e1000_ethtool.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /* ethtool support for e1000 */
  21. #include "e1000.h"
  22. #include <asm/uaccess.h>
  23. extern char e1000_driver_name[];
  24. extern char e1000_driver_version[];
  25. extern int e1000_up(struct e1000_adapter *adapter);
  26. extern void e1000_down(struct e1000_adapter *adapter);
  27. extern void e1000_reset(struct e1000_adapter *adapter);
  28. extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  29. extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  30. extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  31. extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  32. extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  33. extern void e1000_update_stats(struct e1000_adapter *adapter);
  34. struct e1000_stats {
  35. char stat_string[ETH_GSTRING_LEN];
  36. int sizeof_stat;
  37. int stat_offset;
  38. };
  39. #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
  40. offsetof(struct e1000_adapter, m)
  41. static const struct e1000_stats e1000_gstrings_stats[] = {
  42. { "rx_packets", E1000_STAT(net_stats.rx_packets) },
  43. { "tx_packets", E1000_STAT(net_stats.tx_packets) },
  44. { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
  45. { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
  46. { "rx_errors", E1000_STAT(net_stats.rx_errors) },
  47. { "tx_errors", E1000_STAT(net_stats.tx_errors) },
  48. { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
  49. { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
  50. { "multicast", E1000_STAT(net_stats.multicast) },
  51. { "collisions", E1000_STAT(net_stats.collisions) },
  52. { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
  53. { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
  54. { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
  55. { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
  56. { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
  57. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  58. { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
  59. { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
  60. { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
  61. { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
  62. { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
  63. { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
  64. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  65. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  66. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  67. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  68. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  69. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  70. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  71. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  72. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  73. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  74. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  75. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  76. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  77. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  78. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  79. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  80. { "rx_header_split", E1000_STAT(rx_hdr_split) },
  81. };
  82. #define E1000_STATS_LEN \
  83. sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
  84. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  85. "Register test (offline)", "Eeprom test (offline)",
  86. "Interrupt test (offline)", "Loopback test (offline)",
  87. "Link test (on/offline)"
  88. };
  89. #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
  90. static int
  91. e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  92. {
  93. struct e1000_adapter *adapter = netdev_priv(netdev);
  94. struct e1000_hw *hw = &adapter->hw;
  95. if(hw->media_type == e1000_media_type_copper) {
  96. ecmd->supported = (SUPPORTED_10baseT_Half |
  97. SUPPORTED_10baseT_Full |
  98. SUPPORTED_100baseT_Half |
  99. SUPPORTED_100baseT_Full |
  100. SUPPORTED_1000baseT_Full|
  101. SUPPORTED_Autoneg |
  102. SUPPORTED_TP);
  103. ecmd->advertising = ADVERTISED_TP;
  104. if(hw->autoneg == 1) {
  105. ecmd->advertising |= ADVERTISED_Autoneg;
  106. /* the e1000 autoneg seems to match ethtool nicely */
  107. ecmd->advertising |= hw->autoneg_advertised;
  108. }
  109. ecmd->port = PORT_TP;
  110. ecmd->phy_address = hw->phy_addr;
  111. if(hw->mac_type == e1000_82543)
  112. ecmd->transceiver = XCVR_EXTERNAL;
  113. else
  114. ecmd->transceiver = XCVR_INTERNAL;
  115. } else {
  116. ecmd->supported = (SUPPORTED_1000baseT_Full |
  117. SUPPORTED_FIBRE |
  118. SUPPORTED_Autoneg);
  119. ecmd->advertising = (ADVERTISED_1000baseT_Full |
  120. ADVERTISED_FIBRE |
  121. ADVERTISED_Autoneg);
  122. ecmd->port = PORT_FIBRE;
  123. if(hw->mac_type >= e1000_82545)
  124. ecmd->transceiver = XCVR_INTERNAL;
  125. else
  126. ecmd->transceiver = XCVR_EXTERNAL;
  127. }
  128. if(netif_carrier_ok(adapter->netdev)) {
  129. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  130. &adapter->link_duplex);
  131. ecmd->speed = adapter->link_speed;
  132. /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
  133. * and HALF_DUPLEX != DUPLEX_HALF */
  134. if(adapter->link_duplex == FULL_DUPLEX)
  135. ecmd->duplex = DUPLEX_FULL;
  136. else
  137. ecmd->duplex = DUPLEX_HALF;
  138. } else {
  139. ecmd->speed = -1;
  140. ecmd->duplex = -1;
  141. }
  142. ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  143. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  144. return 0;
  145. }
  146. static int
  147. e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  148. {
  149. struct e1000_adapter *adapter = netdev_priv(netdev);
  150. struct e1000_hw *hw = &adapter->hw;
  151. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  152. * cannot be changed */
  153. if (e1000_check_phy_reset_block(hw)) {
  154. DPRINTK(DRV, ERR, "Cannot change link characteristics "
  155. "when SoL/IDER is active.\n");
  156. return -EINVAL;
  157. }
  158. if (ecmd->autoneg == AUTONEG_ENABLE) {
  159. hw->autoneg = 1;
  160. if(hw->media_type == e1000_media_type_fiber)
  161. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  162. ADVERTISED_FIBRE |
  163. ADVERTISED_Autoneg;
  164. else
  165. hw->autoneg_advertised = ADVERTISED_10baseT_Half |
  166. ADVERTISED_10baseT_Full |
  167. ADVERTISED_100baseT_Half |
  168. ADVERTISED_100baseT_Full |
  169. ADVERTISED_1000baseT_Full|
  170. ADVERTISED_Autoneg |
  171. ADVERTISED_TP;
  172. ecmd->advertising = hw->autoneg_advertised;
  173. } else
  174. if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
  175. return -EINVAL;
  176. /* reset the link */
  177. if(netif_running(adapter->netdev)) {
  178. e1000_down(adapter);
  179. e1000_reset(adapter);
  180. e1000_up(adapter);
  181. } else
  182. e1000_reset(adapter);
  183. return 0;
  184. }
  185. static void
  186. e1000_get_pauseparam(struct net_device *netdev,
  187. struct ethtool_pauseparam *pause)
  188. {
  189. struct e1000_adapter *adapter = netdev_priv(netdev);
  190. struct e1000_hw *hw = &adapter->hw;
  191. pause->autoneg =
  192. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  193. if(hw->fc == e1000_fc_rx_pause)
  194. pause->rx_pause = 1;
  195. else if(hw->fc == e1000_fc_tx_pause)
  196. pause->tx_pause = 1;
  197. else if(hw->fc == e1000_fc_full) {
  198. pause->rx_pause = 1;
  199. pause->tx_pause = 1;
  200. }
  201. }
  202. static int
  203. e1000_set_pauseparam(struct net_device *netdev,
  204. struct ethtool_pauseparam *pause)
  205. {
  206. struct e1000_adapter *adapter = netdev_priv(netdev);
  207. struct e1000_hw *hw = &adapter->hw;
  208. adapter->fc_autoneg = pause->autoneg;
  209. if(pause->rx_pause && pause->tx_pause)
  210. hw->fc = e1000_fc_full;
  211. else if(pause->rx_pause && !pause->tx_pause)
  212. hw->fc = e1000_fc_rx_pause;
  213. else if(!pause->rx_pause && pause->tx_pause)
  214. hw->fc = e1000_fc_tx_pause;
  215. else if(!pause->rx_pause && !pause->tx_pause)
  216. hw->fc = e1000_fc_none;
  217. hw->original_fc = hw->fc;
  218. if(adapter->fc_autoneg == AUTONEG_ENABLE) {
  219. if(netif_running(adapter->netdev)) {
  220. e1000_down(adapter);
  221. e1000_up(adapter);
  222. } else
  223. e1000_reset(adapter);
  224. }
  225. else
  226. return ((hw->media_type == e1000_media_type_fiber) ?
  227. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  228. return 0;
  229. }
  230. static uint32_t
  231. e1000_get_rx_csum(struct net_device *netdev)
  232. {
  233. struct e1000_adapter *adapter = netdev_priv(netdev);
  234. return adapter->rx_csum;
  235. }
  236. static int
  237. e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
  238. {
  239. struct e1000_adapter *adapter = netdev_priv(netdev);
  240. adapter->rx_csum = data;
  241. if(netif_running(netdev)) {
  242. e1000_down(adapter);
  243. e1000_up(adapter);
  244. } else
  245. e1000_reset(adapter);
  246. return 0;
  247. }
  248. static uint32_t
  249. e1000_get_tx_csum(struct net_device *netdev)
  250. {
  251. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  252. }
  253. static int
  254. e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
  255. {
  256. struct e1000_adapter *adapter = netdev_priv(netdev);
  257. if(adapter->hw.mac_type < e1000_82543) {
  258. if (!data)
  259. return -EINVAL;
  260. return 0;
  261. }
  262. if (data)
  263. netdev->features |= NETIF_F_HW_CSUM;
  264. else
  265. netdev->features &= ~NETIF_F_HW_CSUM;
  266. return 0;
  267. }
  268. #ifdef NETIF_F_TSO
  269. static int
  270. e1000_set_tso(struct net_device *netdev, uint32_t data)
  271. {
  272. struct e1000_adapter *adapter = netdev_priv(netdev);
  273. if((adapter->hw.mac_type < e1000_82544) ||
  274. (adapter->hw.mac_type == e1000_82547))
  275. return data ? -EINVAL : 0;
  276. if (data)
  277. netdev->features |= NETIF_F_TSO;
  278. else
  279. netdev->features &= ~NETIF_F_TSO;
  280. return 0;
  281. }
  282. #endif /* NETIF_F_TSO */
  283. static uint32_t
  284. e1000_get_msglevel(struct net_device *netdev)
  285. {
  286. struct e1000_adapter *adapter = netdev_priv(netdev);
  287. return adapter->msg_enable;
  288. }
  289. static void
  290. e1000_set_msglevel(struct net_device *netdev, uint32_t data)
  291. {
  292. struct e1000_adapter *adapter = netdev_priv(netdev);
  293. adapter->msg_enable = data;
  294. }
  295. static int
  296. e1000_get_regs_len(struct net_device *netdev)
  297. {
  298. #define E1000_REGS_LEN 32
  299. return E1000_REGS_LEN * sizeof(uint32_t);
  300. }
  301. static void
  302. e1000_get_regs(struct net_device *netdev,
  303. struct ethtool_regs *regs, void *p)
  304. {
  305. struct e1000_adapter *adapter = netdev_priv(netdev);
  306. struct e1000_hw *hw = &adapter->hw;
  307. uint32_t *regs_buff = p;
  308. uint16_t phy_data;
  309. memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
  310. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  311. regs_buff[0] = E1000_READ_REG(hw, CTRL);
  312. regs_buff[1] = E1000_READ_REG(hw, STATUS);
  313. regs_buff[2] = E1000_READ_REG(hw, RCTL);
  314. regs_buff[3] = E1000_READ_REG(hw, RDLEN);
  315. regs_buff[4] = E1000_READ_REG(hw, RDH);
  316. regs_buff[5] = E1000_READ_REG(hw, RDT);
  317. regs_buff[6] = E1000_READ_REG(hw, RDTR);
  318. regs_buff[7] = E1000_READ_REG(hw, TCTL);
  319. regs_buff[8] = E1000_READ_REG(hw, TDLEN);
  320. regs_buff[9] = E1000_READ_REG(hw, TDH);
  321. regs_buff[10] = E1000_READ_REG(hw, TDT);
  322. regs_buff[11] = E1000_READ_REG(hw, TIDV);
  323. regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
  324. if(hw->phy_type == e1000_phy_igp) {
  325. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  326. IGP01E1000_PHY_AGC_A);
  327. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  328. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  329. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  330. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  331. IGP01E1000_PHY_AGC_B);
  332. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  333. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  334. regs_buff[14] = (uint32_t)phy_data; /* cable length */
  335. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  336. IGP01E1000_PHY_AGC_C);
  337. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  338. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  339. regs_buff[15] = (uint32_t)phy_data; /* cable length */
  340. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  341. IGP01E1000_PHY_AGC_D);
  342. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  343. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  344. regs_buff[16] = (uint32_t)phy_data; /* cable length */
  345. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  346. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  347. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  348. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  349. regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
  350. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  351. IGP01E1000_PHY_PCS_INIT_REG);
  352. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  353. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  354. regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
  355. regs_buff[20] = 0; /* polarity correction enabled (always) */
  356. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  357. regs_buff[23] = regs_buff[18]; /* mdix mode */
  358. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  359. } else {
  360. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  361. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  362. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  363. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  364. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  365. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  366. regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
  367. regs_buff[18] = regs_buff[13]; /* cable polarity */
  368. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  369. regs_buff[20] = regs_buff[17]; /* polarity correction */
  370. /* phy receive errors */
  371. regs_buff[22] = adapter->phy_stats.receive_errors;
  372. regs_buff[23] = regs_buff[13]; /* mdix mode */
  373. }
  374. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  375. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  376. regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
  377. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  378. if(hw->mac_type >= e1000_82540 &&
  379. hw->media_type == e1000_media_type_copper) {
  380. regs_buff[26] = E1000_READ_REG(hw, MANC);
  381. }
  382. }
  383. static int
  384. e1000_get_eeprom_len(struct net_device *netdev)
  385. {
  386. struct e1000_adapter *adapter = netdev_priv(netdev);
  387. return adapter->hw.eeprom.word_size * 2;
  388. }
  389. static int
  390. e1000_get_eeprom(struct net_device *netdev,
  391. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  392. {
  393. struct e1000_adapter *adapter = netdev_priv(netdev);
  394. struct e1000_hw *hw = &adapter->hw;
  395. uint16_t *eeprom_buff;
  396. int first_word, last_word;
  397. int ret_val = 0;
  398. uint16_t i;
  399. if(eeprom->len == 0)
  400. return -EINVAL;
  401. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  402. first_word = eeprom->offset >> 1;
  403. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  404. eeprom_buff = kmalloc(sizeof(uint16_t) *
  405. (last_word - first_word + 1), GFP_KERNEL);
  406. if(!eeprom_buff)
  407. return -ENOMEM;
  408. if(hw->eeprom.type == e1000_eeprom_spi)
  409. ret_val = e1000_read_eeprom(hw, first_word,
  410. last_word - first_word + 1,
  411. eeprom_buff);
  412. else {
  413. for (i = 0; i < last_word - first_word + 1; i++)
  414. if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  415. &eeprom_buff[i])))
  416. break;
  417. }
  418. /* Device's eeprom is always little-endian, word addressable */
  419. for (i = 0; i < last_word - first_word + 1; i++)
  420. le16_to_cpus(&eeprom_buff[i]);
  421. memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
  422. eeprom->len);
  423. kfree(eeprom_buff);
  424. return ret_val;
  425. }
  426. static int
  427. e1000_set_eeprom(struct net_device *netdev,
  428. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  429. {
  430. struct e1000_adapter *adapter = netdev_priv(netdev);
  431. struct e1000_hw *hw = &adapter->hw;
  432. uint16_t *eeprom_buff;
  433. void *ptr;
  434. int max_len, first_word, last_word, ret_val = 0;
  435. uint16_t i;
  436. if(eeprom->len == 0)
  437. return -EOPNOTSUPP;
  438. if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  439. return -EFAULT;
  440. max_len = hw->eeprom.word_size * 2;
  441. first_word = eeprom->offset >> 1;
  442. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  443. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  444. if(!eeprom_buff)
  445. return -ENOMEM;
  446. ptr = (void *)eeprom_buff;
  447. if(eeprom->offset & 1) {
  448. /* need read/modify/write of first changed EEPROM word */
  449. /* only the second byte of the word is being modified */
  450. ret_val = e1000_read_eeprom(hw, first_word, 1,
  451. &eeprom_buff[0]);
  452. ptr++;
  453. }
  454. if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  455. /* need read/modify/write of last changed EEPROM word */
  456. /* only the first byte of the word is being modified */
  457. ret_val = e1000_read_eeprom(hw, last_word, 1,
  458. &eeprom_buff[last_word - first_word]);
  459. }
  460. /* Device's eeprom is always little-endian, word addressable */
  461. for (i = 0; i < last_word - first_word + 1; i++)
  462. le16_to_cpus(&eeprom_buff[i]);
  463. memcpy(ptr, bytes, eeprom->len);
  464. for (i = 0; i < last_word - first_word + 1; i++)
  465. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  466. ret_val = e1000_write_eeprom(hw, first_word,
  467. last_word - first_word + 1, eeprom_buff);
  468. /* Update the checksum over the first part of the EEPROM if needed
  469. * and flush shadow RAM for 82573 conrollers */
  470. if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
  471. (hw->mac_type == e1000_82573)))
  472. e1000_update_eeprom_checksum(hw);
  473. kfree(eeprom_buff);
  474. return ret_val;
  475. }
  476. static void
  477. e1000_get_drvinfo(struct net_device *netdev,
  478. struct ethtool_drvinfo *drvinfo)
  479. {
  480. struct e1000_adapter *adapter = netdev_priv(netdev);
  481. strncpy(drvinfo->driver, e1000_driver_name, 32);
  482. strncpy(drvinfo->version, e1000_driver_version, 32);
  483. strncpy(drvinfo->fw_version, "N/A", 32);
  484. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  485. drvinfo->n_stats = E1000_STATS_LEN;
  486. drvinfo->testinfo_len = E1000_TEST_LEN;
  487. drvinfo->regdump_len = e1000_get_regs_len(netdev);
  488. drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
  489. }
  490. static void
  491. e1000_get_ringparam(struct net_device *netdev,
  492. struct ethtool_ringparam *ring)
  493. {
  494. struct e1000_adapter *adapter = netdev_priv(netdev);
  495. e1000_mac_type mac_type = adapter->hw.mac_type;
  496. struct e1000_tx_ring *txdr = adapter->tx_ring;
  497. struct e1000_rx_ring *rxdr = adapter->rx_ring;
  498. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  499. E1000_MAX_82544_RXD;
  500. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  501. E1000_MAX_82544_TXD;
  502. ring->rx_mini_max_pending = 0;
  503. ring->rx_jumbo_max_pending = 0;
  504. ring->rx_pending = rxdr->count;
  505. ring->tx_pending = txdr->count;
  506. ring->rx_mini_pending = 0;
  507. ring->rx_jumbo_pending = 0;
  508. }
  509. static int
  510. e1000_set_ringparam(struct net_device *netdev,
  511. struct ethtool_ringparam *ring)
  512. {
  513. struct e1000_adapter *adapter = netdev_priv(netdev);
  514. e1000_mac_type mac_type = adapter->hw.mac_type;
  515. struct e1000_tx_ring *txdr, *tx_old, *tx_new;
  516. struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
  517. int i, err, tx_ring_size, rx_ring_size;
  518. tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
  519. rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
  520. if (netif_running(adapter->netdev))
  521. e1000_down(adapter);
  522. tx_old = adapter->tx_ring;
  523. rx_old = adapter->rx_ring;
  524. adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
  525. if (!adapter->tx_ring) {
  526. err = -ENOMEM;
  527. goto err_setup_rx;
  528. }
  529. memset(adapter->tx_ring, 0, tx_ring_size);
  530. adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
  531. if (!adapter->rx_ring) {
  532. kfree(adapter->tx_ring);
  533. err = -ENOMEM;
  534. goto err_setup_rx;
  535. }
  536. memset(adapter->rx_ring, 0, rx_ring_size);
  537. txdr = adapter->tx_ring;
  538. rxdr = adapter->rx_ring;
  539. if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  540. return -EINVAL;
  541. rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
  542. rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
  543. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  544. E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  545. txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
  546. txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
  547. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  548. E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  549. for (i = 0; i < adapter->num_queues; i++) {
  550. txdr[i].count = txdr->count;
  551. rxdr[i].count = rxdr->count;
  552. }
  553. if(netif_running(adapter->netdev)) {
  554. /* Try to get new resources before deleting old */
  555. if ((err = e1000_setup_all_rx_resources(adapter)))
  556. goto err_setup_rx;
  557. if ((err = e1000_setup_all_tx_resources(adapter)))
  558. goto err_setup_tx;
  559. /* save the new, restore the old in order to free it,
  560. * then restore the new back again */
  561. rx_new = adapter->rx_ring;
  562. tx_new = adapter->tx_ring;
  563. adapter->rx_ring = rx_old;
  564. adapter->tx_ring = tx_old;
  565. e1000_free_all_rx_resources(adapter);
  566. e1000_free_all_tx_resources(adapter);
  567. kfree(tx_old);
  568. kfree(rx_old);
  569. adapter->rx_ring = rx_new;
  570. adapter->tx_ring = tx_new;
  571. if((err = e1000_up(adapter)))
  572. return err;
  573. }
  574. return 0;
  575. err_setup_tx:
  576. e1000_free_all_rx_resources(adapter);
  577. err_setup_rx:
  578. adapter->rx_ring = rx_old;
  579. adapter->tx_ring = tx_old;
  580. e1000_up(adapter);
  581. return err;
  582. }
  583. #define REG_PATTERN_TEST(R, M, W) \
  584. { \
  585. uint32_t pat, value; \
  586. uint32_t test[] = \
  587. {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
  588. for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
  589. E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
  590. value = E1000_READ_REG(&adapter->hw, R); \
  591. if(value != (test[pat] & W & M)) { \
  592. DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
  593. "0x%08X expected 0x%08X\n", \
  594. E1000_##R, value, (test[pat] & W & M)); \
  595. *data = (adapter->hw.mac_type < e1000_82543) ? \
  596. E1000_82542_##R : E1000_##R; \
  597. return 1; \
  598. } \
  599. } \
  600. }
  601. #define REG_SET_AND_CHECK(R, M, W) \
  602. { \
  603. uint32_t value; \
  604. E1000_WRITE_REG(&adapter->hw, R, W & M); \
  605. value = E1000_READ_REG(&adapter->hw, R); \
  606. if((W & M) != (value & M)) { \
  607. DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
  608. "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
  609. *data = (adapter->hw.mac_type < e1000_82543) ? \
  610. E1000_82542_##R : E1000_##R; \
  611. return 1; \
  612. } \
  613. }
  614. static int
  615. e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
  616. {
  617. uint32_t value, before, after;
  618. uint32_t i, toggle;
  619. /* The status register is Read Only, so a write should fail.
  620. * Some bits that get toggled are ignored.
  621. */
  622. switch (adapter->hw.mac_type) {
  623. /* there are several bits on newer hardware that are r/w */
  624. case e1000_82571:
  625. case e1000_82572:
  626. toggle = 0x7FFFF3FF;
  627. break;
  628. case e1000_82573:
  629. toggle = 0x7FFFF033;
  630. break;
  631. default:
  632. toggle = 0xFFFFF833;
  633. break;
  634. }
  635. before = E1000_READ_REG(&adapter->hw, STATUS);
  636. value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
  637. E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
  638. after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
  639. if(value != after) {
  640. DPRINTK(DRV, ERR, "failed STATUS register test got: "
  641. "0x%08X expected: 0x%08X\n", after, value);
  642. *data = 1;
  643. return 1;
  644. }
  645. /* restore previous status */
  646. E1000_WRITE_REG(&adapter->hw, STATUS, before);
  647. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  648. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  649. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  650. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  651. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  652. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  653. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  654. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  655. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  656. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  657. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  658. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  659. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  660. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  661. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  662. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
  663. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  664. if(adapter->hw.mac_type >= e1000_82543) {
  665. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
  666. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  667. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  668. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  669. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  670. for(i = 0; i < E1000_RAR_ENTRIES; i++) {
  671. REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
  672. 0xFFFFFFFF);
  673. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
  674. 0xFFFFFFFF);
  675. }
  676. } else {
  677. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  678. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  679. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  680. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  681. }
  682. for(i = 0; i < E1000_MC_TBL_SIZE; i++)
  683. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  684. *data = 0;
  685. return 0;
  686. }
  687. static int
  688. e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
  689. {
  690. uint16_t temp;
  691. uint16_t checksum = 0;
  692. uint16_t i;
  693. *data = 0;
  694. /* Read and add up the contents of the EEPROM */
  695. for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  696. if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
  697. *data = 1;
  698. break;
  699. }
  700. checksum += temp;
  701. }
  702. /* If Checksum is not Correct return error else test passed */
  703. if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
  704. *data = 2;
  705. return *data;
  706. }
  707. static irqreturn_t
  708. e1000_test_intr(int irq,
  709. void *data,
  710. struct pt_regs *regs)
  711. {
  712. struct net_device *netdev = (struct net_device *) data;
  713. struct e1000_adapter *adapter = netdev_priv(netdev);
  714. adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
  715. return IRQ_HANDLED;
  716. }
  717. static int
  718. e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
  719. {
  720. struct net_device *netdev = adapter->netdev;
  721. uint32_t mask, i=0, shared_int = TRUE;
  722. uint32_t irq = adapter->pdev->irq;
  723. *data = 0;
  724. /* Hook up test interrupt handler just for this test */
  725. if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
  726. shared_int = FALSE;
  727. } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
  728. netdev->name, netdev)){
  729. *data = 1;
  730. return -1;
  731. }
  732. /* Disable all the interrupts */
  733. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  734. msec_delay(10);
  735. /* Test each interrupt */
  736. for(; i < 10; i++) {
  737. /* Interrupt to test */
  738. mask = 1 << i;
  739. if(!shared_int) {
  740. /* Disable the interrupt to be reported in
  741. * the cause register and then force the same
  742. * interrupt and see if one gets posted. If
  743. * an interrupt was posted to the bus, the
  744. * test failed.
  745. */
  746. adapter->test_icr = 0;
  747. E1000_WRITE_REG(&adapter->hw, IMC, mask);
  748. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  749. msec_delay(10);
  750. if(adapter->test_icr & mask) {
  751. *data = 3;
  752. break;
  753. }
  754. }
  755. /* Enable the interrupt to be reported in
  756. * the cause register and then force the same
  757. * interrupt and see if one gets posted. If
  758. * an interrupt was not posted to the bus, the
  759. * test failed.
  760. */
  761. adapter->test_icr = 0;
  762. E1000_WRITE_REG(&adapter->hw, IMS, mask);
  763. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  764. msec_delay(10);
  765. if(!(adapter->test_icr & mask)) {
  766. *data = 4;
  767. break;
  768. }
  769. if(!shared_int) {
  770. /* Disable the other interrupts to be reported in
  771. * the cause register and then force the other
  772. * interrupts and see if any get posted. If
  773. * an interrupt was posted to the bus, the
  774. * test failed.
  775. */
  776. adapter->test_icr = 0;
  777. E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
  778. E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
  779. msec_delay(10);
  780. if(adapter->test_icr) {
  781. *data = 5;
  782. break;
  783. }
  784. }
  785. }
  786. /* Disable all the interrupts */
  787. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  788. msec_delay(10);
  789. /* Unhook test interrupt handler */
  790. free_irq(irq, netdev);
  791. return *data;
  792. }
  793. static void
  794. e1000_free_desc_rings(struct e1000_adapter *adapter)
  795. {
  796. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  797. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  798. struct pci_dev *pdev = adapter->pdev;
  799. int i;
  800. if(txdr->desc && txdr->buffer_info) {
  801. for(i = 0; i < txdr->count; i++) {
  802. if(txdr->buffer_info[i].dma)
  803. pci_unmap_single(pdev, txdr->buffer_info[i].dma,
  804. txdr->buffer_info[i].length,
  805. PCI_DMA_TODEVICE);
  806. if(txdr->buffer_info[i].skb)
  807. dev_kfree_skb(txdr->buffer_info[i].skb);
  808. }
  809. }
  810. if(rxdr->desc && rxdr->buffer_info) {
  811. for(i = 0; i < rxdr->count; i++) {
  812. if(rxdr->buffer_info[i].dma)
  813. pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
  814. rxdr->buffer_info[i].length,
  815. PCI_DMA_FROMDEVICE);
  816. if(rxdr->buffer_info[i].skb)
  817. dev_kfree_skb(rxdr->buffer_info[i].skb);
  818. }
  819. }
  820. if(txdr->desc) {
  821. pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
  822. txdr->desc = NULL;
  823. }
  824. if(rxdr->desc) {
  825. pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
  826. rxdr->desc = NULL;
  827. }
  828. kfree(txdr->buffer_info);
  829. txdr->buffer_info = NULL;
  830. kfree(rxdr->buffer_info);
  831. rxdr->buffer_info = NULL;
  832. return;
  833. }
  834. static int
  835. e1000_setup_desc_rings(struct e1000_adapter *adapter)
  836. {
  837. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  838. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  839. struct pci_dev *pdev = adapter->pdev;
  840. uint32_t rctl;
  841. int size, i, ret_val;
  842. /* Setup Tx descriptor ring and Tx buffers */
  843. if(!txdr->count)
  844. txdr->count = E1000_DEFAULT_TXD;
  845. size = txdr->count * sizeof(struct e1000_buffer);
  846. if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  847. ret_val = 1;
  848. goto err_nomem;
  849. }
  850. memset(txdr->buffer_info, 0, size);
  851. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  852. E1000_ROUNDUP(txdr->size, 4096);
  853. if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
  854. ret_val = 2;
  855. goto err_nomem;
  856. }
  857. memset(txdr->desc, 0, txdr->size);
  858. txdr->next_to_use = txdr->next_to_clean = 0;
  859. E1000_WRITE_REG(&adapter->hw, TDBAL,
  860. ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
  861. E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
  862. E1000_WRITE_REG(&adapter->hw, TDLEN,
  863. txdr->count * sizeof(struct e1000_tx_desc));
  864. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  865. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  866. E1000_WRITE_REG(&adapter->hw, TCTL,
  867. E1000_TCTL_PSP | E1000_TCTL_EN |
  868. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  869. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  870. for(i = 0; i < txdr->count; i++) {
  871. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  872. struct sk_buff *skb;
  873. unsigned int size = 1024;
  874. if(!(skb = alloc_skb(size, GFP_KERNEL))) {
  875. ret_val = 3;
  876. goto err_nomem;
  877. }
  878. skb_put(skb, size);
  879. txdr->buffer_info[i].skb = skb;
  880. txdr->buffer_info[i].length = skb->len;
  881. txdr->buffer_info[i].dma =
  882. pci_map_single(pdev, skb->data, skb->len,
  883. PCI_DMA_TODEVICE);
  884. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  885. tx_desc->lower.data = cpu_to_le32(skb->len);
  886. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  887. E1000_TXD_CMD_IFCS |
  888. E1000_TXD_CMD_RPS);
  889. tx_desc->upper.data = 0;
  890. }
  891. /* Setup Rx descriptor ring and Rx buffers */
  892. if(!rxdr->count)
  893. rxdr->count = E1000_DEFAULT_RXD;
  894. size = rxdr->count * sizeof(struct e1000_buffer);
  895. if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  896. ret_val = 4;
  897. goto err_nomem;
  898. }
  899. memset(rxdr->buffer_info, 0, size);
  900. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  901. if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
  902. ret_val = 5;
  903. goto err_nomem;
  904. }
  905. memset(rxdr->desc, 0, rxdr->size);
  906. rxdr->next_to_use = rxdr->next_to_clean = 0;
  907. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  908. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  909. E1000_WRITE_REG(&adapter->hw, RDBAL,
  910. ((uint64_t) rxdr->dma & 0xFFFFFFFF));
  911. E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
  912. E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
  913. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  914. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  915. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  916. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  917. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  918. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  919. for(i = 0; i < rxdr->count; i++) {
  920. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  921. struct sk_buff *skb;
  922. if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
  923. GFP_KERNEL))) {
  924. ret_val = 6;
  925. goto err_nomem;
  926. }
  927. skb_reserve(skb, NET_IP_ALIGN);
  928. rxdr->buffer_info[i].skb = skb;
  929. rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
  930. rxdr->buffer_info[i].dma =
  931. pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
  932. PCI_DMA_FROMDEVICE);
  933. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  934. memset(skb->data, 0x00, skb->len);
  935. }
  936. return 0;
  937. err_nomem:
  938. e1000_free_desc_rings(adapter);
  939. return ret_val;
  940. }
  941. static void
  942. e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  943. {
  944. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  945. e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
  946. e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
  947. e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
  948. e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
  949. }
  950. static void
  951. e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  952. {
  953. uint16_t phy_reg;
  954. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  955. * Extended PHY Specific Control Register to 25MHz clock. This
  956. * value defaults back to a 2.5MHz clock when the PHY is reset.
  957. */
  958. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  959. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  960. e1000_write_phy_reg(&adapter->hw,
  961. M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  962. /* In addition, because of the s/w reset above, we need to enable
  963. * CRS on TX. This must be set for both full and half duplex
  964. * operation.
  965. */
  966. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  967. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  968. e1000_write_phy_reg(&adapter->hw,
  969. M88E1000_PHY_SPEC_CTRL, phy_reg);
  970. }
  971. static int
  972. e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  973. {
  974. uint32_t ctrl_reg;
  975. uint16_t phy_reg;
  976. /* Setup the Device Control Register for PHY loopback test. */
  977. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  978. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  979. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  980. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  981. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  982. E1000_CTRL_FD); /* Force Duplex to FULL */
  983. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  984. /* Read the PHY Specific Control Register (0x10) */
  985. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  986. /* Clear Auto-Crossover bits in PHY Specific Control Register
  987. * (bits 6:5).
  988. */
  989. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  990. e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  991. /* Perform software reset on the PHY */
  992. e1000_phy_reset(&adapter->hw);
  993. /* Have to setup TX_CLK and TX_CRS after software reset */
  994. e1000_phy_reset_clk_and_crs(adapter);
  995. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
  996. /* Wait for reset to complete. */
  997. udelay(500);
  998. /* Have to setup TX_CLK and TX_CRS after software reset */
  999. e1000_phy_reset_clk_and_crs(adapter);
  1000. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1001. e1000_phy_disable_receiver(adapter);
  1002. /* Set the loopback bit in the PHY control register. */
  1003. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1004. phy_reg |= MII_CR_LOOPBACK;
  1005. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1006. /* Setup TX_CLK and TX_CRS one more time. */
  1007. e1000_phy_reset_clk_and_crs(adapter);
  1008. /* Check Phy Configuration */
  1009. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1010. if(phy_reg != 0x4100)
  1011. return 9;
  1012. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  1013. if(phy_reg != 0x0070)
  1014. return 10;
  1015. e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
  1016. if(phy_reg != 0x001A)
  1017. return 11;
  1018. return 0;
  1019. }
  1020. static int
  1021. e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1022. {
  1023. uint32_t ctrl_reg = 0;
  1024. uint32_t stat_reg = 0;
  1025. adapter->hw.autoneg = FALSE;
  1026. if(adapter->hw.phy_type == e1000_phy_m88) {
  1027. /* Auto-MDI/MDIX Off */
  1028. e1000_write_phy_reg(&adapter->hw,
  1029. M88E1000_PHY_SPEC_CTRL, 0x0808);
  1030. /* reset to update Auto-MDI/MDIX */
  1031. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
  1032. /* autoneg off */
  1033. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
  1034. }
  1035. /* force 1000, set loopback */
  1036. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
  1037. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1038. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1039. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1040. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1041. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1042. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1043. E1000_CTRL_FD); /* Force Duplex to FULL */
  1044. if(adapter->hw.media_type == e1000_media_type_copper &&
  1045. adapter->hw.phy_type == e1000_phy_m88) {
  1046. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1047. } else {
  1048. /* Set the ILOS bit on the fiber Nic is half
  1049. * duplex link is detected. */
  1050. stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
  1051. if((stat_reg & E1000_STATUS_FD) == 0)
  1052. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1053. }
  1054. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1055. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1056. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1057. */
  1058. if(adapter->hw.phy_type == e1000_phy_m88)
  1059. e1000_phy_disable_receiver(adapter);
  1060. udelay(500);
  1061. return 0;
  1062. }
  1063. static int
  1064. e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1065. {
  1066. uint16_t phy_reg = 0;
  1067. uint16_t count = 0;
  1068. switch (adapter->hw.mac_type) {
  1069. case e1000_82543:
  1070. if(adapter->hw.media_type == e1000_media_type_copper) {
  1071. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1072. * Some PHY registers get corrupted at random, so
  1073. * attempt this 10 times.
  1074. */
  1075. while(e1000_nonintegrated_phy_loopback(adapter) &&
  1076. count++ < 10);
  1077. if(count < 11)
  1078. return 0;
  1079. }
  1080. break;
  1081. case e1000_82544:
  1082. case e1000_82540:
  1083. case e1000_82545:
  1084. case e1000_82545_rev_3:
  1085. case e1000_82546:
  1086. case e1000_82546_rev_3:
  1087. case e1000_82541:
  1088. case e1000_82541_rev_2:
  1089. case e1000_82547:
  1090. case e1000_82547_rev_2:
  1091. case e1000_82571:
  1092. case e1000_82572:
  1093. case e1000_82573:
  1094. return e1000_integrated_phy_loopback(adapter);
  1095. break;
  1096. default:
  1097. /* Default PHY loopback work is to read the MII
  1098. * control register and assert bit 14 (loopback mode).
  1099. */
  1100. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1101. phy_reg |= MII_CR_LOOPBACK;
  1102. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1103. return 0;
  1104. break;
  1105. }
  1106. return 8;
  1107. }
  1108. static int
  1109. e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1110. {
  1111. uint32_t rctl;
  1112. if(adapter->hw.media_type == e1000_media_type_fiber ||
  1113. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1114. if(adapter->hw.mac_type == e1000_82545 ||
  1115. adapter->hw.mac_type == e1000_82546 ||
  1116. adapter->hw.mac_type == e1000_82545_rev_3 ||
  1117. adapter->hw.mac_type == e1000_82546_rev_3)
  1118. return e1000_set_phy_loopback(adapter);
  1119. else {
  1120. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1121. rctl |= E1000_RCTL_LBM_TCVR;
  1122. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1123. return 0;
  1124. }
  1125. } else if(adapter->hw.media_type == e1000_media_type_copper)
  1126. return e1000_set_phy_loopback(adapter);
  1127. return 7;
  1128. }
  1129. static void
  1130. e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1131. {
  1132. uint32_t rctl;
  1133. uint16_t phy_reg;
  1134. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1135. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1136. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1137. if(adapter->hw.media_type == e1000_media_type_copper ||
  1138. ((adapter->hw.media_type == e1000_media_type_fiber ||
  1139. adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1140. (adapter->hw.mac_type == e1000_82545 ||
  1141. adapter->hw.mac_type == e1000_82546 ||
  1142. adapter->hw.mac_type == e1000_82545_rev_3 ||
  1143. adapter->hw.mac_type == e1000_82546_rev_3))) {
  1144. adapter->hw.autoneg = TRUE;
  1145. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1146. if(phy_reg & MII_CR_LOOPBACK) {
  1147. phy_reg &= ~MII_CR_LOOPBACK;
  1148. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1149. e1000_phy_reset(&adapter->hw);
  1150. }
  1151. }
  1152. }
  1153. static void
  1154. e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1155. {
  1156. memset(skb->data, 0xFF, frame_size);
  1157. frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
  1158. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1159. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1160. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1161. }
  1162. static int
  1163. e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1164. {
  1165. frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
  1166. if(*(skb->data + 3) == 0xFF) {
  1167. if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1168. (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
  1169. return 0;
  1170. }
  1171. }
  1172. return 13;
  1173. }
  1174. static int
  1175. e1000_run_loopback_test(struct e1000_adapter *adapter)
  1176. {
  1177. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  1178. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  1179. struct pci_dev *pdev = adapter->pdev;
  1180. int i, j, k, l, lc, good_cnt, ret_val=0;
  1181. unsigned long time;
  1182. E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
  1183. /* Calculate the loop count based on the largest descriptor ring
  1184. * The idea is to wrap the largest ring a number of times using 64
  1185. * send/receive pairs during each loop
  1186. */
  1187. if(rxdr->count <= txdr->count)
  1188. lc = ((txdr->count / 64) * 2) + 1;
  1189. else
  1190. lc = ((rxdr->count / 64) * 2) + 1;
  1191. k = l = 0;
  1192. for(j = 0; j <= lc; j++) { /* loop count loop */
  1193. for(i = 0; i < 64; i++) { /* send the packets */
  1194. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1195. 1024);
  1196. pci_dma_sync_single_for_device(pdev,
  1197. txdr->buffer_info[k].dma,
  1198. txdr->buffer_info[k].length,
  1199. PCI_DMA_TODEVICE);
  1200. if(unlikely(++k == txdr->count)) k = 0;
  1201. }
  1202. E1000_WRITE_REG(&adapter->hw, TDT, k);
  1203. msec_delay(200);
  1204. time = jiffies; /* set the start time for the receive */
  1205. good_cnt = 0;
  1206. do { /* receive the sent packets */
  1207. pci_dma_sync_single_for_cpu(pdev,
  1208. rxdr->buffer_info[l].dma,
  1209. rxdr->buffer_info[l].length,
  1210. PCI_DMA_FROMDEVICE);
  1211. ret_val = e1000_check_lbtest_frame(
  1212. rxdr->buffer_info[l].skb,
  1213. 1024);
  1214. if(!ret_val)
  1215. good_cnt++;
  1216. if(unlikely(++l == rxdr->count)) l = 0;
  1217. /* time + 20 msecs (200 msecs on 2.4) is more than
  1218. * enough time to complete the receives, if it's
  1219. * exceeded, break and error off
  1220. */
  1221. } while (good_cnt < 64 && jiffies < (time + 20));
  1222. if(good_cnt != 64) {
  1223. ret_val = 13; /* ret_val is the same as mis-compare */
  1224. break;
  1225. }
  1226. if(jiffies >= (time + 2)) {
  1227. ret_val = 14; /* error code for time out error */
  1228. break;
  1229. }
  1230. } /* end loop count loop */
  1231. return ret_val;
  1232. }
  1233. static int
  1234. e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
  1235. {
  1236. /* PHY loopback cannot be performed if SoL/IDER
  1237. * sessions are active */
  1238. if (e1000_check_phy_reset_block(&adapter->hw)) {
  1239. DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
  1240. "when SoL/IDER is active.\n");
  1241. *data = 0;
  1242. goto out;
  1243. }
  1244. if ((*data = e1000_setup_desc_rings(adapter)))
  1245. goto out;
  1246. if ((*data = e1000_setup_loopback_test(adapter)))
  1247. goto err_loopback;
  1248. *data = e1000_run_loopback_test(adapter);
  1249. e1000_loopback_cleanup(adapter);
  1250. err_loopback:
  1251. e1000_free_desc_rings(adapter);
  1252. out:
  1253. return *data;
  1254. }
  1255. static int
  1256. e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
  1257. {
  1258. *data = 0;
  1259. if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1260. int i = 0;
  1261. adapter->hw.serdes_link_down = TRUE;
  1262. /* On some blade server designs, link establishment
  1263. * could take as long as 2-3 minutes */
  1264. do {
  1265. e1000_check_for_link(&adapter->hw);
  1266. if (adapter->hw.serdes_link_down == FALSE)
  1267. return *data;
  1268. msec_delay(20);
  1269. } while (i++ < 3750);
  1270. *data = 1;
  1271. } else {
  1272. e1000_check_for_link(&adapter->hw);
  1273. if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
  1274. msec_delay(4000);
  1275. if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
  1276. *data = 1;
  1277. }
  1278. }
  1279. return *data;
  1280. }
  1281. static int
  1282. e1000_diag_test_count(struct net_device *netdev)
  1283. {
  1284. return E1000_TEST_LEN;
  1285. }
  1286. static void
  1287. e1000_diag_test(struct net_device *netdev,
  1288. struct ethtool_test *eth_test, uint64_t *data)
  1289. {
  1290. struct e1000_adapter *adapter = netdev_priv(netdev);
  1291. boolean_t if_running = netif_running(netdev);
  1292. if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1293. /* Offline tests */
  1294. /* save speed, duplex, autoneg settings */
  1295. uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
  1296. uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
  1297. uint8_t autoneg = adapter->hw.autoneg;
  1298. /* Link test performed before hardware reset so autoneg doesn't
  1299. * interfere with test result */
  1300. if(e1000_link_test(adapter, &data[4]))
  1301. eth_test->flags |= ETH_TEST_FL_FAILED;
  1302. if(if_running)
  1303. e1000_down(adapter);
  1304. else
  1305. e1000_reset(adapter);
  1306. if(e1000_reg_test(adapter, &data[0]))
  1307. eth_test->flags |= ETH_TEST_FL_FAILED;
  1308. e1000_reset(adapter);
  1309. if(e1000_eeprom_test(adapter, &data[1]))
  1310. eth_test->flags |= ETH_TEST_FL_FAILED;
  1311. e1000_reset(adapter);
  1312. if(e1000_intr_test(adapter, &data[2]))
  1313. eth_test->flags |= ETH_TEST_FL_FAILED;
  1314. e1000_reset(adapter);
  1315. if(e1000_loopback_test(adapter, &data[3]))
  1316. eth_test->flags |= ETH_TEST_FL_FAILED;
  1317. /* restore speed, duplex, autoneg settings */
  1318. adapter->hw.autoneg_advertised = autoneg_advertised;
  1319. adapter->hw.forced_speed_duplex = forced_speed_duplex;
  1320. adapter->hw.autoneg = autoneg;
  1321. e1000_reset(adapter);
  1322. if(if_running)
  1323. e1000_up(adapter);
  1324. } else {
  1325. /* Online tests */
  1326. if(e1000_link_test(adapter, &data[4]))
  1327. eth_test->flags |= ETH_TEST_FL_FAILED;
  1328. /* Offline tests aren't run; pass by default */
  1329. data[0] = 0;
  1330. data[1] = 0;
  1331. data[2] = 0;
  1332. data[3] = 0;
  1333. }
  1334. msleep_interruptible(4 * 1000);
  1335. }
  1336. static void
  1337. e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1338. {
  1339. struct e1000_adapter *adapter = netdev_priv(netdev);
  1340. struct e1000_hw *hw = &adapter->hw;
  1341. switch(adapter->hw.device_id) {
  1342. case E1000_DEV_ID_82542:
  1343. case E1000_DEV_ID_82543GC_FIBER:
  1344. case E1000_DEV_ID_82543GC_COPPER:
  1345. case E1000_DEV_ID_82544EI_FIBER:
  1346. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1347. case E1000_DEV_ID_82545EM_FIBER:
  1348. case E1000_DEV_ID_82545EM_COPPER:
  1349. wol->supported = 0;
  1350. wol->wolopts = 0;
  1351. return;
  1352. case E1000_DEV_ID_82546EB_FIBER:
  1353. case E1000_DEV_ID_82546GB_FIBER:
  1354. /* Wake events only supported on port A for dual fiber */
  1355. if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
  1356. wol->supported = 0;
  1357. wol->wolopts = 0;
  1358. return;
  1359. }
  1360. /* Fall Through */
  1361. default:
  1362. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1363. WAKE_BCAST | WAKE_MAGIC;
  1364. wol->wolopts = 0;
  1365. if(adapter->wol & E1000_WUFC_EX)
  1366. wol->wolopts |= WAKE_UCAST;
  1367. if(adapter->wol & E1000_WUFC_MC)
  1368. wol->wolopts |= WAKE_MCAST;
  1369. if(adapter->wol & E1000_WUFC_BC)
  1370. wol->wolopts |= WAKE_BCAST;
  1371. if(adapter->wol & E1000_WUFC_MAG)
  1372. wol->wolopts |= WAKE_MAGIC;
  1373. return;
  1374. }
  1375. }
  1376. static int
  1377. e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1378. {
  1379. struct e1000_adapter *adapter = netdev_priv(netdev);
  1380. struct e1000_hw *hw = &adapter->hw;
  1381. switch(adapter->hw.device_id) {
  1382. case E1000_DEV_ID_82542:
  1383. case E1000_DEV_ID_82543GC_FIBER:
  1384. case E1000_DEV_ID_82543GC_COPPER:
  1385. case E1000_DEV_ID_82544EI_FIBER:
  1386. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1387. case E1000_DEV_ID_82545EM_FIBER:
  1388. case E1000_DEV_ID_82545EM_COPPER:
  1389. return wol->wolopts ? -EOPNOTSUPP : 0;
  1390. case E1000_DEV_ID_82546EB_FIBER:
  1391. case E1000_DEV_ID_82546GB_FIBER:
  1392. /* Wake events only supported on port A for dual fiber */
  1393. if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
  1394. return wol->wolopts ? -EOPNOTSUPP : 0;
  1395. /* Fall Through */
  1396. default:
  1397. if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1398. return -EOPNOTSUPP;
  1399. adapter->wol = 0;
  1400. if(wol->wolopts & WAKE_UCAST)
  1401. adapter->wol |= E1000_WUFC_EX;
  1402. if(wol->wolopts & WAKE_MCAST)
  1403. adapter->wol |= E1000_WUFC_MC;
  1404. if(wol->wolopts & WAKE_BCAST)
  1405. adapter->wol |= E1000_WUFC_BC;
  1406. if(wol->wolopts & WAKE_MAGIC)
  1407. adapter->wol |= E1000_WUFC_MAG;
  1408. }
  1409. return 0;
  1410. }
  1411. /* toggle LED 4 times per second = 2 "blinks" per second */
  1412. #define E1000_ID_INTERVAL (HZ/4)
  1413. /* bit defines for adapter->led_status */
  1414. #define E1000_LED_ON 0
  1415. static void
  1416. e1000_led_blink_callback(unsigned long data)
  1417. {
  1418. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1419. if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
  1420. e1000_led_off(&adapter->hw);
  1421. else
  1422. e1000_led_on(&adapter->hw);
  1423. mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
  1424. }
  1425. static int
  1426. e1000_phys_id(struct net_device *netdev, uint32_t data)
  1427. {
  1428. struct e1000_adapter *adapter = netdev_priv(netdev);
  1429. if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
  1430. data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
  1431. if(adapter->hw.mac_type < e1000_82571) {
  1432. if(!adapter->blink_timer.function) {
  1433. init_timer(&adapter->blink_timer);
  1434. adapter->blink_timer.function = e1000_led_blink_callback;
  1435. adapter->blink_timer.data = (unsigned long) adapter;
  1436. }
  1437. e1000_setup_led(&adapter->hw);
  1438. mod_timer(&adapter->blink_timer, jiffies);
  1439. msleep_interruptible(data * 1000);
  1440. del_timer_sync(&adapter->blink_timer);
  1441. }
  1442. else {
  1443. E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
  1444. E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
  1445. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1446. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
  1447. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
  1448. msleep_interruptible(data * 1000);
  1449. }
  1450. e1000_led_off(&adapter->hw);
  1451. clear_bit(E1000_LED_ON, &adapter->led_status);
  1452. e1000_cleanup_led(&adapter->hw);
  1453. return 0;
  1454. }
  1455. static int
  1456. e1000_nway_reset(struct net_device *netdev)
  1457. {
  1458. struct e1000_adapter *adapter = netdev_priv(netdev);
  1459. if(netif_running(netdev)) {
  1460. e1000_down(adapter);
  1461. e1000_up(adapter);
  1462. }
  1463. return 0;
  1464. }
  1465. static int
  1466. e1000_get_stats_count(struct net_device *netdev)
  1467. {
  1468. return E1000_STATS_LEN;
  1469. }
  1470. static void
  1471. e1000_get_ethtool_stats(struct net_device *netdev,
  1472. struct ethtool_stats *stats, uint64_t *data)
  1473. {
  1474. struct e1000_adapter *adapter = netdev_priv(netdev);
  1475. int i;
  1476. e1000_update_stats(adapter);
  1477. for(i = 0; i < E1000_STATS_LEN; i++) {
  1478. char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
  1479. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1480. sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
  1481. }
  1482. }
  1483. static void
  1484. e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
  1485. {
  1486. int i;
  1487. switch(stringset) {
  1488. case ETH_SS_TEST:
  1489. memcpy(data, *e1000_gstrings_test,
  1490. E1000_TEST_LEN*ETH_GSTRING_LEN);
  1491. break;
  1492. case ETH_SS_STATS:
  1493. for (i=0; i < E1000_STATS_LEN; i++) {
  1494. memcpy(data + i * ETH_GSTRING_LEN,
  1495. e1000_gstrings_stats[i].stat_string,
  1496. ETH_GSTRING_LEN);
  1497. }
  1498. break;
  1499. }
  1500. }
  1501. static struct ethtool_ops e1000_ethtool_ops = {
  1502. .get_settings = e1000_get_settings,
  1503. .set_settings = e1000_set_settings,
  1504. .get_drvinfo = e1000_get_drvinfo,
  1505. .get_regs_len = e1000_get_regs_len,
  1506. .get_regs = e1000_get_regs,
  1507. .get_wol = e1000_get_wol,
  1508. .set_wol = e1000_set_wol,
  1509. .get_msglevel = e1000_get_msglevel,
  1510. .set_msglevel = e1000_set_msglevel,
  1511. .nway_reset = e1000_nway_reset,
  1512. .get_link = ethtool_op_get_link,
  1513. .get_eeprom_len = e1000_get_eeprom_len,
  1514. .get_eeprom = e1000_get_eeprom,
  1515. .set_eeprom = e1000_set_eeprom,
  1516. .get_ringparam = e1000_get_ringparam,
  1517. .set_ringparam = e1000_set_ringparam,
  1518. .get_pauseparam = e1000_get_pauseparam,
  1519. .set_pauseparam = e1000_set_pauseparam,
  1520. .get_rx_csum = e1000_get_rx_csum,
  1521. .set_rx_csum = e1000_set_rx_csum,
  1522. .get_tx_csum = e1000_get_tx_csum,
  1523. .set_tx_csum = e1000_set_tx_csum,
  1524. .get_sg = ethtool_op_get_sg,
  1525. .set_sg = ethtool_op_set_sg,
  1526. #ifdef NETIF_F_TSO
  1527. .get_tso = ethtool_op_get_tso,
  1528. .set_tso = e1000_set_tso,
  1529. #endif
  1530. .self_test_count = e1000_diag_test_count,
  1531. .self_test = e1000_diag_test,
  1532. .get_strings = e1000_get_strings,
  1533. .phys_id = e1000_phys_id,
  1534. .get_stats_count = e1000_get_stats_count,
  1535. .get_ethtool_stats = e1000_get_ethtool_stats,
  1536. .get_perm_addr = ethtool_op_get_perm_addr,
  1537. };
  1538. void e1000_set_ethtool_ops(struct net_device *netdev)
  1539. {
  1540. SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
  1541. }