swiotlb.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <asm/io.h>
  31. #include <asm/dma.h>
  32. #include <asm/scatterlist.h>
  33. #include <linux/init.h>
  34. #include <linux/bootmem.h>
  35. #include <linux/iommu-helper.h>
  36. #define OFFSET(val,align) ((unsigned long) \
  37. ( (val) & ( (align) - 1)))
  38. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  39. /*
  40. * Minimum IO TLB size to bother booting with. Systems with mainly
  41. * 64bit capable cards will only lightly use the swiotlb. If we can't
  42. * allocate a contiguous 1MB, we're probably in trouble anyway.
  43. */
  44. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  45. /*
  46. * Enumeration for sync targets
  47. */
  48. enum dma_sync_target {
  49. SYNC_FOR_CPU = 0,
  50. SYNC_FOR_DEVICE = 1,
  51. };
  52. int swiotlb_force;
  53. /*
  54. * Used to do a quick range check in unmap_single and
  55. * sync_single_*, to see if the memory was in fact allocated by this
  56. * API.
  57. */
  58. static char *io_tlb_start, *io_tlb_end;
  59. /*
  60. * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
  61. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  62. */
  63. static unsigned long io_tlb_nslabs;
  64. /*
  65. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  66. */
  67. static unsigned long io_tlb_overflow = 32*1024;
  68. void *io_tlb_overflow_buffer;
  69. /*
  70. * This is a free list describing the number of free entries available from
  71. * each index
  72. */
  73. static unsigned int *io_tlb_list;
  74. static unsigned int io_tlb_index;
  75. /*
  76. * We need to save away the original address corresponding to a mapped entry
  77. * for the sync operations.
  78. */
  79. static phys_addr_t *io_tlb_orig_addr;
  80. /*
  81. * Protect the above data structures in the map and unmap calls
  82. */
  83. static DEFINE_SPINLOCK(io_tlb_lock);
  84. static int late_alloc;
  85. static int __init
  86. setup_io_tlb_npages(char *str)
  87. {
  88. if (isdigit(*str)) {
  89. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  90. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  91. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  92. }
  93. if (*str == ',')
  94. ++str;
  95. if (!strcmp(str, "force"))
  96. swiotlb_force = 1;
  97. return 1;
  98. }
  99. __setup("swiotlb=", setup_io_tlb_npages);
  100. /* make io_tlb_overflow tunable too? */
  101. /* Note that this doesn't work with highmem page */
  102. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  103. volatile void *address)
  104. {
  105. return phys_to_dma(hwdev, virt_to_phys(address));
  106. }
  107. static void swiotlb_print_info(unsigned long bytes)
  108. {
  109. phys_addr_t pstart, pend;
  110. pstart = virt_to_phys(io_tlb_start);
  111. pend = virt_to_phys(io_tlb_end);
  112. printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
  113. bytes >> 20, io_tlb_start, io_tlb_end);
  114. printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
  115. (unsigned long long)pstart,
  116. (unsigned long long)pend);
  117. }
  118. /*
  119. * Statically reserve bounce buffer space and initialize bounce buffer data
  120. * structures for the software IO TLB used to implement the DMA API.
  121. */
  122. void __init
  123. swiotlb_init_with_default_size(size_t default_size)
  124. {
  125. unsigned long i, bytes;
  126. if (!io_tlb_nslabs) {
  127. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  128. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  129. }
  130. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  131. /*
  132. * Get IO TLB memory from the low pages
  133. */
  134. io_tlb_start = alloc_bootmem_low_pages(bytes);
  135. if (!io_tlb_start)
  136. panic("Cannot allocate SWIOTLB buffer");
  137. io_tlb_end = io_tlb_start + bytes;
  138. /*
  139. * Allocate and initialize the free list array. This array is used
  140. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  141. * between io_tlb_start and io_tlb_end.
  142. */
  143. io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
  144. for (i = 0; i < io_tlb_nslabs; i++)
  145. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  146. io_tlb_index = 0;
  147. io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
  148. /*
  149. * Get the overflow emergency buffer
  150. */
  151. io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
  152. if (!io_tlb_overflow_buffer)
  153. panic("Cannot allocate SWIOTLB overflow buffer!\n");
  154. swiotlb_print_info(bytes);
  155. }
  156. void __init
  157. swiotlb_init(void)
  158. {
  159. swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
  160. }
  161. /*
  162. * Systems with larger DMA zones (those that don't support ISA) can
  163. * initialize the swiotlb later using the slab allocator if needed.
  164. * This should be just like above, but with some error catching.
  165. */
  166. int
  167. swiotlb_late_init_with_default_size(size_t default_size)
  168. {
  169. unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
  170. unsigned int order;
  171. if (!io_tlb_nslabs) {
  172. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  173. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  174. }
  175. /*
  176. * Get IO TLB memory from the low pages
  177. */
  178. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  179. io_tlb_nslabs = SLABS_PER_PAGE << order;
  180. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  181. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  182. io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  183. order);
  184. if (io_tlb_start)
  185. break;
  186. order--;
  187. }
  188. if (!io_tlb_start)
  189. goto cleanup1;
  190. if (order != get_order(bytes)) {
  191. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  192. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  193. io_tlb_nslabs = SLABS_PER_PAGE << order;
  194. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  195. }
  196. io_tlb_end = io_tlb_start + bytes;
  197. memset(io_tlb_start, 0, bytes);
  198. /*
  199. * Allocate and initialize the free list array. This array is used
  200. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  201. * between io_tlb_start and io_tlb_end.
  202. */
  203. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  204. get_order(io_tlb_nslabs * sizeof(int)));
  205. if (!io_tlb_list)
  206. goto cleanup2;
  207. for (i = 0; i < io_tlb_nslabs; i++)
  208. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  209. io_tlb_index = 0;
  210. io_tlb_orig_addr = (phys_addr_t *)
  211. __get_free_pages(GFP_KERNEL,
  212. get_order(io_tlb_nslabs *
  213. sizeof(phys_addr_t)));
  214. if (!io_tlb_orig_addr)
  215. goto cleanup3;
  216. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  217. /*
  218. * Get the overflow emergency buffer
  219. */
  220. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  221. get_order(io_tlb_overflow));
  222. if (!io_tlb_overflow_buffer)
  223. goto cleanup4;
  224. swiotlb_print_info(bytes);
  225. late_alloc = 1;
  226. return 0;
  227. cleanup4:
  228. free_pages((unsigned long)io_tlb_orig_addr,
  229. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  230. io_tlb_orig_addr = NULL;
  231. cleanup3:
  232. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  233. sizeof(int)));
  234. io_tlb_list = NULL;
  235. cleanup2:
  236. io_tlb_end = NULL;
  237. free_pages((unsigned long)io_tlb_start, order);
  238. io_tlb_start = NULL;
  239. cleanup1:
  240. io_tlb_nslabs = req_nslabs;
  241. return -ENOMEM;
  242. }
  243. void __init swiotlb_free(void)
  244. {
  245. if (!io_tlb_overflow_buffer)
  246. return;
  247. if (late_alloc) {
  248. free_pages((unsigned long)io_tlb_overflow_buffer,
  249. get_order(io_tlb_overflow));
  250. free_pages((unsigned long)io_tlb_orig_addr,
  251. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  252. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  253. sizeof(int)));
  254. free_pages((unsigned long)io_tlb_start,
  255. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  256. } else {
  257. free_bootmem_late(__pa(io_tlb_overflow_buffer),
  258. io_tlb_overflow);
  259. free_bootmem_late(__pa(io_tlb_orig_addr),
  260. io_tlb_nslabs * sizeof(phys_addr_t));
  261. free_bootmem_late(__pa(io_tlb_list),
  262. io_tlb_nslabs * sizeof(int));
  263. free_bootmem_late(__pa(io_tlb_start),
  264. io_tlb_nslabs << IO_TLB_SHIFT);
  265. }
  266. }
  267. static int is_swiotlb_buffer(phys_addr_t paddr)
  268. {
  269. return paddr >= virt_to_phys(io_tlb_start) &&
  270. paddr < virt_to_phys(io_tlb_end);
  271. }
  272. /*
  273. * Bounce: copy the swiotlb buffer back to the original dma location
  274. */
  275. static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
  276. enum dma_data_direction dir)
  277. {
  278. unsigned long pfn = PFN_DOWN(phys);
  279. if (PageHighMem(pfn_to_page(pfn))) {
  280. /* The buffer does not have a mapping. Map it in and copy */
  281. unsigned int offset = phys & ~PAGE_MASK;
  282. char *buffer;
  283. unsigned int sz = 0;
  284. unsigned long flags;
  285. while (size) {
  286. sz = min_t(size_t, PAGE_SIZE - offset, size);
  287. local_irq_save(flags);
  288. buffer = kmap_atomic(pfn_to_page(pfn),
  289. KM_BOUNCE_READ);
  290. if (dir == DMA_TO_DEVICE)
  291. memcpy(dma_addr, buffer + offset, sz);
  292. else
  293. memcpy(buffer + offset, dma_addr, sz);
  294. kunmap_atomic(buffer, KM_BOUNCE_READ);
  295. local_irq_restore(flags);
  296. size -= sz;
  297. pfn++;
  298. dma_addr += sz;
  299. offset = 0;
  300. }
  301. } else {
  302. if (dir == DMA_TO_DEVICE)
  303. memcpy(dma_addr, phys_to_virt(phys), size);
  304. else
  305. memcpy(phys_to_virt(phys), dma_addr, size);
  306. }
  307. }
  308. /*
  309. * Allocates bounce buffer and returns its kernel virtual address.
  310. */
  311. static void *
  312. map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
  313. {
  314. unsigned long flags;
  315. char *dma_addr;
  316. unsigned int nslots, stride, index, wrap;
  317. int i;
  318. unsigned long start_dma_addr;
  319. unsigned long mask;
  320. unsigned long offset_slots;
  321. unsigned long max_slots;
  322. mask = dma_get_seg_boundary(hwdev);
  323. start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
  324. offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  325. /*
  326. * Carefully handle integer overflow which can occur when mask == ~0UL.
  327. */
  328. max_slots = mask + 1
  329. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  330. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  331. /*
  332. * For mappings greater than a page, we limit the stride (and
  333. * hence alignment) to a page size.
  334. */
  335. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  336. if (size > PAGE_SIZE)
  337. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  338. else
  339. stride = 1;
  340. BUG_ON(!nslots);
  341. /*
  342. * Find suitable number of IO TLB entries size that will fit this
  343. * request and allocate a buffer from that IO TLB pool.
  344. */
  345. spin_lock_irqsave(&io_tlb_lock, flags);
  346. index = ALIGN(io_tlb_index, stride);
  347. if (index >= io_tlb_nslabs)
  348. index = 0;
  349. wrap = index;
  350. do {
  351. while (iommu_is_span_boundary(index, nslots, offset_slots,
  352. max_slots)) {
  353. index += stride;
  354. if (index >= io_tlb_nslabs)
  355. index = 0;
  356. if (index == wrap)
  357. goto not_found;
  358. }
  359. /*
  360. * If we find a slot that indicates we have 'nslots' number of
  361. * contiguous buffers, we allocate the buffers from that slot
  362. * and mark the entries as '0' indicating unavailable.
  363. */
  364. if (io_tlb_list[index] >= nslots) {
  365. int count = 0;
  366. for (i = index; i < (int) (index + nslots); i++)
  367. io_tlb_list[i] = 0;
  368. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  369. io_tlb_list[i] = ++count;
  370. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  371. /*
  372. * Update the indices to avoid searching in the next
  373. * round.
  374. */
  375. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  376. ? (index + nslots) : 0);
  377. goto found;
  378. }
  379. index += stride;
  380. if (index >= io_tlb_nslabs)
  381. index = 0;
  382. } while (index != wrap);
  383. not_found:
  384. spin_unlock_irqrestore(&io_tlb_lock, flags);
  385. return NULL;
  386. found:
  387. spin_unlock_irqrestore(&io_tlb_lock, flags);
  388. /*
  389. * Save away the mapping from the original address to the DMA address.
  390. * This is needed when we sync the memory. Then we sync the buffer if
  391. * needed.
  392. */
  393. for (i = 0; i < nslots; i++)
  394. io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
  395. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  396. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  397. return dma_addr;
  398. }
  399. /*
  400. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  401. */
  402. static void
  403. do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
  404. {
  405. unsigned long flags;
  406. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  407. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  408. phys_addr_t phys = io_tlb_orig_addr[index];
  409. /*
  410. * First, sync the memory before unmapping the entry
  411. */
  412. if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  413. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  414. /*
  415. * Return the buffer to the free list by setting the corresponding
  416. * entries to indicate the number of contigous entries available.
  417. * While returning the entries to the free list, we merge the entries
  418. * with slots below and above the pool being returned.
  419. */
  420. spin_lock_irqsave(&io_tlb_lock, flags);
  421. {
  422. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  423. io_tlb_list[index + nslots] : 0);
  424. /*
  425. * Step 1: return the slots to the free list, merging the
  426. * slots with superceeding slots
  427. */
  428. for (i = index + nslots - 1; i >= index; i--)
  429. io_tlb_list[i] = ++count;
  430. /*
  431. * Step 2: merge the returned slots with the preceding slots,
  432. * if available (non zero)
  433. */
  434. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  435. io_tlb_list[i] = ++count;
  436. }
  437. spin_unlock_irqrestore(&io_tlb_lock, flags);
  438. }
  439. static void
  440. sync_single(struct device *hwdev, char *dma_addr, size_t size,
  441. int dir, int target)
  442. {
  443. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  444. phys_addr_t phys = io_tlb_orig_addr[index];
  445. phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
  446. switch (target) {
  447. case SYNC_FOR_CPU:
  448. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  449. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  450. else
  451. BUG_ON(dir != DMA_TO_DEVICE);
  452. break;
  453. case SYNC_FOR_DEVICE:
  454. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  455. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  456. else
  457. BUG_ON(dir != DMA_FROM_DEVICE);
  458. break;
  459. default:
  460. BUG();
  461. }
  462. }
  463. void *
  464. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  465. dma_addr_t *dma_handle, gfp_t flags)
  466. {
  467. dma_addr_t dev_addr;
  468. void *ret;
  469. int order = get_order(size);
  470. u64 dma_mask = DMA_BIT_MASK(32);
  471. if (hwdev && hwdev->coherent_dma_mask)
  472. dma_mask = hwdev->coherent_dma_mask;
  473. ret = (void *)__get_free_pages(flags, order);
  474. if (ret && swiotlb_virt_to_bus(hwdev, ret) + size > dma_mask) {
  475. /*
  476. * The allocated memory isn't reachable by the device.
  477. */
  478. free_pages((unsigned long) ret, order);
  479. ret = NULL;
  480. }
  481. if (!ret) {
  482. /*
  483. * We are either out of memory or the device can't DMA
  484. * to GFP_DMA memory; fall back on map_single(), which
  485. * will grab memory from the lowest available address range.
  486. */
  487. ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  488. if (!ret)
  489. return NULL;
  490. }
  491. memset(ret, 0, size);
  492. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  493. /* Confirm address can be DMA'd by device */
  494. if (dev_addr + size > dma_mask) {
  495. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  496. (unsigned long long)dma_mask,
  497. (unsigned long long)dev_addr);
  498. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  499. do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
  500. return NULL;
  501. }
  502. *dma_handle = dev_addr;
  503. return ret;
  504. }
  505. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  506. void
  507. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  508. dma_addr_t dev_addr)
  509. {
  510. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  511. WARN_ON(irqs_disabled());
  512. if (!is_swiotlb_buffer(paddr))
  513. free_pages((unsigned long)vaddr, get_order(size));
  514. else
  515. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  516. do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
  517. }
  518. EXPORT_SYMBOL(swiotlb_free_coherent);
  519. static void
  520. swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
  521. {
  522. /*
  523. * Ran out of IOMMU space for this operation. This is very bad.
  524. * Unfortunately the drivers cannot handle this operation properly.
  525. * unless they check for dma_mapping_error (most don't)
  526. * When the mapping is small enough return a static buffer to limit
  527. * the damage, or panic when the transfer is too big.
  528. */
  529. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  530. "device %s\n", size, dev ? dev_name(dev) : "?");
  531. if (size <= io_tlb_overflow || !do_panic)
  532. return;
  533. if (dir == DMA_BIDIRECTIONAL)
  534. panic("DMA: Random memory could be DMA accessed\n");
  535. if (dir == DMA_FROM_DEVICE)
  536. panic("DMA: Random memory could be DMA written\n");
  537. if (dir == DMA_TO_DEVICE)
  538. panic("DMA: Random memory could be DMA read\n");
  539. }
  540. /*
  541. * Map a single buffer of the indicated size for DMA in streaming mode. The
  542. * physical address to use is returned.
  543. *
  544. * Once the device is given the dma address, the device owns this memory until
  545. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  546. */
  547. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  548. unsigned long offset, size_t size,
  549. enum dma_data_direction dir,
  550. struct dma_attrs *attrs)
  551. {
  552. phys_addr_t phys = page_to_phys(page) + offset;
  553. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  554. void *map;
  555. BUG_ON(dir == DMA_NONE);
  556. /*
  557. * If the address happens to be in the device's DMA window,
  558. * we can safely return the device addr and not worry about bounce
  559. * buffering it.
  560. */
  561. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  562. return dev_addr;
  563. /*
  564. * Oh well, have to allocate and map a bounce buffer.
  565. */
  566. map = map_single(dev, phys, size, dir);
  567. if (!map) {
  568. swiotlb_full(dev, size, dir, 1);
  569. map = io_tlb_overflow_buffer;
  570. }
  571. dev_addr = swiotlb_virt_to_bus(dev, map);
  572. /*
  573. * Ensure that the address returned is DMA'ble
  574. */
  575. if (!dma_capable(dev, dev_addr, size))
  576. panic("map_single: bounce buffer is not DMA'ble");
  577. return dev_addr;
  578. }
  579. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  580. /*
  581. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  582. * match what was provided for in a previous swiotlb_map_page call. All
  583. * other usages are undefined.
  584. *
  585. * After this call, reads by the cpu to the buffer are guaranteed to see
  586. * whatever the device wrote there.
  587. */
  588. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  589. size_t size, int dir)
  590. {
  591. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  592. BUG_ON(dir == DMA_NONE);
  593. if (is_swiotlb_buffer(paddr)) {
  594. do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  595. return;
  596. }
  597. if (dir != DMA_FROM_DEVICE)
  598. return;
  599. /*
  600. * phys_to_virt doesn't work with hihgmem page but we could
  601. * call dma_mark_clean() with hihgmem page here. However, we
  602. * are fine since dma_mark_clean() is null on POWERPC. We can
  603. * make dma_mark_clean() take a physical address if necessary.
  604. */
  605. dma_mark_clean(phys_to_virt(paddr), size);
  606. }
  607. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  608. size_t size, enum dma_data_direction dir,
  609. struct dma_attrs *attrs)
  610. {
  611. unmap_single(hwdev, dev_addr, size, dir);
  612. }
  613. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  614. /*
  615. * Make physical memory consistent for a single streaming mode DMA translation
  616. * after a transfer.
  617. *
  618. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  619. * using the cpu, yet do not wish to teardown the dma mapping, you must
  620. * call this function before doing so. At the next point you give the dma
  621. * address back to the card, you must first perform a
  622. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  623. */
  624. static void
  625. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  626. size_t size, int dir, int target)
  627. {
  628. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  629. BUG_ON(dir == DMA_NONE);
  630. if (is_swiotlb_buffer(paddr)) {
  631. sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
  632. return;
  633. }
  634. if (dir != DMA_FROM_DEVICE)
  635. return;
  636. dma_mark_clean(phys_to_virt(paddr), size);
  637. }
  638. void
  639. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  640. size_t size, enum dma_data_direction dir)
  641. {
  642. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  643. }
  644. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  645. void
  646. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  647. size_t size, enum dma_data_direction dir)
  648. {
  649. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  650. }
  651. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  652. /*
  653. * Same as above, but for a sub-range of the mapping.
  654. */
  655. static void
  656. swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
  657. unsigned long offset, size_t size,
  658. int dir, int target)
  659. {
  660. swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
  661. }
  662. void
  663. swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  664. unsigned long offset, size_t size,
  665. enum dma_data_direction dir)
  666. {
  667. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  668. SYNC_FOR_CPU);
  669. }
  670. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
  671. void
  672. swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
  673. unsigned long offset, size_t size,
  674. enum dma_data_direction dir)
  675. {
  676. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  677. SYNC_FOR_DEVICE);
  678. }
  679. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
  680. /*
  681. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  682. * This is the scatter-gather version of the above swiotlb_map_page
  683. * interface. Here the scatter gather list elements are each tagged with the
  684. * appropriate dma address and length. They are obtained via
  685. * sg_dma_{address,length}(SG).
  686. *
  687. * NOTE: An implementation may be able to use a smaller number of
  688. * DMA address/length pairs than there are SG table elements.
  689. * (for example via virtual mapping capabilities)
  690. * The routine returns the number of addr/length pairs actually
  691. * used, at most nents.
  692. *
  693. * Device ownership issues as mentioned above for swiotlb_map_page are the
  694. * same here.
  695. */
  696. int
  697. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  698. enum dma_data_direction dir, struct dma_attrs *attrs)
  699. {
  700. struct scatterlist *sg;
  701. int i;
  702. BUG_ON(dir == DMA_NONE);
  703. for_each_sg(sgl, sg, nelems, i) {
  704. phys_addr_t paddr = sg_phys(sg);
  705. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  706. if (swiotlb_force ||
  707. !dma_capable(hwdev, dev_addr, sg->length)) {
  708. void *map = map_single(hwdev, sg_phys(sg),
  709. sg->length, dir);
  710. if (!map) {
  711. /* Don't panic here, we expect map_sg users
  712. to do proper error handling. */
  713. swiotlb_full(hwdev, sg->length, dir, 0);
  714. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  715. attrs);
  716. sgl[0].dma_length = 0;
  717. return 0;
  718. }
  719. sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
  720. } else
  721. sg->dma_address = dev_addr;
  722. sg->dma_length = sg->length;
  723. }
  724. return nelems;
  725. }
  726. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  727. int
  728. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  729. int dir)
  730. {
  731. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  732. }
  733. EXPORT_SYMBOL(swiotlb_map_sg);
  734. /*
  735. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  736. * concerning calls here are the same as for swiotlb_unmap_page() above.
  737. */
  738. void
  739. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  740. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  741. {
  742. struct scatterlist *sg;
  743. int i;
  744. BUG_ON(dir == DMA_NONE);
  745. for_each_sg(sgl, sg, nelems, i)
  746. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  747. }
  748. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  749. void
  750. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  751. int dir)
  752. {
  753. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  754. }
  755. EXPORT_SYMBOL(swiotlb_unmap_sg);
  756. /*
  757. * Make physical memory consistent for a set of streaming mode DMA translations
  758. * after a transfer.
  759. *
  760. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  761. * and usage.
  762. */
  763. static void
  764. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  765. int nelems, int dir, int target)
  766. {
  767. struct scatterlist *sg;
  768. int i;
  769. for_each_sg(sgl, sg, nelems, i)
  770. swiotlb_sync_single(hwdev, sg->dma_address,
  771. sg->dma_length, dir, target);
  772. }
  773. void
  774. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  775. int nelems, enum dma_data_direction dir)
  776. {
  777. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  778. }
  779. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  780. void
  781. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  782. int nelems, enum dma_data_direction dir)
  783. {
  784. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  785. }
  786. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  787. int
  788. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  789. {
  790. return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
  791. }
  792. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  793. /*
  794. * Return whether the given device DMA address mask can be supported
  795. * properly. For example, if your device can only drive the low 24-bits
  796. * during bus mastering, then you would pass 0x00ffffff as the mask to
  797. * this function.
  798. */
  799. int
  800. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  801. {
  802. return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
  803. }
  804. EXPORT_SYMBOL(swiotlb_dma_supported);