kvm_main.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. DEFINE_SPINLOCK(kvm_lock);
  49. LIST_HEAD(vm_list);
  50. static cpumask_t cpus_hardware_enabled;
  51. struct kmem_cache *kvm_vcpu_cache;
  52. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  53. static __read_mostly struct preempt_ops kvm_preempt_ops;
  54. static struct dentry *debugfs_dir;
  55. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  56. unsigned long arg);
  57. static inline int valid_vcpu(int n)
  58. {
  59. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  60. }
  61. /*
  62. * Switches to specified vcpu, until a matching vcpu_put()
  63. */
  64. void vcpu_load(struct kvm_vcpu *vcpu)
  65. {
  66. int cpu;
  67. mutex_lock(&vcpu->mutex);
  68. cpu = get_cpu();
  69. preempt_notifier_register(&vcpu->preempt_notifier);
  70. kvm_arch_vcpu_load(vcpu, cpu);
  71. put_cpu();
  72. }
  73. void vcpu_put(struct kvm_vcpu *vcpu)
  74. {
  75. preempt_disable();
  76. kvm_arch_vcpu_put(vcpu);
  77. preempt_notifier_unregister(&vcpu->preempt_notifier);
  78. preempt_enable();
  79. mutex_unlock(&vcpu->mutex);
  80. }
  81. static void ack_flush(void *_completed)
  82. {
  83. }
  84. void kvm_flush_remote_tlbs(struct kvm *kvm)
  85. {
  86. int i, cpu;
  87. cpumask_t cpus;
  88. struct kvm_vcpu *vcpu;
  89. cpus_clear(cpus);
  90. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  91. vcpu = kvm->vcpus[i];
  92. if (!vcpu)
  93. continue;
  94. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  95. continue;
  96. cpu = vcpu->cpu;
  97. if (cpu != -1 && cpu != raw_smp_processor_id())
  98. cpu_set(cpu, cpus);
  99. }
  100. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  101. }
  102. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  103. {
  104. struct page *page;
  105. int r;
  106. mutex_init(&vcpu->mutex);
  107. vcpu->cpu = -1;
  108. vcpu->kvm = kvm;
  109. vcpu->vcpu_id = id;
  110. init_waitqueue_head(&vcpu->wq);
  111. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  112. if (!page) {
  113. r = -ENOMEM;
  114. goto fail;
  115. }
  116. vcpu->run = page_address(page);
  117. r = kvm_arch_vcpu_init(vcpu);
  118. if (r < 0)
  119. goto fail_free_run;
  120. return 0;
  121. fail_free_run:
  122. free_page((unsigned long)vcpu->run);
  123. fail:
  124. return r;
  125. }
  126. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  127. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  128. {
  129. kvm_arch_vcpu_uninit(vcpu);
  130. free_page((unsigned long)vcpu->run);
  131. }
  132. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  133. static struct kvm *kvm_create_vm(void)
  134. {
  135. struct kvm *kvm = kvm_arch_create_vm();
  136. if (IS_ERR(kvm))
  137. goto out;
  138. kvm_io_bus_init(&kvm->pio_bus);
  139. mutex_init(&kvm->lock);
  140. kvm_io_bus_init(&kvm->mmio_bus);
  141. spin_lock(&kvm_lock);
  142. list_add(&kvm->vm_list, &vm_list);
  143. spin_unlock(&kvm_lock);
  144. out:
  145. return kvm;
  146. }
  147. /*
  148. * Free any memory in @free but not in @dont.
  149. */
  150. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  151. struct kvm_memory_slot *dont)
  152. {
  153. if (!dont || free->rmap != dont->rmap)
  154. vfree(free->rmap);
  155. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  156. vfree(free->dirty_bitmap);
  157. free->npages = 0;
  158. free->dirty_bitmap = NULL;
  159. free->rmap = NULL;
  160. }
  161. void kvm_free_physmem(struct kvm *kvm)
  162. {
  163. int i;
  164. for (i = 0; i < kvm->nmemslots; ++i)
  165. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  166. }
  167. static void kvm_destroy_vm(struct kvm *kvm)
  168. {
  169. spin_lock(&kvm_lock);
  170. list_del(&kvm->vm_list);
  171. spin_unlock(&kvm_lock);
  172. kvm_io_bus_destroy(&kvm->pio_bus);
  173. kvm_io_bus_destroy(&kvm->mmio_bus);
  174. kvm_arch_destroy_vm(kvm);
  175. }
  176. static int kvm_vm_release(struct inode *inode, struct file *filp)
  177. {
  178. struct kvm *kvm = filp->private_data;
  179. kvm_destroy_vm(kvm);
  180. return 0;
  181. }
  182. /*
  183. * Allocate some memory and give it an address in the guest physical address
  184. * space.
  185. *
  186. * Discontiguous memory is allowed, mostly for framebuffers.
  187. *
  188. * Must be called holding kvm->lock.
  189. */
  190. int __kvm_set_memory_region(struct kvm *kvm,
  191. struct kvm_userspace_memory_region *mem,
  192. int user_alloc)
  193. {
  194. int r;
  195. gfn_t base_gfn;
  196. unsigned long npages;
  197. unsigned long i;
  198. struct kvm_memory_slot *memslot;
  199. struct kvm_memory_slot old, new;
  200. r = -EINVAL;
  201. /* General sanity checks */
  202. if (mem->memory_size & (PAGE_SIZE - 1))
  203. goto out;
  204. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  205. goto out;
  206. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  207. goto out;
  208. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  209. goto out;
  210. memslot = &kvm->memslots[mem->slot];
  211. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  212. npages = mem->memory_size >> PAGE_SHIFT;
  213. if (!npages)
  214. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  215. new = old = *memslot;
  216. new.base_gfn = base_gfn;
  217. new.npages = npages;
  218. new.flags = mem->flags;
  219. /* Disallow changing a memory slot's size. */
  220. r = -EINVAL;
  221. if (npages && old.npages && npages != old.npages)
  222. goto out_free;
  223. /* Check for overlaps */
  224. r = -EEXIST;
  225. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  226. struct kvm_memory_slot *s = &kvm->memslots[i];
  227. if (s == memslot)
  228. continue;
  229. if (!((base_gfn + npages <= s->base_gfn) ||
  230. (base_gfn >= s->base_gfn + s->npages)))
  231. goto out_free;
  232. }
  233. /* Free page dirty bitmap if unneeded */
  234. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  235. new.dirty_bitmap = NULL;
  236. r = -ENOMEM;
  237. /* Allocate if a slot is being created */
  238. if (npages && !new.rmap) {
  239. new.rmap = vmalloc(npages * sizeof(struct page *));
  240. if (!new.rmap)
  241. goto out_free;
  242. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  243. new.user_alloc = user_alloc;
  244. if (user_alloc)
  245. new.userspace_addr = mem->userspace_addr;
  246. else {
  247. down_write(&current->mm->mmap_sem);
  248. new.userspace_addr = do_mmap(NULL, 0,
  249. npages * PAGE_SIZE,
  250. PROT_READ | PROT_WRITE,
  251. MAP_SHARED | MAP_ANONYMOUS,
  252. 0);
  253. up_write(&current->mm->mmap_sem);
  254. if (IS_ERR((void *)new.userspace_addr))
  255. goto out_free;
  256. }
  257. } else {
  258. if (!old.user_alloc && old.rmap) {
  259. int ret;
  260. down_write(&current->mm->mmap_sem);
  261. ret = do_munmap(current->mm, old.userspace_addr,
  262. old.npages * PAGE_SIZE);
  263. up_write(&current->mm->mmap_sem);
  264. if (ret < 0)
  265. printk(KERN_WARNING
  266. "kvm_vm_ioctl_set_memory_region: "
  267. "failed to munmap memory\n");
  268. }
  269. }
  270. /* Allocate page dirty bitmap if needed */
  271. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  272. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  273. new.dirty_bitmap = vmalloc(dirty_bytes);
  274. if (!new.dirty_bitmap)
  275. goto out_free;
  276. memset(new.dirty_bitmap, 0, dirty_bytes);
  277. }
  278. if (mem->slot >= kvm->nmemslots)
  279. kvm->nmemslots = mem->slot + 1;
  280. if (!kvm->n_requested_mmu_pages) {
  281. unsigned int n_pages;
  282. if (npages) {
  283. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  284. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  285. n_pages);
  286. } else {
  287. unsigned int nr_mmu_pages;
  288. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  289. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  290. nr_mmu_pages = max(nr_mmu_pages,
  291. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  292. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  293. }
  294. }
  295. *memslot = new;
  296. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  297. kvm_flush_remote_tlbs(kvm);
  298. kvm_free_physmem_slot(&old, &new);
  299. return 0;
  300. out_free:
  301. kvm_free_physmem_slot(&new, &old);
  302. out:
  303. return r;
  304. }
  305. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  306. int kvm_set_memory_region(struct kvm *kvm,
  307. struct kvm_userspace_memory_region *mem,
  308. int user_alloc)
  309. {
  310. int r;
  311. mutex_lock(&kvm->lock);
  312. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  313. mutex_unlock(&kvm->lock);
  314. return r;
  315. }
  316. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  317. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  318. struct
  319. kvm_userspace_memory_region *mem,
  320. int user_alloc)
  321. {
  322. if (mem->slot >= KVM_MEMORY_SLOTS)
  323. return -EINVAL;
  324. return kvm_set_memory_region(kvm, mem, user_alloc);
  325. }
  326. int kvm_get_dirty_log(struct kvm *kvm,
  327. struct kvm_dirty_log *log, int *is_dirty)
  328. {
  329. struct kvm_memory_slot *memslot;
  330. int r, i;
  331. int n;
  332. unsigned long any = 0;
  333. r = -EINVAL;
  334. if (log->slot >= KVM_MEMORY_SLOTS)
  335. goto out;
  336. memslot = &kvm->memslots[log->slot];
  337. r = -ENOENT;
  338. if (!memslot->dirty_bitmap)
  339. goto out;
  340. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  341. for (i = 0; !any && i < n/sizeof(long); ++i)
  342. any = memslot->dirty_bitmap[i];
  343. r = -EFAULT;
  344. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  345. goto out;
  346. if (any)
  347. *is_dirty = 1;
  348. r = 0;
  349. out:
  350. return r;
  351. }
  352. int is_error_page(struct page *page)
  353. {
  354. return page == bad_page;
  355. }
  356. EXPORT_SYMBOL_GPL(is_error_page);
  357. static inline unsigned long bad_hva(void)
  358. {
  359. return PAGE_OFFSET;
  360. }
  361. int kvm_is_error_hva(unsigned long addr)
  362. {
  363. return addr == bad_hva();
  364. }
  365. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  366. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  367. {
  368. int i;
  369. struct kvm_mem_alias *alias;
  370. for (i = 0; i < kvm->naliases; ++i) {
  371. alias = &kvm->aliases[i];
  372. if (gfn >= alias->base_gfn
  373. && gfn < alias->base_gfn + alias->npages)
  374. return alias->target_gfn + gfn - alias->base_gfn;
  375. }
  376. return gfn;
  377. }
  378. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  379. {
  380. int i;
  381. for (i = 0; i < kvm->nmemslots; ++i) {
  382. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  383. if (gfn >= memslot->base_gfn
  384. && gfn < memslot->base_gfn + memslot->npages)
  385. return memslot;
  386. }
  387. return NULL;
  388. }
  389. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  390. {
  391. gfn = unalias_gfn(kvm, gfn);
  392. return __gfn_to_memslot(kvm, gfn);
  393. }
  394. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  395. {
  396. int i;
  397. gfn = unalias_gfn(kvm, gfn);
  398. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  399. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  400. if (gfn >= memslot->base_gfn
  401. && gfn < memslot->base_gfn + memslot->npages)
  402. return 1;
  403. }
  404. return 0;
  405. }
  406. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  407. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  408. {
  409. struct kvm_memory_slot *slot;
  410. gfn = unalias_gfn(kvm, gfn);
  411. slot = __gfn_to_memslot(kvm, gfn);
  412. if (!slot)
  413. return bad_hva();
  414. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  415. }
  416. /*
  417. * Requires current->mm->mmap_sem to be held
  418. */
  419. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  420. {
  421. struct page *page[1];
  422. unsigned long addr;
  423. int npages;
  424. might_sleep();
  425. addr = gfn_to_hva(kvm, gfn);
  426. if (kvm_is_error_hva(addr)) {
  427. get_page(bad_page);
  428. return bad_page;
  429. }
  430. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  431. NULL);
  432. if (npages != 1) {
  433. get_page(bad_page);
  434. return bad_page;
  435. }
  436. return page[0];
  437. }
  438. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  439. {
  440. struct page *page;
  441. down_read(&current->mm->mmap_sem);
  442. page = __gfn_to_page(kvm, gfn);
  443. up_read(&current->mm->mmap_sem);
  444. return page;
  445. }
  446. EXPORT_SYMBOL_GPL(gfn_to_page);
  447. void kvm_release_page(struct page *page)
  448. {
  449. if (!PageReserved(page))
  450. SetPageDirty(page);
  451. put_page(page);
  452. }
  453. EXPORT_SYMBOL_GPL(kvm_release_page);
  454. static int next_segment(unsigned long len, int offset)
  455. {
  456. if (len > PAGE_SIZE - offset)
  457. return PAGE_SIZE - offset;
  458. else
  459. return len;
  460. }
  461. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  462. int len)
  463. {
  464. int r;
  465. unsigned long addr;
  466. addr = gfn_to_hva(kvm, gfn);
  467. if (kvm_is_error_hva(addr))
  468. return -EFAULT;
  469. r = copy_from_user(data, (void __user *)addr + offset, len);
  470. if (r)
  471. return -EFAULT;
  472. return 0;
  473. }
  474. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  475. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  476. {
  477. gfn_t gfn = gpa >> PAGE_SHIFT;
  478. int seg;
  479. int offset = offset_in_page(gpa);
  480. int ret;
  481. while ((seg = next_segment(len, offset)) != 0) {
  482. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  483. if (ret < 0)
  484. return ret;
  485. offset = 0;
  486. len -= seg;
  487. data += seg;
  488. ++gfn;
  489. }
  490. return 0;
  491. }
  492. EXPORT_SYMBOL_GPL(kvm_read_guest);
  493. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  494. int offset, int len)
  495. {
  496. int r;
  497. unsigned long addr;
  498. addr = gfn_to_hva(kvm, gfn);
  499. if (kvm_is_error_hva(addr))
  500. return -EFAULT;
  501. r = copy_to_user((void __user *)addr + offset, data, len);
  502. if (r)
  503. return -EFAULT;
  504. mark_page_dirty(kvm, gfn);
  505. return 0;
  506. }
  507. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  508. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  509. unsigned long len)
  510. {
  511. gfn_t gfn = gpa >> PAGE_SHIFT;
  512. int seg;
  513. int offset = offset_in_page(gpa);
  514. int ret;
  515. while ((seg = next_segment(len, offset)) != 0) {
  516. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  517. if (ret < 0)
  518. return ret;
  519. offset = 0;
  520. len -= seg;
  521. data += seg;
  522. ++gfn;
  523. }
  524. return 0;
  525. }
  526. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  527. {
  528. void *page_virt;
  529. struct page *page;
  530. page = gfn_to_page(kvm, gfn);
  531. if (is_error_page(page)) {
  532. kvm_release_page(page);
  533. return -EFAULT;
  534. }
  535. page_virt = kmap_atomic(page, KM_USER0);
  536. memset(page_virt + offset, 0, len);
  537. kunmap_atomic(page_virt, KM_USER0);
  538. kvm_release_page(page);
  539. mark_page_dirty(kvm, gfn);
  540. return 0;
  541. }
  542. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  543. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  544. {
  545. gfn_t gfn = gpa >> PAGE_SHIFT;
  546. int seg;
  547. int offset = offset_in_page(gpa);
  548. int ret;
  549. while ((seg = next_segment(len, offset)) != 0) {
  550. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  551. if (ret < 0)
  552. return ret;
  553. offset = 0;
  554. len -= seg;
  555. ++gfn;
  556. }
  557. return 0;
  558. }
  559. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  560. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  561. {
  562. struct kvm_memory_slot *memslot;
  563. gfn = unalias_gfn(kvm, gfn);
  564. memslot = __gfn_to_memslot(kvm, gfn);
  565. if (memslot && memslot->dirty_bitmap) {
  566. unsigned long rel_gfn = gfn - memslot->base_gfn;
  567. /* avoid RMW */
  568. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  569. set_bit(rel_gfn, memslot->dirty_bitmap);
  570. }
  571. }
  572. /*
  573. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  574. */
  575. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  576. {
  577. DECLARE_WAITQUEUE(wait, current);
  578. add_wait_queue(&vcpu->wq, &wait);
  579. /*
  580. * We will block until either an interrupt or a signal wakes us up
  581. */
  582. while (!kvm_cpu_has_interrupt(vcpu)
  583. && !signal_pending(current)
  584. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  585. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  586. set_current_state(TASK_INTERRUPTIBLE);
  587. vcpu_put(vcpu);
  588. schedule();
  589. vcpu_load(vcpu);
  590. }
  591. __set_current_state(TASK_RUNNING);
  592. remove_wait_queue(&vcpu->wq, &wait);
  593. }
  594. void kvm_resched(struct kvm_vcpu *vcpu)
  595. {
  596. if (!need_resched())
  597. return;
  598. cond_resched();
  599. }
  600. EXPORT_SYMBOL_GPL(kvm_resched);
  601. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  602. struct kvm_interrupt *irq)
  603. {
  604. if (irq->irq < 0 || irq->irq >= 256)
  605. return -EINVAL;
  606. if (irqchip_in_kernel(vcpu->kvm))
  607. return -ENXIO;
  608. vcpu_load(vcpu);
  609. set_bit(irq->irq, vcpu->irq_pending);
  610. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  611. vcpu_put(vcpu);
  612. return 0;
  613. }
  614. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  615. unsigned long address,
  616. int *type)
  617. {
  618. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  619. unsigned long pgoff;
  620. struct page *page;
  621. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  622. if (pgoff == 0)
  623. page = virt_to_page(vcpu->run);
  624. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  625. page = virt_to_page(vcpu->pio_data);
  626. else
  627. return NOPAGE_SIGBUS;
  628. get_page(page);
  629. if (type != NULL)
  630. *type = VM_FAULT_MINOR;
  631. return page;
  632. }
  633. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  634. .nopage = kvm_vcpu_nopage,
  635. };
  636. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  637. {
  638. vma->vm_ops = &kvm_vcpu_vm_ops;
  639. return 0;
  640. }
  641. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  642. {
  643. struct kvm_vcpu *vcpu = filp->private_data;
  644. fput(vcpu->kvm->filp);
  645. return 0;
  646. }
  647. static struct file_operations kvm_vcpu_fops = {
  648. .release = kvm_vcpu_release,
  649. .unlocked_ioctl = kvm_vcpu_ioctl,
  650. .compat_ioctl = kvm_vcpu_ioctl,
  651. .mmap = kvm_vcpu_mmap,
  652. };
  653. /*
  654. * Allocates an inode for the vcpu.
  655. */
  656. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  657. {
  658. int fd, r;
  659. struct inode *inode;
  660. struct file *file;
  661. r = anon_inode_getfd(&fd, &inode, &file,
  662. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  663. if (r)
  664. return r;
  665. atomic_inc(&vcpu->kvm->filp->f_count);
  666. return fd;
  667. }
  668. /*
  669. * Creates some virtual cpus. Good luck creating more than one.
  670. */
  671. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  672. {
  673. int r;
  674. struct kvm_vcpu *vcpu;
  675. if (!valid_vcpu(n))
  676. return -EINVAL;
  677. vcpu = kvm_arch_vcpu_create(kvm, n);
  678. if (IS_ERR(vcpu))
  679. return PTR_ERR(vcpu);
  680. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  681. mutex_lock(&kvm->lock);
  682. if (kvm->vcpus[n]) {
  683. r = -EEXIST;
  684. mutex_unlock(&kvm->lock);
  685. goto vcpu_destroy;
  686. }
  687. kvm->vcpus[n] = vcpu;
  688. mutex_unlock(&kvm->lock);
  689. /* Now it's all set up, let userspace reach it */
  690. r = create_vcpu_fd(vcpu);
  691. if (r < 0)
  692. goto unlink;
  693. return r;
  694. unlink:
  695. mutex_lock(&kvm->lock);
  696. kvm->vcpus[n] = NULL;
  697. mutex_unlock(&kvm->lock);
  698. vcpu_destroy:
  699. kvm_arch_vcpu_destory(vcpu);
  700. return r;
  701. }
  702. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  703. {
  704. if (sigset) {
  705. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  706. vcpu->sigset_active = 1;
  707. vcpu->sigset = *sigset;
  708. } else
  709. vcpu->sigset_active = 0;
  710. return 0;
  711. }
  712. static long kvm_vcpu_ioctl(struct file *filp,
  713. unsigned int ioctl, unsigned long arg)
  714. {
  715. struct kvm_vcpu *vcpu = filp->private_data;
  716. void __user *argp = (void __user *)arg;
  717. int r;
  718. switch (ioctl) {
  719. case KVM_RUN:
  720. r = -EINVAL;
  721. if (arg)
  722. goto out;
  723. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  724. break;
  725. case KVM_GET_REGS: {
  726. struct kvm_regs kvm_regs;
  727. memset(&kvm_regs, 0, sizeof kvm_regs);
  728. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  729. if (r)
  730. goto out;
  731. r = -EFAULT;
  732. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  733. goto out;
  734. r = 0;
  735. break;
  736. }
  737. case KVM_SET_REGS: {
  738. struct kvm_regs kvm_regs;
  739. r = -EFAULT;
  740. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  741. goto out;
  742. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  743. if (r)
  744. goto out;
  745. r = 0;
  746. break;
  747. }
  748. case KVM_GET_SREGS: {
  749. struct kvm_sregs kvm_sregs;
  750. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  751. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  752. if (r)
  753. goto out;
  754. r = -EFAULT;
  755. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  756. goto out;
  757. r = 0;
  758. break;
  759. }
  760. case KVM_SET_SREGS: {
  761. struct kvm_sregs kvm_sregs;
  762. r = -EFAULT;
  763. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  764. goto out;
  765. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  766. if (r)
  767. goto out;
  768. r = 0;
  769. break;
  770. }
  771. case KVM_TRANSLATE: {
  772. struct kvm_translation tr;
  773. r = -EFAULT;
  774. if (copy_from_user(&tr, argp, sizeof tr))
  775. goto out;
  776. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  777. if (r)
  778. goto out;
  779. r = -EFAULT;
  780. if (copy_to_user(argp, &tr, sizeof tr))
  781. goto out;
  782. r = 0;
  783. break;
  784. }
  785. case KVM_INTERRUPT: {
  786. struct kvm_interrupt irq;
  787. r = -EFAULT;
  788. if (copy_from_user(&irq, argp, sizeof irq))
  789. goto out;
  790. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  791. if (r)
  792. goto out;
  793. r = 0;
  794. break;
  795. }
  796. case KVM_DEBUG_GUEST: {
  797. struct kvm_debug_guest dbg;
  798. r = -EFAULT;
  799. if (copy_from_user(&dbg, argp, sizeof dbg))
  800. goto out;
  801. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  802. if (r)
  803. goto out;
  804. r = 0;
  805. break;
  806. }
  807. case KVM_SET_SIGNAL_MASK: {
  808. struct kvm_signal_mask __user *sigmask_arg = argp;
  809. struct kvm_signal_mask kvm_sigmask;
  810. sigset_t sigset, *p;
  811. p = NULL;
  812. if (argp) {
  813. r = -EFAULT;
  814. if (copy_from_user(&kvm_sigmask, argp,
  815. sizeof kvm_sigmask))
  816. goto out;
  817. r = -EINVAL;
  818. if (kvm_sigmask.len != sizeof sigset)
  819. goto out;
  820. r = -EFAULT;
  821. if (copy_from_user(&sigset, sigmask_arg->sigset,
  822. sizeof sigset))
  823. goto out;
  824. p = &sigset;
  825. }
  826. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  827. break;
  828. }
  829. case KVM_GET_FPU: {
  830. struct kvm_fpu fpu;
  831. memset(&fpu, 0, sizeof fpu);
  832. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  833. if (r)
  834. goto out;
  835. r = -EFAULT;
  836. if (copy_to_user(argp, &fpu, sizeof fpu))
  837. goto out;
  838. r = 0;
  839. break;
  840. }
  841. case KVM_SET_FPU: {
  842. struct kvm_fpu fpu;
  843. r = -EFAULT;
  844. if (copy_from_user(&fpu, argp, sizeof fpu))
  845. goto out;
  846. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  847. if (r)
  848. goto out;
  849. r = 0;
  850. break;
  851. }
  852. default:
  853. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  854. }
  855. out:
  856. return r;
  857. }
  858. static long kvm_vm_ioctl(struct file *filp,
  859. unsigned int ioctl, unsigned long arg)
  860. {
  861. struct kvm *kvm = filp->private_data;
  862. void __user *argp = (void __user *)arg;
  863. int r;
  864. switch (ioctl) {
  865. case KVM_CREATE_VCPU:
  866. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  867. if (r < 0)
  868. goto out;
  869. break;
  870. case KVM_SET_USER_MEMORY_REGION: {
  871. struct kvm_userspace_memory_region kvm_userspace_mem;
  872. r = -EFAULT;
  873. if (copy_from_user(&kvm_userspace_mem, argp,
  874. sizeof kvm_userspace_mem))
  875. goto out;
  876. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  877. if (r)
  878. goto out;
  879. break;
  880. }
  881. case KVM_GET_DIRTY_LOG: {
  882. struct kvm_dirty_log log;
  883. r = -EFAULT;
  884. if (copy_from_user(&log, argp, sizeof log))
  885. goto out;
  886. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  887. if (r)
  888. goto out;
  889. break;
  890. }
  891. default:
  892. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  893. }
  894. out:
  895. return r;
  896. }
  897. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  898. unsigned long address,
  899. int *type)
  900. {
  901. struct kvm *kvm = vma->vm_file->private_data;
  902. unsigned long pgoff;
  903. struct page *page;
  904. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  905. if (!kvm_is_visible_gfn(kvm, pgoff))
  906. return NOPAGE_SIGBUS;
  907. /* current->mm->mmap_sem is already held so call lockless version */
  908. page = __gfn_to_page(kvm, pgoff);
  909. if (is_error_page(page)) {
  910. kvm_release_page(page);
  911. return NOPAGE_SIGBUS;
  912. }
  913. if (type != NULL)
  914. *type = VM_FAULT_MINOR;
  915. return page;
  916. }
  917. static struct vm_operations_struct kvm_vm_vm_ops = {
  918. .nopage = kvm_vm_nopage,
  919. };
  920. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  921. {
  922. vma->vm_ops = &kvm_vm_vm_ops;
  923. return 0;
  924. }
  925. static struct file_operations kvm_vm_fops = {
  926. .release = kvm_vm_release,
  927. .unlocked_ioctl = kvm_vm_ioctl,
  928. .compat_ioctl = kvm_vm_ioctl,
  929. .mmap = kvm_vm_mmap,
  930. };
  931. static int kvm_dev_ioctl_create_vm(void)
  932. {
  933. int fd, r;
  934. struct inode *inode;
  935. struct file *file;
  936. struct kvm *kvm;
  937. kvm = kvm_create_vm();
  938. if (IS_ERR(kvm))
  939. return PTR_ERR(kvm);
  940. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  941. if (r) {
  942. kvm_destroy_vm(kvm);
  943. return r;
  944. }
  945. kvm->filp = file;
  946. return fd;
  947. }
  948. static long kvm_dev_ioctl(struct file *filp,
  949. unsigned int ioctl, unsigned long arg)
  950. {
  951. void __user *argp = (void __user *)arg;
  952. long r = -EINVAL;
  953. switch (ioctl) {
  954. case KVM_GET_API_VERSION:
  955. r = -EINVAL;
  956. if (arg)
  957. goto out;
  958. r = KVM_API_VERSION;
  959. break;
  960. case KVM_CREATE_VM:
  961. r = -EINVAL;
  962. if (arg)
  963. goto out;
  964. r = kvm_dev_ioctl_create_vm();
  965. break;
  966. case KVM_CHECK_EXTENSION:
  967. r = kvm_dev_ioctl_check_extension((long)argp);
  968. break;
  969. case KVM_GET_VCPU_MMAP_SIZE:
  970. r = -EINVAL;
  971. if (arg)
  972. goto out;
  973. r = 2 * PAGE_SIZE;
  974. break;
  975. default:
  976. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  977. }
  978. out:
  979. return r;
  980. }
  981. static struct file_operations kvm_chardev_ops = {
  982. .unlocked_ioctl = kvm_dev_ioctl,
  983. .compat_ioctl = kvm_dev_ioctl,
  984. };
  985. static struct miscdevice kvm_dev = {
  986. KVM_MINOR,
  987. "kvm",
  988. &kvm_chardev_ops,
  989. };
  990. static void hardware_enable(void *junk)
  991. {
  992. int cpu = raw_smp_processor_id();
  993. if (cpu_isset(cpu, cpus_hardware_enabled))
  994. return;
  995. cpu_set(cpu, cpus_hardware_enabled);
  996. kvm_arch_hardware_enable(NULL);
  997. }
  998. static void hardware_disable(void *junk)
  999. {
  1000. int cpu = raw_smp_processor_id();
  1001. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1002. return;
  1003. cpu_clear(cpu, cpus_hardware_enabled);
  1004. decache_vcpus_on_cpu(cpu);
  1005. kvm_arch_hardware_disable(NULL);
  1006. }
  1007. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1008. void *v)
  1009. {
  1010. int cpu = (long)v;
  1011. val &= ~CPU_TASKS_FROZEN;
  1012. switch (val) {
  1013. case CPU_DYING:
  1014. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1015. cpu);
  1016. hardware_disable(NULL);
  1017. break;
  1018. case CPU_UP_CANCELED:
  1019. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1020. cpu);
  1021. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1022. break;
  1023. case CPU_ONLINE:
  1024. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1025. cpu);
  1026. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1027. break;
  1028. }
  1029. return NOTIFY_OK;
  1030. }
  1031. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1032. void *v)
  1033. {
  1034. if (val == SYS_RESTART) {
  1035. /*
  1036. * Some (well, at least mine) BIOSes hang on reboot if
  1037. * in vmx root mode.
  1038. */
  1039. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1040. on_each_cpu(hardware_disable, NULL, 0, 1);
  1041. }
  1042. return NOTIFY_OK;
  1043. }
  1044. static struct notifier_block kvm_reboot_notifier = {
  1045. .notifier_call = kvm_reboot,
  1046. .priority = 0,
  1047. };
  1048. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1049. {
  1050. memset(bus, 0, sizeof(*bus));
  1051. }
  1052. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1053. {
  1054. int i;
  1055. for (i = 0; i < bus->dev_count; i++) {
  1056. struct kvm_io_device *pos = bus->devs[i];
  1057. kvm_iodevice_destructor(pos);
  1058. }
  1059. }
  1060. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1061. {
  1062. int i;
  1063. for (i = 0; i < bus->dev_count; i++) {
  1064. struct kvm_io_device *pos = bus->devs[i];
  1065. if (pos->in_range(pos, addr))
  1066. return pos;
  1067. }
  1068. return NULL;
  1069. }
  1070. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1071. {
  1072. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1073. bus->devs[bus->dev_count++] = dev;
  1074. }
  1075. static struct notifier_block kvm_cpu_notifier = {
  1076. .notifier_call = kvm_cpu_hotplug,
  1077. .priority = 20, /* must be > scheduler priority */
  1078. };
  1079. static u64 vm_stat_get(void *_offset)
  1080. {
  1081. unsigned offset = (long)_offset;
  1082. u64 total = 0;
  1083. struct kvm *kvm;
  1084. spin_lock(&kvm_lock);
  1085. list_for_each_entry(kvm, &vm_list, vm_list)
  1086. total += *(u32 *)((void *)kvm + offset);
  1087. spin_unlock(&kvm_lock);
  1088. return total;
  1089. }
  1090. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1091. static u64 vcpu_stat_get(void *_offset)
  1092. {
  1093. unsigned offset = (long)_offset;
  1094. u64 total = 0;
  1095. struct kvm *kvm;
  1096. struct kvm_vcpu *vcpu;
  1097. int i;
  1098. spin_lock(&kvm_lock);
  1099. list_for_each_entry(kvm, &vm_list, vm_list)
  1100. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1101. vcpu = kvm->vcpus[i];
  1102. if (vcpu)
  1103. total += *(u32 *)((void *)vcpu + offset);
  1104. }
  1105. spin_unlock(&kvm_lock);
  1106. return total;
  1107. }
  1108. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1109. static struct file_operations *stat_fops[] = {
  1110. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1111. [KVM_STAT_VM] = &vm_stat_fops,
  1112. };
  1113. static void kvm_init_debug(void)
  1114. {
  1115. struct kvm_stats_debugfs_item *p;
  1116. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1117. for (p = debugfs_entries; p->name; ++p)
  1118. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1119. (void *)(long)p->offset,
  1120. stat_fops[p->kind]);
  1121. }
  1122. static void kvm_exit_debug(void)
  1123. {
  1124. struct kvm_stats_debugfs_item *p;
  1125. for (p = debugfs_entries; p->name; ++p)
  1126. debugfs_remove(p->dentry);
  1127. debugfs_remove(debugfs_dir);
  1128. }
  1129. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1130. {
  1131. hardware_disable(NULL);
  1132. return 0;
  1133. }
  1134. static int kvm_resume(struct sys_device *dev)
  1135. {
  1136. hardware_enable(NULL);
  1137. return 0;
  1138. }
  1139. static struct sysdev_class kvm_sysdev_class = {
  1140. .name = "kvm",
  1141. .suspend = kvm_suspend,
  1142. .resume = kvm_resume,
  1143. };
  1144. static struct sys_device kvm_sysdev = {
  1145. .id = 0,
  1146. .cls = &kvm_sysdev_class,
  1147. };
  1148. struct page *bad_page;
  1149. static inline
  1150. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1151. {
  1152. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1153. }
  1154. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1155. {
  1156. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1157. kvm_arch_vcpu_load(vcpu, cpu);
  1158. }
  1159. static void kvm_sched_out(struct preempt_notifier *pn,
  1160. struct task_struct *next)
  1161. {
  1162. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1163. kvm_arch_vcpu_put(vcpu);
  1164. }
  1165. int kvm_init(void *opaque, unsigned int vcpu_size,
  1166. struct module *module)
  1167. {
  1168. int r;
  1169. int cpu;
  1170. kvm_init_debug();
  1171. r = kvm_arch_init(opaque);
  1172. if (r)
  1173. goto out4;
  1174. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1175. if (bad_page == NULL) {
  1176. r = -ENOMEM;
  1177. goto out;
  1178. }
  1179. r = kvm_arch_hardware_setup();
  1180. if (r < 0)
  1181. goto out;
  1182. for_each_online_cpu(cpu) {
  1183. smp_call_function_single(cpu,
  1184. kvm_arch_check_processor_compat,
  1185. &r, 0, 1);
  1186. if (r < 0)
  1187. goto out_free_0;
  1188. }
  1189. on_each_cpu(hardware_enable, NULL, 0, 1);
  1190. r = register_cpu_notifier(&kvm_cpu_notifier);
  1191. if (r)
  1192. goto out_free_1;
  1193. register_reboot_notifier(&kvm_reboot_notifier);
  1194. r = sysdev_class_register(&kvm_sysdev_class);
  1195. if (r)
  1196. goto out_free_2;
  1197. r = sysdev_register(&kvm_sysdev);
  1198. if (r)
  1199. goto out_free_3;
  1200. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1201. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1202. __alignof__(struct kvm_vcpu),
  1203. 0, NULL);
  1204. if (!kvm_vcpu_cache) {
  1205. r = -ENOMEM;
  1206. goto out_free_4;
  1207. }
  1208. kvm_chardev_ops.owner = module;
  1209. r = misc_register(&kvm_dev);
  1210. if (r) {
  1211. printk(KERN_ERR "kvm: misc device register failed\n");
  1212. goto out_free;
  1213. }
  1214. kvm_preempt_ops.sched_in = kvm_sched_in;
  1215. kvm_preempt_ops.sched_out = kvm_sched_out;
  1216. return 0;
  1217. out_free:
  1218. kmem_cache_destroy(kvm_vcpu_cache);
  1219. out_free_4:
  1220. sysdev_unregister(&kvm_sysdev);
  1221. out_free_3:
  1222. sysdev_class_unregister(&kvm_sysdev_class);
  1223. out_free_2:
  1224. unregister_reboot_notifier(&kvm_reboot_notifier);
  1225. unregister_cpu_notifier(&kvm_cpu_notifier);
  1226. out_free_1:
  1227. on_each_cpu(hardware_disable, NULL, 0, 1);
  1228. out_free_0:
  1229. kvm_arch_hardware_unsetup();
  1230. out:
  1231. kvm_arch_exit();
  1232. kvm_exit_debug();
  1233. out4:
  1234. return r;
  1235. }
  1236. EXPORT_SYMBOL_GPL(kvm_init);
  1237. void kvm_exit(void)
  1238. {
  1239. misc_deregister(&kvm_dev);
  1240. kmem_cache_destroy(kvm_vcpu_cache);
  1241. sysdev_unregister(&kvm_sysdev);
  1242. sysdev_class_unregister(&kvm_sysdev_class);
  1243. unregister_reboot_notifier(&kvm_reboot_notifier);
  1244. unregister_cpu_notifier(&kvm_cpu_notifier);
  1245. on_each_cpu(hardware_disable, NULL, 0, 1);
  1246. kvm_arch_hardware_unsetup();
  1247. kvm_arch_exit();
  1248. kvm_exit_debug();
  1249. __free_page(bad_page);
  1250. }
  1251. EXPORT_SYMBOL_GPL(kvm_exit);