elevator.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <trace/block.h>
  37. #include <linux/hash.h>
  38. #include <linux/uaccess.h>
  39. #include "blk.h"
  40. static DEFINE_SPINLOCK(elv_list_lock);
  41. static LIST_HEAD(elv_list);
  42. DEFINE_TRACE(block_rq_abort);
  43. /*
  44. * Merge hash stuff.
  45. */
  46. static const int elv_hash_shift = 6;
  47. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  48. #define ELV_HASH_FN(sec) \
  49. (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  50. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  51. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  52. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  53. DEFINE_TRACE(block_rq_insert);
  54. DEFINE_TRACE(block_rq_issue);
  55. /*
  56. * Query io scheduler to see if the current process issuing bio may be
  57. * merged with rq.
  58. */
  59. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  60. {
  61. struct request_queue *q = rq->q;
  62. struct elevator_queue *e = q->elevator;
  63. if (e->ops->elevator_allow_merge_fn)
  64. return e->ops->elevator_allow_merge_fn(q, rq, bio);
  65. return 1;
  66. }
  67. /*
  68. * can we safely merge with this request?
  69. */
  70. int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  71. {
  72. if (!rq_mergeable(rq))
  73. return 0;
  74. /*
  75. * Don't merge file system requests and discard requests
  76. */
  77. if (bio_discard(bio) != bio_discard(rq->bio))
  78. return 0;
  79. /*
  80. * different data direction or already started, don't merge
  81. */
  82. if (bio_data_dir(bio) != rq_data_dir(rq))
  83. return 0;
  84. /*
  85. * must be same device and not a special request
  86. */
  87. if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
  88. return 0;
  89. /*
  90. * only merge integrity protected bio into ditto rq
  91. */
  92. if (bio_integrity(bio) != blk_integrity_rq(rq))
  93. return 0;
  94. if (!elv_iosched_allow_merge(rq, bio))
  95. return 0;
  96. return 1;
  97. }
  98. EXPORT_SYMBOL(elv_rq_merge_ok);
  99. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  100. {
  101. int ret = ELEVATOR_NO_MERGE;
  102. /*
  103. * we can merge and sequence is ok, check if it's possible
  104. */
  105. if (elv_rq_merge_ok(__rq, bio)) {
  106. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  107. ret = ELEVATOR_BACK_MERGE;
  108. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  109. ret = ELEVATOR_FRONT_MERGE;
  110. }
  111. return ret;
  112. }
  113. static struct elevator_type *elevator_find(const char *name)
  114. {
  115. struct elevator_type *e;
  116. list_for_each_entry(e, &elv_list, list) {
  117. if (!strcmp(e->elevator_name, name))
  118. return e;
  119. }
  120. return NULL;
  121. }
  122. static void elevator_put(struct elevator_type *e)
  123. {
  124. module_put(e->elevator_owner);
  125. }
  126. static struct elevator_type *elevator_get(const char *name)
  127. {
  128. struct elevator_type *e;
  129. spin_lock(&elv_list_lock);
  130. e = elevator_find(name);
  131. if (!e) {
  132. char elv[ELV_NAME_MAX + strlen("-iosched")];
  133. spin_unlock(&elv_list_lock);
  134. if (!strcmp(name, "anticipatory"))
  135. sprintf(elv, "as-iosched");
  136. else
  137. sprintf(elv, "%s-iosched", name);
  138. request_module("%s", elv);
  139. spin_lock(&elv_list_lock);
  140. e = elevator_find(name);
  141. }
  142. if (e && !try_module_get(e->elevator_owner))
  143. e = NULL;
  144. spin_unlock(&elv_list_lock);
  145. return e;
  146. }
  147. static void *elevator_init_queue(struct request_queue *q,
  148. struct elevator_queue *eq)
  149. {
  150. return eq->ops->elevator_init_fn(q);
  151. }
  152. static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
  153. void *data)
  154. {
  155. q->elevator = eq;
  156. eq->elevator_data = data;
  157. }
  158. static char chosen_elevator[16];
  159. static int __init elevator_setup(char *str)
  160. {
  161. /*
  162. * Be backwards-compatible with previous kernels, so users
  163. * won't get the wrong elevator.
  164. */
  165. if (!strcmp(str, "as"))
  166. strcpy(chosen_elevator, "anticipatory");
  167. else
  168. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  169. return 1;
  170. }
  171. __setup("elevator=", elevator_setup);
  172. static struct kobj_type elv_ktype;
  173. static struct elevator_queue *elevator_alloc(struct request_queue *q,
  174. struct elevator_type *e)
  175. {
  176. struct elevator_queue *eq;
  177. int i;
  178. eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
  179. if (unlikely(!eq))
  180. goto err;
  181. eq->ops = &e->ops;
  182. eq->elevator_type = e;
  183. kobject_init(&eq->kobj, &elv_ktype);
  184. mutex_init(&eq->sysfs_lock);
  185. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  186. GFP_KERNEL, q->node);
  187. if (!eq->hash)
  188. goto err;
  189. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  190. INIT_HLIST_HEAD(&eq->hash[i]);
  191. return eq;
  192. err:
  193. kfree(eq);
  194. elevator_put(e);
  195. return NULL;
  196. }
  197. static void elevator_release(struct kobject *kobj)
  198. {
  199. struct elevator_queue *e;
  200. e = container_of(kobj, struct elevator_queue, kobj);
  201. elevator_put(e->elevator_type);
  202. kfree(e->hash);
  203. kfree(e);
  204. }
  205. int elevator_init(struct request_queue *q, char *name)
  206. {
  207. struct elevator_type *e = NULL;
  208. struct elevator_queue *eq;
  209. int ret = 0;
  210. void *data;
  211. INIT_LIST_HEAD(&q->queue_head);
  212. q->last_merge = NULL;
  213. q->end_sector = 0;
  214. q->boundary_rq = NULL;
  215. if (name) {
  216. e = elevator_get(name);
  217. if (!e)
  218. return -EINVAL;
  219. }
  220. if (!e && *chosen_elevator) {
  221. e = elevator_get(chosen_elevator);
  222. if (!e)
  223. printk(KERN_ERR "I/O scheduler %s not found\n",
  224. chosen_elevator);
  225. }
  226. if (!e) {
  227. e = elevator_get(CONFIG_DEFAULT_IOSCHED);
  228. if (!e) {
  229. printk(KERN_ERR
  230. "Default I/O scheduler not found. " \
  231. "Using noop.\n");
  232. e = elevator_get("noop");
  233. }
  234. }
  235. eq = elevator_alloc(q, e);
  236. if (!eq)
  237. return -ENOMEM;
  238. data = elevator_init_queue(q, eq);
  239. if (!data) {
  240. kobject_put(&eq->kobj);
  241. return -ENOMEM;
  242. }
  243. elevator_attach(q, eq, data);
  244. return ret;
  245. }
  246. EXPORT_SYMBOL(elevator_init);
  247. void elevator_exit(struct elevator_queue *e)
  248. {
  249. mutex_lock(&e->sysfs_lock);
  250. if (e->ops->elevator_exit_fn)
  251. e->ops->elevator_exit_fn(e);
  252. e->ops = NULL;
  253. mutex_unlock(&e->sysfs_lock);
  254. kobject_put(&e->kobj);
  255. }
  256. EXPORT_SYMBOL(elevator_exit);
  257. static void elv_activate_rq(struct request_queue *q, struct request *rq)
  258. {
  259. struct elevator_queue *e = q->elevator;
  260. if (e->ops->elevator_activate_req_fn)
  261. e->ops->elevator_activate_req_fn(q, rq);
  262. }
  263. static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
  264. {
  265. struct elevator_queue *e = q->elevator;
  266. if (e->ops->elevator_deactivate_req_fn)
  267. e->ops->elevator_deactivate_req_fn(q, rq);
  268. }
  269. static inline void __elv_rqhash_del(struct request *rq)
  270. {
  271. hlist_del_init(&rq->hash);
  272. }
  273. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  274. {
  275. if (ELV_ON_HASH(rq))
  276. __elv_rqhash_del(rq);
  277. }
  278. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  279. {
  280. struct elevator_queue *e = q->elevator;
  281. BUG_ON(ELV_ON_HASH(rq));
  282. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  283. }
  284. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  285. {
  286. __elv_rqhash_del(rq);
  287. elv_rqhash_add(q, rq);
  288. }
  289. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  290. {
  291. struct elevator_queue *e = q->elevator;
  292. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  293. struct hlist_node *entry, *next;
  294. struct request *rq;
  295. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  296. BUG_ON(!ELV_ON_HASH(rq));
  297. if (unlikely(!rq_mergeable(rq))) {
  298. __elv_rqhash_del(rq);
  299. continue;
  300. }
  301. if (rq_hash_key(rq) == offset)
  302. return rq;
  303. }
  304. return NULL;
  305. }
  306. /*
  307. * RB-tree support functions for inserting/lookup/removal of requests
  308. * in a sorted RB tree.
  309. */
  310. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  311. {
  312. struct rb_node **p = &root->rb_node;
  313. struct rb_node *parent = NULL;
  314. struct request *__rq;
  315. while (*p) {
  316. parent = *p;
  317. __rq = rb_entry(parent, struct request, rb_node);
  318. if (rq->sector < __rq->sector)
  319. p = &(*p)->rb_left;
  320. else if (rq->sector > __rq->sector)
  321. p = &(*p)->rb_right;
  322. else
  323. return __rq;
  324. }
  325. rb_link_node(&rq->rb_node, parent, p);
  326. rb_insert_color(&rq->rb_node, root);
  327. return NULL;
  328. }
  329. EXPORT_SYMBOL(elv_rb_add);
  330. void elv_rb_del(struct rb_root *root, struct request *rq)
  331. {
  332. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  333. rb_erase(&rq->rb_node, root);
  334. RB_CLEAR_NODE(&rq->rb_node);
  335. }
  336. EXPORT_SYMBOL(elv_rb_del);
  337. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  338. {
  339. struct rb_node *n = root->rb_node;
  340. struct request *rq;
  341. while (n) {
  342. rq = rb_entry(n, struct request, rb_node);
  343. if (sector < rq->sector)
  344. n = n->rb_left;
  345. else if (sector > rq->sector)
  346. n = n->rb_right;
  347. else
  348. return rq;
  349. }
  350. return NULL;
  351. }
  352. EXPORT_SYMBOL(elv_rb_find);
  353. /*
  354. * Insert rq into dispatch queue of q. Queue lock must be held on
  355. * entry. rq is sort instead into the dispatch queue. To be used by
  356. * specific elevators.
  357. */
  358. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  359. {
  360. sector_t boundary;
  361. struct list_head *entry;
  362. int stop_flags;
  363. if (q->last_merge == rq)
  364. q->last_merge = NULL;
  365. elv_rqhash_del(q, rq);
  366. q->nr_sorted--;
  367. boundary = q->end_sector;
  368. stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
  369. list_for_each_prev(entry, &q->queue_head) {
  370. struct request *pos = list_entry_rq(entry);
  371. if (blk_discard_rq(rq) != blk_discard_rq(pos))
  372. break;
  373. if (rq_data_dir(rq) != rq_data_dir(pos))
  374. break;
  375. if (pos->cmd_flags & stop_flags)
  376. break;
  377. if (rq->sector >= boundary) {
  378. if (pos->sector < boundary)
  379. continue;
  380. } else {
  381. if (pos->sector >= boundary)
  382. break;
  383. }
  384. if (rq->sector >= pos->sector)
  385. break;
  386. }
  387. list_add(&rq->queuelist, entry);
  388. }
  389. EXPORT_SYMBOL(elv_dispatch_sort);
  390. /*
  391. * Insert rq into dispatch queue of q. Queue lock must be held on
  392. * entry. rq is added to the back of the dispatch queue. To be used by
  393. * specific elevators.
  394. */
  395. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  396. {
  397. if (q->last_merge == rq)
  398. q->last_merge = NULL;
  399. elv_rqhash_del(q, rq);
  400. q->nr_sorted--;
  401. q->end_sector = rq_end_sector(rq);
  402. q->boundary_rq = rq;
  403. list_add_tail(&rq->queuelist, &q->queue_head);
  404. }
  405. EXPORT_SYMBOL(elv_dispatch_add_tail);
  406. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  407. {
  408. struct elevator_queue *e = q->elevator;
  409. struct request *__rq;
  410. int ret;
  411. /*
  412. * First try one-hit cache.
  413. */
  414. if (q->last_merge) {
  415. ret = elv_try_merge(q->last_merge, bio);
  416. if (ret != ELEVATOR_NO_MERGE) {
  417. *req = q->last_merge;
  418. return ret;
  419. }
  420. }
  421. if (blk_queue_nomerges(q))
  422. return ELEVATOR_NO_MERGE;
  423. /*
  424. * See if our hash lookup can find a potential backmerge.
  425. */
  426. __rq = elv_rqhash_find(q, bio->bi_sector);
  427. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  428. *req = __rq;
  429. return ELEVATOR_BACK_MERGE;
  430. }
  431. if (e->ops->elevator_merge_fn)
  432. return e->ops->elevator_merge_fn(q, req, bio);
  433. return ELEVATOR_NO_MERGE;
  434. }
  435. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  436. {
  437. struct elevator_queue *e = q->elevator;
  438. if (e->ops->elevator_merged_fn)
  439. e->ops->elevator_merged_fn(q, rq, type);
  440. if (type == ELEVATOR_BACK_MERGE)
  441. elv_rqhash_reposition(q, rq);
  442. q->last_merge = rq;
  443. }
  444. void elv_merge_requests(struct request_queue *q, struct request *rq,
  445. struct request *next)
  446. {
  447. struct elevator_queue *e = q->elevator;
  448. if (e->ops->elevator_merge_req_fn)
  449. e->ops->elevator_merge_req_fn(q, rq, next);
  450. elv_rqhash_reposition(q, rq);
  451. elv_rqhash_del(q, next);
  452. q->nr_sorted--;
  453. q->last_merge = rq;
  454. }
  455. void elv_requeue_request(struct request_queue *q, struct request *rq)
  456. {
  457. /*
  458. * it already went through dequeue, we need to decrement the
  459. * in_flight count again
  460. */
  461. if (blk_account_rq(rq)) {
  462. q->in_flight--;
  463. if (blk_sorted_rq(rq))
  464. elv_deactivate_rq(q, rq);
  465. }
  466. rq->cmd_flags &= ~REQ_STARTED;
  467. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  468. }
  469. static void elv_drain_elevator(struct request_queue *q)
  470. {
  471. static int printed;
  472. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  473. ;
  474. if (q->nr_sorted == 0)
  475. return;
  476. if (printed++ < 10) {
  477. printk(KERN_ERR "%s: forced dispatching is broken "
  478. "(nr_sorted=%u), please report this\n",
  479. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  480. }
  481. }
  482. void elv_insert(struct request_queue *q, struct request *rq, int where)
  483. {
  484. struct list_head *pos;
  485. unsigned ordseq;
  486. int unplug_it = 1;
  487. trace_block_rq_insert(q, rq);
  488. rq->q = q;
  489. switch (where) {
  490. case ELEVATOR_INSERT_FRONT:
  491. rq->cmd_flags |= REQ_SOFTBARRIER;
  492. list_add(&rq->queuelist, &q->queue_head);
  493. break;
  494. case ELEVATOR_INSERT_BACK:
  495. rq->cmd_flags |= REQ_SOFTBARRIER;
  496. elv_drain_elevator(q);
  497. list_add_tail(&rq->queuelist, &q->queue_head);
  498. /*
  499. * We kick the queue here for the following reasons.
  500. * - The elevator might have returned NULL previously
  501. * to delay requests and returned them now. As the
  502. * queue wasn't empty before this request, ll_rw_blk
  503. * won't run the queue on return, resulting in hang.
  504. * - Usually, back inserted requests won't be merged
  505. * with anything. There's no point in delaying queue
  506. * processing.
  507. */
  508. blk_remove_plug(q);
  509. blk_start_queueing(q);
  510. break;
  511. case ELEVATOR_INSERT_SORT:
  512. BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
  513. rq->cmd_flags |= REQ_SORTED;
  514. q->nr_sorted++;
  515. if (rq_mergeable(rq)) {
  516. elv_rqhash_add(q, rq);
  517. if (!q->last_merge)
  518. q->last_merge = rq;
  519. }
  520. /*
  521. * Some ioscheds (cfq) run q->request_fn directly, so
  522. * rq cannot be accessed after calling
  523. * elevator_add_req_fn.
  524. */
  525. q->elevator->ops->elevator_add_req_fn(q, rq);
  526. break;
  527. case ELEVATOR_INSERT_REQUEUE:
  528. /*
  529. * If ordered flush isn't in progress, we do front
  530. * insertion; otherwise, requests should be requeued
  531. * in ordseq order.
  532. */
  533. rq->cmd_flags |= REQ_SOFTBARRIER;
  534. /*
  535. * Most requeues happen because of a busy condition,
  536. * don't force unplug of the queue for that case.
  537. */
  538. unplug_it = 0;
  539. if (q->ordseq == 0) {
  540. list_add(&rq->queuelist, &q->queue_head);
  541. break;
  542. }
  543. ordseq = blk_ordered_req_seq(rq);
  544. list_for_each(pos, &q->queue_head) {
  545. struct request *pos_rq = list_entry_rq(pos);
  546. if (ordseq <= blk_ordered_req_seq(pos_rq))
  547. break;
  548. }
  549. list_add_tail(&rq->queuelist, pos);
  550. break;
  551. default:
  552. printk(KERN_ERR "%s: bad insertion point %d\n",
  553. __func__, where);
  554. BUG();
  555. }
  556. if (unplug_it && blk_queue_plugged(q)) {
  557. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  558. - q->in_flight;
  559. if (nrq >= q->unplug_thresh)
  560. __generic_unplug_device(q);
  561. }
  562. }
  563. void __elv_add_request(struct request_queue *q, struct request *rq, int where,
  564. int plug)
  565. {
  566. if (q->ordcolor)
  567. rq->cmd_flags |= REQ_ORDERED_COLOR;
  568. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  569. /*
  570. * toggle ordered color
  571. */
  572. if (blk_barrier_rq(rq))
  573. q->ordcolor ^= 1;
  574. /*
  575. * barriers implicitly indicate back insertion
  576. */
  577. if (where == ELEVATOR_INSERT_SORT)
  578. where = ELEVATOR_INSERT_BACK;
  579. /*
  580. * this request is scheduling boundary, update
  581. * end_sector
  582. */
  583. if (blk_fs_request(rq) || blk_discard_rq(rq)) {
  584. q->end_sector = rq_end_sector(rq);
  585. q->boundary_rq = rq;
  586. }
  587. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  588. where == ELEVATOR_INSERT_SORT)
  589. where = ELEVATOR_INSERT_BACK;
  590. if (plug)
  591. blk_plug_device(q);
  592. elv_insert(q, rq, where);
  593. }
  594. EXPORT_SYMBOL(__elv_add_request);
  595. void elv_add_request(struct request_queue *q, struct request *rq, int where,
  596. int plug)
  597. {
  598. unsigned long flags;
  599. spin_lock_irqsave(q->queue_lock, flags);
  600. __elv_add_request(q, rq, where, plug);
  601. spin_unlock_irqrestore(q->queue_lock, flags);
  602. }
  603. EXPORT_SYMBOL(elv_add_request);
  604. static inline struct request *__elv_next_request(struct request_queue *q)
  605. {
  606. struct request *rq;
  607. while (1) {
  608. while (!list_empty(&q->queue_head)) {
  609. rq = list_entry_rq(q->queue_head.next);
  610. if (blk_do_ordered(q, &rq))
  611. return rq;
  612. }
  613. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  614. return NULL;
  615. }
  616. }
  617. struct request *elv_next_request(struct request_queue *q)
  618. {
  619. struct request *rq;
  620. int ret;
  621. while ((rq = __elv_next_request(q)) != NULL) {
  622. if (!(rq->cmd_flags & REQ_STARTED)) {
  623. /*
  624. * This is the first time the device driver
  625. * sees this request (possibly after
  626. * requeueing). Notify IO scheduler.
  627. */
  628. if (blk_sorted_rq(rq))
  629. elv_activate_rq(q, rq);
  630. /*
  631. * just mark as started even if we don't start
  632. * it, a request that has been delayed should
  633. * not be passed by new incoming requests
  634. */
  635. rq->cmd_flags |= REQ_STARTED;
  636. trace_block_rq_issue(q, rq);
  637. }
  638. if (!q->boundary_rq || q->boundary_rq == rq) {
  639. q->end_sector = rq_end_sector(rq);
  640. q->boundary_rq = NULL;
  641. }
  642. if (rq->cmd_flags & REQ_DONTPREP)
  643. break;
  644. if (q->dma_drain_size && rq->data_len) {
  645. /*
  646. * make sure space for the drain appears we
  647. * know we can do this because max_hw_segments
  648. * has been adjusted to be one fewer than the
  649. * device can handle
  650. */
  651. rq->nr_phys_segments++;
  652. }
  653. if (!q->prep_rq_fn)
  654. break;
  655. ret = q->prep_rq_fn(q, rq);
  656. if (ret == BLKPREP_OK) {
  657. break;
  658. } else if (ret == BLKPREP_DEFER) {
  659. /*
  660. * the request may have been (partially) prepped.
  661. * we need to keep this request in the front to
  662. * avoid resource deadlock. REQ_STARTED will
  663. * prevent other fs requests from passing this one.
  664. */
  665. if (q->dma_drain_size && rq->data_len &&
  666. !(rq->cmd_flags & REQ_DONTPREP)) {
  667. /*
  668. * remove the space for the drain we added
  669. * so that we don't add it again
  670. */
  671. --rq->nr_phys_segments;
  672. }
  673. rq = NULL;
  674. break;
  675. } else if (ret == BLKPREP_KILL) {
  676. rq->cmd_flags |= REQ_QUIET;
  677. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  678. } else {
  679. printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
  680. break;
  681. }
  682. }
  683. return rq;
  684. }
  685. EXPORT_SYMBOL(elv_next_request);
  686. void elv_dequeue_request(struct request_queue *q, struct request *rq)
  687. {
  688. BUG_ON(list_empty(&rq->queuelist));
  689. BUG_ON(ELV_ON_HASH(rq));
  690. list_del_init(&rq->queuelist);
  691. /*
  692. * the time frame between a request being removed from the lists
  693. * and to it is freed is accounted as io that is in progress at
  694. * the driver side.
  695. */
  696. if (blk_account_rq(rq))
  697. q->in_flight++;
  698. }
  699. int elv_queue_empty(struct request_queue *q)
  700. {
  701. struct elevator_queue *e = q->elevator;
  702. if (!list_empty(&q->queue_head))
  703. return 0;
  704. if (e->ops->elevator_queue_empty_fn)
  705. return e->ops->elevator_queue_empty_fn(q);
  706. return 1;
  707. }
  708. EXPORT_SYMBOL(elv_queue_empty);
  709. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  710. {
  711. struct elevator_queue *e = q->elevator;
  712. if (e->ops->elevator_latter_req_fn)
  713. return e->ops->elevator_latter_req_fn(q, rq);
  714. return NULL;
  715. }
  716. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  717. {
  718. struct elevator_queue *e = q->elevator;
  719. if (e->ops->elevator_former_req_fn)
  720. return e->ops->elevator_former_req_fn(q, rq);
  721. return NULL;
  722. }
  723. int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  724. {
  725. struct elevator_queue *e = q->elevator;
  726. if (e->ops->elevator_set_req_fn)
  727. return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
  728. rq->elevator_private = NULL;
  729. return 0;
  730. }
  731. void elv_put_request(struct request_queue *q, struct request *rq)
  732. {
  733. struct elevator_queue *e = q->elevator;
  734. if (e->ops->elevator_put_req_fn)
  735. e->ops->elevator_put_req_fn(rq);
  736. }
  737. int elv_may_queue(struct request_queue *q, int rw)
  738. {
  739. struct elevator_queue *e = q->elevator;
  740. if (e->ops->elevator_may_queue_fn)
  741. return e->ops->elevator_may_queue_fn(q, rw);
  742. return ELV_MQUEUE_MAY;
  743. }
  744. void elv_abort_queue(struct request_queue *q)
  745. {
  746. struct request *rq;
  747. while (!list_empty(&q->queue_head)) {
  748. rq = list_entry_rq(q->queue_head.next);
  749. rq->cmd_flags |= REQ_QUIET;
  750. trace_block_rq_abort(q, rq);
  751. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  752. }
  753. }
  754. EXPORT_SYMBOL(elv_abort_queue);
  755. void elv_completed_request(struct request_queue *q, struct request *rq)
  756. {
  757. struct elevator_queue *e = q->elevator;
  758. /*
  759. * request is released from the driver, io must be done
  760. */
  761. if (blk_account_rq(rq)) {
  762. q->in_flight--;
  763. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  764. e->ops->elevator_completed_req_fn(q, rq);
  765. }
  766. /*
  767. * Check if the queue is waiting for fs requests to be
  768. * drained for flush sequence.
  769. */
  770. if (unlikely(q->ordseq)) {
  771. struct request *next = NULL;
  772. if (!list_empty(&q->queue_head))
  773. next = list_entry_rq(q->queue_head.next);
  774. if (!q->in_flight &&
  775. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  776. (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
  777. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  778. blk_start_queueing(q);
  779. }
  780. }
  781. }
  782. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  783. static ssize_t
  784. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  785. {
  786. struct elv_fs_entry *entry = to_elv(attr);
  787. struct elevator_queue *e;
  788. ssize_t error;
  789. if (!entry->show)
  790. return -EIO;
  791. e = container_of(kobj, struct elevator_queue, kobj);
  792. mutex_lock(&e->sysfs_lock);
  793. error = e->ops ? entry->show(e, page) : -ENOENT;
  794. mutex_unlock(&e->sysfs_lock);
  795. return error;
  796. }
  797. static ssize_t
  798. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  799. const char *page, size_t length)
  800. {
  801. struct elv_fs_entry *entry = to_elv(attr);
  802. struct elevator_queue *e;
  803. ssize_t error;
  804. if (!entry->store)
  805. return -EIO;
  806. e = container_of(kobj, struct elevator_queue, kobj);
  807. mutex_lock(&e->sysfs_lock);
  808. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  809. mutex_unlock(&e->sysfs_lock);
  810. return error;
  811. }
  812. static struct sysfs_ops elv_sysfs_ops = {
  813. .show = elv_attr_show,
  814. .store = elv_attr_store,
  815. };
  816. static struct kobj_type elv_ktype = {
  817. .sysfs_ops = &elv_sysfs_ops,
  818. .release = elevator_release,
  819. };
  820. int elv_register_queue(struct request_queue *q)
  821. {
  822. struct elevator_queue *e = q->elevator;
  823. int error;
  824. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  825. if (!error) {
  826. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  827. if (attr) {
  828. while (attr->attr.name) {
  829. if (sysfs_create_file(&e->kobj, &attr->attr))
  830. break;
  831. attr++;
  832. }
  833. }
  834. kobject_uevent(&e->kobj, KOBJ_ADD);
  835. }
  836. return error;
  837. }
  838. static void __elv_unregister_queue(struct elevator_queue *e)
  839. {
  840. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  841. kobject_del(&e->kobj);
  842. }
  843. void elv_unregister_queue(struct request_queue *q)
  844. {
  845. if (q)
  846. __elv_unregister_queue(q->elevator);
  847. }
  848. void elv_register(struct elevator_type *e)
  849. {
  850. char *def = "";
  851. spin_lock(&elv_list_lock);
  852. BUG_ON(elevator_find(e->elevator_name));
  853. list_add_tail(&e->list, &elv_list);
  854. spin_unlock(&elv_list_lock);
  855. if (!strcmp(e->elevator_name, chosen_elevator) ||
  856. (!*chosen_elevator &&
  857. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  858. def = " (default)";
  859. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  860. def);
  861. }
  862. EXPORT_SYMBOL_GPL(elv_register);
  863. void elv_unregister(struct elevator_type *e)
  864. {
  865. struct task_struct *g, *p;
  866. /*
  867. * Iterate every thread in the process to remove the io contexts.
  868. */
  869. if (e->ops.trim) {
  870. read_lock(&tasklist_lock);
  871. do_each_thread(g, p) {
  872. task_lock(p);
  873. if (p->io_context)
  874. e->ops.trim(p->io_context);
  875. task_unlock(p);
  876. } while_each_thread(g, p);
  877. read_unlock(&tasklist_lock);
  878. }
  879. spin_lock(&elv_list_lock);
  880. list_del_init(&e->list);
  881. spin_unlock(&elv_list_lock);
  882. }
  883. EXPORT_SYMBOL_GPL(elv_unregister);
  884. /*
  885. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  886. * we don't free the old io scheduler, before we have allocated what we
  887. * need for the new one. this way we have a chance of going back to the old
  888. * one, if the new one fails init for some reason.
  889. */
  890. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  891. {
  892. struct elevator_queue *old_elevator, *e;
  893. void *data;
  894. /*
  895. * Allocate new elevator
  896. */
  897. e = elevator_alloc(q, new_e);
  898. if (!e)
  899. return 0;
  900. data = elevator_init_queue(q, e);
  901. if (!data) {
  902. kobject_put(&e->kobj);
  903. return 0;
  904. }
  905. /*
  906. * Turn on BYPASS and drain all requests w/ elevator private data
  907. */
  908. spin_lock_irq(q->queue_lock);
  909. queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
  910. elv_drain_elevator(q);
  911. while (q->rq.elvpriv) {
  912. blk_start_queueing(q);
  913. spin_unlock_irq(q->queue_lock);
  914. msleep(10);
  915. spin_lock_irq(q->queue_lock);
  916. elv_drain_elevator(q);
  917. }
  918. /*
  919. * Remember old elevator.
  920. */
  921. old_elevator = q->elevator;
  922. /*
  923. * attach and start new elevator
  924. */
  925. elevator_attach(q, e, data);
  926. spin_unlock_irq(q->queue_lock);
  927. __elv_unregister_queue(old_elevator);
  928. if (elv_register_queue(q))
  929. goto fail_register;
  930. /*
  931. * finally exit old elevator and turn off BYPASS.
  932. */
  933. elevator_exit(old_elevator);
  934. spin_lock_irq(q->queue_lock);
  935. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  936. spin_unlock_irq(q->queue_lock);
  937. blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
  938. return 1;
  939. fail_register:
  940. /*
  941. * switch failed, exit the new io scheduler and reattach the old
  942. * one again (along with re-adding the sysfs dir)
  943. */
  944. elevator_exit(e);
  945. q->elevator = old_elevator;
  946. elv_register_queue(q);
  947. spin_lock_irq(q->queue_lock);
  948. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  949. spin_unlock_irq(q->queue_lock);
  950. return 0;
  951. }
  952. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  953. size_t count)
  954. {
  955. char elevator_name[ELV_NAME_MAX];
  956. struct elevator_type *e;
  957. strlcpy(elevator_name, name, sizeof(elevator_name));
  958. strstrip(elevator_name);
  959. e = elevator_get(elevator_name);
  960. if (!e) {
  961. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  962. return -EINVAL;
  963. }
  964. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  965. elevator_put(e);
  966. return count;
  967. }
  968. if (!elevator_switch(q, e))
  969. printk(KERN_ERR "elevator: switch to %s failed\n",
  970. elevator_name);
  971. return count;
  972. }
  973. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  974. {
  975. struct elevator_queue *e = q->elevator;
  976. struct elevator_type *elv = e->elevator_type;
  977. struct elevator_type *__e;
  978. int len = 0;
  979. spin_lock(&elv_list_lock);
  980. list_for_each_entry(__e, &elv_list, list) {
  981. if (!strcmp(elv->elevator_name, __e->elevator_name))
  982. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  983. else
  984. len += sprintf(name+len, "%s ", __e->elevator_name);
  985. }
  986. spin_unlock(&elv_list_lock);
  987. len += sprintf(len+name, "\n");
  988. return len;
  989. }
  990. struct request *elv_rb_former_request(struct request_queue *q,
  991. struct request *rq)
  992. {
  993. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  994. if (rbprev)
  995. return rb_entry_rq(rbprev);
  996. return NULL;
  997. }
  998. EXPORT_SYMBOL(elv_rb_former_request);
  999. struct request *elv_rb_latter_request(struct request_queue *q,
  1000. struct request *rq)
  1001. {
  1002. struct rb_node *rbnext = rb_next(&rq->rb_node);
  1003. if (rbnext)
  1004. return rb_entry_rq(rbnext);
  1005. return NULL;
  1006. }
  1007. EXPORT_SYMBOL(elv_rb_latter_request);