlink = 1;
  1300. fs_info->thread_pool_size = min_t(unsigned long,
  1301. num_online_cpus() + 2, 8);
  1302. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1303. spin_lock_init(&fs_info->ordered_extent_lock);
  1304. sb->s_blocksize = 4096;
  1305. sb->s_blocksize_bits = blksize_bits(4096);
  1306. /*
  1307. * we set the i_size on the btree inode to the max possible int.
  1308. * the real end of the address space is determined by all of
  1309. * the devices in the system
  1310. */
  1311. fs_info->btree_inode->i_size = OFFSET_MAX;
  1312. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1313. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1314. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1315. fs_info->btree_inode->i_mapping,
  1316. GFP_NOFS);
  1317. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1318. GFP_NOFS);
  1319. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1320. spin_lock_init(&fs_info->block_group_cache_lock);
  1321. fs_info->block_group_cache_tree.rb_node = NULL;
  1322. extent_io_tree_init(&fs_info->pinned_extents,
  1323. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1324. extent_io_tree_init(&fs_info->pending_del,
  1325. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1326. extent_io_tree_init(&fs_info->extent_ins,
  1327. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1328. fs_info->do_barriers = 1;
  1329. INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
  1330. btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
  1331. btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
  1332. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1333. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1334. sizeof(struct btrfs_key));
  1335. insert_inode_hash(fs_info->btree_inode);
  1336. mutex_init(&fs_info->trans_mutex);
  1337. mutex_init(&fs_info->tree_log_mutex);
  1338. mutex_init(&fs_info->drop_mutex);
  1339. mutex_init(&fs_info->extent_ins_mutex);
  1340. mutex_init(&fs_info->pinned_mutex);
  1341. mutex_init(&fs_info->chunk_mutex);
  1342. mutex_init(&fs_info->transaction_kthread_mutex);
  1343. mutex_init(&fs_info->cleaner_mutex);
  1344. mutex_init(&fs_info->volume_mutex);
  1345. mutex_init(&fs_info->tree_reloc_mutex);
  1346. init_waitqueue_head(&fs_info->transaction_throttle);
  1347. init_waitqueue_head(&fs_info->transaction_wait);
  1348. init_waitqueue_head(&fs_info->async_submit_wait);
  1349. init_waitqueue_head(&fs_info->tree_log_wait);
  1350. atomic_set(&fs_info->tree_log_commit, 0);
  1351. atomic_set(&fs_info->tree_log_writers, 0);
  1352. fs_info->tree_log_transid = 0;
  1353. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1354. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1355. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1356. if (!bh)
  1357. goto fail_iput;
  1358. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1359. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1360. sizeof(fs_info->super_for_commit));
  1361. brelse(bh);
  1362. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1363. disk_super = &fs_info->super_copy;
  1364. if (!btrfs_super_root(disk_super))
  1365. goto fail_iput;
  1366. ret = btrfs_parse_options(tree_root, options);
  1367. if (ret) {
  1368. err = ret;
  1369. goto fail_iput;
  1370. }
  1371. features = btrfs_super_incompat_flags(disk_super) &
  1372. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1373. if (features) {
  1374. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1375. "unsupported optional features (%Lx).\n",
  1376. features);
  1377. err = -EINVAL;
  1378. goto fail_iput;
  1379. }
  1380. features = btrfs_super_compat_ro_flags(disk_super) &
  1381. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1382. if (!(sb->s_flags & MS_RDONLY) && features) {
  1383. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1384. "unsupported option features (%Lx).\n",
  1385. features);
  1386. err = -EINVAL;
  1387. goto fail_iput;
  1388. }
  1389. /*
  1390. * we need to start all the end_io workers up front because the
  1391. * queue work function gets called at interrupt time, and so it
  1392. * cannot dynamically grow.
  1393. */
  1394. btrfs_init_workers(&fs_info->workers, "worker",
  1395. fs_info->thread_pool_size);
  1396. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1397. fs_info->thread_pool_size);
  1398. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1399. min_t(u64, fs_devices->num_devices,
  1400. fs_info->thread_pool_size));
  1401. /* a higher idle thresh on the submit workers makes it much more
  1402. * likely that bios will be send down in a sane order to the
  1403. * devices
  1404. */
  1405. fs_info->submit_workers.idle_thresh = 64;
  1406. fs_info->workers.idle_thresh = 16;
  1407. fs_info->workers.ordered = 1;
  1408. fs_info->delalloc_workers.idle_thresh = 2;
  1409. fs_info->delalloc_workers.ordered = 1;
  1410. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1411. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1412. fs_info->thread_pool_size);
  1413. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1414. fs_info->thread_pool_size);
  1415. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1416. "endio-meta-write", fs_info->thread_pool_size);
  1417. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1418. fs_info->thread_pool_size);
  1419. /*
  1420. * endios are largely parallel and should have a very
  1421. * low idle thresh
  1422. */
  1423. fs_info->endio_workers.idle_thresh = 4;
  1424. fs_info->endio_write_workers.idle_thresh = 64;
  1425. fs_info->endio_meta_write_workers.idle_thresh = 64;
  1426. btrfs_start_workers(&fs_info->workers, 1);
  1427. btrfs_start_workers(&fs_info->submit_workers, 1);
  1428. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1429. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1430. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1431. btrfs_start_workers(&fs_info->endio_meta_workers,
  1432. fs_info->thread_pool_size);
  1433. btrfs_start_workers(&fs_info->endio_meta_write_workers,
  1434. fs_info->thread_pool_size);
  1435. btrfs_start_workers(&fs_info->endio_write_workers,
  1436. fs_info->thread_pool_size);
  1437. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1438. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1439. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1440. nodesize = btrfs_super_nodesize(disk_super);
  1441. leafsize = btrfs_super_leafsize(disk_super);
  1442. sectorsize = btrfs_super_sectorsize(disk_super);
  1443. stripesize = btrfs_super_stripesize(disk_super);
  1444. tree_root->nodesize = nodesize;
  1445. tree_root->leafsize = leafsize;
  1446. tree_root->sectorsize = sectorsize;
  1447. tree_root->stripesize = stripesize;
  1448. sb->s_blocksize = sectorsize;
  1449. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1450. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1451. sizeof(disk_super->magic))) {
  1452. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1453. goto fail_sb_buffer;
  1454. }
  1455. mutex_lock(&fs_info->chunk_mutex);
  1456. ret = btrfs_read_sys_array(tree_root);
  1457. mutex_unlock(&fs_info->chunk_mutex);
  1458. if (ret) {
  1459. printk(KERN_WARNING "btrfs: failed to read the system "
  1460. "array on %s\n", sb->s_id);
  1461. goto fail_sys_array;
  1462. }
  1463. blocksize = btrfs_level_size(tree_root,
  1464. btrfs_super_chunk_root_level(disk_super));
  1465. generation = btrfs_super_chunk_root_generation(disk_super);
  1466. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1467. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1468. chunk_root->node = read_tree_block(chunk_root,
  1469. btrfs_super_chunk_root(disk_super),
  1470. blocksize, generation);
  1471. BUG_ON(!chunk_root->node);
  1472. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1473. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1474. BTRFS_UUID_SIZE);
  1475. mutex_lock(&fs_info->chunk_mutex);
  1476. ret = btrfs_read_chunk_tree(chunk_root);
  1477. mutex_unlock(&fs_info->chunk_mutex);
  1478. if (ret) {
  1479. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1480. sb->s_id);
  1481. goto fail_chunk_root;
  1482. }
  1483. btrfs_close_extra_devices(fs_devices);
  1484. blocksize = btrfs_level_size(tree_root,
  1485. btrfs_super_root_level(disk_super));
  1486. generation = btrfs_super_generation(disk_super);
  1487. tree_root->node = read_tree_block(tree_root,
  1488. btrfs_super_root(disk_super),
  1489. blocksize, generation);
  1490. if (!tree_root->node)
  1491. goto fail_chunk_root;
  1492. ret = find_and_setup_root(tree_root, fs_info,
  1493. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1494. if (ret)
  1495. goto fail_tree_root;
  1496. extent_root->track_dirty = 1;
  1497. ret = find_and_setup_root(tree_root, fs_info,
  1498. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1499. dev_root->track_dirty = 1;
  1500. if (ret)
  1501. goto fail_extent_root;
  1502. ret = find_and_setup_root(tree_root, fs_info,
  1503. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1504. if (ret)
  1505. goto fail_extent_root;
  1506. csum_root->track_dirty = 1;
  1507. btrfs_read_block_groups(extent_root);
  1508. fs_info->generation = generation;
  1509. fs_info->last_trans_committed = generation;
  1510. fs_info->data_alloc_profile = (u64)-1;
  1511. fs_info->metadata_alloc_profile = (u64)-1;
  1512. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1513. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1514. "btrfs-cleaner");
  1515. if (IS_ERR(fs_info->cleaner_kthread))
  1516. goto fail_csum_root;
  1517. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1518. tree_root,
  1519. "btrfs-transaction");
  1520. if (IS_ERR(fs_info->transaction_kthread))
  1521. goto fail_cleaner;
  1522. if (btrfs_super_log_root(disk_super) != 0) {
  1523. u64 bytenr = btrfs_super_log_root(disk_super);
  1524. if (fs_devices->rw_devices == 0) {
  1525. printk(KERN_WARNING "Btrfs log replay required "
  1526. "on RO media\n");
  1527. err = -EIO;
  1528. goto fail_trans_kthread;
  1529. }
  1530. blocksize =
  1531. btrfs_level_size(tree_root,
  1532. btrfs_super_log_root_level(disk_super));
  1533. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1534. GFP_NOFS);
  1535. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1536. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1537. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1538. blocksize,
  1539. generation + 1);
  1540. ret = btrfs_recover_log_trees(log_tree_root);
  1541. BUG_ON(ret);
  1542. if (sb->s_flags & MS_RDONLY) {
  1543. ret = btrfs_commit_super(tree_root);
  1544. BUG_ON(ret);
  1545. }
  1546. }
  1547. if (!(sb->s_flags & MS_RDONLY)) {
  1548. ret = btrfs_cleanup_reloc_trees(tree_root);
  1549. BUG_ON(ret);
  1550. }
  1551. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1552. location.type = BTRFS_ROOT_ITEM_KEY;
  1553. location.offset = (u64)-1;
  1554. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1555. if (!fs_info->fs_root)
  1556. goto fail_trans_kthread;
  1557. return tree_root;
  1558. fail_trans_kthread:
  1559. kthread_stop(fs_info->transaction_kthread);
  1560. fail_cleaner:
  1561. kthread_stop(fs_info->cleaner_kthread);
  1562. /*
  1563. * make sure we're done with the btree inode before we stop our
  1564. * kthreads
  1565. */
  1566. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1567. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1568. fail_csum_root:
  1569. free_extent_buffer(csum_root->node);
  1570. fail_extent_root:
  1571. free_extent_buffer(extent_root->node);
  1572. fail_tree_root:
  1573. free_extent_buffer(tree_root->node);
  1574. fail_chunk_root:
  1575. free_extent_buffer(chunk_root->node);
  1576. fail_sys_array:
  1577. free_extent_buffer(dev_root->node);
  1578. fail_sb_buffer:
  1579. btrfs_stop_workers(&fs_info->fixup_workers);
  1580. btrfs_stop_workers(&fs_info->delalloc_workers);
  1581. btrfs_stop_workers(&fs_info->workers);
  1582. btrfs_stop_workers(&fs_info->endio_workers);
  1583. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1584. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1585. btrfs_stop_workers(&fs_info->endio_write_workers);
  1586. btrfs_stop_workers(&fs_info->submit_workers);
  1587. fail_iput:
  1588. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1589. iput(fs_info->btree_inode);
  1590. fail:
  1591. btrfs_close_devices(fs_info->fs_devices);
  1592. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1593. kfree(extent_root);
  1594. kfree(tree_root);
  1595. bdi_destroy(&fs_info->bdi);
  1596. kfree(fs_info);
  1597. kfree(chunk_root);
  1598. kfree(dev_root);
  1599. kfree(csum_root);
  1600. return ERR_PTR(err);
  1601. }
  1602. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1603. {
  1604. char b[BDEVNAME_SIZE];
  1605. if (uptodate) {
  1606. set_buffer_uptodate(bh);
  1607. } else {
  1608. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1609. printk(KERN_WARNING "lost page write due to "
  1610. "I/O error on %s\n",
  1611. bdevname(bh->b_bdev, b));
  1612. }
  1613. /* note, we dont' set_buffer_write_io_error because we have
  1614. * our own ways of dealing with the IO errors
  1615. */
  1616. clear_buffer_uptodate(bh);
  1617. }
  1618. unlock_buffer(bh);
  1619. put_bh(bh);
  1620. }
  1621. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1622. {
  1623. struct buffer_head *bh;
  1624. struct buffer_head *latest = NULL;
  1625. struct btrfs_super_block *super;
  1626. int i;
  1627. u64 transid = 0;
  1628. u64 bytenr;
  1629. /* we would like to check all the supers, but that would make
  1630. * a btrfs mount succeed after a mkfs from a different FS.
  1631. * So, we need to add a special mount option to scan for
  1632. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1633. */
  1634. for (i = 0; i < 1; i++) {
  1635. bytenr = btrfs_sb_offset(i);
  1636. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1637. break;
  1638. bh = __bread(bdev, bytenr / 4096, 4096);
  1639. if (!bh)
  1640. continue;
  1641. super = (struct btrfs_super_block *)bh->b_data;
  1642. if (btrfs_super_bytenr(super) != bytenr ||
  1643. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1644. sizeof(super->magic))) {
  1645. brelse(bh);
  1646. continue;
  1647. }
  1648. if (!latest || btrfs_super_generation(super) > transid) {
  1649. brelse(latest);
  1650. latest = bh;
  1651. transid = btrfs_super_generation(super);
  1652. } else {
  1653. brelse(bh);
  1654. }
  1655. }
  1656. return latest;
  1657. }
  1658. static int write_dev_supers(struct btrfs_device *device,
  1659. struct btrfs_super_block *sb,
  1660. int do_barriers, int wait, int max_mirrors)
  1661. {
  1662. struct buffer_head *bh;
  1663. int i;
  1664. int ret;
  1665. int errors = 0;
  1666. u32 crc;
  1667. u64 bytenr;
  1668. int last_barrier = 0;
  1669. if (max_mirrors == 0)
  1670. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1671. /* make sure only the last submit_bh does a barrier */
  1672. if (do_barriers) {
  1673. for (i = 0; i < max_mirrors; i++) {
  1674. bytenr = btrfs_sb_offset(i);
  1675. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1676. device->total_bytes)
  1677. break;
  1678. last_barrier = i;
  1679. }
  1680. }
  1681. for (i = 0; i < max_mirrors; i++) {
  1682. bytenr = btrfs_sb_offset(i);
  1683. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1684. break;
  1685. if (wait) {
  1686. bh = __find_get_block(device->bdev, bytenr / 4096,
  1687. BTRFS_SUPER_INFO_SIZE);
  1688. BUG_ON(!bh);
  1689. brelse(bh);
  1690. wait_on_buffer(bh);
  1691. if (buffer_uptodate(bh)) {
  1692. brelse(bh);
  1693. continue;
  1694. }
  1695. } else {
  1696. btrfs_set_super_bytenr(sb, bytenr);
  1697. crc = ~(u32)0;
  1698. crc = btrfs_csum_data(NULL, (char *)sb +
  1699. BTRFS_CSUM_SIZE, crc,
  1700. BTRFS_SUPER_INFO_SIZE -
  1701. BTRFS_CSUM_SIZE);
  1702. btrfs_csum_final(crc, sb->csum);
  1703. bh = __getblk(device->bdev, bytenr / 4096,
  1704. BTRFS_SUPER_INFO_SIZE);
  1705. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1706. set_buffer_uptodate(bh);
  1707. get_bh(bh);
  1708. lock_buffer(bh);
  1709. bh->b_end_io = btrfs_end_buffer_write_sync;
  1710. }
  1711. if (i == last_barrier && do_barriers && device->barriers) {
  1712. ret = submit_bh(WRITE_BARRIER, bh);
  1713. if (ret == -EOPNOTSUPP) {
  1714. printk("btrfs: disabling barriers on dev %s\n",
  1715. device->name);
  1716. set_buffer_uptodate(bh);
  1717. device->barriers = 0;
  1718. get_bh(bh);
  1719. lock_buffer(bh);
  1720. ret = submit_bh(WRITE, bh);
  1721. }
  1722. } else {
  1723. ret = submit_bh(WRITE, bh);
  1724. }
  1725. if (!ret && wait) {
  1726. wait_on_buffer(bh);
  1727. if (!buffer_uptodate(bh))
  1728. errors++;
  1729. } else if (ret) {
  1730. errors++;
  1731. }
  1732. if (wait)
  1733. brelse(bh);
  1734. }
  1735. return errors < i ? 0 : -1;
  1736. }
  1737. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1738. {
  1739. struct list_head *cur;
  1740. struct list_head *head = &root->fs_info->fs_devices->devices;
  1741. struct btrfs_device *dev;
  1742. struct btrfs_super_block *sb;
  1743. struct btrfs_dev_item *dev_item;
  1744. int ret;
  1745. int do_barriers;
  1746. int max_errors;
  1747. int total_errors = 0;
  1748. u64 flags;
  1749. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1750. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1751. sb = &root->fs_info->super_for_commit;
  1752. dev_item = &sb->dev_item;
  1753. list_for_each(cur, head) {
  1754. dev = list_entry(cur, struct btrfs_device, dev_list);
  1755. if (!dev->bdev) {
  1756. total_errors++;
  1757. continue;
  1758. }
  1759. if (!dev->in_fs_metadata || !dev->writeable)
  1760. continue;
  1761. btrfs_set_stack_device_generation(dev_item, 0);
  1762. btrfs_set_stack_device_type(dev_item, dev->type);
  1763. btrfs_set_stack_device_id(dev_item, dev->devid);
  1764. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1765. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1766. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1767. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1768. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1769. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1770. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1771. flags = btrfs_super_flags(sb);
  1772. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1773. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1774. if (ret)
  1775. total_errors++;
  1776. }
  1777. if (total_errors > max_errors) {
  1778. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1779. total_errors);
  1780. BUG();
  1781. }
  1782. total_errors = 0;
  1783. list_for_each(cur, head) {
  1784. dev = list_entry(cur, struct btrfs_device, dev_list);
  1785. if (!dev->bdev)
  1786. continue;
  1787. if (!dev->in_fs_metadata || !dev->writeable)
  1788. continue;
  1789. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1790. if (ret)
  1791. total_errors++;
  1792. }
  1793. if (total_errors > max_errors) {
  1794. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1795. total_errors);
  1796. BUG();
  1797. }
  1798. return 0;
  1799. }
  1800. int write_ctree_super(struct btrfs_trans_handle *trans,
  1801. struct btrfs_root *root, int max_mirrors)
  1802. {
  1803. int ret;
  1804. ret = write_all_supers(root, max_mirrors);
  1805. return ret;
  1806. }
  1807. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1808. {
  1809. radix_tree_delete(&fs_info->fs_roots_radix,
  1810. (unsigned long)root->root_key.objectid);
  1811. if (root->anon_super.s_dev) {
  1812. down_write(&root->anon_super.s_umount);
  1813. kill_anon_super(&root->anon_super);
  1814. }
  1815. if (root->node)
  1816. free_extent_buffer(root->node);
  1817. if (root->commit_root)
  1818. free_extent_buffer(root->commit_root);
  1819. kfree(root->name);
  1820. kfree(root);
  1821. return 0;
  1822. }
  1823. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1824. {
  1825. int ret;
  1826. struct btrfs_root *gang[8];
  1827. int i;
  1828. while (1) {
  1829. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1830. (void **)gang, 0,
  1831. ARRAY_SIZE(gang));
  1832. if (!ret)
  1833. break;
  1834. for (i = 0; i < ret; i++)
  1835. btrfs_free_fs_root(fs_info, gang[i]);
  1836. }
  1837. return 0;
  1838. }
  1839. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  1840. {
  1841. u64 root_objectid = 0;
  1842. struct btrfs_root *gang[8];
  1843. int i;
  1844. int ret;
  1845. while (1) {
  1846. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1847. (void **)gang, root_objectid,
  1848. ARRAY_SIZE(gang));
  1849. if (!ret)
  1850. break;
  1851. for (i = 0; i < ret; i++) {
  1852. root_objectid = gang[i]->root_key.objectid;
  1853. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1854. root_objectid, gang[i]);
  1855. BUG_ON(ret);
  1856. btrfs_orphan_cleanup(gang[i]);
  1857. }
  1858. root_objectid++;
  1859. }
  1860. return 0;
  1861. }
  1862. int btrfs_commit_super(struct btrfs_root *root)
  1863. {
  1864. struct btrfs_trans_handle *trans;
  1865. int ret;
  1866. mutex_lock(&root->fs_info->cleaner_mutex);
  1867. btrfs_clean_old_snapshots(root);
  1868. mutex_unlock(&root->fs_info->cleaner_mutex);
  1869. trans = btrfs_start_transaction(root, 1);
  1870. ret = btrfs_commit_transaction(trans, root);
  1871. BUG_ON(ret);
  1872. /* run commit again to drop the original snapshot */
  1873. trans = btrfs_start_transaction(root, 1);
  1874. btrfs_commit_transaction(trans, root);
  1875. ret = btrfs_write_and_wait_transaction(NULL, root);
  1876. BUG_ON(ret);
  1877. ret = write_ctree_super(NULL, root, 0);
  1878. return ret;
  1879. }
  1880. int close_ctree(struct btrfs_root *root)
  1881. {
  1882. struct btrfs_fs_info *fs_info = root->fs_info;
  1883. int ret;
  1884. fs_info->closing = 1;
  1885. smp_mb();
  1886. kthread_stop(root->fs_info->transaction_kthread);
  1887. kthread_stop(root->fs_info->cleaner_kthread);
  1888. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1889. ret = btrfs_commit_super(root);
  1890. if (ret)
  1891. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  1892. }
  1893. if (fs_info->delalloc_bytes) {
  1894. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  1895. fs_info->delalloc_bytes);
  1896. }
  1897. if (fs_info->total_ref_cache_size) {
  1898. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  1899. (unsigned long long)fs_info->total_ref_cache_size);
  1900. }
  1901. if (fs_info->extent_root->node)
  1902. free_extent_buffer(fs_info->extent_root->node);
  1903. if (fs_info->tree_root->node)
  1904. free_extent_buffer(fs_info->tree_root->node);
  1905. if (root->fs_info->chunk_root->node)
  1906. free_extent_buffer(root->fs_info->chunk_root->node);
  1907. if (root->fs_info->dev_root->node)
  1908. free_extent_buffer(root->fs_info->dev_root->node);
  1909. if (root->fs_info->csum_root->node)
  1910. free_extent_buffer(root->fs_info->csum_root->node);
  1911. btrfs_free_block_groups(root->fs_info);
  1912. del_fs_roots(fs_info);
  1913. iput(fs_info->btree_inode);
  1914. btrfs_stop_workers(&fs_info->fixup_workers);
  1915. btrfs_stop_workers(&fs_info->delalloc_workers);
  1916. btrfs_stop_workers(&fs_info->workers);
  1917. btrfs_stop_workers(&fs_info->endio_workers);
  1918. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1919. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1920. btrfs_stop_workers(&fs_info->endio_write_workers);
  1921. btrfs_stop_workers(&fs_info->submit_workers);
  1922. #if 0
  1923. while (!list_empty(&fs_info->hashers)) {
  1924. struct btrfs_hasher *hasher;
  1925. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  1926. hashers);
  1927. list_del(&hasher->hashers);
  1928. crypto_free_hash(&fs_info->hash_tfm);
  1929. kfree(hasher);
  1930. }
  1931. #endif
  1932. btrfs_close_devices(fs_info->fs_devices);
  1933. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1934. bdi_destroy(&fs_info->bdi);
  1935. kfree(fs_info->extent_root);
  1936. kfree(fs_info->tree_root);
  1937. kfree(fs_info->chunk_root);
  1938. kfree(fs_info->dev_root);
  1939. kfree(fs_info->csum_root);
  1940. return 0;
  1941. }
  1942. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  1943. {
  1944. int ret;
  1945. struct inode *btree_inode = buf->first_page->mapping->host;
  1946. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  1947. if (!ret)
  1948. return ret;
  1949. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  1950. parent_transid);
  1951. return !ret;
  1952. }
  1953. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  1954. {
  1955. struct inode *btree_inode = buf->first_page->mapping->host;
  1956. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  1957. buf);
  1958. }
  1959. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  1960. {
  1961. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1962. u64 transid = btrfs_header_generation(buf);
  1963. struct inode *btree_inode = root->fs_info->btree_inode;
  1964. WARN_ON(!btrfs_tree_locked(buf));
  1965. if (transid != root->fs_info->generation) {
  1966. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  1967. "found %llu running %llu\n",
  1968. (unsigned long long)buf->start,
  1969. (unsigned long long)transid,
  1970. (unsigned long long)root->fs_info->generation);
  1971. WARN_ON(1);
  1972. }
  1973. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
  1974. }
  1975. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  1976. {
  1977. /*
  1978. * looks as though older kernels can get into trouble with
  1979. * this code, they end up stuck in balance_dirty_pages forever
  1980. */
  1981. struct extent_io_tree *tree;
  1982. u64 num_dirty;
  1983. u64 start = 0;
  1984. unsigned long thresh = 32 * 1024 * 1024;
  1985. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  1986. if (current_is_pdflush() || current->flags & PF_MEMALLOC)
  1987. return;
  1988. num_dirty = count_range_bits(tree, &start, (u64)-1,
  1989. thresh, EXTENT_DIRTY);
  1990. if (num_dirty > thresh) {
  1991. balance_dirty_pages_ratelimited_nr(
  1992. root->fs_info->btree_inode->i_mapping, 1);
  1993. }
  1994. return;
  1995. }
  1996. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  1997. {
  1998. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1999. int ret;
  2000. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2001. if (ret == 0)
  2002. buf->flags |= EXTENT_UPTODATE;
  2003. return ret;
  2004. }
  2005. int btree_lock_page_hook(struct page *page)
  2006. {
  2007. struct inode *inode = page->mapping->host;
  2008. struct btrfs_root *root = BTRFS_I(inode)->root;
  2009. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2010. struct extent_buffer *eb;
  2011. unsigned long len;
  2012. u64 bytenr = page_offset(page);
  2013. if (page->private == EXTENT_PAGE_PRIVATE)
  2014. goto out;
  2015. len = page->private >> 2;
  2016. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2017. if (!eb)
  2018. goto out;
  2019. btrfs_tree_lock(eb);
  2020. spin_lock(&root->fs_info->hash_lock);
  2021. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2022. spin_unlock(&root->fs_info->hash_lock);
  2023. btrfs_tree_unlock(eb);
  2024. free_extent_buffer(eb);
  2025. out:
  2026. lock_page(page);
  2027. return 0;
  2028. }
  2029. static struct extent_io_ops btree_extent_io_ops = {
  2030. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2031. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2032. .submit_bio_hook = btree_submit_bio_hook,
  2033. /* note we're sharing with inode.c for the merge bio hook */
  2034. .merge_bio_hook = btrfs_merge_bio_hook,
  2035. };