i915_gem.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/i915_drm.h>
  29. #include "i915_drv.h"
  30. #include "i915_trace.h"
  31. #include "intel_drv.h"
  32. #include <linux/shmem_fs.h>
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-buf.h>
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  40. unsigned alignment,
  41. bool map_and_fenceable,
  42. bool nonblocking);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  55. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  56. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  57. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  58. {
  59. if (obj->tiling_mode)
  60. i915_gem_release_mmap(obj);
  61. /* As we do not have an associated fence register, we will force
  62. * a tiling change if we ever need to acquire one.
  63. */
  64. obj->fence_dirty = false;
  65. obj->fence_reg = I915_FENCE_REG_NONE;
  66. }
  67. /* some bookkeeping */
  68. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  69. size_t size)
  70. {
  71. dev_priv->mm.object_count++;
  72. dev_priv->mm.object_memory += size;
  73. }
  74. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75. size_t size)
  76. {
  77. dev_priv->mm.object_count--;
  78. dev_priv->mm.object_memory -= size;
  79. }
  80. static int
  81. i915_gem_wait_for_error(struct drm_device *dev)
  82. {
  83. struct drm_i915_private *dev_priv = dev->dev_private;
  84. struct completion *x = &dev_priv->error_completion;
  85. unsigned long flags;
  86. int ret;
  87. if (!atomic_read(&dev_priv->mm.wedged))
  88. return 0;
  89. /*
  90. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  91. * userspace. If it takes that long something really bad is going on and
  92. * we should simply try to bail out and fail as gracefully as possible.
  93. */
  94. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  95. if (ret == 0) {
  96. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  97. return -EIO;
  98. } else if (ret < 0) {
  99. return ret;
  100. }
  101. if (atomic_read(&dev_priv->mm.wedged)) {
  102. /* GPU is hung, bump the completion count to account for
  103. * the token we just consumed so that we never hit zero and
  104. * end up waiting upon a subsequent completion event that
  105. * will never happen.
  106. */
  107. spin_lock_irqsave(&x->wait.lock, flags);
  108. x->done++;
  109. spin_unlock_irqrestore(&x->wait.lock, flags);
  110. }
  111. return 0;
  112. }
  113. int i915_mutex_lock_interruptible(struct drm_device *dev)
  114. {
  115. int ret;
  116. ret = i915_gem_wait_for_error(dev);
  117. if (ret)
  118. return ret;
  119. ret = mutex_lock_interruptible(&dev->struct_mutex);
  120. if (ret)
  121. return ret;
  122. WARN_ON(i915_verify_lists(dev));
  123. return 0;
  124. }
  125. static inline bool
  126. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  127. {
  128. return obj->gtt_space && !obj->active;
  129. }
  130. int
  131. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  132. struct drm_file *file)
  133. {
  134. struct drm_i915_gem_init *args = data;
  135. if (drm_core_check_feature(dev, DRIVER_MODESET))
  136. return -ENODEV;
  137. if (args->gtt_start >= args->gtt_end ||
  138. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  139. return -EINVAL;
  140. /* GEM with user mode setting was never supported on ilk and later. */
  141. if (INTEL_INFO(dev)->gen >= 5)
  142. return -ENODEV;
  143. mutex_lock(&dev->struct_mutex);
  144. i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
  145. args->gtt_end);
  146. mutex_unlock(&dev->struct_mutex);
  147. return 0;
  148. }
  149. int
  150. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  151. struct drm_file *file)
  152. {
  153. struct drm_i915_private *dev_priv = dev->dev_private;
  154. struct drm_i915_gem_get_aperture *args = data;
  155. struct drm_i915_gem_object *obj;
  156. size_t pinned;
  157. pinned = 0;
  158. mutex_lock(&dev->struct_mutex);
  159. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  160. if (obj->pin_count)
  161. pinned += obj->gtt_space->size;
  162. mutex_unlock(&dev->struct_mutex);
  163. args->aper_size = dev_priv->mm.gtt_total;
  164. args->aper_available_size = args->aper_size - pinned;
  165. return 0;
  166. }
  167. void *i915_gem_object_alloc(struct drm_device *dev)
  168. {
  169. struct drm_i915_private *dev_priv = dev->dev_private;
  170. return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
  171. }
  172. void i915_gem_object_free(struct drm_i915_gem_object *obj)
  173. {
  174. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  175. kmem_cache_free(dev_priv->slab, obj);
  176. }
  177. static int
  178. i915_gem_create(struct drm_file *file,
  179. struct drm_device *dev,
  180. uint64_t size,
  181. uint32_t *handle_p)
  182. {
  183. struct drm_i915_gem_object *obj;
  184. int ret;
  185. u32 handle;
  186. size = roundup(size, PAGE_SIZE);
  187. if (size == 0)
  188. return -EINVAL;
  189. /* Allocate the new object */
  190. obj = i915_gem_alloc_object(dev, size);
  191. if (obj == NULL)
  192. return -ENOMEM;
  193. ret = drm_gem_handle_create(file, &obj->base, &handle);
  194. if (ret) {
  195. drm_gem_object_release(&obj->base);
  196. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  197. i915_gem_object_free(obj);
  198. return ret;
  199. }
  200. /* drop reference from allocate - handle holds it now */
  201. drm_gem_object_unreference(&obj->base);
  202. trace_i915_gem_object_create(obj);
  203. *handle_p = handle;
  204. return 0;
  205. }
  206. int
  207. i915_gem_dumb_create(struct drm_file *file,
  208. struct drm_device *dev,
  209. struct drm_mode_create_dumb *args)
  210. {
  211. /* have to work out size/pitch and return them */
  212. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  213. args->size = args->pitch * args->height;
  214. return i915_gem_create(file, dev,
  215. args->size, &args->handle);
  216. }
  217. int i915_gem_dumb_destroy(struct drm_file *file,
  218. struct drm_device *dev,
  219. uint32_t handle)
  220. {
  221. return drm_gem_handle_delete(file, handle);
  222. }
  223. /**
  224. * Creates a new mm object and returns a handle to it.
  225. */
  226. int
  227. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  228. struct drm_file *file)
  229. {
  230. struct drm_i915_gem_create *args = data;
  231. return i915_gem_create(file, dev,
  232. args->size, &args->handle);
  233. }
  234. static inline int
  235. __copy_to_user_swizzled(char __user *cpu_vaddr,
  236. const char *gpu_vaddr, int gpu_offset,
  237. int length)
  238. {
  239. int ret, cpu_offset = 0;
  240. while (length > 0) {
  241. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  242. int this_length = min(cacheline_end - gpu_offset, length);
  243. int swizzled_gpu_offset = gpu_offset ^ 64;
  244. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  245. gpu_vaddr + swizzled_gpu_offset,
  246. this_length);
  247. if (ret)
  248. return ret + length;
  249. cpu_offset += this_length;
  250. gpu_offset += this_length;
  251. length -= this_length;
  252. }
  253. return 0;
  254. }
  255. static inline int
  256. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  257. const char __user *cpu_vaddr,
  258. int length)
  259. {
  260. int ret, cpu_offset = 0;
  261. while (length > 0) {
  262. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  263. int this_length = min(cacheline_end - gpu_offset, length);
  264. int swizzled_gpu_offset = gpu_offset ^ 64;
  265. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  266. cpu_vaddr + cpu_offset,
  267. this_length);
  268. if (ret)
  269. return ret + length;
  270. cpu_offset += this_length;
  271. gpu_offset += this_length;
  272. length -= this_length;
  273. }
  274. return 0;
  275. }
  276. /* Per-page copy function for the shmem pread fastpath.
  277. * Flushes invalid cachelines before reading the target if
  278. * needs_clflush is set. */
  279. static int
  280. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  281. char __user *user_data,
  282. bool page_do_bit17_swizzling, bool needs_clflush)
  283. {
  284. char *vaddr;
  285. int ret;
  286. if (unlikely(page_do_bit17_swizzling))
  287. return -EINVAL;
  288. vaddr = kmap_atomic(page);
  289. if (needs_clflush)
  290. drm_clflush_virt_range(vaddr + shmem_page_offset,
  291. page_length);
  292. ret = __copy_to_user_inatomic(user_data,
  293. vaddr + shmem_page_offset,
  294. page_length);
  295. kunmap_atomic(vaddr);
  296. return ret ? -EFAULT : 0;
  297. }
  298. static void
  299. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  300. bool swizzled)
  301. {
  302. if (unlikely(swizzled)) {
  303. unsigned long start = (unsigned long) addr;
  304. unsigned long end = (unsigned long) addr + length;
  305. /* For swizzling simply ensure that we always flush both
  306. * channels. Lame, but simple and it works. Swizzled
  307. * pwrite/pread is far from a hotpath - current userspace
  308. * doesn't use it at all. */
  309. start = round_down(start, 128);
  310. end = round_up(end, 128);
  311. drm_clflush_virt_range((void *)start, end - start);
  312. } else {
  313. drm_clflush_virt_range(addr, length);
  314. }
  315. }
  316. /* Only difference to the fast-path function is that this can handle bit17
  317. * and uses non-atomic copy and kmap functions. */
  318. static int
  319. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  320. char __user *user_data,
  321. bool page_do_bit17_swizzling, bool needs_clflush)
  322. {
  323. char *vaddr;
  324. int ret;
  325. vaddr = kmap(page);
  326. if (needs_clflush)
  327. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  328. page_length,
  329. page_do_bit17_swizzling);
  330. if (page_do_bit17_swizzling)
  331. ret = __copy_to_user_swizzled(user_data,
  332. vaddr, shmem_page_offset,
  333. page_length);
  334. else
  335. ret = __copy_to_user(user_data,
  336. vaddr + shmem_page_offset,
  337. page_length);
  338. kunmap(page);
  339. return ret ? - EFAULT : 0;
  340. }
  341. static int
  342. i915_gem_shmem_pread(struct drm_device *dev,
  343. struct drm_i915_gem_object *obj,
  344. struct drm_i915_gem_pread *args,
  345. struct drm_file *file)
  346. {
  347. char __user *user_data;
  348. ssize_t remain;
  349. loff_t offset;
  350. int shmem_page_offset, page_length, ret = 0;
  351. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  352. int prefaulted = 0;
  353. int needs_clflush = 0;
  354. struct scatterlist *sg;
  355. int i;
  356. user_data = (char __user *) (uintptr_t) args->data_ptr;
  357. remain = args->size;
  358. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  359. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  360. /* If we're not in the cpu read domain, set ourself into the gtt
  361. * read domain and manually flush cachelines (if required). This
  362. * optimizes for the case when the gpu will dirty the data
  363. * anyway again before the next pread happens. */
  364. if (obj->cache_level == I915_CACHE_NONE)
  365. needs_clflush = 1;
  366. if (obj->gtt_space) {
  367. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  368. if (ret)
  369. return ret;
  370. }
  371. }
  372. ret = i915_gem_object_get_pages(obj);
  373. if (ret)
  374. return ret;
  375. i915_gem_object_pin_pages(obj);
  376. offset = args->offset;
  377. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  378. struct page *page;
  379. if (i < offset >> PAGE_SHIFT)
  380. continue;
  381. if (remain <= 0)
  382. break;
  383. /* Operation in this page
  384. *
  385. * shmem_page_offset = offset within page in shmem file
  386. * page_length = bytes to copy for this page
  387. */
  388. shmem_page_offset = offset_in_page(offset);
  389. page_length = remain;
  390. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  391. page_length = PAGE_SIZE - shmem_page_offset;
  392. page = sg_page(sg);
  393. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  394. (page_to_phys(page) & (1 << 17)) != 0;
  395. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  396. user_data, page_do_bit17_swizzling,
  397. needs_clflush);
  398. if (ret == 0)
  399. goto next_page;
  400. mutex_unlock(&dev->struct_mutex);
  401. if (!prefaulted) {
  402. ret = fault_in_multipages_writeable(user_data, remain);
  403. /* Userspace is tricking us, but we've already clobbered
  404. * its pages with the prefault and promised to write the
  405. * data up to the first fault. Hence ignore any errors
  406. * and just continue. */
  407. (void)ret;
  408. prefaulted = 1;
  409. }
  410. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  411. user_data, page_do_bit17_swizzling,
  412. needs_clflush);
  413. mutex_lock(&dev->struct_mutex);
  414. next_page:
  415. mark_page_accessed(page);
  416. if (ret)
  417. goto out;
  418. remain -= page_length;
  419. user_data += page_length;
  420. offset += page_length;
  421. }
  422. out:
  423. i915_gem_object_unpin_pages(obj);
  424. return ret;
  425. }
  426. /**
  427. * Reads data from the object referenced by handle.
  428. *
  429. * On error, the contents of *data are undefined.
  430. */
  431. int
  432. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  433. struct drm_file *file)
  434. {
  435. struct drm_i915_gem_pread *args = data;
  436. struct drm_i915_gem_object *obj;
  437. int ret = 0;
  438. if (args->size == 0)
  439. return 0;
  440. if (!access_ok(VERIFY_WRITE,
  441. (char __user *)(uintptr_t)args->data_ptr,
  442. args->size))
  443. return -EFAULT;
  444. ret = i915_mutex_lock_interruptible(dev);
  445. if (ret)
  446. return ret;
  447. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  448. if (&obj->base == NULL) {
  449. ret = -ENOENT;
  450. goto unlock;
  451. }
  452. /* Bounds check source. */
  453. if (args->offset > obj->base.size ||
  454. args->size > obj->base.size - args->offset) {
  455. ret = -EINVAL;
  456. goto out;
  457. }
  458. /* prime objects have no backing filp to GEM pread/pwrite
  459. * pages from.
  460. */
  461. if (!obj->base.filp) {
  462. ret = -EINVAL;
  463. goto out;
  464. }
  465. trace_i915_gem_object_pread(obj, args->offset, args->size);
  466. ret = i915_gem_shmem_pread(dev, obj, args, file);
  467. out:
  468. drm_gem_object_unreference(&obj->base);
  469. unlock:
  470. mutex_unlock(&dev->struct_mutex);
  471. return ret;
  472. }
  473. /* This is the fast write path which cannot handle
  474. * page faults in the source data
  475. */
  476. static inline int
  477. fast_user_write(struct io_mapping *mapping,
  478. loff_t page_base, int page_offset,
  479. char __user *user_data,
  480. int length)
  481. {
  482. void __iomem *vaddr_atomic;
  483. void *vaddr;
  484. unsigned long unwritten;
  485. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  486. /* We can use the cpu mem copy function because this is X86. */
  487. vaddr = (void __force*)vaddr_atomic + page_offset;
  488. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  489. user_data, length);
  490. io_mapping_unmap_atomic(vaddr_atomic);
  491. return unwritten;
  492. }
  493. /**
  494. * This is the fast pwrite path, where we copy the data directly from the
  495. * user into the GTT, uncached.
  496. */
  497. static int
  498. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  499. struct drm_i915_gem_object *obj,
  500. struct drm_i915_gem_pwrite *args,
  501. struct drm_file *file)
  502. {
  503. drm_i915_private_t *dev_priv = dev->dev_private;
  504. ssize_t remain;
  505. loff_t offset, page_base;
  506. char __user *user_data;
  507. int page_offset, page_length, ret;
  508. ret = i915_gem_object_pin(obj, 0, true, true);
  509. if (ret)
  510. goto out;
  511. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  512. if (ret)
  513. goto out_unpin;
  514. ret = i915_gem_object_put_fence(obj);
  515. if (ret)
  516. goto out_unpin;
  517. user_data = (char __user *) (uintptr_t) args->data_ptr;
  518. remain = args->size;
  519. offset = obj->gtt_offset + args->offset;
  520. while (remain > 0) {
  521. /* Operation in this page
  522. *
  523. * page_base = page offset within aperture
  524. * page_offset = offset within page
  525. * page_length = bytes to copy for this page
  526. */
  527. page_base = offset & PAGE_MASK;
  528. page_offset = offset_in_page(offset);
  529. page_length = remain;
  530. if ((page_offset + remain) > PAGE_SIZE)
  531. page_length = PAGE_SIZE - page_offset;
  532. /* If we get a fault while copying data, then (presumably) our
  533. * source page isn't available. Return the error and we'll
  534. * retry in the slow path.
  535. */
  536. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  537. page_offset, user_data, page_length)) {
  538. ret = -EFAULT;
  539. goto out_unpin;
  540. }
  541. remain -= page_length;
  542. user_data += page_length;
  543. offset += page_length;
  544. }
  545. out_unpin:
  546. i915_gem_object_unpin(obj);
  547. out:
  548. return ret;
  549. }
  550. /* Per-page copy function for the shmem pwrite fastpath.
  551. * Flushes invalid cachelines before writing to the target if
  552. * needs_clflush_before is set and flushes out any written cachelines after
  553. * writing if needs_clflush is set. */
  554. static int
  555. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  556. char __user *user_data,
  557. bool page_do_bit17_swizzling,
  558. bool needs_clflush_before,
  559. bool needs_clflush_after)
  560. {
  561. char *vaddr;
  562. int ret;
  563. if (unlikely(page_do_bit17_swizzling))
  564. return -EINVAL;
  565. vaddr = kmap_atomic(page);
  566. if (needs_clflush_before)
  567. drm_clflush_virt_range(vaddr + shmem_page_offset,
  568. page_length);
  569. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  570. user_data,
  571. page_length);
  572. if (needs_clflush_after)
  573. drm_clflush_virt_range(vaddr + shmem_page_offset,
  574. page_length);
  575. kunmap_atomic(vaddr);
  576. return ret ? -EFAULT : 0;
  577. }
  578. /* Only difference to the fast-path function is that this can handle bit17
  579. * and uses non-atomic copy and kmap functions. */
  580. static int
  581. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  582. char __user *user_data,
  583. bool page_do_bit17_swizzling,
  584. bool needs_clflush_before,
  585. bool needs_clflush_after)
  586. {
  587. char *vaddr;
  588. int ret;
  589. vaddr = kmap(page);
  590. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  591. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  592. page_length,
  593. page_do_bit17_swizzling);
  594. if (page_do_bit17_swizzling)
  595. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  596. user_data,
  597. page_length);
  598. else
  599. ret = __copy_from_user(vaddr + shmem_page_offset,
  600. user_data,
  601. page_length);
  602. if (needs_clflush_after)
  603. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  604. page_length,
  605. page_do_bit17_swizzling);
  606. kunmap(page);
  607. return ret ? -EFAULT : 0;
  608. }
  609. static int
  610. i915_gem_shmem_pwrite(struct drm_device *dev,
  611. struct drm_i915_gem_object *obj,
  612. struct drm_i915_gem_pwrite *args,
  613. struct drm_file *file)
  614. {
  615. ssize_t remain;
  616. loff_t offset;
  617. char __user *user_data;
  618. int shmem_page_offset, page_length, ret = 0;
  619. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  620. int hit_slowpath = 0;
  621. int needs_clflush_after = 0;
  622. int needs_clflush_before = 0;
  623. int i;
  624. struct scatterlist *sg;
  625. user_data = (char __user *) (uintptr_t) args->data_ptr;
  626. remain = args->size;
  627. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  628. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  629. /* If we're not in the cpu write domain, set ourself into the gtt
  630. * write domain and manually flush cachelines (if required). This
  631. * optimizes for the case when the gpu will use the data
  632. * right away and we therefore have to clflush anyway. */
  633. if (obj->cache_level == I915_CACHE_NONE)
  634. needs_clflush_after = 1;
  635. if (obj->gtt_space) {
  636. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  637. if (ret)
  638. return ret;
  639. }
  640. }
  641. /* Same trick applies for invalidate partially written cachelines before
  642. * writing. */
  643. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  644. && obj->cache_level == I915_CACHE_NONE)
  645. needs_clflush_before = 1;
  646. ret = i915_gem_object_get_pages(obj);
  647. if (ret)
  648. return ret;
  649. i915_gem_object_pin_pages(obj);
  650. offset = args->offset;
  651. obj->dirty = 1;
  652. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  653. struct page *page;
  654. int partial_cacheline_write;
  655. if (i < offset >> PAGE_SHIFT)
  656. continue;
  657. if (remain <= 0)
  658. break;
  659. /* Operation in this page
  660. *
  661. * shmem_page_offset = offset within page in shmem file
  662. * page_length = bytes to copy for this page
  663. */
  664. shmem_page_offset = offset_in_page(offset);
  665. page_length = remain;
  666. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  667. page_length = PAGE_SIZE - shmem_page_offset;
  668. /* If we don't overwrite a cacheline completely we need to be
  669. * careful to have up-to-date data by first clflushing. Don't
  670. * overcomplicate things and flush the entire patch. */
  671. partial_cacheline_write = needs_clflush_before &&
  672. ((shmem_page_offset | page_length)
  673. & (boot_cpu_data.x86_clflush_size - 1));
  674. page = sg_page(sg);
  675. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  676. (page_to_phys(page) & (1 << 17)) != 0;
  677. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  678. user_data, page_do_bit17_swizzling,
  679. partial_cacheline_write,
  680. needs_clflush_after);
  681. if (ret == 0)
  682. goto next_page;
  683. hit_slowpath = 1;
  684. mutex_unlock(&dev->struct_mutex);
  685. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  686. user_data, page_do_bit17_swizzling,
  687. partial_cacheline_write,
  688. needs_clflush_after);
  689. mutex_lock(&dev->struct_mutex);
  690. next_page:
  691. set_page_dirty(page);
  692. mark_page_accessed(page);
  693. if (ret)
  694. goto out;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. out:
  700. i915_gem_object_unpin_pages(obj);
  701. if (hit_slowpath) {
  702. /*
  703. * Fixup: Flush cpu caches in case we didn't flush the dirty
  704. * cachelines in-line while writing and the object moved
  705. * out of the cpu write domain while we've dropped the lock.
  706. */
  707. if (!needs_clflush_after &&
  708. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  709. i915_gem_clflush_object(obj);
  710. i915_gem_chipset_flush(dev);
  711. }
  712. }
  713. if (needs_clflush_after)
  714. i915_gem_chipset_flush(dev);
  715. return ret;
  716. }
  717. /**
  718. * Writes data to the object referenced by handle.
  719. *
  720. * On error, the contents of the buffer that were to be modified are undefined.
  721. */
  722. int
  723. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  724. struct drm_file *file)
  725. {
  726. struct drm_i915_gem_pwrite *args = data;
  727. struct drm_i915_gem_object *obj;
  728. int ret;
  729. if (args->size == 0)
  730. return 0;
  731. if (!access_ok(VERIFY_READ,
  732. (char __user *)(uintptr_t)args->data_ptr,
  733. args->size))
  734. return -EFAULT;
  735. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  736. args->size);
  737. if (ret)
  738. return -EFAULT;
  739. ret = i915_mutex_lock_interruptible(dev);
  740. if (ret)
  741. return ret;
  742. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  743. if (&obj->base == NULL) {
  744. ret = -ENOENT;
  745. goto unlock;
  746. }
  747. /* Bounds check destination. */
  748. if (args->offset > obj->base.size ||
  749. args->size > obj->base.size - args->offset) {
  750. ret = -EINVAL;
  751. goto out;
  752. }
  753. /* prime objects have no backing filp to GEM pread/pwrite
  754. * pages from.
  755. */
  756. if (!obj->base.filp) {
  757. ret = -EINVAL;
  758. goto out;
  759. }
  760. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  761. ret = -EFAULT;
  762. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  763. * it would end up going through the fenced access, and we'll get
  764. * different detiling behavior between reading and writing.
  765. * pread/pwrite currently are reading and writing from the CPU
  766. * perspective, requiring manual detiling by the client.
  767. */
  768. if (obj->phys_obj) {
  769. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  770. goto out;
  771. }
  772. if (obj->cache_level == I915_CACHE_NONE &&
  773. obj->tiling_mode == I915_TILING_NONE &&
  774. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  775. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  776. /* Note that the gtt paths might fail with non-page-backed user
  777. * pointers (e.g. gtt mappings when moving data between
  778. * textures). Fallback to the shmem path in that case. */
  779. }
  780. if (ret == -EFAULT || ret == -ENOSPC)
  781. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  782. out:
  783. drm_gem_object_unreference(&obj->base);
  784. unlock:
  785. mutex_unlock(&dev->struct_mutex);
  786. return ret;
  787. }
  788. int
  789. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  790. bool interruptible)
  791. {
  792. if (atomic_read(&dev_priv->mm.wedged)) {
  793. struct completion *x = &dev_priv->error_completion;
  794. bool recovery_complete;
  795. unsigned long flags;
  796. /* Give the error handler a chance to run. */
  797. spin_lock_irqsave(&x->wait.lock, flags);
  798. recovery_complete = x->done > 0;
  799. spin_unlock_irqrestore(&x->wait.lock, flags);
  800. /* Non-interruptible callers can't handle -EAGAIN, hence return
  801. * -EIO unconditionally for these. */
  802. if (!interruptible)
  803. return -EIO;
  804. /* Recovery complete, but still wedged means reset failure. */
  805. if (recovery_complete)
  806. return -EIO;
  807. return -EAGAIN;
  808. }
  809. return 0;
  810. }
  811. /*
  812. * Compare seqno against outstanding lazy request. Emit a request if they are
  813. * equal.
  814. */
  815. static int
  816. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  817. {
  818. int ret;
  819. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  820. ret = 0;
  821. if (seqno == ring->outstanding_lazy_request)
  822. ret = i915_add_request(ring, NULL, NULL);
  823. return ret;
  824. }
  825. /**
  826. * __wait_seqno - wait until execution of seqno has finished
  827. * @ring: the ring expected to report seqno
  828. * @seqno: duh!
  829. * @interruptible: do an interruptible wait (normally yes)
  830. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  831. *
  832. * Returns 0 if the seqno was found within the alloted time. Else returns the
  833. * errno with remaining time filled in timeout argument.
  834. */
  835. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  836. bool interruptible, struct timespec *timeout)
  837. {
  838. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  839. struct timespec before, now, wait_time={1,0};
  840. unsigned long timeout_jiffies;
  841. long end;
  842. bool wait_forever = true;
  843. int ret;
  844. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  845. return 0;
  846. trace_i915_gem_request_wait_begin(ring, seqno);
  847. if (timeout != NULL) {
  848. wait_time = *timeout;
  849. wait_forever = false;
  850. }
  851. timeout_jiffies = timespec_to_jiffies(&wait_time);
  852. if (WARN_ON(!ring->irq_get(ring)))
  853. return -ENODEV;
  854. /* Record current time in case interrupted by signal, or wedged * */
  855. getrawmonotonic(&before);
  856. #define EXIT_COND \
  857. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  858. atomic_read(&dev_priv->mm.wedged))
  859. do {
  860. if (interruptible)
  861. end = wait_event_interruptible_timeout(ring->irq_queue,
  862. EXIT_COND,
  863. timeout_jiffies);
  864. else
  865. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  866. timeout_jiffies);
  867. ret = i915_gem_check_wedge(dev_priv, interruptible);
  868. if (ret)
  869. end = ret;
  870. } while (end == 0 && wait_forever);
  871. getrawmonotonic(&now);
  872. ring->irq_put(ring);
  873. trace_i915_gem_request_wait_end(ring, seqno);
  874. #undef EXIT_COND
  875. if (timeout) {
  876. struct timespec sleep_time = timespec_sub(now, before);
  877. *timeout = timespec_sub(*timeout, sleep_time);
  878. }
  879. switch (end) {
  880. case -EIO:
  881. case -EAGAIN: /* Wedged */
  882. case -ERESTARTSYS: /* Signal */
  883. return (int)end;
  884. case 0: /* Timeout */
  885. if (timeout)
  886. set_normalized_timespec(timeout, 0, 0);
  887. return -ETIME;
  888. default: /* Completed */
  889. WARN_ON(end < 0); /* We're not aware of other errors */
  890. return 0;
  891. }
  892. }
  893. /**
  894. * Waits for a sequence number to be signaled, and cleans up the
  895. * request and object lists appropriately for that event.
  896. */
  897. int
  898. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  899. {
  900. struct drm_device *dev = ring->dev;
  901. struct drm_i915_private *dev_priv = dev->dev_private;
  902. bool interruptible = dev_priv->mm.interruptible;
  903. int ret;
  904. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  905. BUG_ON(seqno == 0);
  906. ret = i915_gem_check_wedge(dev_priv, interruptible);
  907. if (ret)
  908. return ret;
  909. ret = i915_gem_check_olr(ring, seqno);
  910. if (ret)
  911. return ret;
  912. return __wait_seqno(ring, seqno, interruptible, NULL);
  913. }
  914. /**
  915. * Ensures that all rendering to the object has completed and the object is
  916. * safe to unbind from the GTT or access from the CPU.
  917. */
  918. static __must_check int
  919. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  920. bool readonly)
  921. {
  922. struct intel_ring_buffer *ring = obj->ring;
  923. u32 seqno;
  924. int ret;
  925. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  926. if (seqno == 0)
  927. return 0;
  928. ret = i915_wait_seqno(ring, seqno);
  929. if (ret)
  930. return ret;
  931. i915_gem_retire_requests_ring(ring);
  932. /* Manually manage the write flush as we may have not yet
  933. * retired the buffer.
  934. */
  935. if (obj->last_write_seqno &&
  936. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  937. obj->last_write_seqno = 0;
  938. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  939. }
  940. return 0;
  941. }
  942. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  943. * as the object state may change during this call.
  944. */
  945. static __must_check int
  946. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  947. bool readonly)
  948. {
  949. struct drm_device *dev = obj->base.dev;
  950. struct drm_i915_private *dev_priv = dev->dev_private;
  951. struct intel_ring_buffer *ring = obj->ring;
  952. u32 seqno;
  953. int ret;
  954. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  955. BUG_ON(!dev_priv->mm.interruptible);
  956. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  957. if (seqno == 0)
  958. return 0;
  959. ret = i915_gem_check_wedge(dev_priv, true);
  960. if (ret)
  961. return ret;
  962. ret = i915_gem_check_olr(ring, seqno);
  963. if (ret)
  964. return ret;
  965. mutex_unlock(&dev->struct_mutex);
  966. ret = __wait_seqno(ring, seqno, true, NULL);
  967. mutex_lock(&dev->struct_mutex);
  968. i915_gem_retire_requests_ring(ring);
  969. /* Manually manage the write flush as we may have not yet
  970. * retired the buffer.
  971. */
  972. if (obj->last_write_seqno &&
  973. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  974. obj->last_write_seqno = 0;
  975. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  976. }
  977. return ret;
  978. }
  979. /**
  980. * Called when user space prepares to use an object with the CPU, either
  981. * through the mmap ioctl's mapping or a GTT mapping.
  982. */
  983. int
  984. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  985. struct drm_file *file)
  986. {
  987. struct drm_i915_gem_set_domain *args = data;
  988. struct drm_i915_gem_object *obj;
  989. uint32_t read_domains = args->read_domains;
  990. uint32_t write_domain = args->write_domain;
  991. int ret;
  992. /* Only handle setting domains to types used by the CPU. */
  993. if (write_domain & I915_GEM_GPU_DOMAINS)
  994. return -EINVAL;
  995. if (read_domains & I915_GEM_GPU_DOMAINS)
  996. return -EINVAL;
  997. /* Having something in the write domain implies it's in the read
  998. * domain, and only that read domain. Enforce that in the request.
  999. */
  1000. if (write_domain != 0 && read_domains != write_domain)
  1001. return -EINVAL;
  1002. ret = i915_mutex_lock_interruptible(dev);
  1003. if (ret)
  1004. return ret;
  1005. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1006. if (&obj->base == NULL) {
  1007. ret = -ENOENT;
  1008. goto unlock;
  1009. }
  1010. /* Try to flush the object off the GPU without holding the lock.
  1011. * We will repeat the flush holding the lock in the normal manner
  1012. * to catch cases where we are gazumped.
  1013. */
  1014. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1015. if (ret)
  1016. goto unref;
  1017. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1018. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1019. /* Silently promote "you're not bound, there was nothing to do"
  1020. * to success, since the client was just asking us to
  1021. * make sure everything was done.
  1022. */
  1023. if (ret == -EINVAL)
  1024. ret = 0;
  1025. } else {
  1026. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1027. }
  1028. unref:
  1029. drm_gem_object_unreference(&obj->base);
  1030. unlock:
  1031. mutex_unlock(&dev->struct_mutex);
  1032. return ret;
  1033. }
  1034. /**
  1035. * Called when user space has done writes to this buffer
  1036. */
  1037. int
  1038. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1039. struct drm_file *file)
  1040. {
  1041. struct drm_i915_gem_sw_finish *args = data;
  1042. struct drm_i915_gem_object *obj;
  1043. int ret = 0;
  1044. ret = i915_mutex_lock_interruptible(dev);
  1045. if (ret)
  1046. return ret;
  1047. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1048. if (&obj->base == NULL) {
  1049. ret = -ENOENT;
  1050. goto unlock;
  1051. }
  1052. /* Pinned buffers may be scanout, so flush the cache */
  1053. if (obj->pin_count)
  1054. i915_gem_object_flush_cpu_write_domain(obj);
  1055. drm_gem_object_unreference(&obj->base);
  1056. unlock:
  1057. mutex_unlock(&dev->struct_mutex);
  1058. return ret;
  1059. }
  1060. /**
  1061. * Maps the contents of an object, returning the address it is mapped
  1062. * into.
  1063. *
  1064. * While the mapping holds a reference on the contents of the object, it doesn't
  1065. * imply a ref on the object itself.
  1066. */
  1067. int
  1068. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1069. struct drm_file *file)
  1070. {
  1071. struct drm_i915_gem_mmap *args = data;
  1072. struct drm_gem_object *obj;
  1073. unsigned long addr;
  1074. obj = drm_gem_object_lookup(dev, file, args->handle);
  1075. if (obj == NULL)
  1076. return -ENOENT;
  1077. /* prime objects have no backing filp to GEM mmap
  1078. * pages from.
  1079. */
  1080. if (!obj->filp) {
  1081. drm_gem_object_unreference_unlocked(obj);
  1082. return -EINVAL;
  1083. }
  1084. addr = vm_mmap(obj->filp, 0, args->size,
  1085. PROT_READ | PROT_WRITE, MAP_SHARED,
  1086. args->offset);
  1087. drm_gem_object_unreference_unlocked(obj);
  1088. if (IS_ERR((void *)addr))
  1089. return addr;
  1090. args->addr_ptr = (uint64_t) addr;
  1091. return 0;
  1092. }
  1093. /**
  1094. * i915_gem_fault - fault a page into the GTT
  1095. * vma: VMA in question
  1096. * vmf: fault info
  1097. *
  1098. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1099. * from userspace. The fault handler takes care of binding the object to
  1100. * the GTT (if needed), allocating and programming a fence register (again,
  1101. * only if needed based on whether the old reg is still valid or the object
  1102. * is tiled) and inserting a new PTE into the faulting process.
  1103. *
  1104. * Note that the faulting process may involve evicting existing objects
  1105. * from the GTT and/or fence registers to make room. So performance may
  1106. * suffer if the GTT working set is large or there are few fence registers
  1107. * left.
  1108. */
  1109. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1110. {
  1111. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1112. struct drm_device *dev = obj->base.dev;
  1113. drm_i915_private_t *dev_priv = dev->dev_private;
  1114. pgoff_t page_offset;
  1115. unsigned long pfn;
  1116. int ret = 0;
  1117. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1118. /* We don't use vmf->pgoff since that has the fake offset */
  1119. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1120. PAGE_SHIFT;
  1121. ret = i915_mutex_lock_interruptible(dev);
  1122. if (ret)
  1123. goto out;
  1124. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1125. /* Access to snoopable pages through the GTT is incoherent. */
  1126. if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
  1127. ret = -EINVAL;
  1128. goto unlock;
  1129. }
  1130. /* Now bind it into the GTT if needed */
  1131. ret = i915_gem_object_pin(obj, 0, true, false);
  1132. if (ret)
  1133. goto unlock;
  1134. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1135. if (ret)
  1136. goto unpin;
  1137. ret = i915_gem_object_get_fence(obj);
  1138. if (ret)
  1139. goto unpin;
  1140. obj->fault_mappable = true;
  1141. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  1142. page_offset;
  1143. /* Finally, remap it using the new GTT offset */
  1144. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1145. unpin:
  1146. i915_gem_object_unpin(obj);
  1147. unlock:
  1148. mutex_unlock(&dev->struct_mutex);
  1149. out:
  1150. switch (ret) {
  1151. case -EIO:
  1152. /* If this -EIO is due to a gpu hang, give the reset code a
  1153. * chance to clean up the mess. Otherwise return the proper
  1154. * SIGBUS. */
  1155. if (!atomic_read(&dev_priv->mm.wedged))
  1156. return VM_FAULT_SIGBUS;
  1157. case -EAGAIN:
  1158. /* Give the error handler a chance to run and move the
  1159. * objects off the GPU active list. Next time we service the
  1160. * fault, we should be able to transition the page into the
  1161. * GTT without touching the GPU (and so avoid further
  1162. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1163. * with coherency, just lost writes.
  1164. */
  1165. set_need_resched();
  1166. case 0:
  1167. case -ERESTARTSYS:
  1168. case -EINTR:
  1169. case -EBUSY:
  1170. /*
  1171. * EBUSY is ok: this just means that another thread
  1172. * already did the job.
  1173. */
  1174. return VM_FAULT_NOPAGE;
  1175. case -ENOMEM:
  1176. return VM_FAULT_OOM;
  1177. case -ENOSPC:
  1178. return VM_FAULT_SIGBUS;
  1179. default:
  1180. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1181. return VM_FAULT_SIGBUS;
  1182. }
  1183. }
  1184. /**
  1185. * i915_gem_release_mmap - remove physical page mappings
  1186. * @obj: obj in question
  1187. *
  1188. * Preserve the reservation of the mmapping with the DRM core code, but
  1189. * relinquish ownership of the pages back to the system.
  1190. *
  1191. * It is vital that we remove the page mapping if we have mapped a tiled
  1192. * object through the GTT and then lose the fence register due to
  1193. * resource pressure. Similarly if the object has been moved out of the
  1194. * aperture, than pages mapped into userspace must be revoked. Removing the
  1195. * mapping will then trigger a page fault on the next user access, allowing
  1196. * fixup by i915_gem_fault().
  1197. */
  1198. void
  1199. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1200. {
  1201. if (!obj->fault_mappable)
  1202. return;
  1203. if (obj->base.dev->dev_mapping)
  1204. unmap_mapping_range(obj->base.dev->dev_mapping,
  1205. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1206. obj->base.size, 1);
  1207. obj->fault_mappable = false;
  1208. }
  1209. static uint32_t
  1210. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1211. {
  1212. uint32_t gtt_size;
  1213. if (INTEL_INFO(dev)->gen >= 4 ||
  1214. tiling_mode == I915_TILING_NONE)
  1215. return size;
  1216. /* Previous chips need a power-of-two fence region when tiling */
  1217. if (INTEL_INFO(dev)->gen == 3)
  1218. gtt_size = 1024*1024;
  1219. else
  1220. gtt_size = 512*1024;
  1221. while (gtt_size < size)
  1222. gtt_size <<= 1;
  1223. return gtt_size;
  1224. }
  1225. /**
  1226. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1227. * @obj: object to check
  1228. *
  1229. * Return the required GTT alignment for an object, taking into account
  1230. * potential fence register mapping.
  1231. */
  1232. uint32_t
  1233. i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
  1234. int tiling_mode, bool fenced)
  1235. {
  1236. /*
  1237. * Minimum alignment is 4k (GTT page size), but might be greater
  1238. * if a fence register is needed for the object.
  1239. */
  1240. if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
  1241. tiling_mode == I915_TILING_NONE)
  1242. return 4096;
  1243. /*
  1244. * Previous chips need to be aligned to the size of the smallest
  1245. * fence register that can contain the object.
  1246. */
  1247. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1248. }
  1249. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1250. {
  1251. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1252. int ret;
  1253. if (obj->base.map_list.map)
  1254. return 0;
  1255. dev_priv->mm.shrinker_no_lock_stealing = true;
  1256. ret = drm_gem_create_mmap_offset(&obj->base);
  1257. if (ret != -ENOSPC)
  1258. goto out;
  1259. /* Badly fragmented mmap space? The only way we can recover
  1260. * space is by destroying unwanted objects. We can't randomly release
  1261. * mmap_offsets as userspace expects them to be persistent for the
  1262. * lifetime of the objects. The closest we can is to release the
  1263. * offsets on purgeable objects by truncating it and marking it purged,
  1264. * which prevents userspace from ever using that object again.
  1265. */
  1266. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1267. ret = drm_gem_create_mmap_offset(&obj->base);
  1268. if (ret != -ENOSPC)
  1269. goto out;
  1270. i915_gem_shrink_all(dev_priv);
  1271. ret = drm_gem_create_mmap_offset(&obj->base);
  1272. out:
  1273. dev_priv->mm.shrinker_no_lock_stealing = false;
  1274. return ret;
  1275. }
  1276. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1277. {
  1278. if (!obj->base.map_list.map)
  1279. return;
  1280. drm_gem_free_mmap_offset(&obj->base);
  1281. }
  1282. int
  1283. i915_gem_mmap_gtt(struct drm_file *file,
  1284. struct drm_device *dev,
  1285. uint32_t handle,
  1286. uint64_t *offset)
  1287. {
  1288. struct drm_i915_private *dev_priv = dev->dev_private;
  1289. struct drm_i915_gem_object *obj;
  1290. int ret;
  1291. ret = i915_mutex_lock_interruptible(dev);
  1292. if (ret)
  1293. return ret;
  1294. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1295. if (&obj->base == NULL) {
  1296. ret = -ENOENT;
  1297. goto unlock;
  1298. }
  1299. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1300. ret = -E2BIG;
  1301. goto out;
  1302. }
  1303. if (obj->madv != I915_MADV_WILLNEED) {
  1304. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1305. ret = -EINVAL;
  1306. goto out;
  1307. }
  1308. ret = i915_gem_object_create_mmap_offset(obj);
  1309. if (ret)
  1310. goto out;
  1311. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1312. out:
  1313. drm_gem_object_unreference(&obj->base);
  1314. unlock:
  1315. mutex_unlock(&dev->struct_mutex);
  1316. return ret;
  1317. }
  1318. /**
  1319. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1320. * @dev: DRM device
  1321. * @data: GTT mapping ioctl data
  1322. * @file: GEM object info
  1323. *
  1324. * Simply returns the fake offset to userspace so it can mmap it.
  1325. * The mmap call will end up in drm_gem_mmap(), which will set things
  1326. * up so we can get faults in the handler above.
  1327. *
  1328. * The fault handler will take care of binding the object into the GTT
  1329. * (since it may have been evicted to make room for something), allocating
  1330. * a fence register, and mapping the appropriate aperture address into
  1331. * userspace.
  1332. */
  1333. int
  1334. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1335. struct drm_file *file)
  1336. {
  1337. struct drm_i915_gem_mmap_gtt *args = data;
  1338. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1339. }
  1340. /* Immediately discard the backing storage */
  1341. static void
  1342. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1343. {
  1344. struct inode *inode;
  1345. i915_gem_object_free_mmap_offset(obj);
  1346. if (obj->base.filp == NULL)
  1347. return;
  1348. /* Our goal here is to return as much of the memory as
  1349. * is possible back to the system as we are called from OOM.
  1350. * To do this we must instruct the shmfs to drop all of its
  1351. * backing pages, *now*.
  1352. */
  1353. inode = obj->base.filp->f_path.dentry->d_inode;
  1354. shmem_truncate_range(inode, 0, (loff_t)-1);
  1355. obj->madv = __I915_MADV_PURGED;
  1356. }
  1357. static inline int
  1358. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1359. {
  1360. return obj->madv == I915_MADV_DONTNEED;
  1361. }
  1362. static void
  1363. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1364. {
  1365. int page_count = obj->base.size / PAGE_SIZE;
  1366. struct scatterlist *sg;
  1367. int ret, i;
  1368. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1369. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1370. if (ret) {
  1371. /* In the event of a disaster, abandon all caches and
  1372. * hope for the best.
  1373. */
  1374. WARN_ON(ret != -EIO);
  1375. i915_gem_clflush_object(obj);
  1376. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1377. }
  1378. if (i915_gem_object_needs_bit17_swizzle(obj))
  1379. i915_gem_object_save_bit_17_swizzle(obj);
  1380. if (obj->madv == I915_MADV_DONTNEED)
  1381. obj->dirty = 0;
  1382. for_each_sg(obj->pages->sgl, sg, page_count, i) {
  1383. struct page *page = sg_page(sg);
  1384. if (obj->dirty)
  1385. set_page_dirty(page);
  1386. if (obj->madv == I915_MADV_WILLNEED)
  1387. mark_page_accessed(page);
  1388. page_cache_release(page);
  1389. }
  1390. obj->dirty = 0;
  1391. sg_free_table(obj->pages);
  1392. kfree(obj->pages);
  1393. }
  1394. static int
  1395. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1396. {
  1397. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1398. if (obj->pages == NULL)
  1399. return 0;
  1400. BUG_ON(obj->gtt_space);
  1401. if (obj->pages_pin_count)
  1402. return -EBUSY;
  1403. /* ->put_pages might need to allocate memory for the bit17 swizzle
  1404. * array, hence protect them from being reaped by removing them from gtt
  1405. * lists early. */
  1406. list_del(&obj->gtt_list);
  1407. ops->put_pages(obj);
  1408. obj->pages = NULL;
  1409. if (i915_gem_object_is_purgeable(obj))
  1410. i915_gem_object_truncate(obj);
  1411. return 0;
  1412. }
  1413. static long
  1414. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1415. {
  1416. struct drm_i915_gem_object *obj, *next;
  1417. long count = 0;
  1418. list_for_each_entry_safe(obj, next,
  1419. &dev_priv->mm.unbound_list,
  1420. gtt_list) {
  1421. if (i915_gem_object_is_purgeable(obj) &&
  1422. i915_gem_object_put_pages(obj) == 0) {
  1423. count += obj->base.size >> PAGE_SHIFT;
  1424. if (count >= target)
  1425. return count;
  1426. }
  1427. }
  1428. list_for_each_entry_safe(obj, next,
  1429. &dev_priv->mm.inactive_list,
  1430. mm_list) {
  1431. if (i915_gem_object_is_purgeable(obj) &&
  1432. i915_gem_object_unbind(obj) == 0 &&
  1433. i915_gem_object_put_pages(obj) == 0) {
  1434. count += obj->base.size >> PAGE_SHIFT;
  1435. if (count >= target)
  1436. return count;
  1437. }
  1438. }
  1439. return count;
  1440. }
  1441. static void
  1442. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1443. {
  1444. struct drm_i915_gem_object *obj, *next;
  1445. i915_gem_evict_everything(dev_priv->dev);
  1446. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
  1447. i915_gem_object_put_pages(obj);
  1448. }
  1449. static int
  1450. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1451. {
  1452. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1453. int page_count, i;
  1454. struct address_space *mapping;
  1455. struct sg_table *st;
  1456. struct scatterlist *sg;
  1457. struct page *page;
  1458. gfp_t gfp;
  1459. /* Assert that the object is not currently in any GPU domain. As it
  1460. * wasn't in the GTT, there shouldn't be any way it could have been in
  1461. * a GPU cache
  1462. */
  1463. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1464. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1465. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1466. if (st == NULL)
  1467. return -ENOMEM;
  1468. page_count = obj->base.size / PAGE_SIZE;
  1469. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1470. sg_free_table(st);
  1471. kfree(st);
  1472. return -ENOMEM;
  1473. }
  1474. /* Get the list of pages out of our struct file. They'll be pinned
  1475. * at this point until we release them.
  1476. *
  1477. * Fail silently without starting the shrinker
  1478. */
  1479. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  1480. gfp = mapping_gfp_mask(mapping);
  1481. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1482. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1483. for_each_sg(st->sgl, sg, page_count, i) {
  1484. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1485. if (IS_ERR(page)) {
  1486. i915_gem_purge(dev_priv, page_count);
  1487. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1488. }
  1489. if (IS_ERR(page)) {
  1490. /* We've tried hard to allocate the memory by reaping
  1491. * our own buffer, now let the real VM do its job and
  1492. * go down in flames if truly OOM.
  1493. */
  1494. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
  1495. gfp |= __GFP_IO | __GFP_WAIT;
  1496. i915_gem_shrink_all(dev_priv);
  1497. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1498. if (IS_ERR(page))
  1499. goto err_pages;
  1500. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1501. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1502. }
  1503. sg_set_page(sg, page, PAGE_SIZE, 0);
  1504. }
  1505. obj->pages = st;
  1506. if (i915_gem_object_needs_bit17_swizzle(obj))
  1507. i915_gem_object_do_bit_17_swizzle(obj);
  1508. return 0;
  1509. err_pages:
  1510. for_each_sg(st->sgl, sg, i, page_count)
  1511. page_cache_release(sg_page(sg));
  1512. sg_free_table(st);
  1513. kfree(st);
  1514. return PTR_ERR(page);
  1515. }
  1516. /* Ensure that the associated pages are gathered from the backing storage
  1517. * and pinned into our object. i915_gem_object_get_pages() may be called
  1518. * multiple times before they are released by a single call to
  1519. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1520. * either as a result of memory pressure (reaping pages under the shrinker)
  1521. * or as the object is itself released.
  1522. */
  1523. int
  1524. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1525. {
  1526. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1527. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1528. int ret;
  1529. if (obj->pages)
  1530. return 0;
  1531. BUG_ON(obj->pages_pin_count);
  1532. ret = ops->get_pages(obj);
  1533. if (ret)
  1534. return ret;
  1535. list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  1536. return 0;
  1537. }
  1538. void
  1539. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1540. struct intel_ring_buffer *ring)
  1541. {
  1542. struct drm_device *dev = obj->base.dev;
  1543. struct drm_i915_private *dev_priv = dev->dev_private;
  1544. u32 seqno = intel_ring_get_seqno(ring);
  1545. BUG_ON(ring == NULL);
  1546. obj->ring = ring;
  1547. /* Add a reference if we're newly entering the active list. */
  1548. if (!obj->active) {
  1549. drm_gem_object_reference(&obj->base);
  1550. obj->active = 1;
  1551. }
  1552. /* Move from whatever list we were on to the tail of execution. */
  1553. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1554. list_move_tail(&obj->ring_list, &ring->active_list);
  1555. obj->last_read_seqno = seqno;
  1556. if (obj->fenced_gpu_access) {
  1557. obj->last_fenced_seqno = seqno;
  1558. /* Bump MRU to take account of the delayed flush */
  1559. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1560. struct drm_i915_fence_reg *reg;
  1561. reg = &dev_priv->fence_regs[obj->fence_reg];
  1562. list_move_tail(&reg->lru_list,
  1563. &dev_priv->mm.fence_list);
  1564. }
  1565. }
  1566. }
  1567. static void
  1568. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1569. {
  1570. struct drm_device *dev = obj->base.dev;
  1571. struct drm_i915_private *dev_priv = dev->dev_private;
  1572. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1573. BUG_ON(!obj->active);
  1574. if (obj->pin_count) /* are we a framebuffer? */
  1575. intel_mark_fb_idle(obj);
  1576. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1577. list_del_init(&obj->ring_list);
  1578. obj->ring = NULL;
  1579. obj->last_read_seqno = 0;
  1580. obj->last_write_seqno = 0;
  1581. obj->base.write_domain = 0;
  1582. obj->last_fenced_seqno = 0;
  1583. obj->fenced_gpu_access = false;
  1584. obj->active = 0;
  1585. drm_gem_object_unreference(&obj->base);
  1586. WARN_ON(i915_verify_lists(dev));
  1587. }
  1588. static int
  1589. i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
  1590. {
  1591. struct drm_i915_private *dev_priv = dev->dev_private;
  1592. struct intel_ring_buffer *ring;
  1593. int ret, i, j;
  1594. /* Carefully retire all requests without writing to the rings */
  1595. for_each_ring(ring, dev_priv, i) {
  1596. ret = intel_ring_idle(ring);
  1597. if (ret)
  1598. return ret;
  1599. }
  1600. i915_gem_retire_requests(dev);
  1601. /* Finally reset hw state */
  1602. for_each_ring(ring, dev_priv, i) {
  1603. intel_ring_init_seqno(ring, seqno);
  1604. for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
  1605. ring->sync_seqno[j] = 0;
  1606. }
  1607. return 0;
  1608. }
  1609. int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
  1610. {
  1611. struct drm_i915_private *dev_priv = dev->dev_private;
  1612. int ret;
  1613. if (seqno == 0)
  1614. return -EINVAL;
  1615. /* HWS page needs to be set less than what we
  1616. * will inject to ring
  1617. */
  1618. ret = i915_gem_init_seqno(dev, seqno - 1);
  1619. if (ret)
  1620. return ret;
  1621. /* Carefully set the last_seqno value so that wrap
  1622. * detection still works
  1623. */
  1624. dev_priv->next_seqno = seqno;
  1625. dev_priv->last_seqno = seqno - 1;
  1626. if (dev_priv->last_seqno == 0)
  1627. dev_priv->last_seqno--;
  1628. return 0;
  1629. }
  1630. int
  1631. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1632. {
  1633. struct drm_i915_private *dev_priv = dev->dev_private;
  1634. /* reserve 0 for non-seqno */
  1635. if (dev_priv->next_seqno == 0) {
  1636. int ret = i915_gem_init_seqno(dev, 0);
  1637. if (ret)
  1638. return ret;
  1639. dev_priv->next_seqno = 1;
  1640. }
  1641. *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
  1642. return 0;
  1643. }
  1644. int
  1645. i915_add_request(struct intel_ring_buffer *ring,
  1646. struct drm_file *file,
  1647. u32 *out_seqno)
  1648. {
  1649. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1650. struct drm_i915_gem_request *request;
  1651. u32 request_ring_position;
  1652. int was_empty;
  1653. int ret;
  1654. /*
  1655. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1656. * after having emitted the batchbuffer command. Hence we need to fix
  1657. * things up similar to emitting the lazy request. The difference here
  1658. * is that the flush _must_ happen before the next request, no matter
  1659. * what.
  1660. */
  1661. ret = intel_ring_flush_all_caches(ring);
  1662. if (ret)
  1663. return ret;
  1664. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1665. if (request == NULL)
  1666. return -ENOMEM;
  1667. /* Record the position of the start of the request so that
  1668. * should we detect the updated seqno part-way through the
  1669. * GPU processing the request, we never over-estimate the
  1670. * position of the head.
  1671. */
  1672. request_ring_position = intel_ring_get_tail(ring);
  1673. ret = ring->add_request(ring);
  1674. if (ret) {
  1675. kfree(request);
  1676. return ret;
  1677. }
  1678. request->seqno = intel_ring_get_seqno(ring);
  1679. request->ring = ring;
  1680. request->tail = request_ring_position;
  1681. request->emitted_jiffies = jiffies;
  1682. was_empty = list_empty(&ring->request_list);
  1683. list_add_tail(&request->list, &ring->request_list);
  1684. request->file_priv = NULL;
  1685. if (file) {
  1686. struct drm_i915_file_private *file_priv = file->driver_priv;
  1687. spin_lock(&file_priv->mm.lock);
  1688. request->file_priv = file_priv;
  1689. list_add_tail(&request->client_list,
  1690. &file_priv->mm.request_list);
  1691. spin_unlock(&file_priv->mm.lock);
  1692. }
  1693. trace_i915_gem_request_add(ring, request->seqno);
  1694. ring->outstanding_lazy_request = 0;
  1695. if (!dev_priv->mm.suspended) {
  1696. if (i915_enable_hangcheck) {
  1697. mod_timer(&dev_priv->hangcheck_timer,
  1698. round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
  1699. }
  1700. if (was_empty) {
  1701. queue_delayed_work(dev_priv->wq,
  1702. &dev_priv->mm.retire_work,
  1703. round_jiffies_up_relative(HZ));
  1704. intel_mark_busy(dev_priv->dev);
  1705. }
  1706. }
  1707. if (out_seqno)
  1708. *out_seqno = request->seqno;
  1709. return 0;
  1710. }
  1711. static inline void
  1712. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1713. {
  1714. struct drm_i915_file_private *file_priv = request->file_priv;
  1715. if (!file_priv)
  1716. return;
  1717. spin_lock(&file_priv->mm.lock);
  1718. if (request->file_priv) {
  1719. list_del(&request->client_list);
  1720. request->file_priv = NULL;
  1721. }
  1722. spin_unlock(&file_priv->mm.lock);
  1723. }
  1724. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1725. struct intel_ring_buffer *ring)
  1726. {
  1727. while (!list_empty(&ring->request_list)) {
  1728. struct drm_i915_gem_request *request;
  1729. request = list_first_entry(&ring->request_list,
  1730. struct drm_i915_gem_request,
  1731. list);
  1732. list_del(&request->list);
  1733. i915_gem_request_remove_from_client(request);
  1734. kfree(request);
  1735. }
  1736. while (!list_empty(&ring->active_list)) {
  1737. struct drm_i915_gem_object *obj;
  1738. obj = list_first_entry(&ring->active_list,
  1739. struct drm_i915_gem_object,
  1740. ring_list);
  1741. i915_gem_object_move_to_inactive(obj);
  1742. }
  1743. }
  1744. static void i915_gem_reset_fences(struct drm_device *dev)
  1745. {
  1746. struct drm_i915_private *dev_priv = dev->dev_private;
  1747. int i;
  1748. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1749. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1750. i915_gem_write_fence(dev, i, NULL);
  1751. if (reg->obj)
  1752. i915_gem_object_fence_lost(reg->obj);
  1753. reg->pin_count = 0;
  1754. reg->obj = NULL;
  1755. INIT_LIST_HEAD(&reg->lru_list);
  1756. }
  1757. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1758. }
  1759. void i915_gem_reset(struct drm_device *dev)
  1760. {
  1761. struct drm_i915_private *dev_priv = dev->dev_private;
  1762. struct drm_i915_gem_object *obj;
  1763. struct intel_ring_buffer *ring;
  1764. int i;
  1765. for_each_ring(ring, dev_priv, i)
  1766. i915_gem_reset_ring_lists(dev_priv, ring);
  1767. /* Move everything out of the GPU domains to ensure we do any
  1768. * necessary invalidation upon reuse.
  1769. */
  1770. list_for_each_entry(obj,
  1771. &dev_priv->mm.inactive_list,
  1772. mm_list)
  1773. {
  1774. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1775. }
  1776. /* The fence registers are invalidated so clear them out */
  1777. i915_gem_reset_fences(dev);
  1778. }
  1779. /**
  1780. * This function clears the request list as sequence numbers are passed.
  1781. */
  1782. void
  1783. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1784. {
  1785. uint32_t seqno;
  1786. if (list_empty(&ring->request_list))
  1787. return;
  1788. WARN_ON(i915_verify_lists(ring->dev));
  1789. seqno = ring->get_seqno(ring, true);
  1790. while (!list_empty(&ring->request_list)) {
  1791. struct drm_i915_gem_request *request;
  1792. request = list_first_entry(&ring->request_list,
  1793. struct drm_i915_gem_request,
  1794. list);
  1795. if (!i915_seqno_passed(seqno, request->seqno))
  1796. break;
  1797. trace_i915_gem_request_retire(ring, request->seqno);
  1798. /* We know the GPU must have read the request to have
  1799. * sent us the seqno + interrupt, so use the position
  1800. * of tail of the request to update the last known position
  1801. * of the GPU head.
  1802. */
  1803. ring->last_retired_head = request->tail;
  1804. list_del(&request->list);
  1805. i915_gem_request_remove_from_client(request);
  1806. kfree(request);
  1807. }
  1808. /* Move any buffers on the active list that are no longer referenced
  1809. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1810. */
  1811. while (!list_empty(&ring->active_list)) {
  1812. struct drm_i915_gem_object *obj;
  1813. obj = list_first_entry(&ring->active_list,
  1814. struct drm_i915_gem_object,
  1815. ring_list);
  1816. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1817. break;
  1818. i915_gem_object_move_to_inactive(obj);
  1819. }
  1820. if (unlikely(ring->trace_irq_seqno &&
  1821. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1822. ring->irq_put(ring);
  1823. ring->trace_irq_seqno = 0;
  1824. }
  1825. WARN_ON(i915_verify_lists(ring->dev));
  1826. }
  1827. void
  1828. i915_gem_retire_requests(struct drm_device *dev)
  1829. {
  1830. drm_i915_private_t *dev_priv = dev->dev_private;
  1831. struct intel_ring_buffer *ring;
  1832. int i;
  1833. for_each_ring(ring, dev_priv, i)
  1834. i915_gem_retire_requests_ring(ring);
  1835. }
  1836. static void
  1837. i915_gem_retire_work_handler(struct work_struct *work)
  1838. {
  1839. drm_i915_private_t *dev_priv;
  1840. struct drm_device *dev;
  1841. struct intel_ring_buffer *ring;
  1842. bool idle;
  1843. int i;
  1844. dev_priv = container_of(work, drm_i915_private_t,
  1845. mm.retire_work.work);
  1846. dev = dev_priv->dev;
  1847. /* Come back later if the device is busy... */
  1848. if (!mutex_trylock(&dev->struct_mutex)) {
  1849. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1850. round_jiffies_up_relative(HZ));
  1851. return;
  1852. }
  1853. i915_gem_retire_requests(dev);
  1854. /* Send a periodic flush down the ring so we don't hold onto GEM
  1855. * objects indefinitely.
  1856. */
  1857. idle = true;
  1858. for_each_ring(ring, dev_priv, i) {
  1859. if (ring->gpu_caches_dirty)
  1860. i915_add_request(ring, NULL, NULL);
  1861. idle &= list_empty(&ring->request_list);
  1862. }
  1863. if (!dev_priv->mm.suspended && !idle)
  1864. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1865. round_jiffies_up_relative(HZ));
  1866. if (idle)
  1867. intel_mark_idle(dev);
  1868. mutex_unlock(&dev->struct_mutex);
  1869. }
  1870. /**
  1871. * Ensures that an object will eventually get non-busy by flushing any required
  1872. * write domains, emitting any outstanding lazy request and retiring and
  1873. * completed requests.
  1874. */
  1875. static int
  1876. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1877. {
  1878. int ret;
  1879. if (obj->active) {
  1880. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1881. if (ret)
  1882. return ret;
  1883. i915_gem_retire_requests_ring(obj->ring);
  1884. }
  1885. return 0;
  1886. }
  1887. /**
  1888. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1889. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1890. *
  1891. * Returns 0 if successful, else an error is returned with the remaining time in
  1892. * the timeout parameter.
  1893. * -ETIME: object is still busy after timeout
  1894. * -ERESTARTSYS: signal interrupted the wait
  1895. * -ENONENT: object doesn't exist
  1896. * Also possible, but rare:
  1897. * -EAGAIN: GPU wedged
  1898. * -ENOMEM: damn
  1899. * -ENODEV: Internal IRQ fail
  1900. * -E?: The add request failed
  1901. *
  1902. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1903. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1904. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1905. * without holding struct_mutex the object may become re-busied before this
  1906. * function completes. A similar but shorter * race condition exists in the busy
  1907. * ioctl
  1908. */
  1909. int
  1910. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1911. {
  1912. struct drm_i915_gem_wait *args = data;
  1913. struct drm_i915_gem_object *obj;
  1914. struct intel_ring_buffer *ring = NULL;
  1915. struct timespec timeout_stack, *timeout = NULL;
  1916. u32 seqno = 0;
  1917. int ret = 0;
  1918. if (args->timeout_ns >= 0) {
  1919. timeout_stack = ns_to_timespec(args->timeout_ns);
  1920. timeout = &timeout_stack;
  1921. }
  1922. ret = i915_mutex_lock_interruptible(dev);
  1923. if (ret)
  1924. return ret;
  1925. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1926. if (&obj->base == NULL) {
  1927. mutex_unlock(&dev->struct_mutex);
  1928. return -ENOENT;
  1929. }
  1930. /* Need to make sure the object gets inactive eventually. */
  1931. ret = i915_gem_object_flush_active(obj);
  1932. if (ret)
  1933. goto out;
  1934. if (obj->active) {
  1935. seqno = obj->last_read_seqno;
  1936. ring = obj->ring;
  1937. }
  1938. if (seqno == 0)
  1939. goto out;
  1940. /* Do this after OLR check to make sure we make forward progress polling
  1941. * on this IOCTL with a 0 timeout (like busy ioctl)
  1942. */
  1943. if (!args->timeout_ns) {
  1944. ret = -ETIME;
  1945. goto out;
  1946. }
  1947. drm_gem_object_unreference(&obj->base);
  1948. mutex_unlock(&dev->struct_mutex);
  1949. ret = __wait_seqno(ring, seqno, true, timeout);
  1950. if (timeout) {
  1951. WARN_ON(!timespec_valid(timeout));
  1952. args->timeout_ns = timespec_to_ns(timeout);
  1953. }
  1954. return ret;
  1955. out:
  1956. drm_gem_object_unreference(&obj->base);
  1957. mutex_unlock(&dev->struct_mutex);
  1958. return ret;
  1959. }
  1960. /**
  1961. * i915_gem_object_sync - sync an object to a ring.
  1962. *
  1963. * @obj: object which may be in use on another ring.
  1964. * @to: ring we wish to use the object on. May be NULL.
  1965. *
  1966. * This code is meant to abstract object synchronization with the GPU.
  1967. * Calling with NULL implies synchronizing the object with the CPU
  1968. * rather than a particular GPU ring.
  1969. *
  1970. * Returns 0 if successful, else propagates up the lower layer error.
  1971. */
  1972. int
  1973. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1974. struct intel_ring_buffer *to)
  1975. {
  1976. struct intel_ring_buffer *from = obj->ring;
  1977. u32 seqno;
  1978. int ret, idx;
  1979. if (from == NULL || to == from)
  1980. return 0;
  1981. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1982. return i915_gem_object_wait_rendering(obj, false);
  1983. idx = intel_ring_sync_index(from, to);
  1984. seqno = obj->last_read_seqno;
  1985. if (seqno <= from->sync_seqno[idx])
  1986. return 0;
  1987. ret = i915_gem_check_olr(obj->ring, seqno);
  1988. if (ret)
  1989. return ret;
  1990. ret = to->sync_to(to, from, seqno);
  1991. if (!ret)
  1992. /* We use last_read_seqno because sync_to()
  1993. * might have just caused seqno wrap under
  1994. * the radar.
  1995. */
  1996. from->sync_seqno[idx] = obj->last_read_seqno;
  1997. return ret;
  1998. }
  1999. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2000. {
  2001. u32 old_write_domain, old_read_domains;
  2002. /* Act a barrier for all accesses through the GTT */
  2003. mb();
  2004. /* Force a pagefault for domain tracking on next user access */
  2005. i915_gem_release_mmap(obj);
  2006. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2007. return;
  2008. old_read_domains = obj->base.read_domains;
  2009. old_write_domain = obj->base.write_domain;
  2010. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2011. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2012. trace_i915_gem_object_change_domain(obj,
  2013. old_read_domains,
  2014. old_write_domain);
  2015. }
  2016. /**
  2017. * Unbinds an object from the GTT aperture.
  2018. */
  2019. int
  2020. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  2021. {
  2022. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2023. int ret = 0;
  2024. if (obj->gtt_space == NULL)
  2025. return 0;
  2026. if (obj->pin_count)
  2027. return -EBUSY;
  2028. BUG_ON(obj->pages == NULL);
  2029. ret = i915_gem_object_finish_gpu(obj);
  2030. if (ret)
  2031. return ret;
  2032. /* Continue on if we fail due to EIO, the GPU is hung so we
  2033. * should be safe and we need to cleanup or else we might
  2034. * cause memory corruption through use-after-free.
  2035. */
  2036. i915_gem_object_finish_gtt(obj);
  2037. /* release the fence reg _after_ flushing */
  2038. ret = i915_gem_object_put_fence(obj);
  2039. if (ret)
  2040. return ret;
  2041. trace_i915_gem_object_unbind(obj);
  2042. if (obj->has_global_gtt_mapping)
  2043. i915_gem_gtt_unbind_object(obj);
  2044. if (obj->has_aliasing_ppgtt_mapping) {
  2045. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2046. obj->has_aliasing_ppgtt_mapping = 0;
  2047. }
  2048. i915_gem_gtt_finish_object(obj);
  2049. list_del(&obj->mm_list);
  2050. list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  2051. /* Avoid an unnecessary call to unbind on rebind. */
  2052. obj->map_and_fenceable = true;
  2053. drm_mm_put_block(obj->gtt_space);
  2054. obj->gtt_space = NULL;
  2055. obj->gtt_offset = 0;
  2056. return 0;
  2057. }
  2058. int i915_gpu_idle(struct drm_device *dev)
  2059. {
  2060. drm_i915_private_t *dev_priv = dev->dev_private;
  2061. struct intel_ring_buffer *ring;
  2062. int ret, i;
  2063. /* Flush everything onto the inactive list. */
  2064. for_each_ring(ring, dev_priv, i) {
  2065. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2066. if (ret)
  2067. return ret;
  2068. ret = intel_ring_idle(ring);
  2069. if (ret)
  2070. return ret;
  2071. }
  2072. return 0;
  2073. }
  2074. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2075. struct drm_i915_gem_object *obj)
  2076. {
  2077. drm_i915_private_t *dev_priv = dev->dev_private;
  2078. int fence_reg;
  2079. int fence_pitch_shift;
  2080. uint64_t val;
  2081. if (INTEL_INFO(dev)->gen >= 6) {
  2082. fence_reg = FENCE_REG_SANDYBRIDGE_0;
  2083. fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2084. } else {
  2085. fence_reg = FENCE_REG_965_0;
  2086. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  2087. }
  2088. if (obj) {
  2089. u32 size = obj->gtt_space->size;
  2090. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2091. 0xfffff000) << 32;
  2092. val |= obj->gtt_offset & 0xfffff000;
  2093. val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
  2094. if (obj->tiling_mode == I915_TILING_Y)
  2095. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2096. val |= I965_FENCE_REG_VALID;
  2097. } else
  2098. val = 0;
  2099. fence_reg += reg * 8;
  2100. I915_WRITE64(fence_reg, val);
  2101. POSTING_READ(fence_reg);
  2102. }
  2103. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2104. struct drm_i915_gem_object *obj)
  2105. {
  2106. drm_i915_private_t *dev_priv = dev->dev_private;
  2107. u32 val;
  2108. if (obj) {
  2109. u32 size = obj->gtt_space->size;
  2110. int pitch_val;
  2111. int tile_width;
  2112. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2113. (size & -size) != size ||
  2114. (obj->gtt_offset & (size - 1)),
  2115. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2116. obj->gtt_offset, obj->map_and_fenceable, size);
  2117. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2118. tile_width = 128;
  2119. else
  2120. tile_width = 512;
  2121. /* Note: pitch better be a power of two tile widths */
  2122. pitch_val = obj->stride / tile_width;
  2123. pitch_val = ffs(pitch_val) - 1;
  2124. val = obj->gtt_offset;
  2125. if (obj->tiling_mode == I915_TILING_Y)
  2126. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2127. val |= I915_FENCE_SIZE_BITS(size);
  2128. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2129. val |= I830_FENCE_REG_VALID;
  2130. } else
  2131. val = 0;
  2132. if (reg < 8)
  2133. reg = FENCE_REG_830_0 + reg * 4;
  2134. else
  2135. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2136. I915_WRITE(reg, val);
  2137. POSTING_READ(reg);
  2138. }
  2139. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2140. struct drm_i915_gem_object *obj)
  2141. {
  2142. drm_i915_private_t *dev_priv = dev->dev_private;
  2143. uint32_t val;
  2144. if (obj) {
  2145. u32 size = obj->gtt_space->size;
  2146. uint32_t pitch_val;
  2147. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2148. (size & -size) != size ||
  2149. (obj->gtt_offset & (size - 1)),
  2150. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2151. obj->gtt_offset, size);
  2152. pitch_val = obj->stride / 128;
  2153. pitch_val = ffs(pitch_val) - 1;
  2154. val = obj->gtt_offset;
  2155. if (obj->tiling_mode == I915_TILING_Y)
  2156. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2157. val |= I830_FENCE_SIZE_BITS(size);
  2158. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2159. val |= I830_FENCE_REG_VALID;
  2160. } else
  2161. val = 0;
  2162. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2163. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2164. }
  2165. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2166. struct drm_i915_gem_object *obj)
  2167. {
  2168. switch (INTEL_INFO(dev)->gen) {
  2169. case 7:
  2170. case 6:
  2171. case 5:
  2172. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2173. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2174. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2175. default: BUG();
  2176. }
  2177. }
  2178. static inline int fence_number(struct drm_i915_private *dev_priv,
  2179. struct drm_i915_fence_reg *fence)
  2180. {
  2181. return fence - dev_priv->fence_regs;
  2182. }
  2183. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2184. struct drm_i915_fence_reg *fence,
  2185. bool enable)
  2186. {
  2187. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2188. int reg = fence_number(dev_priv, fence);
  2189. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2190. if (enable) {
  2191. obj->fence_reg = reg;
  2192. fence->obj = obj;
  2193. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2194. } else {
  2195. obj->fence_reg = I915_FENCE_REG_NONE;
  2196. fence->obj = NULL;
  2197. list_del_init(&fence->lru_list);
  2198. }
  2199. }
  2200. static int
  2201. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2202. {
  2203. if (obj->last_fenced_seqno) {
  2204. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2205. if (ret)
  2206. return ret;
  2207. obj->last_fenced_seqno = 0;
  2208. }
  2209. /* Ensure that all CPU reads are completed before installing a fence
  2210. * and all writes before removing the fence.
  2211. */
  2212. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2213. mb();
  2214. obj->fenced_gpu_access = false;
  2215. return 0;
  2216. }
  2217. int
  2218. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2219. {
  2220. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2221. int ret;
  2222. ret = i915_gem_object_flush_fence(obj);
  2223. if (ret)
  2224. return ret;
  2225. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2226. return 0;
  2227. i915_gem_object_update_fence(obj,
  2228. &dev_priv->fence_regs[obj->fence_reg],
  2229. false);
  2230. i915_gem_object_fence_lost(obj);
  2231. return 0;
  2232. }
  2233. static struct drm_i915_fence_reg *
  2234. i915_find_fence_reg(struct drm_device *dev)
  2235. {
  2236. struct drm_i915_private *dev_priv = dev->dev_private;
  2237. struct drm_i915_fence_reg *reg, *avail;
  2238. int i;
  2239. /* First try to find a free reg */
  2240. avail = NULL;
  2241. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2242. reg = &dev_priv->fence_regs[i];
  2243. if (!reg->obj)
  2244. return reg;
  2245. if (!reg->pin_count)
  2246. avail = reg;
  2247. }
  2248. if (avail == NULL)
  2249. return NULL;
  2250. /* None available, try to steal one or wait for a user to finish */
  2251. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2252. if (reg->pin_count)
  2253. continue;
  2254. return reg;
  2255. }
  2256. return NULL;
  2257. }
  2258. /**
  2259. * i915_gem_object_get_fence - set up fencing for an object
  2260. * @obj: object to map through a fence reg
  2261. *
  2262. * When mapping objects through the GTT, userspace wants to be able to write
  2263. * to them without having to worry about swizzling if the object is tiled.
  2264. * This function walks the fence regs looking for a free one for @obj,
  2265. * stealing one if it can't find any.
  2266. *
  2267. * It then sets up the reg based on the object's properties: address, pitch
  2268. * and tiling format.
  2269. *
  2270. * For an untiled surface, this removes any existing fence.
  2271. */
  2272. int
  2273. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2274. {
  2275. struct drm_device *dev = obj->base.dev;
  2276. struct drm_i915_private *dev_priv = dev->dev_private;
  2277. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2278. struct drm_i915_fence_reg *reg;
  2279. int ret;
  2280. /* Have we updated the tiling parameters upon the object and so
  2281. * will need to serialise the write to the associated fence register?
  2282. */
  2283. if (obj->fence_dirty) {
  2284. ret = i915_gem_object_flush_fence(obj);
  2285. if (ret)
  2286. return ret;
  2287. }
  2288. /* Just update our place in the LRU if our fence is getting reused. */
  2289. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2290. reg = &dev_priv->fence_regs[obj->fence_reg];
  2291. if (!obj->fence_dirty) {
  2292. list_move_tail(&reg->lru_list,
  2293. &dev_priv->mm.fence_list);
  2294. return 0;
  2295. }
  2296. } else if (enable) {
  2297. reg = i915_find_fence_reg(dev);
  2298. if (reg == NULL)
  2299. return -EDEADLK;
  2300. if (reg->obj) {
  2301. struct drm_i915_gem_object *old = reg->obj;
  2302. ret = i915_gem_object_flush_fence(old);
  2303. if (ret)
  2304. return ret;
  2305. i915_gem_object_fence_lost(old);
  2306. }
  2307. } else
  2308. return 0;
  2309. i915_gem_object_update_fence(obj, reg, enable);
  2310. obj->fence_dirty = false;
  2311. return 0;
  2312. }
  2313. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2314. struct drm_mm_node *gtt_space,
  2315. unsigned long cache_level)
  2316. {
  2317. struct drm_mm_node *other;
  2318. /* On non-LLC machines we have to be careful when putting differing
  2319. * types of snoopable memory together to avoid the prefetcher
  2320. * crossing memory domains and dying.
  2321. */
  2322. if (HAS_LLC(dev))
  2323. return true;
  2324. if (gtt_space == NULL)
  2325. return true;
  2326. if (list_empty(&gtt_space->node_list))
  2327. return true;
  2328. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2329. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2330. return false;
  2331. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2332. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2333. return false;
  2334. return true;
  2335. }
  2336. static void i915_gem_verify_gtt(struct drm_device *dev)
  2337. {
  2338. #if WATCH_GTT
  2339. struct drm_i915_private *dev_priv = dev->dev_private;
  2340. struct drm_i915_gem_object *obj;
  2341. int err = 0;
  2342. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2343. if (obj->gtt_space == NULL) {
  2344. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2345. err++;
  2346. continue;
  2347. }
  2348. if (obj->cache_level != obj->gtt_space->color) {
  2349. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2350. obj->gtt_space->start,
  2351. obj->gtt_space->start + obj->gtt_space->size,
  2352. obj->cache_level,
  2353. obj->gtt_space->color);
  2354. err++;
  2355. continue;
  2356. }
  2357. if (!i915_gem_valid_gtt_space(dev,
  2358. obj->gtt_space,
  2359. obj->cache_level)) {
  2360. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2361. obj->gtt_space->start,
  2362. obj->gtt_space->start + obj->gtt_space->size,
  2363. obj->cache_level);
  2364. err++;
  2365. continue;
  2366. }
  2367. }
  2368. WARN_ON(err);
  2369. #endif
  2370. }
  2371. /**
  2372. * Finds free space in the GTT aperture and binds the object there.
  2373. */
  2374. static int
  2375. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2376. unsigned alignment,
  2377. bool map_and_fenceable,
  2378. bool nonblocking)
  2379. {
  2380. struct drm_device *dev = obj->base.dev;
  2381. drm_i915_private_t *dev_priv = dev->dev_private;
  2382. struct drm_mm_node *node;
  2383. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2384. bool mappable, fenceable;
  2385. int ret;
  2386. if (obj->madv != I915_MADV_WILLNEED) {
  2387. DRM_ERROR("Attempting to bind a purgeable object\n");
  2388. return -EINVAL;
  2389. }
  2390. fence_size = i915_gem_get_gtt_size(dev,
  2391. obj->base.size,
  2392. obj->tiling_mode);
  2393. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2394. obj->base.size,
  2395. obj->tiling_mode, true);
  2396. unfenced_alignment =
  2397. i915_gem_get_gtt_alignment(dev,
  2398. obj->base.size,
  2399. obj->tiling_mode, false);
  2400. if (alignment == 0)
  2401. alignment = map_and_fenceable ? fence_alignment :
  2402. unfenced_alignment;
  2403. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2404. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2405. return -EINVAL;
  2406. }
  2407. size = map_and_fenceable ? fence_size : obj->base.size;
  2408. /* If the object is bigger than the entire aperture, reject it early
  2409. * before evicting everything in a vain attempt to find space.
  2410. */
  2411. if (obj->base.size >
  2412. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2413. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2414. return -E2BIG;
  2415. }
  2416. ret = i915_gem_object_get_pages(obj);
  2417. if (ret)
  2418. return ret;
  2419. i915_gem_object_pin_pages(obj);
  2420. node = kzalloc(sizeof(*node), GFP_KERNEL);
  2421. if (node == NULL) {
  2422. i915_gem_object_unpin_pages(obj);
  2423. return -ENOMEM;
  2424. }
  2425. search_free:
  2426. if (map_and_fenceable)
  2427. ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
  2428. size, alignment, obj->cache_level,
  2429. 0, dev_priv->mm.gtt_mappable_end);
  2430. else
  2431. ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
  2432. size, alignment, obj->cache_level);
  2433. if (ret) {
  2434. ret = i915_gem_evict_something(dev, size, alignment,
  2435. obj->cache_level,
  2436. map_and_fenceable,
  2437. nonblocking);
  2438. if (ret == 0)
  2439. goto search_free;
  2440. i915_gem_object_unpin_pages(obj);
  2441. kfree(node);
  2442. return ret;
  2443. }
  2444. if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
  2445. i915_gem_object_unpin_pages(obj);
  2446. drm_mm_put_block(node);
  2447. return -EINVAL;
  2448. }
  2449. ret = i915_gem_gtt_prepare_object(obj);
  2450. if (ret) {
  2451. i915_gem_object_unpin_pages(obj);
  2452. drm_mm_put_block(node);
  2453. return ret;
  2454. }
  2455. list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
  2456. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2457. obj->gtt_space = node;
  2458. obj->gtt_offset = node->start;
  2459. fenceable =
  2460. node->size == fence_size &&
  2461. (node->start & (fence_alignment - 1)) == 0;
  2462. mappable =
  2463. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2464. obj->map_and_fenceable = mappable && fenceable;
  2465. i915_gem_object_unpin_pages(obj);
  2466. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2467. i915_gem_verify_gtt(dev);
  2468. return 0;
  2469. }
  2470. void
  2471. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2472. {
  2473. /* If we don't have a page list set up, then we're not pinned
  2474. * to GPU, and we can ignore the cache flush because it'll happen
  2475. * again at bind time.
  2476. */
  2477. if (obj->pages == NULL)
  2478. return;
  2479. /* If the GPU is snooping the contents of the CPU cache,
  2480. * we do not need to manually clear the CPU cache lines. However,
  2481. * the caches are only snooped when the render cache is
  2482. * flushed/invalidated. As we always have to emit invalidations
  2483. * and flushes when moving into and out of the RENDER domain, correct
  2484. * snooping behaviour occurs naturally as the result of our domain
  2485. * tracking.
  2486. */
  2487. if (obj->cache_level != I915_CACHE_NONE)
  2488. return;
  2489. trace_i915_gem_object_clflush(obj);
  2490. drm_clflush_sg(obj->pages);
  2491. }
  2492. /** Flushes the GTT write domain for the object if it's dirty. */
  2493. static void
  2494. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2495. {
  2496. uint32_t old_write_domain;
  2497. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2498. return;
  2499. /* No actual flushing is required for the GTT write domain. Writes
  2500. * to it immediately go to main memory as far as we know, so there's
  2501. * no chipset flush. It also doesn't land in render cache.
  2502. *
  2503. * However, we do have to enforce the order so that all writes through
  2504. * the GTT land before any writes to the device, such as updates to
  2505. * the GATT itself.
  2506. */
  2507. wmb();
  2508. old_write_domain = obj->base.write_domain;
  2509. obj->base.write_domain = 0;
  2510. trace_i915_gem_object_change_domain(obj,
  2511. obj->base.read_domains,
  2512. old_write_domain);
  2513. }
  2514. /** Flushes the CPU write domain for the object if it's dirty. */
  2515. static void
  2516. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2517. {
  2518. uint32_t old_write_domain;
  2519. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2520. return;
  2521. i915_gem_clflush_object(obj);
  2522. i915_gem_chipset_flush(obj->base.dev);
  2523. old_write_domain = obj->base.write_domain;
  2524. obj->base.write_domain = 0;
  2525. trace_i915_gem_object_change_domain(obj,
  2526. obj->base.read_domains,
  2527. old_write_domain);
  2528. }
  2529. /**
  2530. * Moves a single object to the GTT read, and possibly write domain.
  2531. *
  2532. * This function returns when the move is complete, including waiting on
  2533. * flushes to occur.
  2534. */
  2535. int
  2536. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2537. {
  2538. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2539. uint32_t old_write_domain, old_read_domains;
  2540. int ret;
  2541. /* Not valid to be called on unbound objects. */
  2542. if (obj->gtt_space == NULL)
  2543. return -EINVAL;
  2544. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2545. return 0;
  2546. ret = i915_gem_object_wait_rendering(obj, !write);
  2547. if (ret)
  2548. return ret;
  2549. i915_gem_object_flush_cpu_write_domain(obj);
  2550. old_write_domain = obj->base.write_domain;
  2551. old_read_domains = obj->base.read_domains;
  2552. /* It should now be out of any other write domains, and we can update
  2553. * the domain values for our changes.
  2554. */
  2555. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2556. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2557. if (write) {
  2558. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2559. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2560. obj->dirty = 1;
  2561. }
  2562. trace_i915_gem_object_change_domain(obj,
  2563. old_read_domains,
  2564. old_write_domain);
  2565. /* And bump the LRU for this access */
  2566. if (i915_gem_object_is_inactive(obj))
  2567. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2568. return 0;
  2569. }
  2570. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2571. enum i915_cache_level cache_level)
  2572. {
  2573. struct drm_device *dev = obj->base.dev;
  2574. drm_i915_private_t *dev_priv = dev->dev_private;
  2575. int ret;
  2576. if (obj->cache_level == cache_level)
  2577. return 0;
  2578. if (obj->pin_count) {
  2579. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2580. return -EBUSY;
  2581. }
  2582. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2583. ret = i915_gem_object_unbind(obj);
  2584. if (ret)
  2585. return ret;
  2586. }
  2587. if (obj->gtt_space) {
  2588. ret = i915_gem_object_finish_gpu(obj);
  2589. if (ret)
  2590. return ret;
  2591. i915_gem_object_finish_gtt(obj);
  2592. /* Before SandyBridge, you could not use tiling or fence
  2593. * registers with snooped memory, so relinquish any fences
  2594. * currently pointing to our region in the aperture.
  2595. */
  2596. if (INTEL_INFO(dev)->gen < 6) {
  2597. ret = i915_gem_object_put_fence(obj);
  2598. if (ret)
  2599. return ret;
  2600. }
  2601. if (obj->has_global_gtt_mapping)
  2602. i915_gem_gtt_bind_object(obj, cache_level);
  2603. if (obj->has_aliasing_ppgtt_mapping)
  2604. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2605. obj, cache_level);
  2606. obj->gtt_space->color = cache_level;
  2607. }
  2608. if (cache_level == I915_CACHE_NONE) {
  2609. u32 old_read_domains, old_write_domain;
  2610. /* If we're coming from LLC cached, then we haven't
  2611. * actually been tracking whether the data is in the
  2612. * CPU cache or not, since we only allow one bit set
  2613. * in obj->write_domain and have been skipping the clflushes.
  2614. * Just set it to the CPU cache for now.
  2615. */
  2616. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2617. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2618. old_read_domains = obj->base.read_domains;
  2619. old_write_domain = obj->base.write_domain;
  2620. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2621. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2622. trace_i915_gem_object_change_domain(obj,
  2623. old_read_domains,
  2624. old_write_domain);
  2625. }
  2626. obj->cache_level = cache_level;
  2627. i915_gem_verify_gtt(dev);
  2628. return 0;
  2629. }
  2630. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2631. struct drm_file *file)
  2632. {
  2633. struct drm_i915_gem_caching *args = data;
  2634. struct drm_i915_gem_object *obj;
  2635. int ret;
  2636. ret = i915_mutex_lock_interruptible(dev);
  2637. if (ret)
  2638. return ret;
  2639. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2640. if (&obj->base == NULL) {
  2641. ret = -ENOENT;
  2642. goto unlock;
  2643. }
  2644. args->caching = obj->cache_level != I915_CACHE_NONE;
  2645. drm_gem_object_unreference(&obj->base);
  2646. unlock:
  2647. mutex_unlock(&dev->struct_mutex);
  2648. return ret;
  2649. }
  2650. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2651. struct drm_file *file)
  2652. {
  2653. struct drm_i915_gem_caching *args = data;
  2654. struct drm_i915_gem_object *obj;
  2655. enum i915_cache_level level;
  2656. int ret;
  2657. switch (args->caching) {
  2658. case I915_CACHING_NONE:
  2659. level = I915_CACHE_NONE;
  2660. break;
  2661. case I915_CACHING_CACHED:
  2662. level = I915_CACHE_LLC;
  2663. break;
  2664. default:
  2665. return -EINVAL;
  2666. }
  2667. ret = i915_mutex_lock_interruptible(dev);
  2668. if (ret)
  2669. return ret;
  2670. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2671. if (&obj->base == NULL) {
  2672. ret = -ENOENT;
  2673. goto unlock;
  2674. }
  2675. ret = i915_gem_object_set_cache_level(obj, level);
  2676. drm_gem_object_unreference(&obj->base);
  2677. unlock:
  2678. mutex_unlock(&dev->struct_mutex);
  2679. return ret;
  2680. }
  2681. /*
  2682. * Prepare buffer for display plane (scanout, cursors, etc).
  2683. * Can be called from an uninterruptible phase (modesetting) and allows
  2684. * any flushes to be pipelined (for pageflips).
  2685. */
  2686. int
  2687. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2688. u32 alignment,
  2689. struct intel_ring_buffer *pipelined)
  2690. {
  2691. u32 old_read_domains, old_write_domain;
  2692. int ret;
  2693. if (pipelined != obj->ring) {
  2694. ret = i915_gem_object_sync(obj, pipelined);
  2695. if (ret)
  2696. return ret;
  2697. }
  2698. /* The display engine is not coherent with the LLC cache on gen6. As
  2699. * a result, we make sure that the pinning that is about to occur is
  2700. * done with uncached PTEs. This is lowest common denominator for all
  2701. * chipsets.
  2702. *
  2703. * However for gen6+, we could do better by using the GFDT bit instead
  2704. * of uncaching, which would allow us to flush all the LLC-cached data
  2705. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2706. */
  2707. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2708. if (ret)
  2709. return ret;
  2710. /* As the user may map the buffer once pinned in the display plane
  2711. * (e.g. libkms for the bootup splash), we have to ensure that we
  2712. * always use map_and_fenceable for all scanout buffers.
  2713. */
  2714. ret = i915_gem_object_pin(obj, alignment, true, false);
  2715. if (ret)
  2716. return ret;
  2717. i915_gem_object_flush_cpu_write_domain(obj);
  2718. old_write_domain = obj->base.write_domain;
  2719. old_read_domains = obj->base.read_domains;
  2720. /* It should now be out of any other write domains, and we can update
  2721. * the domain values for our changes.
  2722. */
  2723. obj->base.write_domain = 0;
  2724. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2725. trace_i915_gem_object_change_domain(obj,
  2726. old_read_domains,
  2727. old_write_domain);
  2728. return 0;
  2729. }
  2730. int
  2731. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2732. {
  2733. int ret;
  2734. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2735. return 0;
  2736. ret = i915_gem_object_wait_rendering(obj, false);
  2737. if (ret)
  2738. return ret;
  2739. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2740. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2741. return 0;
  2742. }
  2743. /**
  2744. * Moves a single object to the CPU read, and possibly write domain.
  2745. *
  2746. * This function returns when the move is complete, including waiting on
  2747. * flushes to occur.
  2748. */
  2749. int
  2750. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2751. {
  2752. uint32_t old_write_domain, old_read_domains;
  2753. int ret;
  2754. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2755. return 0;
  2756. ret = i915_gem_object_wait_rendering(obj, !write);
  2757. if (ret)
  2758. return ret;
  2759. i915_gem_object_flush_gtt_write_domain(obj);
  2760. old_write_domain = obj->base.write_domain;
  2761. old_read_domains = obj->base.read_domains;
  2762. /* Flush the CPU cache if it's still invalid. */
  2763. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2764. i915_gem_clflush_object(obj);
  2765. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2766. }
  2767. /* It should now be out of any other write domains, and we can update
  2768. * the domain values for our changes.
  2769. */
  2770. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2771. /* If we're writing through the CPU, then the GPU read domains will
  2772. * need to be invalidated at next use.
  2773. */
  2774. if (write) {
  2775. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2776. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2777. }
  2778. trace_i915_gem_object_change_domain(obj,
  2779. old_read_domains,
  2780. old_write_domain);
  2781. return 0;
  2782. }
  2783. /* Throttle our rendering by waiting until the ring has completed our requests
  2784. * emitted over 20 msec ago.
  2785. *
  2786. * Note that if we were to use the current jiffies each time around the loop,
  2787. * we wouldn't escape the function with any frames outstanding if the time to
  2788. * render a frame was over 20ms.
  2789. *
  2790. * This should get us reasonable parallelism between CPU and GPU but also
  2791. * relatively low latency when blocking on a particular request to finish.
  2792. */
  2793. static int
  2794. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2795. {
  2796. struct drm_i915_private *dev_priv = dev->dev_private;
  2797. struct drm_i915_file_private *file_priv = file->driver_priv;
  2798. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2799. struct drm_i915_gem_request *request;
  2800. struct intel_ring_buffer *ring = NULL;
  2801. u32 seqno = 0;
  2802. int ret;
  2803. if (atomic_read(&dev_priv->mm.wedged))
  2804. return -EIO;
  2805. spin_lock(&file_priv->mm.lock);
  2806. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2807. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2808. break;
  2809. ring = request->ring;
  2810. seqno = request->seqno;
  2811. }
  2812. spin_unlock(&file_priv->mm.lock);
  2813. if (seqno == 0)
  2814. return 0;
  2815. ret = __wait_seqno(ring, seqno, true, NULL);
  2816. if (ret == 0)
  2817. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2818. return ret;
  2819. }
  2820. int
  2821. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2822. uint32_t alignment,
  2823. bool map_and_fenceable,
  2824. bool nonblocking)
  2825. {
  2826. int ret;
  2827. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  2828. return -EBUSY;
  2829. if (obj->gtt_space != NULL) {
  2830. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2831. (map_and_fenceable && !obj->map_and_fenceable)) {
  2832. WARN(obj->pin_count,
  2833. "bo is already pinned with incorrect alignment:"
  2834. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2835. " obj->map_and_fenceable=%d\n",
  2836. obj->gtt_offset, alignment,
  2837. map_and_fenceable,
  2838. obj->map_and_fenceable);
  2839. ret = i915_gem_object_unbind(obj);
  2840. if (ret)
  2841. return ret;
  2842. }
  2843. }
  2844. if (obj->gtt_space == NULL) {
  2845. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2846. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2847. map_and_fenceable,
  2848. nonblocking);
  2849. if (ret)
  2850. return ret;
  2851. if (!dev_priv->mm.aliasing_ppgtt)
  2852. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2853. }
  2854. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2855. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2856. obj->pin_count++;
  2857. obj->pin_mappable |= map_and_fenceable;
  2858. return 0;
  2859. }
  2860. void
  2861. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2862. {
  2863. BUG_ON(obj->pin_count == 0);
  2864. BUG_ON(obj->gtt_space == NULL);
  2865. if (--obj->pin_count == 0)
  2866. obj->pin_mappable = false;
  2867. }
  2868. int
  2869. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2870. struct drm_file *file)
  2871. {
  2872. struct drm_i915_gem_pin *args = data;
  2873. struct drm_i915_gem_object *obj;
  2874. int ret;
  2875. ret = i915_mutex_lock_interruptible(dev);
  2876. if (ret)
  2877. return ret;
  2878. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2879. if (&obj->base == NULL) {
  2880. ret = -ENOENT;
  2881. goto unlock;
  2882. }
  2883. if (obj->madv != I915_MADV_WILLNEED) {
  2884. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2885. ret = -EINVAL;
  2886. goto out;
  2887. }
  2888. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2889. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2890. args->handle);
  2891. ret = -EINVAL;
  2892. goto out;
  2893. }
  2894. obj->user_pin_count++;
  2895. obj->pin_filp = file;
  2896. if (obj->user_pin_count == 1) {
  2897. ret = i915_gem_object_pin(obj, args->alignment, true, false);
  2898. if (ret)
  2899. goto out;
  2900. }
  2901. /* XXX - flush the CPU caches for pinned objects
  2902. * as the X server doesn't manage domains yet
  2903. */
  2904. i915_gem_object_flush_cpu_write_domain(obj);
  2905. args->offset = obj->gtt_offset;
  2906. out:
  2907. drm_gem_object_unreference(&obj->base);
  2908. unlock:
  2909. mutex_unlock(&dev->struct_mutex);
  2910. return ret;
  2911. }
  2912. int
  2913. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2914. struct drm_file *file)
  2915. {
  2916. struct drm_i915_gem_pin *args = data;
  2917. struct drm_i915_gem_object *obj;
  2918. int ret;
  2919. ret = i915_mutex_lock_interruptible(dev);
  2920. if (ret)
  2921. return ret;
  2922. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2923. if (&obj->base == NULL) {
  2924. ret = -ENOENT;
  2925. goto unlock;
  2926. }
  2927. if (obj->pin_filp != file) {
  2928. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2929. args->handle);
  2930. ret = -EINVAL;
  2931. goto out;
  2932. }
  2933. obj->user_pin_count--;
  2934. if (obj->user_pin_count == 0) {
  2935. obj->pin_filp = NULL;
  2936. i915_gem_object_unpin(obj);
  2937. }
  2938. out:
  2939. drm_gem_object_unreference(&obj->base);
  2940. unlock:
  2941. mutex_unlock(&dev->struct_mutex);
  2942. return ret;
  2943. }
  2944. int
  2945. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2946. struct drm_file *file)
  2947. {
  2948. struct drm_i915_gem_busy *args = data;
  2949. struct drm_i915_gem_object *obj;
  2950. int ret;
  2951. ret = i915_mutex_lock_interruptible(dev);
  2952. if (ret)
  2953. return ret;
  2954. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2955. if (&obj->base == NULL) {
  2956. ret = -ENOENT;
  2957. goto unlock;
  2958. }
  2959. /* Count all active objects as busy, even if they are currently not used
  2960. * by the gpu. Users of this interface expect objects to eventually
  2961. * become non-busy without any further actions, therefore emit any
  2962. * necessary flushes here.
  2963. */
  2964. ret = i915_gem_object_flush_active(obj);
  2965. args->busy = obj->active;
  2966. if (obj->ring) {
  2967. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  2968. args->busy |= intel_ring_flag(obj->ring) << 16;
  2969. }
  2970. drm_gem_object_unreference(&obj->base);
  2971. unlock:
  2972. mutex_unlock(&dev->struct_mutex);
  2973. return ret;
  2974. }
  2975. int
  2976. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2977. struct drm_file *file_priv)
  2978. {
  2979. return i915_gem_ring_throttle(dev, file_priv);
  2980. }
  2981. int
  2982. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2983. struct drm_file *file_priv)
  2984. {
  2985. struct drm_i915_gem_madvise *args = data;
  2986. struct drm_i915_gem_object *obj;
  2987. int ret;
  2988. switch (args->madv) {
  2989. case I915_MADV_DONTNEED:
  2990. case I915_MADV_WILLNEED:
  2991. break;
  2992. default:
  2993. return -EINVAL;
  2994. }
  2995. ret = i915_mutex_lock_interruptible(dev);
  2996. if (ret)
  2997. return ret;
  2998. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2999. if (&obj->base == NULL) {
  3000. ret = -ENOENT;
  3001. goto unlock;
  3002. }
  3003. if (obj->pin_count) {
  3004. ret = -EINVAL;
  3005. goto out;
  3006. }
  3007. if (obj->madv != __I915_MADV_PURGED)
  3008. obj->madv = args->madv;
  3009. /* if the object is no longer attached, discard its backing storage */
  3010. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3011. i915_gem_object_truncate(obj);
  3012. args->retained = obj->madv != __I915_MADV_PURGED;
  3013. out:
  3014. drm_gem_object_unreference(&obj->base);
  3015. unlock:
  3016. mutex_unlock(&dev->struct_mutex);
  3017. return ret;
  3018. }
  3019. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3020. const struct drm_i915_gem_object_ops *ops)
  3021. {
  3022. INIT_LIST_HEAD(&obj->mm_list);
  3023. INIT_LIST_HEAD(&obj->gtt_list);
  3024. INIT_LIST_HEAD(&obj->ring_list);
  3025. INIT_LIST_HEAD(&obj->exec_list);
  3026. obj->ops = ops;
  3027. obj->fence_reg = I915_FENCE_REG_NONE;
  3028. obj->madv = I915_MADV_WILLNEED;
  3029. /* Avoid an unnecessary call to unbind on the first bind. */
  3030. obj->map_and_fenceable = true;
  3031. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3032. }
  3033. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3034. .get_pages = i915_gem_object_get_pages_gtt,
  3035. .put_pages = i915_gem_object_put_pages_gtt,
  3036. };
  3037. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3038. size_t size)
  3039. {
  3040. struct drm_i915_gem_object *obj;
  3041. struct address_space *mapping;
  3042. gfp_t mask;
  3043. obj = i915_gem_object_alloc(dev);
  3044. if (obj == NULL)
  3045. return NULL;
  3046. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3047. i915_gem_object_free(obj);
  3048. return NULL;
  3049. }
  3050. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3051. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3052. /* 965gm cannot relocate objects above 4GiB. */
  3053. mask &= ~__GFP_HIGHMEM;
  3054. mask |= __GFP_DMA32;
  3055. }
  3056. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3057. mapping_set_gfp_mask(mapping, mask);
  3058. i915_gem_object_init(obj, &i915_gem_object_ops);
  3059. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3060. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3061. if (HAS_LLC(dev)) {
  3062. /* On some devices, we can have the GPU use the LLC (the CPU
  3063. * cache) for about a 10% performance improvement
  3064. * compared to uncached. Graphics requests other than
  3065. * display scanout are coherent with the CPU in
  3066. * accessing this cache. This means in this mode we
  3067. * don't need to clflush on the CPU side, and on the
  3068. * GPU side we only need to flush internal caches to
  3069. * get data visible to the CPU.
  3070. *
  3071. * However, we maintain the display planes as UC, and so
  3072. * need to rebind when first used as such.
  3073. */
  3074. obj->cache_level = I915_CACHE_LLC;
  3075. } else
  3076. obj->cache_level = I915_CACHE_NONE;
  3077. return obj;
  3078. }
  3079. int i915_gem_init_object(struct drm_gem_object *obj)
  3080. {
  3081. BUG();
  3082. return 0;
  3083. }
  3084. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3085. {
  3086. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3087. struct drm_device *dev = obj->base.dev;
  3088. drm_i915_private_t *dev_priv = dev->dev_private;
  3089. trace_i915_gem_object_destroy(obj);
  3090. if (obj->phys_obj)
  3091. i915_gem_detach_phys_object(dev, obj);
  3092. obj->pin_count = 0;
  3093. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3094. bool was_interruptible;
  3095. was_interruptible = dev_priv->mm.interruptible;
  3096. dev_priv->mm.interruptible = false;
  3097. WARN_ON(i915_gem_object_unbind(obj));
  3098. dev_priv->mm.interruptible = was_interruptible;
  3099. }
  3100. obj->pages_pin_count = 0;
  3101. i915_gem_object_put_pages(obj);
  3102. i915_gem_object_free_mmap_offset(obj);
  3103. i915_gem_object_release_stolen(obj);
  3104. BUG_ON(obj->pages);
  3105. if (obj->base.import_attach)
  3106. drm_prime_gem_destroy(&obj->base, NULL);
  3107. drm_gem_object_release(&obj->base);
  3108. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3109. kfree(obj->bit_17);
  3110. i915_gem_object_free(obj);
  3111. }
  3112. int
  3113. i915_gem_idle(struct drm_device *dev)
  3114. {
  3115. drm_i915_private_t *dev_priv = dev->dev_private;
  3116. int ret;
  3117. mutex_lock(&dev->struct_mutex);
  3118. if (dev_priv->mm.suspended) {
  3119. mutex_unlock(&dev->struct_mutex);
  3120. return 0;
  3121. }
  3122. ret = i915_gpu_idle(dev);
  3123. if (ret) {
  3124. mutex_unlock(&dev->struct_mutex);
  3125. return ret;
  3126. }
  3127. i915_gem_retire_requests(dev);
  3128. /* Under UMS, be paranoid and evict. */
  3129. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3130. i915_gem_evict_everything(dev);
  3131. i915_gem_reset_fences(dev);
  3132. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3133. * We need to replace this with a semaphore, or something.
  3134. * And not confound mm.suspended!
  3135. */
  3136. dev_priv->mm.suspended = 1;
  3137. del_timer_sync(&dev_priv->hangcheck_timer);
  3138. i915_kernel_lost_context(dev);
  3139. i915_gem_cleanup_ringbuffer(dev);
  3140. mutex_unlock(&dev->struct_mutex);
  3141. /* Cancel the retire work handler, which should be idle now. */
  3142. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3143. return 0;
  3144. }
  3145. void i915_gem_l3_remap(struct drm_device *dev)
  3146. {
  3147. drm_i915_private_t *dev_priv = dev->dev_private;
  3148. u32 misccpctl;
  3149. int i;
  3150. if (!IS_IVYBRIDGE(dev))
  3151. return;
  3152. if (!dev_priv->l3_parity.remap_info)
  3153. return;
  3154. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3155. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3156. POSTING_READ(GEN7_MISCCPCTL);
  3157. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3158. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3159. if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
  3160. DRM_DEBUG("0x%x was already programmed to %x\n",
  3161. GEN7_L3LOG_BASE + i, remap);
  3162. if (remap && !dev_priv->l3_parity.remap_info[i/4])
  3163. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3164. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
  3165. }
  3166. /* Make sure all the writes land before disabling dop clock gating */
  3167. POSTING_READ(GEN7_L3LOG_BASE);
  3168. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3169. }
  3170. void i915_gem_init_swizzling(struct drm_device *dev)
  3171. {
  3172. drm_i915_private_t *dev_priv = dev->dev_private;
  3173. if (INTEL_INFO(dev)->gen < 5 ||
  3174. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3175. return;
  3176. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3177. DISP_TILE_SURFACE_SWIZZLING);
  3178. if (IS_GEN5(dev))
  3179. return;
  3180. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3181. if (IS_GEN6(dev))
  3182. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3183. else if (IS_GEN7(dev))
  3184. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3185. else
  3186. BUG();
  3187. }
  3188. static bool
  3189. intel_enable_blt(struct drm_device *dev)
  3190. {
  3191. if (!HAS_BLT(dev))
  3192. return false;
  3193. /* The blitter was dysfunctional on early prototypes */
  3194. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3195. DRM_INFO("BLT not supported on this pre-production hardware;"
  3196. " graphics performance will be degraded.\n");
  3197. return false;
  3198. }
  3199. return true;
  3200. }
  3201. int
  3202. i915_gem_init_hw(struct drm_device *dev)
  3203. {
  3204. drm_i915_private_t *dev_priv = dev->dev_private;
  3205. int ret;
  3206. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3207. return -EIO;
  3208. if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
  3209. I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
  3210. i915_gem_l3_remap(dev);
  3211. i915_gem_init_swizzling(dev);
  3212. dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
  3213. ret = intel_init_render_ring_buffer(dev);
  3214. if (ret)
  3215. return ret;
  3216. if (HAS_BSD(dev)) {
  3217. ret = intel_init_bsd_ring_buffer(dev);
  3218. if (ret)
  3219. goto cleanup_render_ring;
  3220. }
  3221. if (intel_enable_blt(dev)) {
  3222. ret = intel_init_blt_ring_buffer(dev);
  3223. if (ret)
  3224. goto cleanup_bsd_ring;
  3225. }
  3226. /*
  3227. * XXX: There was some w/a described somewhere suggesting loading
  3228. * contexts before PPGTT.
  3229. */
  3230. i915_gem_context_init(dev);
  3231. i915_gem_init_ppgtt(dev);
  3232. return 0;
  3233. cleanup_bsd_ring:
  3234. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3235. cleanup_render_ring:
  3236. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3237. return ret;
  3238. }
  3239. int i915_gem_init(struct drm_device *dev)
  3240. {
  3241. struct drm_i915_private *dev_priv = dev->dev_private;
  3242. int ret;
  3243. mutex_lock(&dev->struct_mutex);
  3244. i915_gem_init_global_gtt(dev);
  3245. ret = i915_gem_init_hw(dev);
  3246. mutex_unlock(&dev->struct_mutex);
  3247. if (ret) {
  3248. i915_gem_cleanup_aliasing_ppgtt(dev);
  3249. return ret;
  3250. }
  3251. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3252. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3253. dev_priv->dri1.allow_batchbuffer = 1;
  3254. return 0;
  3255. }
  3256. void
  3257. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3258. {
  3259. drm_i915_private_t *dev_priv = dev->dev_private;
  3260. struct intel_ring_buffer *ring;
  3261. int i;
  3262. for_each_ring(ring, dev_priv, i)
  3263. intel_cleanup_ring_buffer(ring);
  3264. }
  3265. int
  3266. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3267. struct drm_file *file_priv)
  3268. {
  3269. drm_i915_private_t *dev_priv = dev->dev_private;
  3270. int ret;
  3271. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3272. return 0;
  3273. if (atomic_read(&dev_priv->mm.wedged)) {
  3274. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3275. atomic_set(&dev_priv->mm.wedged, 0);
  3276. }
  3277. mutex_lock(&dev->struct_mutex);
  3278. dev_priv->mm.suspended = 0;
  3279. ret = i915_gem_init_hw(dev);
  3280. if (ret != 0) {
  3281. mutex_unlock(&dev->struct_mutex);
  3282. return ret;
  3283. }
  3284. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3285. mutex_unlock(&dev->struct_mutex);
  3286. ret = drm_irq_install(dev);
  3287. if (ret)
  3288. goto cleanup_ringbuffer;
  3289. return 0;
  3290. cleanup_ringbuffer:
  3291. mutex_lock(&dev->struct_mutex);
  3292. i915_gem_cleanup_ringbuffer(dev);
  3293. dev_priv->mm.suspended = 1;
  3294. mutex_unlock(&dev->struct_mutex);
  3295. return ret;
  3296. }
  3297. int
  3298. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3299. struct drm_file *file_priv)
  3300. {
  3301. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3302. return 0;
  3303. drm_irq_uninstall(dev);
  3304. return i915_gem_idle(dev);
  3305. }
  3306. void
  3307. i915_gem_lastclose(struct drm_device *dev)
  3308. {
  3309. int ret;
  3310. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3311. return;
  3312. ret = i915_gem_idle(dev);
  3313. if (ret)
  3314. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3315. }
  3316. static void
  3317. init_ring_lists(struct intel_ring_buffer *ring)
  3318. {
  3319. INIT_LIST_HEAD(&ring->active_list);
  3320. INIT_LIST_HEAD(&ring->request_list);
  3321. }
  3322. void
  3323. i915_gem_load(struct drm_device *dev)
  3324. {
  3325. drm_i915_private_t *dev_priv = dev->dev_private;
  3326. int i;
  3327. dev_priv->slab =
  3328. kmem_cache_create("i915_gem_object",
  3329. sizeof(struct drm_i915_gem_object), 0,
  3330. SLAB_HWCACHE_ALIGN,
  3331. NULL);
  3332. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3333. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3334. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3335. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3336. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3337. for (i = 0; i < I915_NUM_RINGS; i++)
  3338. init_ring_lists(&dev_priv->ring[i]);
  3339. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3340. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3341. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3342. i915_gem_retire_work_handler);
  3343. init_completion(&dev_priv->error_completion);
  3344. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3345. if (IS_GEN3(dev)) {
  3346. I915_WRITE(MI_ARB_STATE,
  3347. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3348. }
  3349. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3350. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3351. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3352. dev_priv->fence_reg_start = 3;
  3353. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3354. dev_priv->num_fence_regs = 16;
  3355. else
  3356. dev_priv->num_fence_regs = 8;
  3357. /* Initialize fence registers to zero */
  3358. i915_gem_reset_fences(dev);
  3359. i915_gem_detect_bit_6_swizzle(dev);
  3360. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3361. dev_priv->mm.interruptible = true;
  3362. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3363. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3364. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3365. }
  3366. /*
  3367. * Create a physically contiguous memory object for this object
  3368. * e.g. for cursor + overlay regs
  3369. */
  3370. static int i915_gem_init_phys_object(struct drm_device *dev,
  3371. int id, int size, int align)
  3372. {
  3373. drm_i915_private_t *dev_priv = dev->dev_private;
  3374. struct drm_i915_gem_phys_object *phys_obj;
  3375. int ret;
  3376. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3377. return 0;
  3378. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3379. if (!phys_obj)
  3380. return -ENOMEM;
  3381. phys_obj->id = id;
  3382. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3383. if (!phys_obj->handle) {
  3384. ret = -ENOMEM;
  3385. goto kfree_obj;
  3386. }
  3387. #ifdef CONFIG_X86
  3388. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3389. #endif
  3390. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3391. return 0;
  3392. kfree_obj:
  3393. kfree(phys_obj);
  3394. return ret;
  3395. }
  3396. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3397. {
  3398. drm_i915_private_t *dev_priv = dev->dev_private;
  3399. struct drm_i915_gem_phys_object *phys_obj;
  3400. if (!dev_priv->mm.phys_objs[id - 1])
  3401. return;
  3402. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3403. if (phys_obj->cur_obj) {
  3404. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3405. }
  3406. #ifdef CONFIG_X86
  3407. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3408. #endif
  3409. drm_pci_free(dev, phys_obj->handle);
  3410. kfree(phys_obj);
  3411. dev_priv->mm.phys_objs[id - 1] = NULL;
  3412. }
  3413. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3414. {
  3415. int i;
  3416. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3417. i915_gem_free_phys_object(dev, i);
  3418. }
  3419. void i915_gem_detach_phys_object(struct drm_device *dev,
  3420. struct drm_i915_gem_object *obj)
  3421. {
  3422. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3423. char *vaddr;
  3424. int i;
  3425. int page_count;
  3426. if (!obj->phys_obj)
  3427. return;
  3428. vaddr = obj->phys_obj->handle->vaddr;
  3429. page_count = obj->base.size / PAGE_SIZE;
  3430. for (i = 0; i < page_count; i++) {
  3431. struct page *page = shmem_read_mapping_page(mapping, i);
  3432. if (!IS_ERR(page)) {
  3433. char *dst = kmap_atomic(page);
  3434. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3435. kunmap_atomic(dst);
  3436. drm_clflush_pages(&page, 1);
  3437. set_page_dirty(page);
  3438. mark_page_accessed(page);
  3439. page_cache_release(page);
  3440. }
  3441. }
  3442. i915_gem_chipset_flush(dev);
  3443. obj->phys_obj->cur_obj = NULL;
  3444. obj->phys_obj = NULL;
  3445. }
  3446. int
  3447. i915_gem_attach_phys_object(struct drm_device *dev,
  3448. struct drm_i915_gem_object *obj,
  3449. int id,
  3450. int align)
  3451. {
  3452. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3453. drm_i915_private_t *dev_priv = dev->dev_private;
  3454. int ret = 0;
  3455. int page_count;
  3456. int i;
  3457. if (id > I915_MAX_PHYS_OBJECT)
  3458. return -EINVAL;
  3459. if (obj->phys_obj) {
  3460. if (obj->phys_obj->id == id)
  3461. return 0;
  3462. i915_gem_detach_phys_object(dev, obj);
  3463. }
  3464. /* create a new object */
  3465. if (!dev_priv->mm.phys_objs[id - 1]) {
  3466. ret = i915_gem_init_phys_object(dev, id,
  3467. obj->base.size, align);
  3468. if (ret) {
  3469. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3470. id, obj->base.size);
  3471. return ret;
  3472. }
  3473. }
  3474. /* bind to the object */
  3475. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3476. obj->phys_obj->cur_obj = obj;
  3477. page_count = obj->base.size / PAGE_SIZE;
  3478. for (i = 0; i < page_count; i++) {
  3479. struct page *page;
  3480. char *dst, *src;
  3481. page = shmem_read_mapping_page(mapping, i);
  3482. if (IS_ERR(page))
  3483. return PTR_ERR(page);
  3484. src = kmap_atomic(page);
  3485. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3486. memcpy(dst, src, PAGE_SIZE);
  3487. kunmap_atomic(src);
  3488. mark_page_accessed(page);
  3489. page_cache_release(page);
  3490. }
  3491. return 0;
  3492. }
  3493. static int
  3494. i915_gem_phys_pwrite(struct drm_device *dev,
  3495. struct drm_i915_gem_object *obj,
  3496. struct drm_i915_gem_pwrite *args,
  3497. struct drm_file *file_priv)
  3498. {
  3499. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3500. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3501. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3502. unsigned long unwritten;
  3503. /* The physical object once assigned is fixed for the lifetime
  3504. * of the obj, so we can safely drop the lock and continue
  3505. * to access vaddr.
  3506. */
  3507. mutex_unlock(&dev->struct_mutex);
  3508. unwritten = copy_from_user(vaddr, user_data, args->size);
  3509. mutex_lock(&dev->struct_mutex);
  3510. if (unwritten)
  3511. return -EFAULT;
  3512. }
  3513. i915_gem_chipset_flush(dev);
  3514. return 0;
  3515. }
  3516. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3517. {
  3518. struct drm_i915_file_private *file_priv = file->driver_priv;
  3519. /* Clean up our request list when the client is going away, so that
  3520. * later retire_requests won't dereference our soon-to-be-gone
  3521. * file_priv.
  3522. */
  3523. spin_lock(&file_priv->mm.lock);
  3524. while (!list_empty(&file_priv->mm.request_list)) {
  3525. struct drm_i915_gem_request *request;
  3526. request = list_first_entry(&file_priv->mm.request_list,
  3527. struct drm_i915_gem_request,
  3528. client_list);
  3529. list_del(&request->client_list);
  3530. request->file_priv = NULL;
  3531. }
  3532. spin_unlock(&file_priv->mm.lock);
  3533. }
  3534. static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
  3535. {
  3536. if (!mutex_is_locked(mutex))
  3537. return false;
  3538. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
  3539. return mutex->owner == task;
  3540. #else
  3541. /* Since UP may be pre-empted, we cannot assume that we own the lock */
  3542. return false;
  3543. #endif
  3544. }
  3545. static int
  3546. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3547. {
  3548. struct drm_i915_private *dev_priv =
  3549. container_of(shrinker,
  3550. struct drm_i915_private,
  3551. mm.inactive_shrinker);
  3552. struct drm_device *dev = dev_priv->dev;
  3553. struct drm_i915_gem_object *obj;
  3554. int nr_to_scan = sc->nr_to_scan;
  3555. bool unlock = true;
  3556. int cnt;
  3557. if (!mutex_trylock(&dev->struct_mutex)) {
  3558. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  3559. return 0;
  3560. if (dev_priv->mm.shrinker_no_lock_stealing)
  3561. return 0;
  3562. unlock = false;
  3563. }
  3564. if (nr_to_scan) {
  3565. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3566. if (nr_to_scan > 0)
  3567. i915_gem_shrink_all(dev_priv);
  3568. }
  3569. cnt = 0;
  3570. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
  3571. if (obj->pages_pin_count == 0)
  3572. cnt += obj->base.size >> PAGE_SHIFT;
  3573. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  3574. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3575. cnt += obj->base.size >> PAGE_SHIFT;
  3576. if (unlock)
  3577. mutex_unlock(&dev->struct_mutex);
  3578. return cnt;
  3579. }