segment.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
  99. #define nilfs_cnt32_gt(a, b) \
  100. (typecheck(__u32, a) && typecheck(__u32, b) && \
  101. ((__s32)(b) - (__s32)(a) < 0))
  102. #define nilfs_cnt32_ge(a, b) \
  103. (typecheck(__u32, a) && typecheck(__u32, b) && \
  104. ((__s32)(a) - (__s32)(b) >= 0))
  105. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  106. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  107. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  108. {
  109. struct nilfs_transaction_info *cur_ti = current->journal_info;
  110. void *save = NULL;
  111. if (cur_ti) {
  112. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  113. return ++cur_ti->ti_count;
  114. else {
  115. /*
  116. * If journal_info field is occupied by other FS,
  117. * it is saved and will be restored on
  118. * nilfs_transaction_commit().
  119. */
  120. printk(KERN_WARNING
  121. "NILFS warning: journal info from a different "
  122. "FS\n");
  123. save = current->journal_info;
  124. }
  125. }
  126. if (!ti) {
  127. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  128. if (!ti)
  129. return -ENOMEM;
  130. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  131. } else {
  132. ti->ti_flags = 0;
  133. }
  134. ti->ti_count = 0;
  135. ti->ti_save = save;
  136. ti->ti_magic = NILFS_TI_MAGIC;
  137. current->journal_info = ti;
  138. return 0;
  139. }
  140. /**
  141. * nilfs_transaction_begin - start indivisible file operations.
  142. * @sb: super block
  143. * @ti: nilfs_transaction_info
  144. * @vacancy_check: flags for vacancy rate checks
  145. *
  146. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  147. * the segment semaphore, to make a segment construction and write tasks
  148. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  149. * The region enclosed by these two functions can be nested. To avoid a
  150. * deadlock, the semaphore is only acquired or released in the outermost call.
  151. *
  152. * This function allocates a nilfs_transaction_info struct to keep context
  153. * information on it. It is initialized and hooked onto the current task in
  154. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  155. * instead; otherwise a new struct is assigned from a slab.
  156. *
  157. * When @vacancy_check flag is set, this function will check the amount of
  158. * free space, and will wait for the GC to reclaim disk space if low capacity.
  159. *
  160. * Return Value: On success, 0 is returned. On error, one of the following
  161. * negative error code is returned.
  162. *
  163. * %-ENOMEM - Insufficient memory available.
  164. *
  165. * %-ENOSPC - No space left on device
  166. */
  167. int nilfs_transaction_begin(struct super_block *sb,
  168. struct nilfs_transaction_info *ti,
  169. int vacancy_check)
  170. {
  171. struct the_nilfs *nilfs;
  172. int ret = nilfs_prepare_segment_lock(ti);
  173. if (unlikely(ret < 0))
  174. return ret;
  175. if (ret > 0)
  176. return 0;
  177. vfs_check_frozen(sb, SB_FREEZE_WRITE);
  178. nilfs = sb->s_fs_info;
  179. down_read(&nilfs->ns_segctor_sem);
  180. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  181. up_read(&nilfs->ns_segctor_sem);
  182. ret = -ENOSPC;
  183. goto failed;
  184. }
  185. return 0;
  186. failed:
  187. ti = current->journal_info;
  188. current->journal_info = ti->ti_save;
  189. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  190. kmem_cache_free(nilfs_transaction_cachep, ti);
  191. return ret;
  192. }
  193. /**
  194. * nilfs_transaction_commit - commit indivisible file operations.
  195. * @sb: super block
  196. *
  197. * nilfs_transaction_commit() releases the read semaphore which is
  198. * acquired by nilfs_transaction_begin(). This is only performed
  199. * in outermost call of this function. If a commit flag is set,
  200. * nilfs_transaction_commit() sets a timer to start the segment
  201. * constructor. If a sync flag is set, it starts construction
  202. * directly.
  203. */
  204. int nilfs_transaction_commit(struct super_block *sb)
  205. {
  206. struct nilfs_transaction_info *ti = current->journal_info;
  207. struct the_nilfs *nilfs = sb->s_fs_info;
  208. int err = 0;
  209. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  210. ti->ti_flags |= NILFS_TI_COMMIT;
  211. if (ti->ti_count > 0) {
  212. ti->ti_count--;
  213. return 0;
  214. }
  215. if (nilfs->ns_writer) {
  216. struct nilfs_sc_info *sci = nilfs->ns_writer;
  217. if (ti->ti_flags & NILFS_TI_COMMIT)
  218. nilfs_segctor_start_timer(sci);
  219. if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
  220. nilfs_segctor_do_flush(sci, 0);
  221. }
  222. up_read(&nilfs->ns_segctor_sem);
  223. current->journal_info = ti->ti_save;
  224. if (ti->ti_flags & NILFS_TI_SYNC)
  225. err = nilfs_construct_segment(sb);
  226. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  227. kmem_cache_free(nilfs_transaction_cachep, ti);
  228. return err;
  229. }
  230. void nilfs_transaction_abort(struct super_block *sb)
  231. {
  232. struct nilfs_transaction_info *ti = current->journal_info;
  233. struct the_nilfs *nilfs = sb->s_fs_info;
  234. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  235. if (ti->ti_count > 0) {
  236. ti->ti_count--;
  237. return;
  238. }
  239. up_read(&nilfs->ns_segctor_sem);
  240. current->journal_info = ti->ti_save;
  241. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  242. kmem_cache_free(nilfs_transaction_cachep, ti);
  243. }
  244. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  245. {
  246. struct the_nilfs *nilfs = sb->s_fs_info;
  247. struct nilfs_sc_info *sci = nilfs->ns_writer;
  248. if (!sci || !sci->sc_flush_request)
  249. return;
  250. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  251. up_read(&nilfs->ns_segctor_sem);
  252. down_write(&nilfs->ns_segctor_sem);
  253. if (sci->sc_flush_request &&
  254. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  255. struct nilfs_transaction_info *ti = current->journal_info;
  256. ti->ti_flags |= NILFS_TI_WRITER;
  257. nilfs_segctor_do_immediate_flush(sci);
  258. ti->ti_flags &= ~NILFS_TI_WRITER;
  259. }
  260. downgrade_write(&nilfs->ns_segctor_sem);
  261. }
  262. static void nilfs_transaction_lock(struct super_block *sb,
  263. struct nilfs_transaction_info *ti,
  264. int gcflag)
  265. {
  266. struct nilfs_transaction_info *cur_ti = current->journal_info;
  267. struct the_nilfs *nilfs = sb->s_fs_info;
  268. struct nilfs_sc_info *sci = nilfs->ns_writer;
  269. WARN_ON(cur_ti);
  270. ti->ti_flags = NILFS_TI_WRITER;
  271. ti->ti_count = 0;
  272. ti->ti_save = cur_ti;
  273. ti->ti_magic = NILFS_TI_MAGIC;
  274. INIT_LIST_HEAD(&ti->ti_garbage);
  275. current->journal_info = ti;
  276. for (;;) {
  277. down_write(&nilfs->ns_segctor_sem);
  278. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
  279. break;
  280. nilfs_segctor_do_immediate_flush(sci);
  281. up_write(&nilfs->ns_segctor_sem);
  282. yield();
  283. }
  284. if (gcflag)
  285. ti->ti_flags |= NILFS_TI_GC;
  286. }
  287. static void nilfs_transaction_unlock(struct super_block *sb)
  288. {
  289. struct nilfs_transaction_info *ti = current->journal_info;
  290. struct the_nilfs *nilfs = sb->s_fs_info;
  291. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  292. BUG_ON(ti->ti_count > 0);
  293. up_write(&nilfs->ns_segctor_sem);
  294. current->journal_info = ti->ti_save;
  295. if (!list_empty(&ti->ti_garbage))
  296. nilfs_dispose_list(nilfs, &ti->ti_garbage, 0);
  297. }
  298. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  299. struct nilfs_segsum_pointer *ssp,
  300. unsigned bytes)
  301. {
  302. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  303. unsigned blocksize = sci->sc_super->s_blocksize;
  304. void *p;
  305. if (unlikely(ssp->offset + bytes > blocksize)) {
  306. ssp->offset = 0;
  307. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  308. &segbuf->sb_segsum_buffers));
  309. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  310. }
  311. p = ssp->bh->b_data + ssp->offset;
  312. ssp->offset += bytes;
  313. return p;
  314. }
  315. /**
  316. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  317. * @sci: nilfs_sc_info
  318. */
  319. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  320. {
  321. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  322. struct buffer_head *sumbh;
  323. unsigned sumbytes;
  324. unsigned flags = 0;
  325. int err;
  326. if (nilfs_doing_gc())
  327. flags = NILFS_SS_GC;
  328. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  329. if (unlikely(err))
  330. return err;
  331. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  332. sumbytes = segbuf->sb_sum.sumbytes;
  333. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  334. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  335. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  336. return 0;
  337. }
  338. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  339. {
  340. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  341. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  342. return -E2BIG; /* The current segment is filled up
  343. (internal code) */
  344. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  345. return nilfs_segctor_reset_segment_buffer(sci);
  346. }
  347. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  348. {
  349. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  350. int err;
  351. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  352. err = nilfs_segctor_feed_segment(sci);
  353. if (err)
  354. return err;
  355. segbuf = sci->sc_curseg;
  356. }
  357. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  358. if (likely(!err))
  359. segbuf->sb_sum.flags |= NILFS_SS_SR;
  360. return err;
  361. }
  362. /*
  363. * Functions for making segment summary and payloads
  364. */
  365. static int nilfs_segctor_segsum_block_required(
  366. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  367. unsigned binfo_size)
  368. {
  369. unsigned blocksize = sci->sc_super->s_blocksize;
  370. /* Size of finfo and binfo is enough small against blocksize */
  371. return ssp->offset + binfo_size +
  372. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  373. blocksize;
  374. }
  375. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  376. struct inode *inode)
  377. {
  378. sci->sc_curseg->sb_sum.nfinfo++;
  379. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  380. nilfs_segctor_map_segsum_entry(
  381. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  382. if (NILFS_I(inode)->i_root &&
  383. !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  384. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  385. /* skip finfo */
  386. }
  387. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  388. struct inode *inode)
  389. {
  390. struct nilfs_finfo *finfo;
  391. struct nilfs_inode_info *ii;
  392. struct nilfs_segment_buffer *segbuf;
  393. __u64 cno;
  394. if (sci->sc_blk_cnt == 0)
  395. return;
  396. ii = NILFS_I(inode);
  397. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  398. cno = ii->i_cno;
  399. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  400. cno = 0;
  401. else
  402. cno = sci->sc_cno;
  403. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  404. sizeof(*finfo));
  405. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  406. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  407. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  408. finfo->fi_cno = cpu_to_le64(cno);
  409. segbuf = sci->sc_curseg;
  410. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  411. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  412. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  413. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  414. }
  415. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  416. struct buffer_head *bh,
  417. struct inode *inode,
  418. unsigned binfo_size)
  419. {
  420. struct nilfs_segment_buffer *segbuf;
  421. int required, err = 0;
  422. retry:
  423. segbuf = sci->sc_curseg;
  424. required = nilfs_segctor_segsum_block_required(
  425. sci, &sci->sc_binfo_ptr, binfo_size);
  426. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  427. nilfs_segctor_end_finfo(sci, inode);
  428. err = nilfs_segctor_feed_segment(sci);
  429. if (err)
  430. return err;
  431. goto retry;
  432. }
  433. if (unlikely(required)) {
  434. err = nilfs_segbuf_extend_segsum(segbuf);
  435. if (unlikely(err))
  436. goto failed;
  437. }
  438. if (sci->sc_blk_cnt == 0)
  439. nilfs_segctor_begin_finfo(sci, inode);
  440. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  441. /* Substitution to vblocknr is delayed until update_blocknr() */
  442. nilfs_segbuf_add_file_buffer(segbuf, bh);
  443. sci->sc_blk_cnt++;
  444. failed:
  445. return err;
  446. }
  447. /*
  448. * Callback functions that enumerate, mark, and collect dirty blocks
  449. */
  450. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  451. struct buffer_head *bh, struct inode *inode)
  452. {
  453. int err;
  454. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  455. if (err < 0)
  456. return err;
  457. err = nilfs_segctor_add_file_block(sci, bh, inode,
  458. sizeof(struct nilfs_binfo_v));
  459. if (!err)
  460. sci->sc_datablk_cnt++;
  461. return err;
  462. }
  463. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  464. struct buffer_head *bh,
  465. struct inode *inode)
  466. {
  467. return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  468. }
  469. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  470. struct buffer_head *bh,
  471. struct inode *inode)
  472. {
  473. WARN_ON(!buffer_dirty(bh));
  474. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  475. }
  476. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  477. struct nilfs_segsum_pointer *ssp,
  478. union nilfs_binfo *binfo)
  479. {
  480. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  481. sci, ssp, sizeof(*binfo_v));
  482. *binfo_v = binfo->bi_v;
  483. }
  484. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  485. struct nilfs_segsum_pointer *ssp,
  486. union nilfs_binfo *binfo)
  487. {
  488. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  489. sci, ssp, sizeof(*vblocknr));
  490. *vblocknr = binfo->bi_v.bi_vblocknr;
  491. }
  492. static struct nilfs_sc_operations nilfs_sc_file_ops = {
  493. .collect_data = nilfs_collect_file_data,
  494. .collect_node = nilfs_collect_file_node,
  495. .collect_bmap = nilfs_collect_file_bmap,
  496. .write_data_binfo = nilfs_write_file_data_binfo,
  497. .write_node_binfo = nilfs_write_file_node_binfo,
  498. };
  499. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  500. struct buffer_head *bh, struct inode *inode)
  501. {
  502. int err;
  503. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  504. if (err < 0)
  505. return err;
  506. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  507. if (!err)
  508. sci->sc_datablk_cnt++;
  509. return err;
  510. }
  511. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  512. struct buffer_head *bh, struct inode *inode)
  513. {
  514. WARN_ON(!buffer_dirty(bh));
  515. return nilfs_segctor_add_file_block(sci, bh, inode,
  516. sizeof(struct nilfs_binfo_dat));
  517. }
  518. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  519. struct nilfs_segsum_pointer *ssp,
  520. union nilfs_binfo *binfo)
  521. {
  522. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  523. sizeof(*blkoff));
  524. *blkoff = binfo->bi_dat.bi_blkoff;
  525. }
  526. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  527. struct nilfs_segsum_pointer *ssp,
  528. union nilfs_binfo *binfo)
  529. {
  530. struct nilfs_binfo_dat *binfo_dat =
  531. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  532. *binfo_dat = binfo->bi_dat;
  533. }
  534. static struct nilfs_sc_operations nilfs_sc_dat_ops = {
  535. .collect_data = nilfs_collect_dat_data,
  536. .collect_node = nilfs_collect_file_node,
  537. .collect_bmap = nilfs_collect_dat_bmap,
  538. .write_data_binfo = nilfs_write_dat_data_binfo,
  539. .write_node_binfo = nilfs_write_dat_node_binfo,
  540. };
  541. static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  542. .collect_data = nilfs_collect_file_data,
  543. .collect_node = NULL,
  544. .collect_bmap = NULL,
  545. .write_data_binfo = nilfs_write_file_data_binfo,
  546. .write_node_binfo = NULL,
  547. };
  548. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  549. struct list_head *listp,
  550. size_t nlimit,
  551. loff_t start, loff_t end)
  552. {
  553. struct address_space *mapping = inode->i_mapping;
  554. struct pagevec pvec;
  555. pgoff_t index = 0, last = ULONG_MAX;
  556. size_t ndirties = 0;
  557. int i;
  558. if (unlikely(start != 0 || end != LLONG_MAX)) {
  559. /*
  560. * A valid range is given for sync-ing data pages. The
  561. * range is rounded to per-page; extra dirty buffers
  562. * may be included if blocksize < pagesize.
  563. */
  564. index = start >> PAGE_SHIFT;
  565. last = end >> PAGE_SHIFT;
  566. }
  567. pagevec_init(&pvec, 0);
  568. repeat:
  569. if (unlikely(index > last) ||
  570. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  571. min_t(pgoff_t, last - index,
  572. PAGEVEC_SIZE - 1) + 1))
  573. return ndirties;
  574. for (i = 0; i < pagevec_count(&pvec); i++) {
  575. struct buffer_head *bh, *head;
  576. struct page *page = pvec.pages[i];
  577. if (unlikely(page->index > last))
  578. break;
  579. if (mapping->host) {
  580. lock_page(page);
  581. if (!page_has_buffers(page))
  582. create_empty_buffers(page,
  583. 1 << inode->i_blkbits, 0);
  584. unlock_page(page);
  585. }
  586. bh = head = page_buffers(page);
  587. do {
  588. if (!buffer_dirty(bh))
  589. continue;
  590. get_bh(bh);
  591. list_add_tail(&bh->b_assoc_buffers, listp);
  592. ndirties++;
  593. if (unlikely(ndirties >= nlimit)) {
  594. pagevec_release(&pvec);
  595. cond_resched();
  596. return ndirties;
  597. }
  598. } while (bh = bh->b_this_page, bh != head);
  599. }
  600. pagevec_release(&pvec);
  601. cond_resched();
  602. goto repeat;
  603. }
  604. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  605. struct list_head *listp)
  606. {
  607. struct nilfs_inode_info *ii = NILFS_I(inode);
  608. struct address_space *mapping = &ii->i_btnode_cache;
  609. struct pagevec pvec;
  610. struct buffer_head *bh, *head;
  611. unsigned int i;
  612. pgoff_t index = 0;
  613. pagevec_init(&pvec, 0);
  614. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  615. PAGEVEC_SIZE)) {
  616. for (i = 0; i < pagevec_count(&pvec); i++) {
  617. bh = head = page_buffers(pvec.pages[i]);
  618. do {
  619. if (buffer_dirty(bh)) {
  620. get_bh(bh);
  621. list_add_tail(&bh->b_assoc_buffers,
  622. listp);
  623. }
  624. bh = bh->b_this_page;
  625. } while (bh != head);
  626. }
  627. pagevec_release(&pvec);
  628. cond_resched();
  629. }
  630. }
  631. static void nilfs_dispose_list(struct the_nilfs *nilfs,
  632. struct list_head *head, int force)
  633. {
  634. struct nilfs_inode_info *ii, *n;
  635. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  636. unsigned nv = 0;
  637. while (!list_empty(head)) {
  638. spin_lock(&nilfs->ns_inode_lock);
  639. list_for_each_entry_safe(ii, n, head, i_dirty) {
  640. list_del_init(&ii->i_dirty);
  641. if (force) {
  642. if (unlikely(ii->i_bh)) {
  643. brelse(ii->i_bh);
  644. ii->i_bh = NULL;
  645. }
  646. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  647. set_bit(NILFS_I_QUEUED, &ii->i_state);
  648. list_add_tail(&ii->i_dirty,
  649. &nilfs->ns_dirty_files);
  650. continue;
  651. }
  652. ivec[nv++] = ii;
  653. if (nv == SC_N_INODEVEC)
  654. break;
  655. }
  656. spin_unlock(&nilfs->ns_inode_lock);
  657. for (pii = ivec; nv > 0; pii++, nv--)
  658. iput(&(*pii)->vfs_inode);
  659. }
  660. }
  661. static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
  662. struct nilfs_root *root)
  663. {
  664. int ret = 0;
  665. if (nilfs_mdt_fetch_dirty(root->ifile))
  666. ret++;
  667. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  668. ret++;
  669. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  670. ret++;
  671. if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
  672. ret++;
  673. return ret;
  674. }
  675. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  676. {
  677. return list_empty(&sci->sc_dirty_files) &&
  678. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  679. sci->sc_nfreesegs == 0 &&
  680. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  681. }
  682. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  683. {
  684. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  685. int ret = 0;
  686. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  687. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  688. spin_lock(&nilfs->ns_inode_lock);
  689. if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
  690. ret++;
  691. spin_unlock(&nilfs->ns_inode_lock);
  692. return ret;
  693. }
  694. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  695. {
  696. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  697. nilfs_mdt_clear_dirty(sci->sc_root->ifile);
  698. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  699. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  700. nilfs_mdt_clear_dirty(nilfs->ns_dat);
  701. }
  702. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  703. {
  704. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  705. struct buffer_head *bh_cp;
  706. struct nilfs_checkpoint *raw_cp;
  707. int err;
  708. /* XXX: this interface will be changed */
  709. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  710. &raw_cp, &bh_cp);
  711. if (likely(!err)) {
  712. /* The following code is duplicated with cpfile. But, it is
  713. needed to collect the checkpoint even if it was not newly
  714. created */
  715. nilfs_mdt_mark_buffer_dirty(bh_cp);
  716. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  717. nilfs_cpfile_put_checkpoint(
  718. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  719. } else
  720. WARN_ON(err == -EINVAL || err == -ENOENT);
  721. return err;
  722. }
  723. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  724. {
  725. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  726. struct buffer_head *bh_cp;
  727. struct nilfs_checkpoint *raw_cp;
  728. int err;
  729. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  730. &raw_cp, &bh_cp);
  731. if (unlikely(err)) {
  732. WARN_ON(err == -EINVAL || err == -ENOENT);
  733. goto failed_ibh;
  734. }
  735. raw_cp->cp_snapshot_list.ssl_next = 0;
  736. raw_cp->cp_snapshot_list.ssl_prev = 0;
  737. raw_cp->cp_inodes_count =
  738. cpu_to_le64(atomic_read(&sci->sc_root->inodes_count));
  739. raw_cp->cp_blocks_count =
  740. cpu_to_le64(atomic_read(&sci->sc_root->blocks_count));
  741. raw_cp->cp_nblk_inc =
  742. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  743. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  744. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  745. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  746. nilfs_checkpoint_clear_minor(raw_cp);
  747. else
  748. nilfs_checkpoint_set_minor(raw_cp);
  749. nilfs_write_inode_common(sci->sc_root->ifile,
  750. &raw_cp->cp_ifile_inode, 1);
  751. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  752. return 0;
  753. failed_ibh:
  754. return err;
  755. }
  756. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  757. struct nilfs_inode_info *ii)
  758. {
  759. struct buffer_head *ibh;
  760. struct nilfs_inode *raw_inode;
  761. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  762. ibh = ii->i_bh;
  763. BUG_ON(!ibh);
  764. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  765. ibh);
  766. nilfs_bmap_write(ii->i_bmap, raw_inode);
  767. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  768. }
  769. }
  770. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
  771. {
  772. struct nilfs_inode_info *ii;
  773. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  774. nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
  775. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  776. }
  777. }
  778. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  779. struct the_nilfs *nilfs)
  780. {
  781. struct buffer_head *bh_sr;
  782. struct nilfs_super_root *raw_sr;
  783. unsigned isz, srsz;
  784. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  785. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  786. isz = nilfs->ns_inode_size;
  787. srsz = NILFS_SR_BYTES(isz);
  788. raw_sr->sr_bytes = cpu_to_le16(srsz);
  789. raw_sr->sr_nongc_ctime
  790. = cpu_to_le64(nilfs_doing_gc() ?
  791. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  792. raw_sr->sr_flags = 0;
  793. nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
  794. NILFS_SR_DAT_OFFSET(isz), 1);
  795. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  796. NILFS_SR_CPFILE_OFFSET(isz), 1);
  797. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  798. NILFS_SR_SUFILE_OFFSET(isz), 1);
  799. memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
  800. }
  801. static void nilfs_redirty_inodes(struct list_head *head)
  802. {
  803. struct nilfs_inode_info *ii;
  804. list_for_each_entry(ii, head, i_dirty) {
  805. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  806. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  807. }
  808. }
  809. static void nilfs_drop_collected_inodes(struct list_head *head)
  810. {
  811. struct nilfs_inode_info *ii;
  812. list_for_each_entry(ii, head, i_dirty) {
  813. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  814. continue;
  815. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  816. set_bit(NILFS_I_UPDATED, &ii->i_state);
  817. }
  818. }
  819. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  820. struct inode *inode,
  821. struct list_head *listp,
  822. int (*collect)(struct nilfs_sc_info *,
  823. struct buffer_head *,
  824. struct inode *))
  825. {
  826. struct buffer_head *bh, *n;
  827. int err = 0;
  828. if (collect) {
  829. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  830. list_del_init(&bh->b_assoc_buffers);
  831. err = collect(sci, bh, inode);
  832. brelse(bh);
  833. if (unlikely(err))
  834. goto dispose_buffers;
  835. }
  836. return 0;
  837. }
  838. dispose_buffers:
  839. while (!list_empty(listp)) {
  840. bh = list_entry(listp->next, struct buffer_head,
  841. b_assoc_buffers);
  842. list_del_init(&bh->b_assoc_buffers);
  843. brelse(bh);
  844. }
  845. return err;
  846. }
  847. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  848. {
  849. /* Remaining number of blocks within segment buffer */
  850. return sci->sc_segbuf_nblocks -
  851. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  852. }
  853. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  854. struct inode *inode,
  855. struct nilfs_sc_operations *sc_ops)
  856. {
  857. LIST_HEAD(data_buffers);
  858. LIST_HEAD(node_buffers);
  859. int err;
  860. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  861. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  862. n = nilfs_lookup_dirty_data_buffers(
  863. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  864. if (n > rest) {
  865. err = nilfs_segctor_apply_buffers(
  866. sci, inode, &data_buffers,
  867. sc_ops->collect_data);
  868. BUG_ON(!err); /* always receive -E2BIG or true error */
  869. goto break_or_fail;
  870. }
  871. }
  872. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  873. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  874. err = nilfs_segctor_apply_buffers(
  875. sci, inode, &data_buffers, sc_ops->collect_data);
  876. if (unlikely(err)) {
  877. /* dispose node list */
  878. nilfs_segctor_apply_buffers(
  879. sci, inode, &node_buffers, NULL);
  880. goto break_or_fail;
  881. }
  882. sci->sc_stage.flags |= NILFS_CF_NODE;
  883. }
  884. /* Collect node */
  885. err = nilfs_segctor_apply_buffers(
  886. sci, inode, &node_buffers, sc_ops->collect_node);
  887. if (unlikely(err))
  888. goto break_or_fail;
  889. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  890. err = nilfs_segctor_apply_buffers(
  891. sci, inode, &node_buffers, sc_ops->collect_bmap);
  892. if (unlikely(err))
  893. goto break_or_fail;
  894. nilfs_segctor_end_finfo(sci, inode);
  895. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  896. break_or_fail:
  897. return err;
  898. }
  899. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  900. struct inode *inode)
  901. {
  902. LIST_HEAD(data_buffers);
  903. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  904. int err;
  905. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  906. sci->sc_dsync_start,
  907. sci->sc_dsync_end);
  908. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  909. nilfs_collect_file_data);
  910. if (!err) {
  911. nilfs_segctor_end_finfo(sci, inode);
  912. BUG_ON(n > rest);
  913. /* always receive -E2BIG or true error if n > rest */
  914. }
  915. return err;
  916. }
  917. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  918. {
  919. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  920. struct list_head *head;
  921. struct nilfs_inode_info *ii;
  922. size_t ndone;
  923. int err = 0;
  924. switch (sci->sc_stage.scnt) {
  925. case NILFS_ST_INIT:
  926. /* Pre-processes */
  927. sci->sc_stage.flags = 0;
  928. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  929. sci->sc_nblk_inc = 0;
  930. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  931. if (mode == SC_LSEG_DSYNC) {
  932. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  933. goto dsync_mode;
  934. }
  935. }
  936. sci->sc_stage.dirty_file_ptr = NULL;
  937. sci->sc_stage.gc_inode_ptr = NULL;
  938. if (mode == SC_FLUSH_DAT) {
  939. sci->sc_stage.scnt = NILFS_ST_DAT;
  940. goto dat_stage;
  941. }
  942. sci->sc_stage.scnt++; /* Fall through */
  943. case NILFS_ST_GC:
  944. if (nilfs_doing_gc()) {
  945. head = &sci->sc_gc_inodes;
  946. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  947. head, i_dirty);
  948. list_for_each_entry_continue(ii, head, i_dirty) {
  949. err = nilfs_segctor_scan_file(
  950. sci, &ii->vfs_inode,
  951. &nilfs_sc_file_ops);
  952. if (unlikely(err)) {
  953. sci->sc_stage.gc_inode_ptr = list_entry(
  954. ii->i_dirty.prev,
  955. struct nilfs_inode_info,
  956. i_dirty);
  957. goto break_or_fail;
  958. }
  959. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  960. }
  961. sci->sc_stage.gc_inode_ptr = NULL;
  962. }
  963. sci->sc_stage.scnt++; /* Fall through */
  964. case NILFS_ST_FILE:
  965. head = &sci->sc_dirty_files;
  966. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  967. i_dirty);
  968. list_for_each_entry_continue(ii, head, i_dirty) {
  969. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  970. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  971. &nilfs_sc_file_ops);
  972. if (unlikely(err)) {
  973. sci->sc_stage.dirty_file_ptr =
  974. list_entry(ii->i_dirty.prev,
  975. struct nilfs_inode_info,
  976. i_dirty);
  977. goto break_or_fail;
  978. }
  979. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  980. /* XXX: required ? */
  981. }
  982. sci->sc_stage.dirty_file_ptr = NULL;
  983. if (mode == SC_FLUSH_FILE) {
  984. sci->sc_stage.scnt = NILFS_ST_DONE;
  985. return 0;
  986. }
  987. sci->sc_stage.scnt++;
  988. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  989. /* Fall through */
  990. case NILFS_ST_IFILE:
  991. err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
  992. &nilfs_sc_file_ops);
  993. if (unlikely(err))
  994. break;
  995. sci->sc_stage.scnt++;
  996. /* Creating a checkpoint */
  997. err = nilfs_segctor_create_checkpoint(sci);
  998. if (unlikely(err))
  999. break;
  1000. /* Fall through */
  1001. case NILFS_ST_CPFILE:
  1002. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1003. &nilfs_sc_file_ops);
  1004. if (unlikely(err))
  1005. break;
  1006. sci->sc_stage.scnt++; /* Fall through */
  1007. case NILFS_ST_SUFILE:
  1008. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1009. sci->sc_nfreesegs, &ndone);
  1010. if (unlikely(err)) {
  1011. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1012. sci->sc_freesegs, ndone,
  1013. NULL);
  1014. break;
  1015. }
  1016. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1017. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1018. &nilfs_sc_file_ops);
  1019. if (unlikely(err))
  1020. break;
  1021. sci->sc_stage.scnt++; /* Fall through */
  1022. case NILFS_ST_DAT:
  1023. dat_stage:
  1024. err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
  1025. &nilfs_sc_dat_ops);
  1026. if (unlikely(err))
  1027. break;
  1028. if (mode == SC_FLUSH_DAT) {
  1029. sci->sc_stage.scnt = NILFS_ST_DONE;
  1030. return 0;
  1031. }
  1032. sci->sc_stage.scnt++; /* Fall through */
  1033. case NILFS_ST_SR:
  1034. if (mode == SC_LSEG_SR) {
  1035. /* Appending a super root */
  1036. err = nilfs_segctor_add_super_root(sci);
  1037. if (unlikely(err))
  1038. break;
  1039. }
  1040. /* End of a logical segment */
  1041. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1042. sci->sc_stage.scnt = NILFS_ST_DONE;
  1043. return 0;
  1044. case NILFS_ST_DSYNC:
  1045. dsync_mode:
  1046. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1047. ii = sci->sc_dsync_inode;
  1048. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1049. break;
  1050. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1051. if (unlikely(err))
  1052. break;
  1053. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1054. sci->sc_stage.scnt = NILFS_ST_DONE;
  1055. return 0;
  1056. case NILFS_ST_DONE:
  1057. return 0;
  1058. default:
  1059. BUG();
  1060. }
  1061. break_or_fail:
  1062. return err;
  1063. }
  1064. /**
  1065. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1066. * @sci: nilfs_sc_info
  1067. * @nilfs: nilfs object
  1068. */
  1069. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1070. struct the_nilfs *nilfs)
  1071. {
  1072. struct nilfs_segment_buffer *segbuf, *prev;
  1073. __u64 nextnum;
  1074. int err, alloc = 0;
  1075. segbuf = nilfs_segbuf_new(sci->sc_super);
  1076. if (unlikely(!segbuf))
  1077. return -ENOMEM;
  1078. if (list_empty(&sci->sc_write_logs)) {
  1079. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1080. nilfs->ns_pseg_offset, nilfs);
  1081. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1082. nilfs_shift_to_next_segment(nilfs);
  1083. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1084. }
  1085. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1086. nextnum = nilfs->ns_nextnum;
  1087. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1088. /* Start from the head of a new full segment */
  1089. alloc++;
  1090. } else {
  1091. /* Continue logs */
  1092. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1093. nilfs_segbuf_map_cont(segbuf, prev);
  1094. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1095. nextnum = prev->sb_nextnum;
  1096. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1097. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1098. segbuf->sb_sum.seg_seq++;
  1099. alloc++;
  1100. }
  1101. }
  1102. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1103. if (err)
  1104. goto failed;
  1105. if (alloc) {
  1106. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1107. if (err)
  1108. goto failed;
  1109. }
  1110. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1111. BUG_ON(!list_empty(&sci->sc_segbufs));
  1112. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1113. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1114. return 0;
  1115. failed:
  1116. nilfs_segbuf_free(segbuf);
  1117. return err;
  1118. }
  1119. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1120. struct the_nilfs *nilfs, int nadd)
  1121. {
  1122. struct nilfs_segment_buffer *segbuf, *prev;
  1123. struct inode *sufile = nilfs->ns_sufile;
  1124. __u64 nextnextnum;
  1125. LIST_HEAD(list);
  1126. int err, ret, i;
  1127. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1128. /*
  1129. * Since the segment specified with nextnum might be allocated during
  1130. * the previous construction, the buffer including its segusage may
  1131. * not be dirty. The following call ensures that the buffer is dirty
  1132. * and will pin the buffer on memory until the sufile is written.
  1133. */
  1134. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1135. if (unlikely(err))
  1136. return err;
  1137. for (i = 0; i < nadd; i++) {
  1138. /* extend segment info */
  1139. err = -ENOMEM;
  1140. segbuf = nilfs_segbuf_new(sci->sc_super);
  1141. if (unlikely(!segbuf))
  1142. goto failed;
  1143. /* map this buffer to region of segment on-disk */
  1144. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1145. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1146. /* allocate the next next full segment */
  1147. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1148. if (unlikely(err))
  1149. goto failed_segbuf;
  1150. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1151. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1152. list_add_tail(&segbuf->sb_list, &list);
  1153. prev = segbuf;
  1154. }
  1155. list_splice_tail(&list, &sci->sc_segbufs);
  1156. return 0;
  1157. failed_segbuf:
  1158. nilfs_segbuf_free(segbuf);
  1159. failed:
  1160. list_for_each_entry(segbuf, &list, sb_list) {
  1161. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1162. WARN_ON(ret); /* never fails */
  1163. }
  1164. nilfs_destroy_logs(&list);
  1165. return err;
  1166. }
  1167. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1168. struct the_nilfs *nilfs)
  1169. {
  1170. struct nilfs_segment_buffer *segbuf, *prev;
  1171. struct inode *sufile = nilfs->ns_sufile;
  1172. int ret;
  1173. segbuf = NILFS_FIRST_SEGBUF(logs);
  1174. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1175. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1176. WARN_ON(ret); /* never fails */
  1177. }
  1178. if (atomic_read(&segbuf->sb_err)) {
  1179. /* Case 1: The first segment failed */
  1180. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1181. /* Case 1a: Partial segment appended into an existing
  1182. segment */
  1183. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1184. segbuf->sb_fseg_end);
  1185. else /* Case 1b: New full segment */
  1186. set_nilfs_discontinued(nilfs);
  1187. }
  1188. prev = segbuf;
  1189. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1190. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1191. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1192. WARN_ON(ret); /* never fails */
  1193. }
  1194. if (atomic_read(&segbuf->sb_err) &&
  1195. segbuf->sb_segnum != nilfs->ns_nextnum)
  1196. /* Case 2: extended segment (!= next) failed */
  1197. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1198. prev = segbuf;
  1199. }
  1200. }
  1201. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1202. struct inode *sufile)
  1203. {
  1204. struct nilfs_segment_buffer *segbuf;
  1205. unsigned long live_blocks;
  1206. int ret;
  1207. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1208. live_blocks = segbuf->sb_sum.nblocks +
  1209. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1210. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1211. live_blocks,
  1212. sci->sc_seg_ctime);
  1213. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1214. }
  1215. }
  1216. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1217. {
  1218. struct nilfs_segment_buffer *segbuf;
  1219. int ret;
  1220. segbuf = NILFS_FIRST_SEGBUF(logs);
  1221. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1222. segbuf->sb_pseg_start -
  1223. segbuf->sb_fseg_start, 0);
  1224. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1225. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1226. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1227. 0, 0);
  1228. WARN_ON(ret); /* always succeed */
  1229. }
  1230. }
  1231. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1232. struct nilfs_segment_buffer *last,
  1233. struct inode *sufile)
  1234. {
  1235. struct nilfs_segment_buffer *segbuf = last;
  1236. int ret;
  1237. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1238. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1239. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1240. WARN_ON(ret);
  1241. }
  1242. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1243. }
  1244. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1245. struct the_nilfs *nilfs, int mode)
  1246. {
  1247. struct nilfs_cstage prev_stage = sci->sc_stage;
  1248. int err, nadd = 1;
  1249. /* Collection retry loop */
  1250. for (;;) {
  1251. sci->sc_nblk_this_inc = 0;
  1252. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1253. err = nilfs_segctor_reset_segment_buffer(sci);
  1254. if (unlikely(err))
  1255. goto failed;
  1256. err = nilfs_segctor_collect_blocks(sci, mode);
  1257. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1258. if (!err)
  1259. break;
  1260. if (unlikely(err != -E2BIG))
  1261. goto failed;
  1262. /* The current segment is filled up */
  1263. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1264. break;
  1265. nilfs_clear_logs(&sci->sc_segbufs);
  1266. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1267. if (unlikely(err))
  1268. return err;
  1269. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1270. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1271. sci->sc_freesegs,
  1272. sci->sc_nfreesegs,
  1273. NULL);
  1274. WARN_ON(err); /* do not happen */
  1275. }
  1276. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1277. sci->sc_stage = prev_stage;
  1278. }
  1279. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1280. return 0;
  1281. failed:
  1282. return err;
  1283. }
  1284. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1285. struct buffer_head *new_bh)
  1286. {
  1287. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1288. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1289. /* The caller must release old_bh */
  1290. }
  1291. static int
  1292. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1293. struct nilfs_segment_buffer *segbuf,
  1294. int mode)
  1295. {
  1296. struct inode *inode = NULL;
  1297. sector_t blocknr;
  1298. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1299. unsigned long nblocks = 0, ndatablk = 0;
  1300. struct nilfs_sc_operations *sc_op = NULL;
  1301. struct nilfs_segsum_pointer ssp;
  1302. struct nilfs_finfo *finfo = NULL;
  1303. union nilfs_binfo binfo;
  1304. struct buffer_head *bh, *bh_org;
  1305. ino_t ino = 0;
  1306. int err = 0;
  1307. if (!nfinfo)
  1308. goto out;
  1309. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1310. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1311. ssp.offset = sizeof(struct nilfs_segment_summary);
  1312. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1313. if (bh == segbuf->sb_super_root)
  1314. break;
  1315. if (!finfo) {
  1316. finfo = nilfs_segctor_map_segsum_entry(
  1317. sci, &ssp, sizeof(*finfo));
  1318. ino = le64_to_cpu(finfo->fi_ino);
  1319. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1320. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1321. if (buffer_nilfs_node(bh))
  1322. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1323. else
  1324. inode = NILFS_AS_I(bh->b_page->mapping);
  1325. if (mode == SC_LSEG_DSYNC)
  1326. sc_op = &nilfs_sc_dsync_ops;
  1327. else if (ino == NILFS_DAT_INO)
  1328. sc_op = &nilfs_sc_dat_ops;
  1329. else /* file blocks */
  1330. sc_op = &nilfs_sc_file_ops;
  1331. }
  1332. bh_org = bh;
  1333. get_bh(bh_org);
  1334. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1335. &binfo);
  1336. if (bh != bh_org)
  1337. nilfs_list_replace_buffer(bh_org, bh);
  1338. brelse(bh_org);
  1339. if (unlikely(err))
  1340. goto failed_bmap;
  1341. if (ndatablk > 0)
  1342. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1343. else
  1344. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1345. blocknr++;
  1346. if (--nblocks == 0) {
  1347. finfo = NULL;
  1348. if (--nfinfo == 0)
  1349. break;
  1350. } else if (ndatablk > 0)
  1351. ndatablk--;
  1352. }
  1353. out:
  1354. return 0;
  1355. failed_bmap:
  1356. return err;
  1357. }
  1358. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1359. {
  1360. struct nilfs_segment_buffer *segbuf;
  1361. int err;
  1362. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1363. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1364. if (unlikely(err))
  1365. return err;
  1366. nilfs_segbuf_fill_in_segsum(segbuf);
  1367. }
  1368. return 0;
  1369. }
  1370. static void nilfs_begin_page_io(struct page *page)
  1371. {
  1372. if (!page || PageWriteback(page))
  1373. /* For split b-tree node pages, this function may be called
  1374. twice. We ignore the 2nd or later calls by this check. */
  1375. return;
  1376. lock_page(page);
  1377. clear_page_dirty_for_io(page);
  1378. set_page_writeback(page);
  1379. unlock_page(page);
  1380. }
  1381. static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
  1382. {
  1383. struct nilfs_segment_buffer *segbuf;
  1384. struct page *bd_page = NULL, *fs_page = NULL;
  1385. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1386. struct buffer_head *bh;
  1387. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1388. b_assoc_buffers) {
  1389. if (bh->b_page != bd_page) {
  1390. if (bd_page) {
  1391. lock_page(bd_page);
  1392. clear_page_dirty_for_io(bd_page);
  1393. set_page_writeback(bd_page);
  1394. unlock_page(bd_page);
  1395. }
  1396. bd_page = bh->b_page;
  1397. }
  1398. }
  1399. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1400. b_assoc_buffers) {
  1401. if (bh == segbuf->sb_super_root) {
  1402. if (bh->b_page != bd_page) {
  1403. lock_page(bd_page);
  1404. clear_page_dirty_for_io(bd_page);
  1405. set_page_writeback(bd_page);
  1406. unlock_page(bd_page);
  1407. bd_page = bh->b_page;
  1408. }
  1409. break;
  1410. }
  1411. if (bh->b_page != fs_page) {
  1412. nilfs_begin_page_io(fs_page);
  1413. fs_page = bh->b_page;
  1414. }
  1415. }
  1416. }
  1417. if (bd_page) {
  1418. lock_page(bd_page);
  1419. clear_page_dirty_for_io(bd_page);
  1420. set_page_writeback(bd_page);
  1421. unlock_page(bd_page);
  1422. }
  1423. nilfs_begin_page_io(fs_page);
  1424. }
  1425. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1426. struct the_nilfs *nilfs)
  1427. {
  1428. int ret;
  1429. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1430. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1431. return ret;
  1432. }
  1433. static void nilfs_end_page_io(struct page *page, int err)
  1434. {
  1435. if (!page)
  1436. return;
  1437. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1438. /*
  1439. * For b-tree node pages, this function may be called twice
  1440. * or more because they might be split in a segment.
  1441. */
  1442. if (PageDirty(page)) {
  1443. /*
  1444. * For pages holding split b-tree node buffers, dirty
  1445. * flag on the buffers may be cleared discretely.
  1446. * In that case, the page is once redirtied for
  1447. * remaining buffers, and it must be cancelled if
  1448. * all the buffers get cleaned later.
  1449. */
  1450. lock_page(page);
  1451. if (nilfs_page_buffers_clean(page))
  1452. __nilfs_clear_page_dirty(page);
  1453. unlock_page(page);
  1454. }
  1455. return;
  1456. }
  1457. if (!err) {
  1458. if (!nilfs_page_buffers_clean(page))
  1459. __set_page_dirty_nobuffers(page);
  1460. ClearPageError(page);
  1461. } else {
  1462. __set_page_dirty_nobuffers(page);
  1463. SetPageError(page);
  1464. }
  1465. end_page_writeback(page);
  1466. }
  1467. static void nilfs_abort_logs(struct list_head *logs, int err)
  1468. {
  1469. struct nilfs_segment_buffer *segbuf;
  1470. struct page *bd_page = NULL, *fs_page = NULL;
  1471. struct buffer_head *bh;
  1472. if (list_empty(logs))
  1473. return;
  1474. list_for_each_entry(segbuf, logs, sb_list) {
  1475. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1476. b_assoc_buffers) {
  1477. if (bh->b_page != bd_page) {
  1478. if (bd_page)
  1479. end_page_writeback(bd_page);
  1480. bd_page = bh->b_page;
  1481. }
  1482. }
  1483. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1484. b_assoc_buffers) {
  1485. if (bh == segbuf->sb_super_root) {
  1486. if (bh->b_page != bd_page) {
  1487. end_page_writeback(bd_page);
  1488. bd_page = bh->b_page;
  1489. }
  1490. break;
  1491. }
  1492. if (bh->b_page != fs_page) {
  1493. nilfs_end_page_io(fs_page, err);
  1494. fs_page = bh->b_page;
  1495. }
  1496. }
  1497. }
  1498. if (bd_page)
  1499. end_page_writeback(bd_page);
  1500. nilfs_end_page_io(fs_page, err);
  1501. }
  1502. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1503. struct the_nilfs *nilfs, int err)
  1504. {
  1505. LIST_HEAD(logs);
  1506. int ret;
  1507. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1508. ret = nilfs_wait_on_logs(&logs);
  1509. nilfs_abort_logs(&logs, ret ? : err);
  1510. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1511. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1512. nilfs_free_incomplete_logs(&logs, nilfs);
  1513. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1514. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1515. sci->sc_freesegs,
  1516. sci->sc_nfreesegs,
  1517. NULL);
  1518. WARN_ON(ret); /* do not happen */
  1519. }
  1520. nilfs_destroy_logs(&logs);
  1521. }
  1522. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1523. struct nilfs_segment_buffer *segbuf)
  1524. {
  1525. nilfs->ns_segnum = segbuf->sb_segnum;
  1526. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1527. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1528. + segbuf->sb_sum.nblocks;
  1529. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1530. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1531. }
  1532. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1533. {
  1534. struct nilfs_segment_buffer *segbuf;
  1535. struct page *bd_page = NULL, *fs_page = NULL;
  1536. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1537. int update_sr = false;
  1538. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1539. struct buffer_head *bh;
  1540. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1541. b_assoc_buffers) {
  1542. set_buffer_uptodate(bh);
  1543. clear_buffer_dirty(bh);
  1544. if (bh->b_page != bd_page) {
  1545. if (bd_page)
  1546. end_page_writeback(bd_page);
  1547. bd_page = bh->b_page;
  1548. }
  1549. }
  1550. /*
  1551. * We assume that the buffers which belong to the same page
  1552. * continue over the buffer list.
  1553. * Under this assumption, the last BHs of pages is
  1554. * identifiable by the discontinuity of bh->b_page
  1555. * (page != fs_page).
  1556. *
  1557. * For B-tree node blocks, however, this assumption is not
  1558. * guaranteed. The cleanup code of B-tree node pages needs
  1559. * special care.
  1560. */
  1561. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1562. b_assoc_buffers) {
  1563. set_buffer_uptodate(bh);
  1564. clear_buffer_dirty(bh);
  1565. clear_buffer_delay(bh);
  1566. clear_buffer_nilfs_volatile(bh);
  1567. clear_buffer_nilfs_redirected(bh);
  1568. if (bh == segbuf->sb_super_root) {
  1569. if (bh->b_page != bd_page) {
  1570. end_page_writeback(bd_page);
  1571. bd_page = bh->b_page;
  1572. }
  1573. update_sr = true;
  1574. break;
  1575. }
  1576. if (bh->b_page != fs_page) {
  1577. nilfs_end_page_io(fs_page, 0);
  1578. fs_page = bh->b_page;
  1579. }
  1580. }
  1581. if (!nilfs_segbuf_simplex(segbuf)) {
  1582. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1583. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1584. sci->sc_lseg_stime = jiffies;
  1585. }
  1586. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1587. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1588. }
  1589. }
  1590. /*
  1591. * Since pages may continue over multiple segment buffers,
  1592. * end of the last page must be checked outside of the loop.
  1593. */
  1594. if (bd_page)
  1595. end_page_writeback(bd_page);
  1596. nilfs_end_page_io(fs_page, 0);
  1597. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1598. if (nilfs_doing_gc())
  1599. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1600. else
  1601. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1602. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1603. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1604. nilfs_set_next_segment(nilfs, segbuf);
  1605. if (update_sr) {
  1606. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1607. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1608. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1609. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1610. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1611. nilfs_segctor_clear_metadata_dirty(sci);
  1612. } else
  1613. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1614. }
  1615. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1616. {
  1617. int ret;
  1618. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1619. if (!ret) {
  1620. nilfs_segctor_complete_write(sci);
  1621. nilfs_destroy_logs(&sci->sc_write_logs);
  1622. }
  1623. return ret;
  1624. }
  1625. static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
  1626. struct the_nilfs *nilfs)
  1627. {
  1628. struct nilfs_inode_info *ii, *n;
  1629. struct inode *ifile = sci->sc_root->ifile;
  1630. spin_lock(&nilfs->ns_inode_lock);
  1631. retry:
  1632. list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
  1633. if (!ii->i_bh) {
  1634. struct buffer_head *ibh;
  1635. int err;
  1636. spin_unlock(&nilfs->ns_inode_lock);
  1637. err = nilfs_ifile_get_inode_block(
  1638. ifile, ii->vfs_inode.i_ino, &ibh);
  1639. if (unlikely(err)) {
  1640. nilfs_warning(sci->sc_super, __func__,
  1641. "failed to get inode block.\n");
  1642. return err;
  1643. }
  1644. nilfs_mdt_mark_buffer_dirty(ibh);
  1645. nilfs_mdt_mark_dirty(ifile);
  1646. spin_lock(&nilfs->ns_inode_lock);
  1647. if (likely(!ii->i_bh))
  1648. ii->i_bh = ibh;
  1649. else
  1650. brelse(ibh);
  1651. goto retry;
  1652. }
  1653. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1654. set_bit(NILFS_I_BUSY, &ii->i_state);
  1655. list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1656. }
  1657. spin_unlock(&nilfs->ns_inode_lock);
  1658. return 0;
  1659. }
  1660. static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
  1661. struct the_nilfs *nilfs)
  1662. {
  1663. struct nilfs_transaction_info *ti = current->journal_info;
  1664. struct nilfs_inode_info *ii, *n;
  1665. spin_lock(&nilfs->ns_inode_lock);
  1666. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1667. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1668. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1669. continue;
  1670. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1671. brelse(ii->i_bh);
  1672. ii->i_bh = NULL;
  1673. list_move_tail(&ii->i_dirty, &ti->ti_garbage);
  1674. }
  1675. spin_unlock(&nilfs->ns_inode_lock);
  1676. }
  1677. /*
  1678. * Main procedure of segment constructor
  1679. */
  1680. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1681. {
  1682. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1683. int err;
  1684. sci->sc_stage.scnt = NILFS_ST_INIT;
  1685. sci->sc_cno = nilfs->ns_cno;
  1686. err = nilfs_segctor_collect_dirty_files(sci, nilfs);
  1687. if (unlikely(err))
  1688. goto out;
  1689. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  1690. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1691. if (nilfs_segctor_clean(sci))
  1692. goto out;
  1693. do {
  1694. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1695. err = nilfs_segctor_begin_construction(sci, nilfs);
  1696. if (unlikely(err))
  1697. goto out;
  1698. /* Update time stamp */
  1699. sci->sc_seg_ctime = get_seconds();
  1700. err = nilfs_segctor_collect(sci, nilfs, mode);
  1701. if (unlikely(err))
  1702. goto failed;
  1703. /* Avoid empty segment */
  1704. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1705. nilfs_segbuf_empty(sci->sc_curseg)) {
  1706. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1707. goto out;
  1708. }
  1709. err = nilfs_segctor_assign(sci, mode);
  1710. if (unlikely(err))
  1711. goto failed;
  1712. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1713. nilfs_segctor_fill_in_file_bmap(sci);
  1714. if (mode == SC_LSEG_SR &&
  1715. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1716. err = nilfs_segctor_fill_in_checkpoint(sci);
  1717. if (unlikely(err))
  1718. goto failed_to_write;
  1719. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1720. }
  1721. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1722. /* Write partial segments */
  1723. nilfs_segctor_prepare_write(sci);
  1724. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1725. nilfs->ns_crc_seed);
  1726. err = nilfs_segctor_write(sci, nilfs);
  1727. if (unlikely(err))
  1728. goto failed_to_write;
  1729. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1730. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1731. /*
  1732. * At this point, we avoid double buffering
  1733. * for blocksize < pagesize because page dirty
  1734. * flag is turned off during write and dirty
  1735. * buffers are not properly collected for
  1736. * pages crossing over segments.
  1737. */
  1738. err = nilfs_segctor_wait(sci);
  1739. if (err)
  1740. goto failed_to_write;
  1741. }
  1742. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1743. out:
  1744. nilfs_segctor_drop_written_files(sci, nilfs);
  1745. return err;
  1746. failed_to_write:
  1747. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1748. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1749. failed:
  1750. if (nilfs_doing_gc())
  1751. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1752. nilfs_segctor_abort_construction(sci, nilfs, err);
  1753. goto out;
  1754. }
  1755. /**
  1756. * nilfs_segctor_start_timer - set timer of background write
  1757. * @sci: nilfs_sc_info
  1758. *
  1759. * If the timer has already been set, it ignores the new request.
  1760. * This function MUST be called within a section locking the segment
  1761. * semaphore.
  1762. */
  1763. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1764. {
  1765. spin_lock(&sci->sc_state_lock);
  1766. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1767. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1768. add_timer(&sci->sc_timer);
  1769. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1770. }
  1771. spin_unlock(&sci->sc_state_lock);
  1772. }
  1773. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1774. {
  1775. spin_lock(&sci->sc_state_lock);
  1776. if (!(sci->sc_flush_request & (1 << bn))) {
  1777. unsigned long prev_req = sci->sc_flush_request;
  1778. sci->sc_flush_request |= (1 << bn);
  1779. if (!prev_req)
  1780. wake_up(&sci->sc_wait_daemon);
  1781. }
  1782. spin_unlock(&sci->sc_state_lock);
  1783. }
  1784. /**
  1785. * nilfs_flush_segment - trigger a segment construction for resource control
  1786. * @sb: super block
  1787. * @ino: inode number of the file to be flushed out.
  1788. */
  1789. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1790. {
  1791. struct the_nilfs *nilfs = sb->s_fs_info;
  1792. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1793. if (!sci || nilfs_doing_construction())
  1794. return;
  1795. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1796. /* assign bit 0 to data files */
  1797. }
  1798. struct nilfs_segctor_wait_request {
  1799. wait_queue_t wq;
  1800. __u32 seq;
  1801. int err;
  1802. atomic_t done;
  1803. };
  1804. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1805. {
  1806. struct nilfs_segctor_wait_request wait_req;
  1807. int err = 0;
  1808. spin_lock(&sci->sc_state_lock);
  1809. init_wait(&wait_req.wq);
  1810. wait_req.err = 0;
  1811. atomic_set(&wait_req.done, 0);
  1812. wait_req.seq = ++sci->sc_seq_request;
  1813. spin_unlock(&sci->sc_state_lock);
  1814. init_waitqueue_entry(&wait_req.wq, current);
  1815. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1816. set_current_state(TASK_INTERRUPTIBLE);
  1817. wake_up(&sci->sc_wait_daemon);
  1818. for (;;) {
  1819. if (atomic_read(&wait_req.done)) {
  1820. err = wait_req.err;
  1821. break;
  1822. }
  1823. if (!signal_pending(current)) {
  1824. schedule();
  1825. continue;
  1826. }
  1827. err = -ERESTARTSYS;
  1828. break;
  1829. }
  1830. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1831. return err;
  1832. }
  1833. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1834. {
  1835. struct nilfs_segctor_wait_request *wrq, *n;
  1836. unsigned long flags;
  1837. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1838. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1839. wq.task_list) {
  1840. if (!atomic_read(&wrq->done) &&
  1841. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1842. wrq->err = err;
  1843. atomic_set(&wrq->done, 1);
  1844. }
  1845. if (atomic_read(&wrq->done)) {
  1846. wrq->wq.func(&wrq->wq,
  1847. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1848. 0, NULL);
  1849. }
  1850. }
  1851. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1852. }
  1853. /**
  1854. * nilfs_construct_segment - construct a logical segment
  1855. * @sb: super block
  1856. *
  1857. * Return Value: On success, 0 is retured. On errors, one of the following
  1858. * negative error code is returned.
  1859. *
  1860. * %-EROFS - Read only filesystem.
  1861. *
  1862. * %-EIO - I/O error
  1863. *
  1864. * %-ENOSPC - No space left on device (only in a panic state).
  1865. *
  1866. * %-ERESTARTSYS - Interrupted.
  1867. *
  1868. * %-ENOMEM - Insufficient memory available.
  1869. */
  1870. int nilfs_construct_segment(struct super_block *sb)
  1871. {
  1872. struct the_nilfs *nilfs = sb->s_fs_info;
  1873. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1874. struct nilfs_transaction_info *ti;
  1875. int err;
  1876. if (!sci)
  1877. return -EROFS;
  1878. /* A call inside transactions causes a deadlock. */
  1879. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  1880. err = nilfs_segctor_sync(sci);
  1881. return err;
  1882. }
  1883. /**
  1884. * nilfs_construct_dsync_segment - construct a data-only logical segment
  1885. * @sb: super block
  1886. * @inode: inode whose data blocks should be written out
  1887. * @start: start byte offset
  1888. * @end: end byte offset (inclusive)
  1889. *
  1890. * Return Value: On success, 0 is retured. On errors, one of the following
  1891. * negative error code is returned.
  1892. *
  1893. * %-EROFS - Read only filesystem.
  1894. *
  1895. * %-EIO - I/O error
  1896. *
  1897. * %-ENOSPC - No space left on device (only in a panic state).
  1898. *
  1899. * %-ERESTARTSYS - Interrupted.
  1900. *
  1901. * %-ENOMEM - Insufficient memory available.
  1902. */
  1903. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  1904. loff_t start, loff_t end)
  1905. {
  1906. struct the_nilfs *nilfs = sb->s_fs_info;
  1907. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1908. struct nilfs_inode_info *ii;
  1909. struct nilfs_transaction_info ti;
  1910. int err = 0;
  1911. if (!sci)
  1912. return -EROFS;
  1913. nilfs_transaction_lock(sb, &ti, 0);
  1914. ii = NILFS_I(inode);
  1915. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  1916. nilfs_test_opt(nilfs, STRICT_ORDER) ||
  1917. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  1918. nilfs_discontinued(nilfs)) {
  1919. nilfs_transaction_unlock(sb);
  1920. err = nilfs_segctor_sync(sci);
  1921. return err;
  1922. }
  1923. spin_lock(&nilfs->ns_inode_lock);
  1924. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  1925. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  1926. spin_unlock(&nilfs->ns_inode_lock);
  1927. nilfs_transaction_unlock(sb);
  1928. return 0;
  1929. }
  1930. spin_unlock(&nilfs->ns_inode_lock);
  1931. sci->sc_dsync_inode = ii;
  1932. sci->sc_dsync_start = start;
  1933. sci->sc_dsync_end = end;
  1934. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  1935. nilfs_transaction_unlock(sb);
  1936. return err;
  1937. }
  1938. #define FLUSH_FILE_BIT (0x1) /* data file only */
  1939. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  1940. /**
  1941. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  1942. * @sci: segment constructor object
  1943. */
  1944. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  1945. {
  1946. spin_lock(&sci->sc_state_lock);
  1947. sci->sc_seq_accepted = sci->sc_seq_request;
  1948. spin_unlock(&sci->sc_state_lock);
  1949. del_timer_sync(&sci->sc_timer);
  1950. }
  1951. /**
  1952. * nilfs_segctor_notify - notify the result of request to caller threads
  1953. * @sci: segment constructor object
  1954. * @mode: mode of log forming
  1955. * @err: error code to be notified
  1956. */
  1957. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  1958. {
  1959. /* Clear requests (even when the construction failed) */
  1960. spin_lock(&sci->sc_state_lock);
  1961. if (mode == SC_LSEG_SR) {
  1962. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  1963. sci->sc_seq_done = sci->sc_seq_accepted;
  1964. nilfs_segctor_wakeup(sci, err);
  1965. sci->sc_flush_request = 0;
  1966. } else {
  1967. if (mode == SC_FLUSH_FILE)
  1968. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  1969. else if (mode == SC_FLUSH_DAT)
  1970. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  1971. /* re-enable timer if checkpoint creation was not done */
  1972. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  1973. time_before(jiffies, sci->sc_timer.expires))
  1974. add_timer(&sci->sc_timer);
  1975. }
  1976. spin_unlock(&sci->sc_state_lock);
  1977. }
  1978. /**
  1979. * nilfs_segctor_construct - form logs and write them to disk
  1980. * @sci: segment constructor object
  1981. * @mode: mode of log forming
  1982. */
  1983. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  1984. {
  1985. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1986. struct nilfs_super_block **sbp;
  1987. int err = 0;
  1988. nilfs_segctor_accept(sci);
  1989. if (nilfs_discontinued(nilfs))
  1990. mode = SC_LSEG_SR;
  1991. if (!nilfs_segctor_confirm(sci))
  1992. err = nilfs_segctor_do_construct(sci, mode);
  1993. if (likely(!err)) {
  1994. if (mode != SC_FLUSH_DAT)
  1995. atomic_set(&nilfs->ns_ndirtyblks, 0);
  1996. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  1997. nilfs_discontinued(nilfs)) {
  1998. down_write(&nilfs->ns_sem);
  1999. err = -EIO;
  2000. sbp = nilfs_prepare_super(sci->sc_super,
  2001. nilfs_sb_will_flip(nilfs));
  2002. if (likely(sbp)) {
  2003. nilfs_set_log_cursor(sbp[0], nilfs);
  2004. err = nilfs_commit_super(sci->sc_super,
  2005. NILFS_SB_COMMIT);
  2006. }
  2007. up_write(&nilfs->ns_sem);
  2008. }
  2009. }
  2010. nilfs_segctor_notify(sci, mode, err);
  2011. return err;
  2012. }
  2013. static void nilfs_construction_timeout(unsigned long data)
  2014. {
  2015. struct task_struct *p = (struct task_struct *)data;
  2016. wake_up_process(p);
  2017. }
  2018. static void
  2019. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2020. {
  2021. struct nilfs_inode_info *ii, *n;
  2022. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2023. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2024. continue;
  2025. list_del_init(&ii->i_dirty);
  2026. iput(&ii->vfs_inode);
  2027. }
  2028. }
  2029. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2030. void **kbufs)
  2031. {
  2032. struct the_nilfs *nilfs = sb->s_fs_info;
  2033. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2034. struct nilfs_transaction_info ti;
  2035. int err;
  2036. if (unlikely(!sci))
  2037. return -EROFS;
  2038. nilfs_transaction_lock(sb, &ti, 1);
  2039. err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
  2040. if (unlikely(err))
  2041. goto out_unlock;
  2042. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2043. if (unlikely(err)) {
  2044. nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
  2045. goto out_unlock;
  2046. }
  2047. sci->sc_freesegs = kbufs[4];
  2048. sci->sc_nfreesegs = argv[4].v_nmembs;
  2049. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2050. for (;;) {
  2051. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2052. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2053. if (likely(!err))
  2054. break;
  2055. nilfs_warning(sb, __func__,
  2056. "segment construction failed. (err=%d)", err);
  2057. set_current_state(TASK_INTERRUPTIBLE);
  2058. schedule_timeout(sci->sc_interval);
  2059. }
  2060. if (nilfs_test_opt(nilfs, DISCARD)) {
  2061. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2062. sci->sc_nfreesegs);
  2063. if (ret) {
  2064. printk(KERN_WARNING
  2065. "NILFS warning: error %d on discard request, "
  2066. "turning discards off for the device\n", ret);
  2067. nilfs_clear_opt(nilfs, DISCARD);
  2068. }
  2069. }
  2070. out_unlock:
  2071. sci->sc_freesegs = NULL;
  2072. sci->sc_nfreesegs = 0;
  2073. nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
  2074. nilfs_transaction_unlock(sb);
  2075. return err;
  2076. }
  2077. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2078. {
  2079. struct nilfs_transaction_info ti;
  2080. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2081. nilfs_segctor_construct(sci, mode);
  2082. /*
  2083. * Unclosed segment should be retried. We do this using sc_timer.
  2084. * Timeout of sc_timer will invoke complete construction which leads
  2085. * to close the current logical segment.
  2086. */
  2087. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2088. nilfs_segctor_start_timer(sci);
  2089. nilfs_transaction_unlock(sci->sc_super);
  2090. }
  2091. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2092. {
  2093. int mode = 0;
  2094. int err;
  2095. spin_lock(&sci->sc_state_lock);
  2096. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2097. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2098. spin_unlock(&sci->sc_state_lock);
  2099. if (mode) {
  2100. err = nilfs_segctor_do_construct(sci, mode);
  2101. spin_lock(&sci->sc_state_lock);
  2102. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2103. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2104. spin_unlock(&sci->sc_state_lock);
  2105. }
  2106. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2107. }
  2108. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2109. {
  2110. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2111. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2112. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2113. return SC_FLUSH_FILE;
  2114. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2115. return SC_FLUSH_DAT;
  2116. }
  2117. return SC_LSEG_SR;
  2118. }
  2119. /**
  2120. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2121. * @arg: pointer to a struct nilfs_sc_info.
  2122. *
  2123. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2124. * to execute segment constructions.
  2125. */
  2126. static int nilfs_segctor_thread(void *arg)
  2127. {
  2128. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2129. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2130. int timeout = 0;
  2131. sci->sc_timer.data = (unsigned long)current;
  2132. sci->sc_timer.function = nilfs_construction_timeout;
  2133. /* start sync. */
  2134. sci->sc_task = current;
  2135. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2136. printk(KERN_INFO
  2137. "segctord starting. Construction interval = %lu seconds, "
  2138. "CP frequency < %lu seconds\n",
  2139. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2140. spin_lock(&sci->sc_state_lock);
  2141. loop:
  2142. for (;;) {
  2143. int mode;
  2144. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2145. goto end_thread;
  2146. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2147. mode = SC_LSEG_SR;
  2148. else if (!sci->sc_flush_request)
  2149. break;
  2150. else
  2151. mode = nilfs_segctor_flush_mode(sci);
  2152. spin_unlock(&sci->sc_state_lock);
  2153. nilfs_segctor_thread_construct(sci, mode);
  2154. spin_lock(&sci->sc_state_lock);
  2155. timeout = 0;
  2156. }
  2157. if (freezing(current)) {
  2158. spin_unlock(&sci->sc_state_lock);
  2159. refrigerator();
  2160. spin_lock(&sci->sc_state_lock);
  2161. } else {
  2162. DEFINE_WAIT(wait);
  2163. int should_sleep = 1;
  2164. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2165. TASK_INTERRUPTIBLE);
  2166. if (sci->sc_seq_request != sci->sc_seq_done)
  2167. should_sleep = 0;
  2168. else if (sci->sc_flush_request)
  2169. should_sleep = 0;
  2170. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2171. should_sleep = time_before(jiffies,
  2172. sci->sc_timer.expires);
  2173. if (should_sleep) {
  2174. spin_unlock(&sci->sc_state_lock);
  2175. schedule();
  2176. spin_lock(&sci->sc_state_lock);
  2177. }
  2178. finish_wait(&sci->sc_wait_daemon, &wait);
  2179. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2180. time_after_eq(jiffies, sci->sc_timer.expires));
  2181. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2182. set_nilfs_discontinued(nilfs);
  2183. }
  2184. goto loop;
  2185. end_thread:
  2186. spin_unlock(&sci->sc_state_lock);
  2187. /* end sync. */
  2188. sci->sc_task = NULL;
  2189. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2190. return 0;
  2191. }
  2192. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2193. {
  2194. struct task_struct *t;
  2195. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2196. if (IS_ERR(t)) {
  2197. int err = PTR_ERR(t);
  2198. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2199. err);
  2200. return err;
  2201. }
  2202. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2203. return 0;
  2204. }
  2205. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2206. __acquires(&sci->sc_state_lock)
  2207. __releases(&sci->sc_state_lock)
  2208. {
  2209. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2210. while (sci->sc_task) {
  2211. wake_up(&sci->sc_wait_daemon);
  2212. spin_unlock(&sci->sc_state_lock);
  2213. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2214. spin_lock(&sci->sc_state_lock);
  2215. }
  2216. }
  2217. /*
  2218. * Setup & clean-up functions
  2219. */
  2220. static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
  2221. struct nilfs_root *root)
  2222. {
  2223. struct the_nilfs *nilfs = sb->s_fs_info;
  2224. struct nilfs_sc_info *sci;
  2225. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2226. if (!sci)
  2227. return NULL;
  2228. sci->sc_super = sb;
  2229. nilfs_get_root(root);
  2230. sci->sc_root = root;
  2231. init_waitqueue_head(&sci->sc_wait_request);
  2232. init_waitqueue_head(&sci->sc_wait_daemon);
  2233. init_waitqueue_head(&sci->sc_wait_task);
  2234. spin_lock_init(&sci->sc_state_lock);
  2235. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2236. INIT_LIST_HEAD(&sci->sc_segbufs);
  2237. INIT_LIST_HEAD(&sci->sc_write_logs);
  2238. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2239. init_timer(&sci->sc_timer);
  2240. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2241. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2242. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2243. if (nilfs->ns_interval)
  2244. sci->sc_interval = nilfs->ns_interval;
  2245. if (nilfs->ns_watermark)
  2246. sci->sc_watermark = nilfs->ns_watermark;
  2247. return sci;
  2248. }
  2249. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2250. {
  2251. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2252. /* The segctord thread was stopped and its timer was removed.
  2253. But some tasks remain. */
  2254. do {
  2255. struct nilfs_transaction_info ti;
  2256. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2257. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2258. nilfs_transaction_unlock(sci->sc_super);
  2259. } while (ret && retrycount-- > 0);
  2260. }
  2261. /**
  2262. * nilfs_segctor_destroy - destroy the segment constructor.
  2263. * @sci: nilfs_sc_info
  2264. *
  2265. * nilfs_segctor_destroy() kills the segctord thread and frees
  2266. * the nilfs_sc_info struct.
  2267. * Caller must hold the segment semaphore.
  2268. */
  2269. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2270. {
  2271. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2272. int flag;
  2273. up_write(&nilfs->ns_segctor_sem);
  2274. spin_lock(&sci->sc_state_lock);
  2275. nilfs_segctor_kill_thread(sci);
  2276. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2277. || sci->sc_seq_request != sci->sc_seq_done);
  2278. spin_unlock(&sci->sc_state_lock);
  2279. if (flag || !nilfs_segctor_confirm(sci))
  2280. nilfs_segctor_write_out(sci);
  2281. if (!list_empty(&sci->sc_dirty_files)) {
  2282. nilfs_warning(sci->sc_super, __func__,
  2283. "dirty file(s) after the final construction\n");
  2284. nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
  2285. }
  2286. WARN_ON(!list_empty(&sci->sc_segbufs));
  2287. WARN_ON(!list_empty(&sci->sc_write_logs));
  2288. nilfs_put_root(sci->sc_root);
  2289. down_write(&nilfs->ns_segctor_sem);
  2290. del_timer_sync(&sci->sc_timer);
  2291. kfree(sci);
  2292. }
  2293. /**
  2294. * nilfs_attach_log_writer - attach log writer
  2295. * @sb: super block instance
  2296. * @root: root object of the current filesystem tree
  2297. *
  2298. * This allocates a log writer object, initializes it, and starts the
  2299. * log writer.
  2300. *
  2301. * Return Value: On success, 0 is returned. On error, one of the following
  2302. * negative error code is returned.
  2303. *
  2304. * %-ENOMEM - Insufficient memory available.
  2305. */
  2306. int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
  2307. {
  2308. struct the_nilfs *nilfs = sb->s_fs_info;
  2309. int err;
  2310. if (nilfs->ns_writer) {
  2311. /*
  2312. * This happens if the filesystem was remounted
  2313. * read/write after nilfs_error degenerated it into a
  2314. * read-only mount.
  2315. */
  2316. nilfs_detach_log_writer(sb);
  2317. }
  2318. nilfs->ns_writer = nilfs_segctor_new(sb, root);
  2319. if (!nilfs->ns_writer)
  2320. return -ENOMEM;
  2321. err = nilfs_segctor_start_thread(nilfs->ns_writer);
  2322. if (err) {
  2323. kfree(nilfs->ns_writer);
  2324. nilfs->ns_writer = NULL;
  2325. }
  2326. return err;
  2327. }
  2328. /**
  2329. * nilfs_detach_log_writer - destroy log writer
  2330. * @sb: super block instance
  2331. *
  2332. * This kills log writer daemon, frees the log writer object, and
  2333. * destroys list of dirty files.
  2334. */
  2335. void nilfs_detach_log_writer(struct super_block *sb)
  2336. {
  2337. struct the_nilfs *nilfs = sb->s_fs_info;
  2338. LIST_HEAD(garbage_list);
  2339. down_write(&nilfs->ns_segctor_sem);
  2340. if (nilfs->ns_writer) {
  2341. nilfs_segctor_destroy(nilfs->ns_writer);
  2342. nilfs->ns_writer = NULL;
  2343. }
  2344. /* Force to free the list of dirty files */
  2345. spin_lock(&nilfs->ns_inode_lock);
  2346. if (!list_empty(&nilfs->ns_dirty_files)) {
  2347. list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
  2348. nilfs_warning(sb, __func__,
  2349. "Hit dirty file after stopped log writer\n");
  2350. }
  2351. spin_unlock(&nilfs->ns_inode_lock);
  2352. up_write(&nilfs->ns_segctor_sem);
  2353. nilfs_dispose_list(nilfs, &garbage_list, 1);
  2354. }