ctree.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. path->reada = 1;
  44. return path;
  45. }
  46. /*
  47. * set all locked nodes in the path to blocking locks. This should
  48. * be done before scheduling
  49. */
  50. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  51. {
  52. int i;
  53. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  54. if (p->nodes[i] && p->locks[i])
  55. btrfs_set_lock_blocking(p->nodes[i]);
  56. }
  57. }
  58. /*
  59. * reset all the locked nodes in the patch to spinning locks.
  60. *
  61. * held is used to keep lockdep happy, when lockdep is enabled
  62. * we set held to a blocking lock before we go around and
  63. * retake all the spinlocks in the path. You can safely use NULL
  64. * for held
  65. */
  66. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  67. struct extent_buffer *held)
  68. {
  69. int i;
  70. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  71. /* lockdep really cares that we take all of these spinlocks
  72. * in the right order. If any of the locks in the path are not
  73. * currently blocking, it is going to complain. So, make really
  74. * really sure by forcing the path to blocking before we clear
  75. * the path blocking.
  76. */
  77. if (held)
  78. btrfs_set_lock_blocking(held);
  79. btrfs_set_path_blocking(p);
  80. #endif
  81. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  82. if (p->nodes[i] && p->locks[i])
  83. btrfs_clear_lock_blocking(p->nodes[i]);
  84. }
  85. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  86. if (held)
  87. btrfs_clear_lock_blocking(held);
  88. #endif
  89. }
  90. /* this also releases the path */
  91. void btrfs_free_path(struct btrfs_path *p)
  92. {
  93. btrfs_release_path(NULL, p);
  94. kmem_cache_free(btrfs_path_cachep, p);
  95. }
  96. /*
  97. * path release drops references on the extent buffers in the path
  98. * and it drops any locks held by this path
  99. *
  100. * It is safe to call this on paths that no locks or extent buffers held.
  101. */
  102. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  103. {
  104. int i;
  105. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  106. p->slots[i] = 0;
  107. if (!p->nodes[i])
  108. continue;
  109. if (p->locks[i]) {
  110. btrfs_tree_unlock(p->nodes[i]);
  111. p->locks[i] = 0;
  112. }
  113. free_extent_buffer(p->nodes[i]);
  114. p->nodes[i] = NULL;
  115. }
  116. }
  117. /*
  118. * safely gets a reference on the root node of a tree. A lock
  119. * is not taken, so a concurrent writer may put a different node
  120. * at the root of the tree. See btrfs_lock_root_node for the
  121. * looping required.
  122. *
  123. * The extent buffer returned by this has a reference taken, so
  124. * it won't disappear. It may stop being the root of the tree
  125. * at any time because there are no locks held.
  126. */
  127. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  128. {
  129. struct extent_buffer *eb;
  130. spin_lock(&root->node_lock);
  131. eb = root->node;
  132. extent_buffer_get(eb);
  133. spin_unlock(&root->node_lock);
  134. return eb;
  135. }
  136. /* loop around taking references on and locking the root node of the
  137. * tree until you end up with a lock on the root. A locked buffer
  138. * is returned, with a reference held.
  139. */
  140. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  141. {
  142. struct extent_buffer *eb;
  143. while (1) {
  144. eb = btrfs_root_node(root);
  145. btrfs_tree_lock(eb);
  146. spin_lock(&root->node_lock);
  147. if (eb == root->node) {
  148. spin_unlock(&root->node_lock);
  149. break;
  150. }
  151. spin_unlock(&root->node_lock);
  152. btrfs_tree_unlock(eb);
  153. free_extent_buffer(eb);
  154. }
  155. return eb;
  156. }
  157. /* cowonly root (everything not a reference counted cow subvolume), just get
  158. * put onto a simple dirty list. transaction.c walks this to make sure they
  159. * get properly updated on disk.
  160. */
  161. static void add_root_to_dirty_list(struct btrfs_root *root)
  162. {
  163. if (root->track_dirty && list_empty(&root->dirty_list)) {
  164. list_add(&root->dirty_list,
  165. &root->fs_info->dirty_cowonly_roots);
  166. }
  167. }
  168. /*
  169. * used by snapshot creation to make a copy of a root for a tree with
  170. * a given objectid. The buffer with the new root node is returned in
  171. * cow_ret, and this func returns zero on success or a negative error code.
  172. */
  173. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  174. struct btrfs_root *root,
  175. struct extent_buffer *buf,
  176. struct extent_buffer **cow_ret, u64 new_root_objectid)
  177. {
  178. struct extent_buffer *cow;
  179. u32 nritems;
  180. int ret = 0;
  181. int level;
  182. struct btrfs_root *new_root;
  183. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  184. if (!new_root)
  185. return -ENOMEM;
  186. memcpy(new_root, root, sizeof(*new_root));
  187. new_root->root_key.objectid = new_root_objectid;
  188. WARN_ON(root->ref_cows && trans->transid !=
  189. root->fs_info->running_transaction->transid);
  190. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  191. level = btrfs_header_level(buf);
  192. nritems = btrfs_header_nritems(buf);
  193. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  194. new_root_objectid, trans->transid,
  195. level, buf->start, 0);
  196. if (IS_ERR(cow)) {
  197. kfree(new_root);
  198. return PTR_ERR(cow);
  199. }
  200. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  201. btrfs_set_header_bytenr(cow, cow->start);
  202. btrfs_set_header_generation(cow, trans->transid);
  203. btrfs_set_header_owner(cow, new_root_objectid);
  204. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  205. write_extent_buffer(cow, root->fs_info->fsid,
  206. (unsigned long)btrfs_header_fsid(cow),
  207. BTRFS_FSID_SIZE);
  208. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  209. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  210. kfree(new_root);
  211. if (ret)
  212. return ret;
  213. btrfs_mark_buffer_dirty(cow);
  214. *cow_ret = cow;
  215. return 0;
  216. }
  217. /*
  218. * does the dirty work in cow of a single block. The parent block (if
  219. * supplied) is updated to point to the new cow copy. The new buffer is marked
  220. * dirty and returned locked. If you modify the block it needs to be marked
  221. * dirty again.
  222. *
  223. * search_start -- an allocation hint for the new block
  224. *
  225. * empty_size -- a hint that you plan on doing more cow. This is the size in
  226. * bytes the allocator should try to find free next to the block it returns.
  227. * This is just a hint and may be ignored by the allocator.
  228. */
  229. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  230. struct btrfs_root *root,
  231. struct extent_buffer *buf,
  232. struct extent_buffer *parent, int parent_slot,
  233. struct extent_buffer **cow_ret,
  234. u64 search_start, u64 empty_size)
  235. {
  236. u64 parent_start;
  237. struct extent_buffer *cow;
  238. u32 nritems;
  239. int ret = 0;
  240. int level;
  241. int unlock_orig = 0;
  242. if (*cow_ret == buf)
  243. unlock_orig = 1;
  244. btrfs_assert_tree_locked(buf);
  245. if (parent)
  246. parent_start = parent->start;
  247. else
  248. parent_start = 0;
  249. WARN_ON(root->ref_cows && trans->transid !=
  250. root->fs_info->running_transaction->transid);
  251. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  252. level = btrfs_header_level(buf);
  253. nritems = btrfs_header_nritems(buf);
  254. cow = btrfs_alloc_free_block(trans, root, buf->len,
  255. parent_start, root->root_key.objectid,
  256. trans->transid, level,
  257. search_start, empty_size);
  258. if (IS_ERR(cow))
  259. return PTR_ERR(cow);
  260. /* cow is set to blocking by btrfs_init_new_buffer */
  261. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  262. btrfs_set_header_bytenr(cow, cow->start);
  263. btrfs_set_header_generation(cow, trans->transid);
  264. btrfs_set_header_owner(cow, root->root_key.objectid);
  265. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  266. write_extent_buffer(cow, root->fs_info->fsid,
  267. (unsigned long)btrfs_header_fsid(cow),
  268. BTRFS_FSID_SIZE);
  269. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  270. if (btrfs_header_generation(buf) != trans->transid) {
  271. u32 nr_extents;
  272. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  273. if (ret)
  274. return ret;
  275. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  276. WARN_ON(ret);
  277. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  278. /*
  279. * There are only two places that can drop reference to
  280. * tree blocks owned by living reloc trees, one is here,
  281. * the other place is btrfs_drop_subtree. In both places,
  282. * we check reference count while tree block is locked.
  283. * Furthermore, if reference count is one, it won't get
  284. * increased by someone else.
  285. */
  286. u32 refs;
  287. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  288. buf->len, &refs);
  289. BUG_ON(ret);
  290. if (refs == 1) {
  291. ret = btrfs_update_ref(trans, root, buf, cow,
  292. 0, nritems);
  293. clean_tree_block(trans, root, buf);
  294. } else {
  295. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  296. }
  297. BUG_ON(ret);
  298. } else {
  299. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  300. if (ret)
  301. return ret;
  302. clean_tree_block(trans, root, buf);
  303. }
  304. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  305. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  306. WARN_ON(ret);
  307. }
  308. if (buf == root->node) {
  309. WARN_ON(parent && parent != buf);
  310. spin_lock(&root->node_lock);
  311. root->node = cow;
  312. extent_buffer_get(cow);
  313. spin_unlock(&root->node_lock);
  314. if (buf != root->commit_root) {
  315. btrfs_free_extent(trans, root, buf->start,
  316. buf->len, buf->start,
  317. root->root_key.objectid,
  318. btrfs_header_generation(buf),
  319. level, 1);
  320. }
  321. free_extent_buffer(buf);
  322. add_root_to_dirty_list(root);
  323. } else {
  324. btrfs_set_node_blockptr(parent, parent_slot,
  325. cow->start);
  326. WARN_ON(trans->transid == 0);
  327. btrfs_set_node_ptr_generation(parent, parent_slot,
  328. trans->transid);
  329. btrfs_mark_buffer_dirty(parent);
  330. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  331. btrfs_free_extent(trans, root, buf->start, buf->len,
  332. parent_start, btrfs_header_owner(parent),
  333. btrfs_header_generation(parent), level, 1);
  334. }
  335. if (unlock_orig)
  336. btrfs_tree_unlock(buf);
  337. free_extent_buffer(buf);
  338. btrfs_mark_buffer_dirty(cow);
  339. *cow_ret = cow;
  340. return 0;
  341. }
  342. /*
  343. * cows a single block, see __btrfs_cow_block for the real work.
  344. * This version of it has extra checks so that a block isn't cow'd more than
  345. * once per transaction, as long as it hasn't been written yet
  346. */
  347. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  348. struct btrfs_root *root, struct extent_buffer *buf,
  349. struct extent_buffer *parent, int parent_slot,
  350. struct extent_buffer **cow_ret)
  351. {
  352. u64 search_start;
  353. int ret;
  354. if (trans->transaction != root->fs_info->running_transaction) {
  355. printk(KERN_CRIT "trans %llu running %llu\n",
  356. (unsigned long long)trans->transid,
  357. (unsigned long long)
  358. root->fs_info->running_transaction->transid);
  359. WARN_ON(1);
  360. }
  361. if (trans->transid != root->fs_info->generation) {
  362. printk(KERN_CRIT "trans %llu running %llu\n",
  363. (unsigned long long)trans->transid,
  364. (unsigned long long)root->fs_info->generation);
  365. WARN_ON(1);
  366. }
  367. if (btrfs_header_generation(buf) == trans->transid &&
  368. btrfs_header_owner(buf) == root->root_key.objectid &&
  369. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  370. *cow_ret = buf;
  371. return 0;
  372. }
  373. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  374. if (parent)
  375. btrfs_set_lock_blocking(parent);
  376. btrfs_set_lock_blocking(buf);
  377. ret = __btrfs_cow_block(trans, root, buf, parent,
  378. parent_slot, cow_ret, search_start, 0);
  379. return ret;
  380. }
  381. /*
  382. * helper function for defrag to decide if two blocks pointed to by a
  383. * node are actually close by
  384. */
  385. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  386. {
  387. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  388. return 1;
  389. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  390. return 1;
  391. return 0;
  392. }
  393. /*
  394. * compare two keys in a memcmp fashion
  395. */
  396. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  397. {
  398. struct btrfs_key k1;
  399. btrfs_disk_key_to_cpu(&k1, disk);
  400. if (k1.objectid > k2->objectid)
  401. return 1;
  402. if (k1.objectid < k2->objectid)
  403. return -1;
  404. if (k1.type > k2->type)
  405. return 1;
  406. if (k1.type < k2->type)
  407. return -1;
  408. if (k1.offset > k2->offset)
  409. return 1;
  410. if (k1.offset < k2->offset)
  411. return -1;
  412. return 0;
  413. }
  414. /*
  415. * same as comp_keys only with two btrfs_key's
  416. */
  417. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  418. {
  419. if (k1->objectid > k2->objectid)
  420. return 1;
  421. if (k1->objectid < k2->objectid)
  422. return -1;
  423. if (k1->type > k2->type)
  424. return 1;
  425. if (k1->type < k2->type)
  426. return -1;
  427. if (k1->offset > k2->offset)
  428. return 1;
  429. if (k1->offset < k2->offset)
  430. return -1;
  431. return 0;
  432. }
  433. /*
  434. * this is used by the defrag code to go through all the
  435. * leaves pointed to by a node and reallocate them so that
  436. * disk order is close to key order
  437. */
  438. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  439. struct btrfs_root *root, struct extent_buffer *parent,
  440. int start_slot, int cache_only, u64 *last_ret,
  441. struct btrfs_key *progress)
  442. {
  443. struct extent_buffer *cur;
  444. u64 blocknr;
  445. u64 gen;
  446. u64 search_start = *last_ret;
  447. u64 last_block = 0;
  448. u64 other;
  449. u32 parent_nritems;
  450. int end_slot;
  451. int i;
  452. int err = 0;
  453. int parent_level;
  454. int uptodate;
  455. u32 blocksize;
  456. int progress_passed = 0;
  457. struct btrfs_disk_key disk_key;
  458. parent_level = btrfs_header_level(parent);
  459. if (cache_only && parent_level != 1)
  460. return 0;
  461. if (trans->transaction != root->fs_info->running_transaction)
  462. WARN_ON(1);
  463. if (trans->transid != root->fs_info->generation)
  464. WARN_ON(1);
  465. parent_nritems = btrfs_header_nritems(parent);
  466. blocksize = btrfs_level_size(root, parent_level - 1);
  467. end_slot = parent_nritems;
  468. if (parent_nritems == 1)
  469. return 0;
  470. btrfs_set_lock_blocking(parent);
  471. for (i = start_slot; i < end_slot; i++) {
  472. int close = 1;
  473. if (!parent->map_token) {
  474. map_extent_buffer(parent,
  475. btrfs_node_key_ptr_offset(i),
  476. sizeof(struct btrfs_key_ptr),
  477. &parent->map_token, &parent->kaddr,
  478. &parent->map_start, &parent->map_len,
  479. KM_USER1);
  480. }
  481. btrfs_node_key(parent, &disk_key, i);
  482. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  483. continue;
  484. progress_passed = 1;
  485. blocknr = btrfs_node_blockptr(parent, i);
  486. gen = btrfs_node_ptr_generation(parent, i);
  487. if (last_block == 0)
  488. last_block = blocknr;
  489. if (i > 0) {
  490. other = btrfs_node_blockptr(parent, i - 1);
  491. close = close_blocks(blocknr, other, blocksize);
  492. }
  493. if (!close && i < end_slot - 2) {
  494. other = btrfs_node_blockptr(parent, i + 1);
  495. close = close_blocks(blocknr, other, blocksize);
  496. }
  497. if (close) {
  498. last_block = blocknr;
  499. continue;
  500. }
  501. if (parent->map_token) {
  502. unmap_extent_buffer(parent, parent->map_token,
  503. KM_USER1);
  504. parent->map_token = NULL;
  505. }
  506. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  507. if (cur)
  508. uptodate = btrfs_buffer_uptodate(cur, gen);
  509. else
  510. uptodate = 0;
  511. if (!cur || !uptodate) {
  512. if (cache_only) {
  513. free_extent_buffer(cur);
  514. continue;
  515. }
  516. if (!cur) {
  517. cur = read_tree_block(root, blocknr,
  518. blocksize, gen);
  519. } else if (!uptodate) {
  520. btrfs_read_buffer(cur, gen);
  521. }
  522. }
  523. if (search_start == 0)
  524. search_start = last_block;
  525. btrfs_tree_lock(cur);
  526. btrfs_set_lock_blocking(cur);
  527. err = __btrfs_cow_block(trans, root, cur, parent, i,
  528. &cur, search_start,
  529. min(16 * blocksize,
  530. (end_slot - i) * blocksize));
  531. if (err) {
  532. btrfs_tree_unlock(cur);
  533. free_extent_buffer(cur);
  534. break;
  535. }
  536. search_start = cur->start;
  537. last_block = cur->start;
  538. *last_ret = search_start;
  539. btrfs_tree_unlock(cur);
  540. free_extent_buffer(cur);
  541. }
  542. if (parent->map_token) {
  543. unmap_extent_buffer(parent, parent->map_token,
  544. KM_USER1);
  545. parent->map_token = NULL;
  546. }
  547. return err;
  548. }
  549. /*
  550. * The leaf data grows from end-to-front in the node.
  551. * this returns the address of the start of the last item,
  552. * which is the stop of the leaf data stack
  553. */
  554. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  555. struct extent_buffer *leaf)
  556. {
  557. u32 nr = btrfs_header_nritems(leaf);
  558. if (nr == 0)
  559. return BTRFS_LEAF_DATA_SIZE(root);
  560. return btrfs_item_offset_nr(leaf, nr - 1);
  561. }
  562. /*
  563. * extra debugging checks to make sure all the items in a key are
  564. * well formed and in the proper order
  565. */
  566. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  567. int level)
  568. {
  569. struct extent_buffer *parent = NULL;
  570. struct extent_buffer *node = path->nodes[level];
  571. struct btrfs_disk_key parent_key;
  572. struct btrfs_disk_key node_key;
  573. int parent_slot;
  574. int slot;
  575. struct btrfs_key cpukey;
  576. u32 nritems = btrfs_header_nritems(node);
  577. if (path->nodes[level + 1])
  578. parent = path->nodes[level + 1];
  579. slot = path->slots[level];
  580. BUG_ON(nritems == 0);
  581. if (parent) {
  582. parent_slot = path->slots[level + 1];
  583. btrfs_node_key(parent, &parent_key, parent_slot);
  584. btrfs_node_key(node, &node_key, 0);
  585. BUG_ON(memcmp(&parent_key, &node_key,
  586. sizeof(struct btrfs_disk_key)));
  587. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  588. btrfs_header_bytenr(node));
  589. }
  590. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  591. if (slot != 0) {
  592. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  593. btrfs_node_key(node, &node_key, slot);
  594. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  595. }
  596. if (slot < nritems - 1) {
  597. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  598. btrfs_node_key(node, &node_key, slot);
  599. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  600. }
  601. return 0;
  602. }
  603. /*
  604. * extra checking to make sure all the items in a leaf are
  605. * well formed and in the proper order
  606. */
  607. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  608. int level)
  609. {
  610. struct extent_buffer *leaf = path->nodes[level];
  611. struct extent_buffer *parent = NULL;
  612. int parent_slot;
  613. struct btrfs_key cpukey;
  614. struct btrfs_disk_key parent_key;
  615. struct btrfs_disk_key leaf_key;
  616. int slot = path->slots[0];
  617. u32 nritems = btrfs_header_nritems(leaf);
  618. if (path->nodes[level + 1])
  619. parent = path->nodes[level + 1];
  620. if (nritems == 0)
  621. return 0;
  622. if (parent) {
  623. parent_slot = path->slots[level + 1];
  624. btrfs_node_key(parent, &parent_key, parent_slot);
  625. btrfs_item_key(leaf, &leaf_key, 0);
  626. BUG_ON(memcmp(&parent_key, &leaf_key,
  627. sizeof(struct btrfs_disk_key)));
  628. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  629. btrfs_header_bytenr(leaf));
  630. }
  631. if (slot != 0 && slot < nritems - 1) {
  632. btrfs_item_key(leaf, &leaf_key, slot);
  633. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  634. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  635. btrfs_print_leaf(root, leaf);
  636. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  637. BUG_ON(1);
  638. }
  639. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  640. btrfs_item_end_nr(leaf, slot)) {
  641. btrfs_print_leaf(root, leaf);
  642. printk(KERN_CRIT "slot %d offset bad\n", slot);
  643. BUG_ON(1);
  644. }
  645. }
  646. if (slot < nritems - 1) {
  647. btrfs_item_key(leaf, &leaf_key, slot);
  648. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  649. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  650. if (btrfs_item_offset_nr(leaf, slot) !=
  651. btrfs_item_end_nr(leaf, slot + 1)) {
  652. btrfs_print_leaf(root, leaf);
  653. printk(KERN_CRIT "slot %d offset bad\n", slot);
  654. BUG_ON(1);
  655. }
  656. }
  657. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  658. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  659. return 0;
  660. }
  661. static noinline int check_block(struct btrfs_root *root,
  662. struct btrfs_path *path, int level)
  663. {
  664. return 0;
  665. if (level == 0)
  666. return check_leaf(root, path, level);
  667. return check_node(root, path, level);
  668. }
  669. /*
  670. * search for key in the extent_buffer. The items start at offset p,
  671. * and they are item_size apart. There are 'max' items in p.
  672. *
  673. * the slot in the array is returned via slot, and it points to
  674. * the place where you would insert key if it is not found in
  675. * the array.
  676. *
  677. * slot may point to max if the key is bigger than all of the keys
  678. */
  679. static noinline int generic_bin_search(struct extent_buffer *eb,
  680. unsigned long p,
  681. int item_size, struct btrfs_key *key,
  682. int max, int *slot)
  683. {
  684. int low = 0;
  685. int high = max;
  686. int mid;
  687. int ret;
  688. struct btrfs_disk_key *tmp = NULL;
  689. struct btrfs_disk_key unaligned;
  690. unsigned long offset;
  691. char *map_token = NULL;
  692. char *kaddr = NULL;
  693. unsigned long map_start = 0;
  694. unsigned long map_len = 0;
  695. int err;
  696. while (low < high) {
  697. mid = (low + high) / 2;
  698. offset = p + mid * item_size;
  699. if (!map_token || offset < map_start ||
  700. (offset + sizeof(struct btrfs_disk_key)) >
  701. map_start + map_len) {
  702. if (map_token) {
  703. unmap_extent_buffer(eb, map_token, KM_USER0);
  704. map_token = NULL;
  705. }
  706. err = map_private_extent_buffer(eb, offset,
  707. sizeof(struct btrfs_disk_key),
  708. &map_token, &kaddr,
  709. &map_start, &map_len, KM_USER0);
  710. if (!err) {
  711. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  712. map_start);
  713. } else {
  714. read_extent_buffer(eb, &unaligned,
  715. offset, sizeof(unaligned));
  716. tmp = &unaligned;
  717. }
  718. } else {
  719. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  720. map_start);
  721. }
  722. ret = comp_keys(tmp, key);
  723. if (ret < 0)
  724. low = mid + 1;
  725. else if (ret > 0)
  726. high = mid;
  727. else {
  728. *slot = mid;
  729. if (map_token)
  730. unmap_extent_buffer(eb, map_token, KM_USER0);
  731. return 0;
  732. }
  733. }
  734. *slot = low;
  735. if (map_token)
  736. unmap_extent_buffer(eb, map_token, KM_USER0);
  737. return 1;
  738. }
  739. /*
  740. * simple bin_search frontend that does the right thing for
  741. * leaves vs nodes
  742. */
  743. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  744. int level, int *slot)
  745. {
  746. if (level == 0) {
  747. return generic_bin_search(eb,
  748. offsetof(struct btrfs_leaf, items),
  749. sizeof(struct btrfs_item),
  750. key, btrfs_header_nritems(eb),
  751. slot);
  752. } else {
  753. return generic_bin_search(eb,
  754. offsetof(struct btrfs_node, ptrs),
  755. sizeof(struct btrfs_key_ptr),
  756. key, btrfs_header_nritems(eb),
  757. slot);
  758. }
  759. return -1;
  760. }
  761. /* given a node and slot number, this reads the blocks it points to. The
  762. * extent buffer is returned with a reference taken (but unlocked).
  763. * NULL is returned on error.
  764. */
  765. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  766. struct extent_buffer *parent, int slot)
  767. {
  768. int level = btrfs_header_level(parent);
  769. if (slot < 0)
  770. return NULL;
  771. if (slot >= btrfs_header_nritems(parent))
  772. return NULL;
  773. BUG_ON(level == 0);
  774. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  775. btrfs_level_size(root, level - 1),
  776. btrfs_node_ptr_generation(parent, slot));
  777. }
  778. /*
  779. * node level balancing, used to make sure nodes are in proper order for
  780. * item deletion. We balance from the top down, so we have to make sure
  781. * that a deletion won't leave an node completely empty later on.
  782. */
  783. static noinline int balance_level(struct btrfs_trans_handle *trans,
  784. struct btrfs_root *root,
  785. struct btrfs_path *path, int level)
  786. {
  787. struct extent_buffer *right = NULL;
  788. struct extent_buffer *mid;
  789. struct extent_buffer *left = NULL;
  790. struct extent_buffer *parent = NULL;
  791. int ret = 0;
  792. int wret;
  793. int pslot;
  794. int orig_slot = path->slots[level];
  795. int err_on_enospc = 0;
  796. u64 orig_ptr;
  797. if (level == 0)
  798. return 0;
  799. mid = path->nodes[level];
  800. WARN_ON(!path->locks[level]);
  801. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  802. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  803. if (level < BTRFS_MAX_LEVEL - 1)
  804. parent = path->nodes[level + 1];
  805. pslot = path->slots[level + 1];
  806. /*
  807. * deal with the case where there is only one pointer in the root
  808. * by promoting the node below to a root
  809. */
  810. if (!parent) {
  811. struct extent_buffer *child;
  812. if (btrfs_header_nritems(mid) != 1)
  813. return 0;
  814. /* promote the child to a root */
  815. child = read_node_slot(root, mid, 0);
  816. BUG_ON(!child);
  817. btrfs_tree_lock(child);
  818. btrfs_set_lock_blocking(child);
  819. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  820. BUG_ON(ret);
  821. spin_lock(&root->node_lock);
  822. root->node = child;
  823. spin_unlock(&root->node_lock);
  824. ret = btrfs_update_extent_ref(trans, root, child->start,
  825. child->len,
  826. mid->start, child->start,
  827. root->root_key.objectid,
  828. trans->transid, level - 1);
  829. BUG_ON(ret);
  830. add_root_to_dirty_list(root);
  831. btrfs_tree_unlock(child);
  832. path->locks[level] = 0;
  833. path->nodes[level] = NULL;
  834. clean_tree_block(trans, root, mid);
  835. btrfs_tree_unlock(mid);
  836. /* once for the path */
  837. free_extent_buffer(mid);
  838. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  839. mid->start, root->root_key.objectid,
  840. btrfs_header_generation(mid),
  841. level, 1);
  842. /* once for the root ptr */
  843. free_extent_buffer(mid);
  844. return ret;
  845. }
  846. if (btrfs_header_nritems(mid) >
  847. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  848. return 0;
  849. if (btrfs_header_nritems(mid) < 2)
  850. err_on_enospc = 1;
  851. left = read_node_slot(root, parent, pslot - 1);
  852. if (left) {
  853. btrfs_tree_lock(left);
  854. btrfs_set_lock_blocking(left);
  855. wret = btrfs_cow_block(trans, root, left,
  856. parent, pslot - 1, &left);
  857. if (wret) {
  858. ret = wret;
  859. goto enospc;
  860. }
  861. }
  862. right = read_node_slot(root, parent, pslot + 1);
  863. if (right) {
  864. btrfs_tree_lock(right);
  865. btrfs_set_lock_blocking(right);
  866. wret = btrfs_cow_block(trans, root, right,
  867. parent, pslot + 1, &right);
  868. if (wret) {
  869. ret = wret;
  870. goto enospc;
  871. }
  872. }
  873. /* first, try to make some room in the middle buffer */
  874. if (left) {
  875. orig_slot += btrfs_header_nritems(left);
  876. wret = push_node_left(trans, root, left, mid, 1);
  877. if (wret < 0)
  878. ret = wret;
  879. if (btrfs_header_nritems(mid) < 2)
  880. err_on_enospc = 1;
  881. }
  882. /*
  883. * then try to empty the right most buffer into the middle
  884. */
  885. if (right) {
  886. wret = push_node_left(trans, root, mid, right, 1);
  887. if (wret < 0 && wret != -ENOSPC)
  888. ret = wret;
  889. if (btrfs_header_nritems(right) == 0) {
  890. u64 bytenr = right->start;
  891. u64 generation = btrfs_header_generation(parent);
  892. u32 blocksize = right->len;
  893. clean_tree_block(trans, root, right);
  894. btrfs_tree_unlock(right);
  895. free_extent_buffer(right);
  896. right = NULL;
  897. wret = del_ptr(trans, root, path, level + 1, pslot +
  898. 1);
  899. if (wret)
  900. ret = wret;
  901. wret = btrfs_free_extent(trans, root, bytenr,
  902. blocksize, parent->start,
  903. btrfs_header_owner(parent),
  904. generation, level, 1);
  905. if (wret)
  906. ret = wret;
  907. } else {
  908. struct btrfs_disk_key right_key;
  909. btrfs_node_key(right, &right_key, 0);
  910. btrfs_set_node_key(parent, &right_key, pslot + 1);
  911. btrfs_mark_buffer_dirty(parent);
  912. }
  913. }
  914. if (btrfs_header_nritems(mid) == 1) {
  915. /*
  916. * we're not allowed to leave a node with one item in the
  917. * tree during a delete. A deletion from lower in the tree
  918. * could try to delete the only pointer in this node.
  919. * So, pull some keys from the left.
  920. * There has to be a left pointer at this point because
  921. * otherwise we would have pulled some pointers from the
  922. * right
  923. */
  924. BUG_ON(!left);
  925. wret = balance_node_right(trans, root, mid, left);
  926. if (wret < 0) {
  927. ret = wret;
  928. goto enospc;
  929. }
  930. if (wret == 1) {
  931. wret = push_node_left(trans, root, left, mid, 1);
  932. if (wret < 0)
  933. ret = wret;
  934. }
  935. BUG_ON(wret == 1);
  936. }
  937. if (btrfs_header_nritems(mid) == 0) {
  938. /* we've managed to empty the middle node, drop it */
  939. u64 root_gen = btrfs_header_generation(parent);
  940. u64 bytenr = mid->start;
  941. u32 blocksize = mid->len;
  942. clean_tree_block(trans, root, mid);
  943. btrfs_tree_unlock(mid);
  944. free_extent_buffer(mid);
  945. mid = NULL;
  946. wret = del_ptr(trans, root, path, level + 1, pslot);
  947. if (wret)
  948. ret = wret;
  949. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  950. parent->start,
  951. btrfs_header_owner(parent),
  952. root_gen, level, 1);
  953. if (wret)
  954. ret = wret;
  955. } else {
  956. /* update the parent key to reflect our changes */
  957. struct btrfs_disk_key mid_key;
  958. btrfs_node_key(mid, &mid_key, 0);
  959. btrfs_set_node_key(parent, &mid_key, pslot);
  960. btrfs_mark_buffer_dirty(parent);
  961. }
  962. /* update the path */
  963. if (left) {
  964. if (btrfs_header_nritems(left) > orig_slot) {
  965. extent_buffer_get(left);
  966. /* left was locked after cow */
  967. path->nodes[level] = left;
  968. path->slots[level + 1] -= 1;
  969. path->slots[level] = orig_slot;
  970. if (mid) {
  971. btrfs_tree_unlock(mid);
  972. free_extent_buffer(mid);
  973. }
  974. } else {
  975. orig_slot -= btrfs_header_nritems(left);
  976. path->slots[level] = orig_slot;
  977. }
  978. }
  979. /* double check we haven't messed things up */
  980. check_block(root, path, level);
  981. if (orig_ptr !=
  982. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  983. BUG();
  984. enospc:
  985. if (right) {
  986. btrfs_tree_unlock(right);
  987. free_extent_buffer(right);
  988. }
  989. if (left) {
  990. if (path->nodes[level] != left)
  991. btrfs_tree_unlock(left);
  992. free_extent_buffer(left);
  993. }
  994. return ret;
  995. }
  996. /* Node balancing for insertion. Here we only split or push nodes around
  997. * when they are completely full. This is also done top down, so we
  998. * have to be pessimistic.
  999. */
  1000. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1001. struct btrfs_root *root,
  1002. struct btrfs_path *path, int level)
  1003. {
  1004. struct extent_buffer *right = NULL;
  1005. struct extent_buffer *mid;
  1006. struct extent_buffer *left = NULL;
  1007. struct extent_buffer *parent = NULL;
  1008. int ret = 0;
  1009. int wret;
  1010. int pslot;
  1011. int orig_slot = path->slots[level];
  1012. u64 orig_ptr;
  1013. if (level == 0)
  1014. return 1;
  1015. mid = path->nodes[level];
  1016. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1017. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1018. if (level < BTRFS_MAX_LEVEL - 1)
  1019. parent = path->nodes[level + 1];
  1020. pslot = path->slots[level + 1];
  1021. if (!parent)
  1022. return 1;
  1023. left = read_node_slot(root, parent, pslot - 1);
  1024. /* first, try to make some room in the middle buffer */
  1025. if (left) {
  1026. u32 left_nr;
  1027. btrfs_tree_lock(left);
  1028. btrfs_set_lock_blocking(left);
  1029. left_nr = btrfs_header_nritems(left);
  1030. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1031. wret = 1;
  1032. } else {
  1033. ret = btrfs_cow_block(trans, root, left, parent,
  1034. pslot - 1, &left);
  1035. if (ret)
  1036. wret = 1;
  1037. else {
  1038. wret = push_node_left(trans, root,
  1039. left, mid, 0);
  1040. }
  1041. }
  1042. if (wret < 0)
  1043. ret = wret;
  1044. if (wret == 0) {
  1045. struct btrfs_disk_key disk_key;
  1046. orig_slot += left_nr;
  1047. btrfs_node_key(mid, &disk_key, 0);
  1048. btrfs_set_node_key(parent, &disk_key, pslot);
  1049. btrfs_mark_buffer_dirty(parent);
  1050. if (btrfs_header_nritems(left) > orig_slot) {
  1051. path->nodes[level] = left;
  1052. path->slots[level + 1] -= 1;
  1053. path->slots[level] = orig_slot;
  1054. btrfs_tree_unlock(mid);
  1055. free_extent_buffer(mid);
  1056. } else {
  1057. orig_slot -=
  1058. btrfs_header_nritems(left);
  1059. path->slots[level] = orig_slot;
  1060. btrfs_tree_unlock(left);
  1061. free_extent_buffer(left);
  1062. }
  1063. return 0;
  1064. }
  1065. btrfs_tree_unlock(left);
  1066. free_extent_buffer(left);
  1067. }
  1068. right = read_node_slot(root, parent, pslot + 1);
  1069. /*
  1070. * then try to empty the right most buffer into the middle
  1071. */
  1072. if (right) {
  1073. u32 right_nr;
  1074. btrfs_tree_lock(right);
  1075. btrfs_set_lock_blocking(right);
  1076. right_nr = btrfs_header_nritems(right);
  1077. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1078. wret = 1;
  1079. } else {
  1080. ret = btrfs_cow_block(trans, root, right,
  1081. parent, pslot + 1,
  1082. &right);
  1083. if (ret)
  1084. wret = 1;
  1085. else {
  1086. wret = balance_node_right(trans, root,
  1087. right, mid);
  1088. }
  1089. }
  1090. if (wret < 0)
  1091. ret = wret;
  1092. if (wret == 0) {
  1093. struct btrfs_disk_key disk_key;
  1094. btrfs_node_key(right, &disk_key, 0);
  1095. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1096. btrfs_mark_buffer_dirty(parent);
  1097. if (btrfs_header_nritems(mid) <= orig_slot) {
  1098. path->nodes[level] = right;
  1099. path->slots[level + 1] += 1;
  1100. path->slots[level] = orig_slot -
  1101. btrfs_header_nritems(mid);
  1102. btrfs_tree_unlock(mid);
  1103. free_extent_buffer(mid);
  1104. } else {
  1105. btrfs_tree_unlock(right);
  1106. free_extent_buffer(right);
  1107. }
  1108. return 0;
  1109. }
  1110. btrfs_tree_unlock(right);
  1111. free_extent_buffer(right);
  1112. }
  1113. return 1;
  1114. }
  1115. /*
  1116. * readahead one full node of leaves, finding things that are close
  1117. * to the block in 'slot', and triggering ra on them.
  1118. */
  1119. static noinline void reada_for_search(struct btrfs_root *root,
  1120. struct btrfs_path *path,
  1121. int level, int slot, u64 objectid)
  1122. {
  1123. struct extent_buffer *node;
  1124. struct btrfs_disk_key disk_key;
  1125. u32 nritems;
  1126. u64 search;
  1127. u64 target;
  1128. u64 nread = 0;
  1129. int direction = path->reada;
  1130. struct extent_buffer *eb;
  1131. u32 nr;
  1132. u32 blocksize;
  1133. u32 nscan = 0;
  1134. if (level != 1)
  1135. return;
  1136. if (!path->nodes[level])
  1137. return;
  1138. node = path->nodes[level];
  1139. search = btrfs_node_blockptr(node, slot);
  1140. blocksize = btrfs_level_size(root, level - 1);
  1141. eb = btrfs_find_tree_block(root, search, blocksize);
  1142. if (eb) {
  1143. free_extent_buffer(eb);
  1144. return;
  1145. }
  1146. target = search;
  1147. nritems = btrfs_header_nritems(node);
  1148. nr = slot;
  1149. while (1) {
  1150. if (direction < 0) {
  1151. if (nr == 0)
  1152. break;
  1153. nr--;
  1154. } else if (direction > 0) {
  1155. nr++;
  1156. if (nr >= nritems)
  1157. break;
  1158. }
  1159. if (path->reada < 0 && objectid) {
  1160. btrfs_node_key(node, &disk_key, nr);
  1161. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1162. break;
  1163. }
  1164. search = btrfs_node_blockptr(node, nr);
  1165. if ((search <= target && target - search <= 65536) ||
  1166. (search > target && search - target <= 65536)) {
  1167. readahead_tree_block(root, search, blocksize,
  1168. btrfs_node_ptr_generation(node, nr));
  1169. nread += blocksize;
  1170. }
  1171. nscan++;
  1172. if ((nread > 65536 || nscan > 32))
  1173. break;
  1174. }
  1175. }
  1176. /*
  1177. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1178. * cache
  1179. */
  1180. static noinline int reada_for_balance(struct btrfs_root *root,
  1181. struct btrfs_path *path, int level)
  1182. {
  1183. int slot;
  1184. int nritems;
  1185. struct extent_buffer *parent;
  1186. struct extent_buffer *eb;
  1187. u64 gen;
  1188. u64 block1 = 0;
  1189. u64 block2 = 0;
  1190. int ret = 0;
  1191. int blocksize;
  1192. parent = path->nodes[level - 1];
  1193. if (!parent)
  1194. return 0;
  1195. nritems = btrfs_header_nritems(parent);
  1196. slot = path->slots[level];
  1197. blocksize = btrfs_level_size(root, level);
  1198. if (slot > 0) {
  1199. block1 = btrfs_node_blockptr(parent, slot - 1);
  1200. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1201. eb = btrfs_find_tree_block(root, block1, blocksize);
  1202. if (eb && btrfs_buffer_uptodate(eb, gen))
  1203. block1 = 0;
  1204. free_extent_buffer(eb);
  1205. }
  1206. if (slot < nritems) {
  1207. block2 = btrfs_node_blockptr(parent, slot + 1);
  1208. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1209. eb = btrfs_find_tree_block(root, block2, blocksize);
  1210. if (eb && btrfs_buffer_uptodate(eb, gen))
  1211. block2 = 0;
  1212. free_extent_buffer(eb);
  1213. }
  1214. if (block1 || block2) {
  1215. ret = -EAGAIN;
  1216. btrfs_release_path(root, path);
  1217. if (block1)
  1218. readahead_tree_block(root, block1, blocksize, 0);
  1219. if (block2)
  1220. readahead_tree_block(root, block2, blocksize, 0);
  1221. if (block1) {
  1222. eb = read_tree_block(root, block1, blocksize, 0);
  1223. free_extent_buffer(eb);
  1224. }
  1225. if (block1) {
  1226. eb = read_tree_block(root, block2, blocksize, 0);
  1227. free_extent_buffer(eb);
  1228. }
  1229. }
  1230. return ret;
  1231. }
  1232. /*
  1233. * when we walk down the tree, it is usually safe to unlock the higher layers
  1234. * in the tree. The exceptions are when our path goes through slot 0, because
  1235. * operations on the tree might require changing key pointers higher up in the
  1236. * tree.
  1237. *
  1238. * callers might also have set path->keep_locks, which tells this code to keep
  1239. * the lock if the path points to the last slot in the block. This is part of
  1240. * walking through the tree, and selecting the next slot in the higher block.
  1241. *
  1242. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1243. * if lowest_unlock is 1, level 0 won't be unlocked
  1244. */
  1245. static noinline void unlock_up(struct btrfs_path *path, int level,
  1246. int lowest_unlock)
  1247. {
  1248. int i;
  1249. int skip_level = level;
  1250. int no_skips = 0;
  1251. struct extent_buffer *t;
  1252. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1253. if (!path->nodes[i])
  1254. break;
  1255. if (!path->locks[i])
  1256. break;
  1257. if (!no_skips && path->slots[i] == 0) {
  1258. skip_level = i + 1;
  1259. continue;
  1260. }
  1261. if (!no_skips && path->keep_locks) {
  1262. u32 nritems;
  1263. t = path->nodes[i];
  1264. nritems = btrfs_header_nritems(t);
  1265. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1266. skip_level = i + 1;
  1267. continue;
  1268. }
  1269. }
  1270. if (skip_level < i && i >= lowest_unlock)
  1271. no_skips = 1;
  1272. t = path->nodes[i];
  1273. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1274. btrfs_tree_unlock(t);
  1275. path->locks[i] = 0;
  1276. }
  1277. }
  1278. }
  1279. /*
  1280. * This releases any locks held in the path starting at level and
  1281. * going all the way up to the root.
  1282. *
  1283. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1284. * corner cases, such as COW of the block at slot zero in the node. This
  1285. * ignores those rules, and it should only be called when there are no
  1286. * more updates to be done higher up in the tree.
  1287. */
  1288. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1289. {
  1290. int i;
  1291. if (path->keep_locks || path->lowest_level)
  1292. return;
  1293. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1294. if (!path->nodes[i])
  1295. continue;
  1296. if (!path->locks[i])
  1297. continue;
  1298. btrfs_tree_unlock(path->nodes[i]);
  1299. path->locks[i] = 0;
  1300. }
  1301. }
  1302. /*
  1303. * look for key in the tree. path is filled in with nodes along the way
  1304. * if key is found, we return zero and you can find the item in the leaf
  1305. * level of the path (level 0)
  1306. *
  1307. * If the key isn't found, the path points to the slot where it should
  1308. * be inserted, and 1 is returned. If there are other errors during the
  1309. * search a negative error number is returned.
  1310. *
  1311. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1312. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1313. * possible)
  1314. */
  1315. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1316. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1317. ins_len, int cow)
  1318. {
  1319. struct extent_buffer *b;
  1320. struct extent_buffer *tmp;
  1321. int slot;
  1322. int ret;
  1323. int level;
  1324. int should_reada = p->reada;
  1325. int lowest_unlock = 1;
  1326. int blocksize;
  1327. u8 lowest_level = 0;
  1328. u64 blocknr;
  1329. u64 gen;
  1330. lowest_level = p->lowest_level;
  1331. WARN_ON(lowest_level && ins_len > 0);
  1332. WARN_ON(p->nodes[0] != NULL);
  1333. if (ins_len < 0)
  1334. lowest_unlock = 2;
  1335. again:
  1336. if (p->skip_locking)
  1337. b = btrfs_root_node(root);
  1338. else
  1339. b = btrfs_lock_root_node(root);
  1340. while (b) {
  1341. level = btrfs_header_level(b);
  1342. /*
  1343. * setup the path here so we can release it under lock
  1344. * contention with the cow code
  1345. */
  1346. p->nodes[level] = b;
  1347. if (!p->skip_locking)
  1348. p->locks[level] = 1;
  1349. if (cow) {
  1350. int wret;
  1351. /* is a cow on this block not required */
  1352. if (btrfs_header_generation(b) == trans->transid &&
  1353. btrfs_header_owner(b) == root->root_key.objectid &&
  1354. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1355. goto cow_done;
  1356. }
  1357. btrfs_set_path_blocking(p);
  1358. wret = btrfs_cow_block(trans, root, b,
  1359. p->nodes[level + 1],
  1360. p->slots[level + 1], &b);
  1361. if (wret) {
  1362. free_extent_buffer(b);
  1363. ret = wret;
  1364. goto done;
  1365. }
  1366. }
  1367. cow_done:
  1368. BUG_ON(!cow && ins_len);
  1369. if (level != btrfs_header_level(b))
  1370. WARN_ON(1);
  1371. level = btrfs_header_level(b);
  1372. p->nodes[level] = b;
  1373. if (!p->skip_locking)
  1374. p->locks[level] = 1;
  1375. btrfs_clear_path_blocking(p, NULL);
  1376. /*
  1377. * we have a lock on b and as long as we aren't changing
  1378. * the tree, there is no way to for the items in b to change.
  1379. * It is safe to drop the lock on our parent before we
  1380. * go through the expensive btree search on b.
  1381. *
  1382. * If cow is true, then we might be changing slot zero,
  1383. * which may require changing the parent. So, we can't
  1384. * drop the lock until after we know which slot we're
  1385. * operating on.
  1386. */
  1387. if (!cow)
  1388. btrfs_unlock_up_safe(p, level + 1);
  1389. ret = check_block(root, p, level);
  1390. if (ret) {
  1391. ret = -1;
  1392. goto done;
  1393. }
  1394. ret = bin_search(b, key, level, &slot);
  1395. if (level != 0) {
  1396. if (ret && slot > 0)
  1397. slot -= 1;
  1398. p->slots[level] = slot;
  1399. if ((p->search_for_split || ins_len > 0) &&
  1400. btrfs_header_nritems(b) >=
  1401. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1402. int sret;
  1403. sret = reada_for_balance(root, p, level);
  1404. if (sret)
  1405. goto again;
  1406. btrfs_set_path_blocking(p);
  1407. sret = split_node(trans, root, p, level);
  1408. btrfs_clear_path_blocking(p, NULL);
  1409. BUG_ON(sret > 0);
  1410. if (sret) {
  1411. ret = sret;
  1412. goto done;
  1413. }
  1414. b = p->nodes[level];
  1415. slot = p->slots[level];
  1416. } else if (ins_len < 0 &&
  1417. btrfs_header_nritems(b) <
  1418. BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
  1419. int sret;
  1420. sret = reada_for_balance(root, p, level);
  1421. if (sret)
  1422. goto again;
  1423. btrfs_set_path_blocking(p);
  1424. sret = balance_level(trans, root, p, level);
  1425. btrfs_clear_path_blocking(p, NULL);
  1426. if (sret) {
  1427. ret = sret;
  1428. goto done;
  1429. }
  1430. b = p->nodes[level];
  1431. if (!b) {
  1432. btrfs_release_path(NULL, p);
  1433. goto again;
  1434. }
  1435. slot = p->slots[level];
  1436. BUG_ON(btrfs_header_nritems(b) == 1);
  1437. }
  1438. unlock_up(p, level, lowest_unlock);
  1439. /* this is only true while dropping a snapshot */
  1440. if (level == lowest_level) {
  1441. ret = 0;
  1442. goto done;
  1443. }
  1444. blocknr = btrfs_node_blockptr(b, slot);
  1445. gen = btrfs_node_ptr_generation(b, slot);
  1446. blocksize = btrfs_level_size(root, level - 1);
  1447. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1448. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1449. b = tmp;
  1450. } else {
  1451. /*
  1452. * reduce lock contention at high levels
  1453. * of the btree by dropping locks before
  1454. * we read.
  1455. */
  1456. if (level > 0) {
  1457. btrfs_release_path(NULL, p);
  1458. if (tmp)
  1459. free_extent_buffer(tmp);
  1460. if (should_reada)
  1461. reada_for_search(root, p,
  1462. level, slot,
  1463. key->objectid);
  1464. tmp = read_tree_block(root, blocknr,
  1465. blocksize, gen);
  1466. if (tmp)
  1467. free_extent_buffer(tmp);
  1468. goto again;
  1469. } else {
  1470. btrfs_set_path_blocking(p);
  1471. if (tmp)
  1472. free_extent_buffer(tmp);
  1473. if (should_reada)
  1474. reada_for_search(root, p,
  1475. level, slot,
  1476. key->objectid);
  1477. b = read_node_slot(root, b, slot);
  1478. }
  1479. }
  1480. if (!p->skip_locking) {
  1481. int lret;
  1482. btrfs_clear_path_blocking(p, NULL);
  1483. lret = btrfs_try_spin_lock(b);
  1484. if (!lret) {
  1485. btrfs_set_path_blocking(p);
  1486. btrfs_tree_lock(b);
  1487. btrfs_clear_path_blocking(p, b);
  1488. }
  1489. }
  1490. } else {
  1491. p->slots[level] = slot;
  1492. if (ins_len > 0 &&
  1493. btrfs_leaf_free_space(root, b) < ins_len) {
  1494. int sret;
  1495. btrfs_set_path_blocking(p);
  1496. sret = split_leaf(trans, root, key,
  1497. p, ins_len, ret == 0);
  1498. btrfs_clear_path_blocking(p, NULL);
  1499. BUG_ON(sret > 0);
  1500. if (sret) {
  1501. ret = sret;
  1502. goto done;
  1503. }
  1504. }
  1505. if (!p->search_for_split)
  1506. unlock_up(p, level, lowest_unlock);
  1507. goto done;
  1508. }
  1509. }
  1510. ret = 1;
  1511. done:
  1512. /*
  1513. * we don't really know what they plan on doing with the path
  1514. * from here on, so for now just mark it as blocking
  1515. */
  1516. btrfs_set_path_blocking(p);
  1517. return ret;
  1518. }
  1519. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1520. struct btrfs_root *root,
  1521. struct btrfs_key *node_keys,
  1522. u64 *nodes, int lowest_level)
  1523. {
  1524. struct extent_buffer *eb;
  1525. struct extent_buffer *parent;
  1526. struct btrfs_key key;
  1527. u64 bytenr;
  1528. u64 generation;
  1529. u32 blocksize;
  1530. int level;
  1531. int slot;
  1532. int key_match;
  1533. int ret;
  1534. eb = btrfs_lock_root_node(root);
  1535. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
  1536. BUG_ON(ret);
  1537. btrfs_set_lock_blocking(eb);
  1538. parent = eb;
  1539. while (1) {
  1540. level = btrfs_header_level(parent);
  1541. if (level == 0 || level <= lowest_level)
  1542. break;
  1543. ret = bin_search(parent, &node_keys[lowest_level], level,
  1544. &slot);
  1545. if (ret && slot > 0)
  1546. slot--;
  1547. bytenr = btrfs_node_blockptr(parent, slot);
  1548. if (nodes[level - 1] == bytenr)
  1549. break;
  1550. blocksize = btrfs_level_size(root, level - 1);
  1551. generation = btrfs_node_ptr_generation(parent, slot);
  1552. btrfs_node_key_to_cpu(eb, &key, slot);
  1553. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1554. if (generation == trans->transid) {
  1555. eb = read_tree_block(root, bytenr, blocksize,
  1556. generation);
  1557. btrfs_tree_lock(eb);
  1558. btrfs_set_lock_blocking(eb);
  1559. }
  1560. /*
  1561. * if node keys match and node pointer hasn't been modified
  1562. * in the running transaction, we can merge the path. for
  1563. * blocks owened by reloc trees, the node pointer check is
  1564. * skipped, this is because these blocks are fully controlled
  1565. * by the space balance code, no one else can modify them.
  1566. */
  1567. if (!nodes[level - 1] || !key_match ||
  1568. (generation == trans->transid &&
  1569. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1570. if (level == 1 || level == lowest_level + 1) {
  1571. if (generation == trans->transid) {
  1572. btrfs_tree_unlock(eb);
  1573. free_extent_buffer(eb);
  1574. }
  1575. break;
  1576. }
  1577. if (generation != trans->transid) {
  1578. eb = read_tree_block(root, bytenr, blocksize,
  1579. generation);
  1580. btrfs_tree_lock(eb);
  1581. btrfs_set_lock_blocking(eb);
  1582. }
  1583. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1584. &eb);
  1585. BUG_ON(ret);
  1586. if (root->root_key.objectid ==
  1587. BTRFS_TREE_RELOC_OBJECTID) {
  1588. if (!nodes[level - 1]) {
  1589. nodes[level - 1] = eb->start;
  1590. memcpy(&node_keys[level - 1], &key,
  1591. sizeof(node_keys[0]));
  1592. } else {
  1593. WARN_ON(1);
  1594. }
  1595. }
  1596. btrfs_tree_unlock(parent);
  1597. free_extent_buffer(parent);
  1598. parent = eb;
  1599. continue;
  1600. }
  1601. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1602. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1603. btrfs_mark_buffer_dirty(parent);
  1604. ret = btrfs_inc_extent_ref(trans, root,
  1605. nodes[level - 1],
  1606. blocksize, parent->start,
  1607. btrfs_header_owner(parent),
  1608. btrfs_header_generation(parent),
  1609. level - 1);
  1610. BUG_ON(ret);
  1611. /*
  1612. * If the block was created in the running transaction,
  1613. * it's possible this is the last reference to it, so we
  1614. * should drop the subtree.
  1615. */
  1616. if (generation == trans->transid) {
  1617. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1618. BUG_ON(ret);
  1619. btrfs_tree_unlock(eb);
  1620. free_extent_buffer(eb);
  1621. } else {
  1622. ret = btrfs_free_extent(trans, root, bytenr,
  1623. blocksize, parent->start,
  1624. btrfs_header_owner(parent),
  1625. btrfs_header_generation(parent),
  1626. level - 1, 1);
  1627. BUG_ON(ret);
  1628. }
  1629. break;
  1630. }
  1631. btrfs_tree_unlock(parent);
  1632. free_extent_buffer(parent);
  1633. return 0;
  1634. }
  1635. /*
  1636. * adjust the pointers going up the tree, starting at level
  1637. * making sure the right key of each node is points to 'key'.
  1638. * This is used after shifting pointers to the left, so it stops
  1639. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1640. * higher levels
  1641. *
  1642. * If this fails to write a tree block, it returns -1, but continues
  1643. * fixing up the blocks in ram so the tree is consistent.
  1644. */
  1645. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1646. struct btrfs_root *root, struct btrfs_path *path,
  1647. struct btrfs_disk_key *key, int level)
  1648. {
  1649. int i;
  1650. int ret = 0;
  1651. struct extent_buffer *t;
  1652. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1653. int tslot = path->slots[i];
  1654. if (!path->nodes[i])
  1655. break;
  1656. t = path->nodes[i];
  1657. btrfs_set_node_key(t, key, tslot);
  1658. btrfs_mark_buffer_dirty(path->nodes[i]);
  1659. if (tslot != 0)
  1660. break;
  1661. }
  1662. return ret;
  1663. }
  1664. /*
  1665. * update item key.
  1666. *
  1667. * This function isn't completely safe. It's the caller's responsibility
  1668. * that the new key won't break the order
  1669. */
  1670. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1671. struct btrfs_root *root, struct btrfs_path *path,
  1672. struct btrfs_key *new_key)
  1673. {
  1674. struct btrfs_disk_key disk_key;
  1675. struct extent_buffer *eb;
  1676. int slot;
  1677. eb = path->nodes[0];
  1678. slot = path->slots[0];
  1679. if (slot > 0) {
  1680. btrfs_item_key(eb, &disk_key, slot - 1);
  1681. if (comp_keys(&disk_key, new_key) >= 0)
  1682. return -1;
  1683. }
  1684. if (slot < btrfs_header_nritems(eb) - 1) {
  1685. btrfs_item_key(eb, &disk_key, slot + 1);
  1686. if (comp_keys(&disk_key, new_key) <= 0)
  1687. return -1;
  1688. }
  1689. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1690. btrfs_set_item_key(eb, &disk_key, slot);
  1691. btrfs_mark_buffer_dirty(eb);
  1692. if (slot == 0)
  1693. fixup_low_keys(trans, root, path, &disk_key, 1);
  1694. return 0;
  1695. }
  1696. /*
  1697. * try to push data from one node into the next node left in the
  1698. * tree.
  1699. *
  1700. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1701. * error, and > 0 if there was no room in the left hand block.
  1702. */
  1703. static int push_node_left(struct btrfs_trans_handle *trans,
  1704. struct btrfs_root *root, struct extent_buffer *dst,
  1705. struct extent_buffer *src, int empty)
  1706. {
  1707. int push_items = 0;
  1708. int src_nritems;
  1709. int dst_nritems;
  1710. int ret = 0;
  1711. src_nritems = btrfs_header_nritems(src);
  1712. dst_nritems = btrfs_header_nritems(dst);
  1713. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1714. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1715. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1716. if (!empty && src_nritems <= 8)
  1717. return 1;
  1718. if (push_items <= 0)
  1719. return 1;
  1720. if (empty) {
  1721. push_items = min(src_nritems, push_items);
  1722. if (push_items < src_nritems) {
  1723. /* leave at least 8 pointers in the node if
  1724. * we aren't going to empty it
  1725. */
  1726. if (src_nritems - push_items < 8) {
  1727. if (push_items <= 8)
  1728. return 1;
  1729. push_items -= 8;
  1730. }
  1731. }
  1732. } else
  1733. push_items = min(src_nritems - 8, push_items);
  1734. copy_extent_buffer(dst, src,
  1735. btrfs_node_key_ptr_offset(dst_nritems),
  1736. btrfs_node_key_ptr_offset(0),
  1737. push_items * sizeof(struct btrfs_key_ptr));
  1738. if (push_items < src_nritems) {
  1739. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1740. btrfs_node_key_ptr_offset(push_items),
  1741. (src_nritems - push_items) *
  1742. sizeof(struct btrfs_key_ptr));
  1743. }
  1744. btrfs_set_header_nritems(src, src_nritems - push_items);
  1745. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1746. btrfs_mark_buffer_dirty(src);
  1747. btrfs_mark_buffer_dirty(dst);
  1748. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1749. BUG_ON(ret);
  1750. return ret;
  1751. }
  1752. /*
  1753. * try to push data from one node into the next node right in the
  1754. * tree.
  1755. *
  1756. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1757. * error, and > 0 if there was no room in the right hand block.
  1758. *
  1759. * this will only push up to 1/2 the contents of the left node over
  1760. */
  1761. static int balance_node_right(struct btrfs_trans_handle *trans,
  1762. struct btrfs_root *root,
  1763. struct extent_buffer *dst,
  1764. struct extent_buffer *src)
  1765. {
  1766. int push_items = 0;
  1767. int max_push;
  1768. int src_nritems;
  1769. int dst_nritems;
  1770. int ret = 0;
  1771. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1772. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1773. src_nritems = btrfs_header_nritems(src);
  1774. dst_nritems = btrfs_header_nritems(dst);
  1775. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1776. if (push_items <= 0)
  1777. return 1;
  1778. if (src_nritems < 4)
  1779. return 1;
  1780. max_push = src_nritems / 2 + 1;
  1781. /* don't try to empty the node */
  1782. if (max_push >= src_nritems)
  1783. return 1;
  1784. if (max_push < push_items)
  1785. push_items = max_push;
  1786. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1787. btrfs_node_key_ptr_offset(0),
  1788. (dst_nritems) *
  1789. sizeof(struct btrfs_key_ptr));
  1790. copy_extent_buffer(dst, src,
  1791. btrfs_node_key_ptr_offset(0),
  1792. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1793. push_items * sizeof(struct btrfs_key_ptr));
  1794. btrfs_set_header_nritems(src, src_nritems - push_items);
  1795. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1796. btrfs_mark_buffer_dirty(src);
  1797. btrfs_mark_buffer_dirty(dst);
  1798. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1799. BUG_ON(ret);
  1800. return ret;
  1801. }
  1802. /*
  1803. * helper function to insert a new root level in the tree.
  1804. * A new node is allocated, and a single item is inserted to
  1805. * point to the existing root
  1806. *
  1807. * returns zero on success or < 0 on failure.
  1808. */
  1809. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1810. struct btrfs_root *root,
  1811. struct btrfs_path *path, int level)
  1812. {
  1813. u64 lower_gen;
  1814. struct extent_buffer *lower;
  1815. struct extent_buffer *c;
  1816. struct extent_buffer *old;
  1817. struct btrfs_disk_key lower_key;
  1818. int ret;
  1819. BUG_ON(path->nodes[level]);
  1820. BUG_ON(path->nodes[level-1] != root->node);
  1821. lower = path->nodes[level-1];
  1822. if (level == 1)
  1823. btrfs_item_key(lower, &lower_key, 0);
  1824. else
  1825. btrfs_node_key(lower, &lower_key, 0);
  1826. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1827. root->root_key.objectid, trans->transid,
  1828. level, root->node->start, 0);
  1829. if (IS_ERR(c))
  1830. return PTR_ERR(c);
  1831. memset_extent_buffer(c, 0, 0, root->nodesize);
  1832. btrfs_set_header_nritems(c, 1);
  1833. btrfs_set_header_level(c, level);
  1834. btrfs_set_header_bytenr(c, c->start);
  1835. btrfs_set_header_generation(c, trans->transid);
  1836. btrfs_set_header_owner(c, root->root_key.objectid);
  1837. write_extent_buffer(c, root->fs_info->fsid,
  1838. (unsigned long)btrfs_header_fsid(c),
  1839. BTRFS_FSID_SIZE);
  1840. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1841. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1842. BTRFS_UUID_SIZE);
  1843. btrfs_set_node_key(c, &lower_key, 0);
  1844. btrfs_set_node_blockptr(c, 0, lower->start);
  1845. lower_gen = btrfs_header_generation(lower);
  1846. WARN_ON(lower_gen != trans->transid);
  1847. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1848. btrfs_mark_buffer_dirty(c);
  1849. spin_lock(&root->node_lock);
  1850. old = root->node;
  1851. root->node = c;
  1852. spin_unlock(&root->node_lock);
  1853. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1854. lower->len, lower->start, c->start,
  1855. root->root_key.objectid,
  1856. trans->transid, level - 1);
  1857. BUG_ON(ret);
  1858. /* the super has an extra ref to root->node */
  1859. free_extent_buffer(old);
  1860. add_root_to_dirty_list(root);
  1861. extent_buffer_get(c);
  1862. path->nodes[level] = c;
  1863. path->locks[level] = 1;
  1864. path->slots[level] = 0;
  1865. return 0;
  1866. }
  1867. /*
  1868. * worker function to insert a single pointer in a node.
  1869. * the node should have enough room for the pointer already
  1870. *
  1871. * slot and level indicate where you want the key to go, and
  1872. * blocknr is the block the key points to.
  1873. *
  1874. * returns zero on success and < 0 on any error
  1875. */
  1876. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1877. *root, struct btrfs_path *path, struct btrfs_disk_key
  1878. *key, u64 bytenr, int slot, int level)
  1879. {
  1880. struct extent_buffer *lower;
  1881. int nritems;
  1882. BUG_ON(!path->nodes[level]);
  1883. lower = path->nodes[level];
  1884. nritems = btrfs_header_nritems(lower);
  1885. if (slot > nritems)
  1886. BUG();
  1887. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1888. BUG();
  1889. if (slot != nritems) {
  1890. memmove_extent_buffer(lower,
  1891. btrfs_node_key_ptr_offset(slot + 1),
  1892. btrfs_node_key_ptr_offset(slot),
  1893. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1894. }
  1895. btrfs_set_node_key(lower, key, slot);
  1896. btrfs_set_node_blockptr(lower, slot, bytenr);
  1897. WARN_ON(trans->transid == 0);
  1898. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1899. btrfs_set_header_nritems(lower, nritems + 1);
  1900. btrfs_mark_buffer_dirty(lower);
  1901. return 0;
  1902. }
  1903. /*
  1904. * split the node at the specified level in path in two.
  1905. * The path is corrected to point to the appropriate node after the split
  1906. *
  1907. * Before splitting this tries to make some room in the node by pushing
  1908. * left and right, if either one works, it returns right away.
  1909. *
  1910. * returns 0 on success and < 0 on failure
  1911. */
  1912. static noinline int split_node(struct btrfs_trans_handle *trans,
  1913. struct btrfs_root *root,
  1914. struct btrfs_path *path, int level)
  1915. {
  1916. struct extent_buffer *c;
  1917. struct extent_buffer *split;
  1918. struct btrfs_disk_key disk_key;
  1919. int mid;
  1920. int ret;
  1921. int wret;
  1922. u32 c_nritems;
  1923. c = path->nodes[level];
  1924. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1925. if (c == root->node) {
  1926. /* trying to split the root, lets make a new one */
  1927. ret = insert_new_root(trans, root, path, level + 1);
  1928. if (ret)
  1929. return ret;
  1930. } else {
  1931. ret = push_nodes_for_insert(trans, root, path, level);
  1932. c = path->nodes[level];
  1933. if (!ret && btrfs_header_nritems(c) <
  1934. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1935. return 0;
  1936. if (ret < 0)
  1937. return ret;
  1938. }
  1939. c_nritems = btrfs_header_nritems(c);
  1940. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1941. path->nodes[level + 1]->start,
  1942. root->root_key.objectid,
  1943. trans->transid, level, c->start, 0);
  1944. if (IS_ERR(split))
  1945. return PTR_ERR(split);
  1946. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1947. btrfs_set_header_level(split, btrfs_header_level(c));
  1948. btrfs_set_header_bytenr(split, split->start);
  1949. btrfs_set_header_generation(split, trans->transid);
  1950. btrfs_set_header_owner(split, root->root_key.objectid);
  1951. btrfs_set_header_flags(split, 0);
  1952. write_extent_buffer(split, root->fs_info->fsid,
  1953. (unsigned long)btrfs_header_fsid(split),
  1954. BTRFS_FSID_SIZE);
  1955. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1956. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1957. BTRFS_UUID_SIZE);
  1958. mid = (c_nritems + 1) / 2;
  1959. copy_extent_buffer(split, c,
  1960. btrfs_node_key_ptr_offset(0),
  1961. btrfs_node_key_ptr_offset(mid),
  1962. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1963. btrfs_set_header_nritems(split, c_nritems - mid);
  1964. btrfs_set_header_nritems(c, mid);
  1965. ret = 0;
  1966. btrfs_mark_buffer_dirty(c);
  1967. btrfs_mark_buffer_dirty(split);
  1968. btrfs_node_key(split, &disk_key, 0);
  1969. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1970. path->slots[level + 1] + 1,
  1971. level + 1);
  1972. if (wret)
  1973. ret = wret;
  1974. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  1975. BUG_ON(ret);
  1976. if (path->slots[level] >= mid) {
  1977. path->slots[level] -= mid;
  1978. btrfs_tree_unlock(c);
  1979. free_extent_buffer(c);
  1980. path->nodes[level] = split;
  1981. path->slots[level + 1] += 1;
  1982. } else {
  1983. btrfs_tree_unlock(split);
  1984. free_extent_buffer(split);
  1985. }
  1986. return ret;
  1987. }
  1988. /*
  1989. * how many bytes are required to store the items in a leaf. start
  1990. * and nr indicate which items in the leaf to check. This totals up the
  1991. * space used both by the item structs and the item data
  1992. */
  1993. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1994. {
  1995. int data_len;
  1996. int nritems = btrfs_header_nritems(l);
  1997. int end = min(nritems, start + nr) - 1;
  1998. if (!nr)
  1999. return 0;
  2000. data_len = btrfs_item_end_nr(l, start);
  2001. data_len = data_len - btrfs_item_offset_nr(l, end);
  2002. data_len += sizeof(struct btrfs_item) * nr;
  2003. WARN_ON(data_len < 0);
  2004. return data_len;
  2005. }
  2006. /*
  2007. * The space between the end of the leaf items and
  2008. * the start of the leaf data. IOW, how much room
  2009. * the leaf has left for both items and data
  2010. */
  2011. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2012. struct extent_buffer *leaf)
  2013. {
  2014. int nritems = btrfs_header_nritems(leaf);
  2015. int ret;
  2016. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2017. if (ret < 0) {
  2018. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2019. "used %d nritems %d\n",
  2020. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2021. leaf_space_used(leaf, 0, nritems), nritems);
  2022. }
  2023. return ret;
  2024. }
  2025. /*
  2026. * push some data in the path leaf to the right, trying to free up at
  2027. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2028. *
  2029. * returns 1 if the push failed because the other node didn't have enough
  2030. * room, 0 if everything worked out and < 0 if there were major errors.
  2031. */
  2032. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2033. *root, struct btrfs_path *path, int data_size,
  2034. int empty)
  2035. {
  2036. struct extent_buffer *left = path->nodes[0];
  2037. struct extent_buffer *right;
  2038. struct extent_buffer *upper;
  2039. struct btrfs_disk_key disk_key;
  2040. int slot;
  2041. u32 i;
  2042. int free_space;
  2043. int push_space = 0;
  2044. int push_items = 0;
  2045. struct btrfs_item *item;
  2046. u32 left_nritems;
  2047. u32 nr;
  2048. u32 right_nritems;
  2049. u32 data_end;
  2050. u32 this_item_size;
  2051. int ret;
  2052. slot = path->slots[1];
  2053. if (!path->nodes[1])
  2054. return 1;
  2055. upper = path->nodes[1];
  2056. if (slot >= btrfs_header_nritems(upper) - 1)
  2057. return 1;
  2058. btrfs_assert_tree_locked(path->nodes[1]);
  2059. right = read_node_slot(root, upper, slot + 1);
  2060. btrfs_tree_lock(right);
  2061. btrfs_set_lock_blocking(right);
  2062. free_space = btrfs_leaf_free_space(root, right);
  2063. if (free_space < data_size)
  2064. goto out_unlock;
  2065. /* cow and double check */
  2066. ret = btrfs_cow_block(trans, root, right, upper,
  2067. slot + 1, &right);
  2068. if (ret)
  2069. goto out_unlock;
  2070. free_space = btrfs_leaf_free_space(root, right);
  2071. if (free_space < data_size)
  2072. goto out_unlock;
  2073. left_nritems = btrfs_header_nritems(left);
  2074. if (left_nritems == 0)
  2075. goto out_unlock;
  2076. if (empty)
  2077. nr = 0;
  2078. else
  2079. nr = 1;
  2080. if (path->slots[0] >= left_nritems)
  2081. push_space += data_size;
  2082. i = left_nritems - 1;
  2083. while (i >= nr) {
  2084. item = btrfs_item_nr(left, i);
  2085. if (!empty && push_items > 0) {
  2086. if (path->slots[0] > i)
  2087. break;
  2088. if (path->slots[0] == i) {
  2089. int space = btrfs_leaf_free_space(root, left);
  2090. if (space + push_space * 2 > free_space)
  2091. break;
  2092. }
  2093. }
  2094. if (path->slots[0] == i)
  2095. push_space += data_size;
  2096. if (!left->map_token) {
  2097. map_extent_buffer(left, (unsigned long)item,
  2098. sizeof(struct btrfs_item),
  2099. &left->map_token, &left->kaddr,
  2100. &left->map_start, &left->map_len,
  2101. KM_USER1);
  2102. }
  2103. this_item_size = btrfs_item_size(left, item);
  2104. if (this_item_size + sizeof(*item) + push_space > free_space)
  2105. break;
  2106. push_items++;
  2107. push_space += this_item_size + sizeof(*item);
  2108. if (i == 0)
  2109. break;
  2110. i--;
  2111. }
  2112. if (left->map_token) {
  2113. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2114. left->map_token = NULL;
  2115. }
  2116. if (push_items == 0)
  2117. goto out_unlock;
  2118. if (!empty && push_items == left_nritems)
  2119. WARN_ON(1);
  2120. /* push left to right */
  2121. right_nritems = btrfs_header_nritems(right);
  2122. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2123. push_space -= leaf_data_end(root, left);
  2124. /* make room in the right data area */
  2125. data_end = leaf_data_end(root, right);
  2126. memmove_extent_buffer(right,
  2127. btrfs_leaf_data(right) + data_end - push_space,
  2128. btrfs_leaf_data(right) + data_end,
  2129. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2130. /* copy from the left data area */
  2131. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2132. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2133. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2134. push_space);
  2135. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2136. btrfs_item_nr_offset(0),
  2137. right_nritems * sizeof(struct btrfs_item));
  2138. /* copy the items from left to right */
  2139. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2140. btrfs_item_nr_offset(left_nritems - push_items),
  2141. push_items * sizeof(struct btrfs_item));
  2142. /* update the item pointers */
  2143. right_nritems += push_items;
  2144. btrfs_set_header_nritems(right, right_nritems);
  2145. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2146. for (i = 0; i < right_nritems; i++) {
  2147. item = btrfs_item_nr(right, i);
  2148. if (!right->map_token) {
  2149. map_extent_buffer(right, (unsigned long)item,
  2150. sizeof(struct btrfs_item),
  2151. &right->map_token, &right->kaddr,
  2152. &right->map_start, &right->map_len,
  2153. KM_USER1);
  2154. }
  2155. push_space -= btrfs_item_size(right, item);
  2156. btrfs_set_item_offset(right, item, push_space);
  2157. }
  2158. if (right->map_token) {
  2159. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2160. right->map_token = NULL;
  2161. }
  2162. left_nritems -= push_items;
  2163. btrfs_set_header_nritems(left, left_nritems);
  2164. if (left_nritems)
  2165. btrfs_mark_buffer_dirty(left);
  2166. btrfs_mark_buffer_dirty(right);
  2167. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2168. BUG_ON(ret);
  2169. btrfs_item_key(right, &disk_key, 0);
  2170. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2171. btrfs_mark_buffer_dirty(upper);
  2172. /* then fixup the leaf pointer in the path */
  2173. if (path->slots[0] >= left_nritems) {
  2174. path->slots[0] -= left_nritems;
  2175. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2176. clean_tree_block(trans, root, path->nodes[0]);
  2177. btrfs_tree_unlock(path->nodes[0]);
  2178. free_extent_buffer(path->nodes[0]);
  2179. path->nodes[0] = right;
  2180. path->slots[1] += 1;
  2181. } else {
  2182. btrfs_tree_unlock(right);
  2183. free_extent_buffer(right);
  2184. }
  2185. return 0;
  2186. out_unlock:
  2187. btrfs_tree_unlock(right);
  2188. free_extent_buffer(right);
  2189. return 1;
  2190. }
  2191. /*
  2192. * push some data in the path leaf to the left, trying to free up at
  2193. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2194. */
  2195. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2196. *root, struct btrfs_path *path, int data_size,
  2197. int empty)
  2198. {
  2199. struct btrfs_disk_key disk_key;
  2200. struct extent_buffer *right = path->nodes[0];
  2201. struct extent_buffer *left;
  2202. int slot;
  2203. int i;
  2204. int free_space;
  2205. int push_space = 0;
  2206. int push_items = 0;
  2207. struct btrfs_item *item;
  2208. u32 old_left_nritems;
  2209. u32 right_nritems;
  2210. u32 nr;
  2211. int ret = 0;
  2212. int wret;
  2213. u32 this_item_size;
  2214. u32 old_left_item_size;
  2215. slot = path->slots[1];
  2216. if (slot == 0)
  2217. return 1;
  2218. if (!path->nodes[1])
  2219. return 1;
  2220. right_nritems = btrfs_header_nritems(right);
  2221. if (right_nritems == 0)
  2222. return 1;
  2223. btrfs_assert_tree_locked(path->nodes[1]);
  2224. left = read_node_slot(root, path->nodes[1], slot - 1);
  2225. btrfs_tree_lock(left);
  2226. btrfs_set_lock_blocking(left);
  2227. free_space = btrfs_leaf_free_space(root, left);
  2228. if (free_space < data_size) {
  2229. ret = 1;
  2230. goto out;
  2231. }
  2232. /* cow and double check */
  2233. ret = btrfs_cow_block(trans, root, left,
  2234. path->nodes[1], slot - 1, &left);
  2235. if (ret) {
  2236. /* we hit -ENOSPC, but it isn't fatal here */
  2237. ret = 1;
  2238. goto out;
  2239. }
  2240. free_space = btrfs_leaf_free_space(root, left);
  2241. if (free_space < data_size) {
  2242. ret = 1;
  2243. goto out;
  2244. }
  2245. if (empty)
  2246. nr = right_nritems;
  2247. else
  2248. nr = right_nritems - 1;
  2249. for (i = 0; i < nr; i++) {
  2250. item = btrfs_item_nr(right, i);
  2251. if (!right->map_token) {
  2252. map_extent_buffer(right, (unsigned long)item,
  2253. sizeof(struct btrfs_item),
  2254. &right->map_token, &right->kaddr,
  2255. &right->map_start, &right->map_len,
  2256. KM_USER1);
  2257. }
  2258. if (!empty && push_items > 0) {
  2259. if (path->slots[0] < i)
  2260. break;
  2261. if (path->slots[0] == i) {
  2262. int space = btrfs_leaf_free_space(root, right);
  2263. if (space + push_space * 2 > free_space)
  2264. break;
  2265. }
  2266. }
  2267. if (path->slots[0] == i)
  2268. push_space += data_size;
  2269. this_item_size = btrfs_item_size(right, item);
  2270. if (this_item_size + sizeof(*item) + push_space > free_space)
  2271. break;
  2272. push_items++;
  2273. push_space += this_item_size + sizeof(*item);
  2274. }
  2275. if (right->map_token) {
  2276. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2277. right->map_token = NULL;
  2278. }
  2279. if (push_items == 0) {
  2280. ret = 1;
  2281. goto out;
  2282. }
  2283. if (!empty && push_items == btrfs_header_nritems(right))
  2284. WARN_ON(1);
  2285. /* push data from right to left */
  2286. copy_extent_buffer(left, right,
  2287. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2288. btrfs_item_nr_offset(0),
  2289. push_items * sizeof(struct btrfs_item));
  2290. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2291. btrfs_item_offset_nr(right, push_items - 1);
  2292. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2293. leaf_data_end(root, left) - push_space,
  2294. btrfs_leaf_data(right) +
  2295. btrfs_item_offset_nr(right, push_items - 1),
  2296. push_space);
  2297. old_left_nritems = btrfs_header_nritems(left);
  2298. BUG_ON(old_left_nritems <= 0);
  2299. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2300. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2301. u32 ioff;
  2302. item = btrfs_item_nr(left, i);
  2303. if (!left->map_token) {
  2304. map_extent_buffer(left, (unsigned long)item,
  2305. sizeof(struct btrfs_item),
  2306. &left->map_token, &left->kaddr,
  2307. &left->map_start, &left->map_len,
  2308. KM_USER1);
  2309. }
  2310. ioff = btrfs_item_offset(left, item);
  2311. btrfs_set_item_offset(left, item,
  2312. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2313. }
  2314. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2315. if (left->map_token) {
  2316. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2317. left->map_token = NULL;
  2318. }
  2319. /* fixup right node */
  2320. if (push_items > right_nritems) {
  2321. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2322. right_nritems);
  2323. WARN_ON(1);
  2324. }
  2325. if (push_items < right_nritems) {
  2326. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2327. leaf_data_end(root, right);
  2328. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2329. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2330. btrfs_leaf_data(right) +
  2331. leaf_data_end(root, right), push_space);
  2332. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2333. btrfs_item_nr_offset(push_items),
  2334. (btrfs_header_nritems(right) - push_items) *
  2335. sizeof(struct btrfs_item));
  2336. }
  2337. right_nritems -= push_items;
  2338. btrfs_set_header_nritems(right, right_nritems);
  2339. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2340. for (i = 0; i < right_nritems; i++) {
  2341. item = btrfs_item_nr(right, i);
  2342. if (!right->map_token) {
  2343. map_extent_buffer(right, (unsigned long)item,
  2344. sizeof(struct btrfs_item),
  2345. &right->map_token, &right->kaddr,
  2346. &right->map_start, &right->map_len,
  2347. KM_USER1);
  2348. }
  2349. push_space = push_space - btrfs_item_size(right, item);
  2350. btrfs_set_item_offset(right, item, push_space);
  2351. }
  2352. if (right->map_token) {
  2353. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2354. right->map_token = NULL;
  2355. }
  2356. btrfs_mark_buffer_dirty(left);
  2357. if (right_nritems)
  2358. btrfs_mark_buffer_dirty(right);
  2359. ret = btrfs_update_ref(trans, root, right, left,
  2360. old_left_nritems, push_items);
  2361. BUG_ON(ret);
  2362. btrfs_item_key(right, &disk_key, 0);
  2363. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2364. if (wret)
  2365. ret = wret;
  2366. /* then fixup the leaf pointer in the path */
  2367. if (path->slots[0] < push_items) {
  2368. path->slots[0] += old_left_nritems;
  2369. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2370. clean_tree_block(trans, root, path->nodes[0]);
  2371. btrfs_tree_unlock(path->nodes[0]);
  2372. free_extent_buffer(path->nodes[0]);
  2373. path->nodes[0] = left;
  2374. path->slots[1] -= 1;
  2375. } else {
  2376. btrfs_tree_unlock(left);
  2377. free_extent_buffer(left);
  2378. path->slots[0] -= push_items;
  2379. }
  2380. BUG_ON(path->slots[0] < 0);
  2381. return ret;
  2382. out:
  2383. btrfs_tree_unlock(left);
  2384. free_extent_buffer(left);
  2385. return ret;
  2386. }
  2387. /*
  2388. * split the path's leaf in two, making sure there is at least data_size
  2389. * available for the resulting leaf level of the path.
  2390. *
  2391. * returns 0 if all went well and < 0 on failure.
  2392. */
  2393. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2394. struct btrfs_root *root,
  2395. struct btrfs_key *ins_key,
  2396. struct btrfs_path *path, int data_size,
  2397. int extend)
  2398. {
  2399. struct extent_buffer *l;
  2400. u32 nritems;
  2401. int mid;
  2402. int slot;
  2403. struct extent_buffer *right;
  2404. int data_copy_size;
  2405. int rt_data_off;
  2406. int i;
  2407. int ret = 0;
  2408. int wret;
  2409. int double_split;
  2410. int num_doubles = 0;
  2411. struct btrfs_disk_key disk_key;
  2412. /* first try to make some room by pushing left and right */
  2413. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2414. wret = push_leaf_right(trans, root, path, data_size, 0);
  2415. if (wret < 0)
  2416. return wret;
  2417. if (wret) {
  2418. wret = push_leaf_left(trans, root, path, data_size, 0);
  2419. if (wret < 0)
  2420. return wret;
  2421. }
  2422. l = path->nodes[0];
  2423. /* did the pushes work? */
  2424. if (btrfs_leaf_free_space(root, l) >= data_size)
  2425. return 0;
  2426. }
  2427. if (!path->nodes[1]) {
  2428. ret = insert_new_root(trans, root, path, 1);
  2429. if (ret)
  2430. return ret;
  2431. }
  2432. again:
  2433. double_split = 0;
  2434. l = path->nodes[0];
  2435. slot = path->slots[0];
  2436. nritems = btrfs_header_nritems(l);
  2437. mid = (nritems + 1) / 2;
  2438. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2439. path->nodes[1]->start,
  2440. root->root_key.objectid,
  2441. trans->transid, 0, l->start, 0);
  2442. if (IS_ERR(right)) {
  2443. BUG_ON(1);
  2444. return PTR_ERR(right);
  2445. }
  2446. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2447. btrfs_set_header_bytenr(right, right->start);
  2448. btrfs_set_header_generation(right, trans->transid);
  2449. btrfs_set_header_owner(right, root->root_key.objectid);
  2450. btrfs_set_header_level(right, 0);
  2451. write_extent_buffer(right, root->fs_info->fsid,
  2452. (unsigned long)btrfs_header_fsid(right),
  2453. BTRFS_FSID_SIZE);
  2454. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2455. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2456. BTRFS_UUID_SIZE);
  2457. if (mid <= slot) {
  2458. if (nritems == 1 ||
  2459. leaf_space_used(l, mid, nritems - mid) + data_size >
  2460. BTRFS_LEAF_DATA_SIZE(root)) {
  2461. if (slot >= nritems) {
  2462. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2463. btrfs_set_header_nritems(right, 0);
  2464. wret = insert_ptr(trans, root, path,
  2465. &disk_key, right->start,
  2466. path->slots[1] + 1, 1);
  2467. if (wret)
  2468. ret = wret;
  2469. btrfs_tree_unlock(path->nodes[0]);
  2470. free_extent_buffer(path->nodes[0]);
  2471. path->nodes[0] = right;
  2472. path->slots[0] = 0;
  2473. path->slots[1] += 1;
  2474. btrfs_mark_buffer_dirty(right);
  2475. return ret;
  2476. }
  2477. mid = slot;
  2478. if (mid != nritems &&
  2479. leaf_space_used(l, mid, nritems - mid) +
  2480. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2481. double_split = 1;
  2482. }
  2483. }
  2484. } else {
  2485. if (leaf_space_used(l, 0, mid) + data_size >
  2486. BTRFS_LEAF_DATA_SIZE(root)) {
  2487. if (!extend && data_size && slot == 0) {
  2488. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2489. btrfs_set_header_nritems(right, 0);
  2490. wret = insert_ptr(trans, root, path,
  2491. &disk_key,
  2492. right->start,
  2493. path->slots[1], 1);
  2494. if (wret)
  2495. ret = wret;
  2496. btrfs_tree_unlock(path->nodes[0]);
  2497. free_extent_buffer(path->nodes[0]);
  2498. path->nodes[0] = right;
  2499. path->slots[0] = 0;
  2500. if (path->slots[1] == 0) {
  2501. wret = fixup_low_keys(trans, root,
  2502. path, &disk_key, 1);
  2503. if (wret)
  2504. ret = wret;
  2505. }
  2506. btrfs_mark_buffer_dirty(right);
  2507. return ret;
  2508. } else if ((extend || !data_size) && slot == 0) {
  2509. mid = 1;
  2510. } else {
  2511. mid = slot;
  2512. if (mid != nritems &&
  2513. leaf_space_used(l, mid, nritems - mid) +
  2514. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2515. double_split = 1;
  2516. }
  2517. }
  2518. }
  2519. }
  2520. nritems = nritems - mid;
  2521. btrfs_set_header_nritems(right, nritems);
  2522. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2523. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2524. btrfs_item_nr_offset(mid),
  2525. nritems * sizeof(struct btrfs_item));
  2526. copy_extent_buffer(right, l,
  2527. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2528. data_copy_size, btrfs_leaf_data(l) +
  2529. leaf_data_end(root, l), data_copy_size);
  2530. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2531. btrfs_item_end_nr(l, mid);
  2532. for (i = 0; i < nritems; i++) {
  2533. struct btrfs_item *item = btrfs_item_nr(right, i);
  2534. u32 ioff;
  2535. if (!right->map_token) {
  2536. map_extent_buffer(right, (unsigned long)item,
  2537. sizeof(struct btrfs_item),
  2538. &right->map_token, &right->kaddr,
  2539. &right->map_start, &right->map_len,
  2540. KM_USER1);
  2541. }
  2542. ioff = btrfs_item_offset(right, item);
  2543. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2544. }
  2545. if (right->map_token) {
  2546. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2547. right->map_token = NULL;
  2548. }
  2549. btrfs_set_header_nritems(l, mid);
  2550. ret = 0;
  2551. btrfs_item_key(right, &disk_key, 0);
  2552. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2553. path->slots[1] + 1, 1);
  2554. if (wret)
  2555. ret = wret;
  2556. btrfs_mark_buffer_dirty(right);
  2557. btrfs_mark_buffer_dirty(l);
  2558. BUG_ON(path->slots[0] != slot);
  2559. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2560. BUG_ON(ret);
  2561. if (mid <= slot) {
  2562. btrfs_tree_unlock(path->nodes[0]);
  2563. free_extent_buffer(path->nodes[0]);
  2564. path->nodes[0] = right;
  2565. path->slots[0] -= mid;
  2566. path->slots[1] += 1;
  2567. } else {
  2568. btrfs_tree_unlock(right);
  2569. free_extent_buffer(right);
  2570. }
  2571. BUG_ON(path->slots[0] < 0);
  2572. if (double_split) {
  2573. BUG_ON(num_doubles != 0);
  2574. num_doubles++;
  2575. goto again;
  2576. }
  2577. return ret;
  2578. }
  2579. /*
  2580. * This function splits a single item into two items,
  2581. * giving 'new_key' to the new item and splitting the
  2582. * old one at split_offset (from the start of the item).
  2583. *
  2584. * The path may be released by this operation. After
  2585. * the split, the path is pointing to the old item. The
  2586. * new item is going to be in the same node as the old one.
  2587. *
  2588. * Note, the item being split must be smaller enough to live alone on
  2589. * a tree block with room for one extra struct btrfs_item
  2590. *
  2591. * This allows us to split the item in place, keeping a lock on the
  2592. * leaf the entire time.
  2593. */
  2594. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2595. struct btrfs_root *root,
  2596. struct btrfs_path *path,
  2597. struct btrfs_key *new_key,
  2598. unsigned long split_offset)
  2599. {
  2600. u32 item_size;
  2601. struct extent_buffer *leaf;
  2602. struct btrfs_key orig_key;
  2603. struct btrfs_item *item;
  2604. struct btrfs_item *new_item;
  2605. int ret = 0;
  2606. int slot;
  2607. u32 nritems;
  2608. u32 orig_offset;
  2609. struct btrfs_disk_key disk_key;
  2610. char *buf;
  2611. leaf = path->nodes[0];
  2612. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2613. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2614. goto split;
  2615. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2616. btrfs_release_path(root, path);
  2617. path->search_for_split = 1;
  2618. path->keep_locks = 1;
  2619. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2620. path->search_for_split = 0;
  2621. /* if our item isn't there or got smaller, return now */
  2622. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2623. path->slots[0])) {
  2624. path->keep_locks = 0;
  2625. return -EAGAIN;
  2626. }
  2627. ret = split_leaf(trans, root, &orig_key, path,
  2628. sizeof(struct btrfs_item), 1);
  2629. path->keep_locks = 0;
  2630. BUG_ON(ret);
  2631. /*
  2632. * make sure any changes to the path from split_leaf leave it
  2633. * in a blocking state
  2634. */
  2635. btrfs_set_path_blocking(path);
  2636. leaf = path->nodes[0];
  2637. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2638. split:
  2639. item = btrfs_item_nr(leaf, path->slots[0]);
  2640. orig_offset = btrfs_item_offset(leaf, item);
  2641. item_size = btrfs_item_size(leaf, item);
  2642. buf = kmalloc(item_size, GFP_NOFS);
  2643. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2644. path->slots[0]), item_size);
  2645. slot = path->slots[0] + 1;
  2646. leaf = path->nodes[0];
  2647. nritems = btrfs_header_nritems(leaf);
  2648. if (slot != nritems) {
  2649. /* shift the items */
  2650. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2651. btrfs_item_nr_offset(slot),
  2652. (nritems - slot) * sizeof(struct btrfs_item));
  2653. }
  2654. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2655. btrfs_set_item_key(leaf, &disk_key, slot);
  2656. new_item = btrfs_item_nr(leaf, slot);
  2657. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2658. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2659. btrfs_set_item_offset(leaf, item,
  2660. orig_offset + item_size - split_offset);
  2661. btrfs_set_item_size(leaf, item, split_offset);
  2662. btrfs_set_header_nritems(leaf, nritems + 1);
  2663. /* write the data for the start of the original item */
  2664. write_extent_buffer(leaf, buf,
  2665. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2666. split_offset);
  2667. /* write the data for the new item */
  2668. write_extent_buffer(leaf, buf + split_offset,
  2669. btrfs_item_ptr_offset(leaf, slot),
  2670. item_size - split_offset);
  2671. btrfs_mark_buffer_dirty(leaf);
  2672. ret = 0;
  2673. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2674. btrfs_print_leaf(root, leaf);
  2675. BUG();
  2676. }
  2677. kfree(buf);
  2678. return ret;
  2679. }
  2680. /*
  2681. * make the item pointed to by the path smaller. new_size indicates
  2682. * how small to make it, and from_end tells us if we just chop bytes
  2683. * off the end of the item or if we shift the item to chop bytes off
  2684. * the front.
  2685. */
  2686. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2687. struct btrfs_root *root,
  2688. struct btrfs_path *path,
  2689. u32 new_size, int from_end)
  2690. {
  2691. int ret = 0;
  2692. int slot;
  2693. int slot_orig;
  2694. struct extent_buffer *leaf;
  2695. struct btrfs_item *item;
  2696. u32 nritems;
  2697. unsigned int data_end;
  2698. unsigned int old_data_start;
  2699. unsigned int old_size;
  2700. unsigned int size_diff;
  2701. int i;
  2702. slot_orig = path->slots[0];
  2703. leaf = path->nodes[0];
  2704. slot = path->slots[0];
  2705. old_size = btrfs_item_size_nr(leaf, slot);
  2706. if (old_size == new_size)
  2707. return 0;
  2708. nritems = btrfs_header_nritems(leaf);
  2709. data_end = leaf_data_end(root, leaf);
  2710. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2711. size_diff = old_size - new_size;
  2712. BUG_ON(slot < 0);
  2713. BUG_ON(slot >= nritems);
  2714. /*
  2715. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2716. */
  2717. /* first correct the data pointers */
  2718. for (i = slot; i < nritems; i++) {
  2719. u32 ioff;
  2720. item = btrfs_item_nr(leaf, i);
  2721. if (!leaf->map_token) {
  2722. map_extent_buffer(leaf, (unsigned long)item,
  2723. sizeof(struct btrfs_item),
  2724. &leaf->map_token, &leaf->kaddr,
  2725. &leaf->map_start, &leaf->map_len,
  2726. KM_USER1);
  2727. }
  2728. ioff = btrfs_item_offset(leaf, item);
  2729. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2730. }
  2731. if (leaf->map_token) {
  2732. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2733. leaf->map_token = NULL;
  2734. }
  2735. /* shift the data */
  2736. if (from_end) {
  2737. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2738. data_end + size_diff, btrfs_leaf_data(leaf) +
  2739. data_end, old_data_start + new_size - data_end);
  2740. } else {
  2741. struct btrfs_disk_key disk_key;
  2742. u64 offset;
  2743. btrfs_item_key(leaf, &disk_key, slot);
  2744. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2745. unsigned long ptr;
  2746. struct btrfs_file_extent_item *fi;
  2747. fi = btrfs_item_ptr(leaf, slot,
  2748. struct btrfs_file_extent_item);
  2749. fi = (struct btrfs_file_extent_item *)(
  2750. (unsigned long)fi - size_diff);
  2751. if (btrfs_file_extent_type(leaf, fi) ==
  2752. BTRFS_FILE_EXTENT_INLINE) {
  2753. ptr = btrfs_item_ptr_offset(leaf, slot);
  2754. memmove_extent_buffer(leaf, ptr,
  2755. (unsigned long)fi,
  2756. offsetof(struct btrfs_file_extent_item,
  2757. disk_bytenr));
  2758. }
  2759. }
  2760. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2761. data_end + size_diff, btrfs_leaf_data(leaf) +
  2762. data_end, old_data_start - data_end);
  2763. offset = btrfs_disk_key_offset(&disk_key);
  2764. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2765. btrfs_set_item_key(leaf, &disk_key, slot);
  2766. if (slot == 0)
  2767. fixup_low_keys(trans, root, path, &disk_key, 1);
  2768. }
  2769. item = btrfs_item_nr(leaf, slot);
  2770. btrfs_set_item_size(leaf, item, new_size);
  2771. btrfs_mark_buffer_dirty(leaf);
  2772. ret = 0;
  2773. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2774. btrfs_print_leaf(root, leaf);
  2775. BUG();
  2776. }
  2777. return ret;
  2778. }
  2779. /*
  2780. * make the item pointed to by the path bigger, data_size is the new size.
  2781. */
  2782. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2783. struct btrfs_root *root, struct btrfs_path *path,
  2784. u32 data_size)
  2785. {
  2786. int ret = 0;
  2787. int slot;
  2788. int slot_orig;
  2789. struct extent_buffer *leaf;
  2790. struct btrfs_item *item;
  2791. u32 nritems;
  2792. unsigned int data_end;
  2793. unsigned int old_data;
  2794. unsigned int old_size;
  2795. int i;
  2796. slot_orig = path->slots[0];
  2797. leaf = path->nodes[0];
  2798. nritems = btrfs_header_nritems(leaf);
  2799. data_end = leaf_data_end(root, leaf);
  2800. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2801. btrfs_print_leaf(root, leaf);
  2802. BUG();
  2803. }
  2804. slot = path->slots[0];
  2805. old_data = btrfs_item_end_nr(leaf, slot);
  2806. BUG_ON(slot < 0);
  2807. if (slot >= nritems) {
  2808. btrfs_print_leaf(root, leaf);
  2809. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2810. slot, nritems);
  2811. BUG_ON(1);
  2812. }
  2813. /*
  2814. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2815. */
  2816. /* first correct the data pointers */
  2817. for (i = slot; i < nritems; i++) {
  2818. u32 ioff;
  2819. item = btrfs_item_nr(leaf, i);
  2820. if (!leaf->map_token) {
  2821. map_extent_buffer(leaf, (unsigned long)item,
  2822. sizeof(struct btrfs_item),
  2823. &leaf->map_token, &leaf->kaddr,
  2824. &leaf->map_start, &leaf->map_len,
  2825. KM_USER1);
  2826. }
  2827. ioff = btrfs_item_offset(leaf, item);
  2828. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2829. }
  2830. if (leaf->map_token) {
  2831. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2832. leaf->map_token = NULL;
  2833. }
  2834. /* shift the data */
  2835. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2836. data_end - data_size, btrfs_leaf_data(leaf) +
  2837. data_end, old_data - data_end);
  2838. data_end = old_data;
  2839. old_size = btrfs_item_size_nr(leaf, slot);
  2840. item = btrfs_item_nr(leaf, slot);
  2841. btrfs_set_item_size(leaf, item, old_size + data_size);
  2842. btrfs_mark_buffer_dirty(leaf);
  2843. ret = 0;
  2844. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2845. btrfs_print_leaf(root, leaf);
  2846. BUG();
  2847. }
  2848. return ret;
  2849. }
  2850. /*
  2851. * Given a key and some data, insert items into the tree.
  2852. * This does all the path init required, making room in the tree if needed.
  2853. * Returns the number of keys that were inserted.
  2854. */
  2855. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2856. struct btrfs_root *root,
  2857. struct btrfs_path *path,
  2858. struct btrfs_key *cpu_key, u32 *data_size,
  2859. int nr)
  2860. {
  2861. struct extent_buffer *leaf;
  2862. struct btrfs_item *item;
  2863. int ret = 0;
  2864. int slot;
  2865. int i;
  2866. u32 nritems;
  2867. u32 total_data = 0;
  2868. u32 total_size = 0;
  2869. unsigned int data_end;
  2870. struct btrfs_disk_key disk_key;
  2871. struct btrfs_key found_key;
  2872. for (i = 0; i < nr; i++) {
  2873. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2874. BTRFS_LEAF_DATA_SIZE(root)) {
  2875. break;
  2876. nr = i;
  2877. }
  2878. total_data += data_size[i];
  2879. total_size += data_size[i] + sizeof(struct btrfs_item);
  2880. }
  2881. BUG_ON(nr == 0);
  2882. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2883. if (ret == 0)
  2884. return -EEXIST;
  2885. if (ret < 0)
  2886. goto out;
  2887. leaf = path->nodes[0];
  2888. nritems = btrfs_header_nritems(leaf);
  2889. data_end = leaf_data_end(root, leaf);
  2890. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2891. for (i = nr; i >= 0; i--) {
  2892. total_data -= data_size[i];
  2893. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2894. if (total_size < btrfs_leaf_free_space(root, leaf))
  2895. break;
  2896. }
  2897. nr = i;
  2898. }
  2899. slot = path->slots[0];
  2900. BUG_ON(slot < 0);
  2901. if (slot != nritems) {
  2902. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2903. item = btrfs_item_nr(leaf, slot);
  2904. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2905. /* figure out how many keys we can insert in here */
  2906. total_data = data_size[0];
  2907. for (i = 1; i < nr; i++) {
  2908. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  2909. break;
  2910. total_data += data_size[i];
  2911. }
  2912. nr = i;
  2913. if (old_data < data_end) {
  2914. btrfs_print_leaf(root, leaf);
  2915. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  2916. slot, old_data, data_end);
  2917. BUG_ON(1);
  2918. }
  2919. /*
  2920. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2921. */
  2922. /* first correct the data pointers */
  2923. WARN_ON(leaf->map_token);
  2924. for (i = slot; i < nritems; i++) {
  2925. u32 ioff;
  2926. item = btrfs_item_nr(leaf, i);
  2927. if (!leaf->map_token) {
  2928. map_extent_buffer(leaf, (unsigned long)item,
  2929. sizeof(struct btrfs_item),
  2930. &leaf->map_token, &leaf->kaddr,
  2931. &leaf->map_start, &leaf->map_len,
  2932. KM_USER1);
  2933. }
  2934. ioff = btrfs_item_offset(leaf, item);
  2935. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2936. }
  2937. if (leaf->map_token) {
  2938. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2939. leaf->map_token = NULL;
  2940. }
  2941. /* shift the items */
  2942. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2943. btrfs_item_nr_offset(slot),
  2944. (nritems - slot) * sizeof(struct btrfs_item));
  2945. /* shift the data */
  2946. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2947. data_end - total_data, btrfs_leaf_data(leaf) +
  2948. data_end, old_data - data_end);
  2949. data_end = old_data;
  2950. } else {
  2951. /*
  2952. * this sucks but it has to be done, if we are inserting at
  2953. * the end of the leaf only insert 1 of the items, since we
  2954. * have no way of knowing whats on the next leaf and we'd have
  2955. * to drop our current locks to figure it out
  2956. */
  2957. nr = 1;
  2958. }
  2959. /* setup the item for the new data */
  2960. for (i = 0; i < nr; i++) {
  2961. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2962. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2963. item = btrfs_item_nr(leaf, slot + i);
  2964. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2965. data_end -= data_size[i];
  2966. btrfs_set_item_size(leaf, item, data_size[i]);
  2967. }
  2968. btrfs_set_header_nritems(leaf, nritems + nr);
  2969. btrfs_mark_buffer_dirty(leaf);
  2970. ret = 0;
  2971. if (slot == 0) {
  2972. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2973. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2974. }
  2975. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2976. btrfs_print_leaf(root, leaf);
  2977. BUG();
  2978. }
  2979. out:
  2980. if (!ret)
  2981. ret = nr;
  2982. return ret;
  2983. }
  2984. /*
  2985. * Given a key and some data, insert items into the tree.
  2986. * This does all the path init required, making room in the tree if needed.
  2987. */
  2988. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  2989. struct btrfs_root *root,
  2990. struct btrfs_path *path,
  2991. struct btrfs_key *cpu_key, u32 *data_size,
  2992. int nr)
  2993. {
  2994. struct extent_buffer *leaf;
  2995. struct btrfs_item *item;
  2996. int ret = 0;
  2997. int slot;
  2998. int slot_orig;
  2999. int i;
  3000. u32 nritems;
  3001. u32 total_size = 0;
  3002. u32 total_data = 0;
  3003. unsigned int data_end;
  3004. struct btrfs_disk_key disk_key;
  3005. for (i = 0; i < nr; i++)
  3006. total_data += data_size[i];
  3007. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3008. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3009. if (ret == 0)
  3010. return -EEXIST;
  3011. if (ret < 0)
  3012. goto out;
  3013. slot_orig = path->slots[0];
  3014. leaf = path->nodes[0];
  3015. nritems = btrfs_header_nritems(leaf);
  3016. data_end = leaf_data_end(root, leaf);
  3017. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3018. btrfs_print_leaf(root, leaf);
  3019. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3020. total_size, btrfs_leaf_free_space(root, leaf));
  3021. BUG();
  3022. }
  3023. slot = path->slots[0];
  3024. BUG_ON(slot < 0);
  3025. if (slot != nritems) {
  3026. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3027. if (old_data < data_end) {
  3028. btrfs_print_leaf(root, leaf);
  3029. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3030. slot, old_data, data_end);
  3031. BUG_ON(1);
  3032. }
  3033. /*
  3034. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3035. */
  3036. /* first correct the data pointers */
  3037. WARN_ON(leaf->map_token);
  3038. for (i = slot; i < nritems; i++) {
  3039. u32 ioff;
  3040. item = btrfs_item_nr(leaf, i);
  3041. if (!leaf->map_token) {
  3042. map_extent_buffer(leaf, (unsigned long)item,
  3043. sizeof(struct btrfs_item),
  3044. &leaf->map_token, &leaf->kaddr,
  3045. &leaf->map_start, &leaf->map_len,
  3046. KM_USER1);
  3047. }
  3048. ioff = btrfs_item_offset(leaf, item);
  3049. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3050. }
  3051. if (leaf->map_token) {
  3052. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3053. leaf->map_token = NULL;
  3054. }
  3055. /* shift the items */
  3056. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3057. btrfs_item_nr_offset(slot),
  3058. (nritems - slot) * sizeof(struct btrfs_item));
  3059. /* shift the data */
  3060. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3061. data_end - total_data, btrfs_leaf_data(leaf) +
  3062. data_end, old_data - data_end);
  3063. data_end = old_data;
  3064. }
  3065. /* setup the item for the new data */
  3066. for (i = 0; i < nr; i++) {
  3067. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3068. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3069. item = btrfs_item_nr(leaf, slot + i);
  3070. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3071. data_end -= data_size[i];
  3072. btrfs_set_item_size(leaf, item, data_size[i]);
  3073. }
  3074. btrfs_set_header_nritems(leaf, nritems + nr);
  3075. btrfs_mark_buffer_dirty(leaf);
  3076. ret = 0;
  3077. if (slot == 0) {
  3078. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3079. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3080. }
  3081. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3082. btrfs_print_leaf(root, leaf);
  3083. BUG();
  3084. }
  3085. out:
  3086. btrfs_unlock_up_safe(path, 1);
  3087. return ret;
  3088. }
  3089. /*
  3090. * Given a key and some data, insert an item into the tree.
  3091. * This does all the path init required, making room in the tree if needed.
  3092. */
  3093. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3094. *root, struct btrfs_key *cpu_key, void *data, u32
  3095. data_size)
  3096. {
  3097. int ret = 0;
  3098. struct btrfs_path *path;
  3099. struct extent_buffer *leaf;
  3100. unsigned long ptr;
  3101. path = btrfs_alloc_path();
  3102. BUG_ON(!path);
  3103. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3104. if (!ret) {
  3105. leaf = path->nodes[0];
  3106. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3107. write_extent_buffer(leaf, data, ptr, data_size);
  3108. btrfs_mark_buffer_dirty(leaf);
  3109. }
  3110. btrfs_free_path(path);
  3111. return ret;
  3112. }
  3113. /*
  3114. * delete the pointer from a given node.
  3115. *
  3116. * the tree should have been previously balanced so the deletion does not
  3117. * empty a node.
  3118. */
  3119. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3120. struct btrfs_path *path, int level, int slot)
  3121. {
  3122. struct extent_buffer *parent = path->nodes[level];
  3123. u32 nritems;
  3124. int ret = 0;
  3125. int wret;
  3126. nritems = btrfs_header_nritems(parent);
  3127. if (slot != nritems - 1) {
  3128. memmove_extent_buffer(parent,
  3129. btrfs_node_key_ptr_offset(slot),
  3130. btrfs_node_key_ptr_offset(slot + 1),
  3131. sizeof(struct btrfs_key_ptr) *
  3132. (nritems - slot - 1));
  3133. }
  3134. nritems--;
  3135. btrfs_set_header_nritems(parent, nritems);
  3136. if (nritems == 0 && parent == root->node) {
  3137. BUG_ON(btrfs_header_level(root->node) != 1);
  3138. /* just turn the root into a leaf and break */
  3139. btrfs_set_header_level(root->node, 0);
  3140. } else if (slot == 0) {
  3141. struct btrfs_disk_key disk_key;
  3142. btrfs_node_key(parent, &disk_key, 0);
  3143. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3144. if (wret)
  3145. ret = wret;
  3146. }
  3147. btrfs_mark_buffer_dirty(parent);
  3148. return ret;
  3149. }
  3150. /*
  3151. * a helper function to delete the leaf pointed to by path->slots[1] and
  3152. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3153. * already know it, it is faster to have them pass it down than to
  3154. * read it out of the node again.
  3155. *
  3156. * This deletes the pointer in path->nodes[1] and frees the leaf
  3157. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3158. *
  3159. * The path must have already been setup for deleting the leaf, including
  3160. * all the proper balancing. path->nodes[1] must be locked.
  3161. */
  3162. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3163. struct btrfs_root *root,
  3164. struct btrfs_path *path, u64 bytenr)
  3165. {
  3166. int ret;
  3167. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3168. u64 parent_start = path->nodes[1]->start;
  3169. u64 parent_owner = btrfs_header_owner(path->nodes[1]);
  3170. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3171. if (ret)
  3172. return ret;
  3173. /*
  3174. * btrfs_free_extent is expensive, we want to make sure we
  3175. * aren't holding any locks when we call it
  3176. */
  3177. btrfs_unlock_up_safe(path, 0);
  3178. ret = btrfs_free_extent(trans, root, bytenr,
  3179. btrfs_level_size(root, 0),
  3180. parent_start, parent_owner,
  3181. root_gen, 0, 1);
  3182. return ret;
  3183. }
  3184. /*
  3185. * delete the item at the leaf level in path. If that empties
  3186. * the leaf, remove it from the tree
  3187. */
  3188. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3189. struct btrfs_path *path, int slot, int nr)
  3190. {
  3191. struct extent_buffer *leaf;
  3192. struct btrfs_item *item;
  3193. int last_off;
  3194. int dsize = 0;
  3195. int ret = 0;
  3196. int wret;
  3197. int i;
  3198. u32 nritems;
  3199. leaf = path->nodes[0];
  3200. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3201. for (i = 0; i < nr; i++)
  3202. dsize += btrfs_item_size_nr(leaf, slot + i);
  3203. nritems = btrfs_header_nritems(leaf);
  3204. if (slot + nr != nritems) {
  3205. int data_end = leaf_data_end(root, leaf);
  3206. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3207. data_end + dsize,
  3208. btrfs_leaf_data(leaf) + data_end,
  3209. last_off - data_end);
  3210. for (i = slot + nr; i < nritems; i++) {
  3211. u32 ioff;
  3212. item = btrfs_item_nr(leaf, i);
  3213. if (!leaf->map_token) {
  3214. map_extent_buffer(leaf, (unsigned long)item,
  3215. sizeof(struct btrfs_item),
  3216. &leaf->map_token, &leaf->kaddr,
  3217. &leaf->map_start, &leaf->map_len,
  3218. KM_USER1);
  3219. }
  3220. ioff = btrfs_item_offset(leaf, item);
  3221. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3222. }
  3223. if (leaf->map_token) {
  3224. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3225. leaf->map_token = NULL;
  3226. }
  3227. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3228. btrfs_item_nr_offset(slot + nr),
  3229. sizeof(struct btrfs_item) *
  3230. (nritems - slot - nr));
  3231. }
  3232. btrfs_set_header_nritems(leaf, nritems - nr);
  3233. nritems -= nr;
  3234. /* delete the leaf if we've emptied it */
  3235. if (nritems == 0) {
  3236. if (leaf == root->node) {
  3237. btrfs_set_header_level(leaf, 0);
  3238. } else {
  3239. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3240. BUG_ON(ret);
  3241. }
  3242. } else {
  3243. int used = leaf_space_used(leaf, 0, nritems);
  3244. if (slot == 0) {
  3245. struct btrfs_disk_key disk_key;
  3246. btrfs_item_key(leaf, &disk_key, 0);
  3247. wret = fixup_low_keys(trans, root, path,
  3248. &disk_key, 1);
  3249. if (wret)
  3250. ret = wret;
  3251. }
  3252. /* delete the leaf if it is mostly empty */
  3253. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  3254. /* push_leaf_left fixes the path.
  3255. * make sure the path still points to our leaf
  3256. * for possible call to del_ptr below
  3257. */
  3258. slot = path->slots[1];
  3259. extent_buffer_get(leaf);
  3260. wret = push_leaf_left(trans, root, path, 1, 1);
  3261. if (wret < 0 && wret != -ENOSPC)
  3262. ret = wret;
  3263. if (path->nodes[0] == leaf &&
  3264. btrfs_header_nritems(leaf)) {
  3265. wret = push_leaf_right(trans, root, path, 1, 1);
  3266. if (wret < 0 && wret != -ENOSPC)
  3267. ret = wret;
  3268. }
  3269. if (btrfs_header_nritems(leaf) == 0) {
  3270. path->slots[1] = slot;
  3271. ret = btrfs_del_leaf(trans, root, path,
  3272. leaf->start);
  3273. BUG_ON(ret);
  3274. free_extent_buffer(leaf);
  3275. } else {
  3276. /* if we're still in the path, make sure
  3277. * we're dirty. Otherwise, one of the
  3278. * push_leaf functions must have already
  3279. * dirtied this buffer
  3280. */
  3281. if (path->nodes[0] == leaf)
  3282. btrfs_mark_buffer_dirty(leaf);
  3283. free_extent_buffer(leaf);
  3284. }
  3285. } else {
  3286. btrfs_mark_buffer_dirty(leaf);
  3287. }
  3288. }
  3289. return ret;
  3290. }
  3291. /*
  3292. * search the tree again to find a leaf with lesser keys
  3293. * returns 0 if it found something or 1 if there are no lesser leaves.
  3294. * returns < 0 on io errors.
  3295. *
  3296. * This may release the path, and so you may lose any locks held at the
  3297. * time you call it.
  3298. */
  3299. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3300. {
  3301. struct btrfs_key key;
  3302. struct btrfs_disk_key found_key;
  3303. int ret;
  3304. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3305. if (key.offset > 0)
  3306. key.offset--;
  3307. else if (key.type > 0)
  3308. key.type--;
  3309. else if (key.objectid > 0)
  3310. key.objectid--;
  3311. else
  3312. return 1;
  3313. btrfs_release_path(root, path);
  3314. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3315. if (ret < 0)
  3316. return ret;
  3317. btrfs_item_key(path->nodes[0], &found_key, 0);
  3318. ret = comp_keys(&found_key, &key);
  3319. if (ret < 0)
  3320. return 0;
  3321. return 1;
  3322. }
  3323. /*
  3324. * A helper function to walk down the tree starting at min_key, and looking
  3325. * for nodes or leaves that are either in cache or have a minimum
  3326. * transaction id. This is used by the btree defrag code, and tree logging
  3327. *
  3328. * This does not cow, but it does stuff the starting key it finds back
  3329. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3330. * key and get a writable path.
  3331. *
  3332. * This does lock as it descends, and path->keep_locks should be set
  3333. * to 1 by the caller.
  3334. *
  3335. * This honors path->lowest_level to prevent descent past a given level
  3336. * of the tree.
  3337. *
  3338. * min_trans indicates the oldest transaction that you are interested
  3339. * in walking through. Any nodes or leaves older than min_trans are
  3340. * skipped over (without reading them).
  3341. *
  3342. * returns zero if something useful was found, < 0 on error and 1 if there
  3343. * was nothing in the tree that matched the search criteria.
  3344. */
  3345. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3346. struct btrfs_key *max_key,
  3347. struct btrfs_path *path, int cache_only,
  3348. u64 min_trans)
  3349. {
  3350. struct extent_buffer *cur;
  3351. struct btrfs_key found_key;
  3352. int slot;
  3353. int sret;
  3354. u32 nritems;
  3355. int level;
  3356. int ret = 1;
  3357. WARN_ON(!path->keep_locks);
  3358. again:
  3359. cur = btrfs_lock_root_node(root);
  3360. level = btrfs_header_level(cur);
  3361. WARN_ON(path->nodes[level]);
  3362. path->nodes[level] = cur;
  3363. path->locks[level] = 1;
  3364. if (btrfs_header_generation(cur) < min_trans) {
  3365. ret = 1;
  3366. goto out;
  3367. }
  3368. while (1) {
  3369. nritems = btrfs_header_nritems(cur);
  3370. level = btrfs_header_level(cur);
  3371. sret = bin_search(cur, min_key, level, &slot);
  3372. /* at the lowest level, we're done, setup the path and exit */
  3373. if (level == path->lowest_level) {
  3374. if (slot >= nritems)
  3375. goto find_next_key;
  3376. ret = 0;
  3377. path->slots[level] = slot;
  3378. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3379. goto out;
  3380. }
  3381. if (sret && slot > 0)
  3382. slot--;
  3383. /*
  3384. * check this node pointer against the cache_only and
  3385. * min_trans parameters. If it isn't in cache or is too
  3386. * old, skip to the next one.
  3387. */
  3388. while (slot < nritems) {
  3389. u64 blockptr;
  3390. u64 gen;
  3391. struct extent_buffer *tmp;
  3392. struct btrfs_disk_key disk_key;
  3393. blockptr = btrfs_node_blockptr(cur, slot);
  3394. gen = btrfs_node_ptr_generation(cur, slot);
  3395. if (gen < min_trans) {
  3396. slot++;
  3397. continue;
  3398. }
  3399. if (!cache_only)
  3400. break;
  3401. if (max_key) {
  3402. btrfs_node_key(cur, &disk_key, slot);
  3403. if (comp_keys(&disk_key, max_key) >= 0) {
  3404. ret = 1;
  3405. goto out;
  3406. }
  3407. }
  3408. tmp = btrfs_find_tree_block(root, blockptr,
  3409. btrfs_level_size(root, level - 1));
  3410. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3411. free_extent_buffer(tmp);
  3412. break;
  3413. }
  3414. if (tmp)
  3415. free_extent_buffer(tmp);
  3416. slot++;
  3417. }
  3418. find_next_key:
  3419. /*
  3420. * we didn't find a candidate key in this node, walk forward
  3421. * and find another one
  3422. */
  3423. if (slot >= nritems) {
  3424. path->slots[level] = slot;
  3425. btrfs_set_path_blocking(path);
  3426. sret = btrfs_find_next_key(root, path, min_key, level,
  3427. cache_only, min_trans);
  3428. if (sret == 0) {
  3429. btrfs_release_path(root, path);
  3430. goto again;
  3431. } else {
  3432. goto out;
  3433. }
  3434. }
  3435. /* save our key for returning back */
  3436. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3437. path->slots[level] = slot;
  3438. if (level == path->lowest_level) {
  3439. ret = 0;
  3440. unlock_up(path, level, 1);
  3441. goto out;
  3442. }
  3443. btrfs_set_path_blocking(path);
  3444. cur = read_node_slot(root, cur, slot);
  3445. btrfs_tree_lock(cur);
  3446. path->locks[level - 1] = 1;
  3447. path->nodes[level - 1] = cur;
  3448. unlock_up(path, level, 1);
  3449. btrfs_clear_path_blocking(path, NULL);
  3450. }
  3451. out:
  3452. if (ret == 0)
  3453. memcpy(min_key, &found_key, sizeof(found_key));
  3454. btrfs_set_path_blocking(path);
  3455. return ret;
  3456. }
  3457. /*
  3458. * this is similar to btrfs_next_leaf, but does not try to preserve
  3459. * and fixup the path. It looks for and returns the next key in the
  3460. * tree based on the current path and the cache_only and min_trans
  3461. * parameters.
  3462. *
  3463. * 0 is returned if another key is found, < 0 if there are any errors
  3464. * and 1 is returned if there are no higher keys in the tree
  3465. *
  3466. * path->keep_locks should be set to 1 on the search made before
  3467. * calling this function.
  3468. */
  3469. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3470. struct btrfs_key *key, int lowest_level,
  3471. int cache_only, u64 min_trans)
  3472. {
  3473. int level = lowest_level;
  3474. int slot;
  3475. struct extent_buffer *c;
  3476. WARN_ON(!path->keep_locks);
  3477. while (level < BTRFS_MAX_LEVEL) {
  3478. if (!path->nodes[level])
  3479. return 1;
  3480. slot = path->slots[level] + 1;
  3481. c = path->nodes[level];
  3482. next:
  3483. if (slot >= btrfs_header_nritems(c)) {
  3484. level++;
  3485. if (level == BTRFS_MAX_LEVEL)
  3486. return 1;
  3487. continue;
  3488. }
  3489. if (level == 0)
  3490. btrfs_item_key_to_cpu(c, key, slot);
  3491. else {
  3492. u64 blockptr = btrfs_node_blockptr(c, slot);
  3493. u64 gen = btrfs_node_ptr_generation(c, slot);
  3494. if (cache_only) {
  3495. struct extent_buffer *cur;
  3496. cur = btrfs_find_tree_block(root, blockptr,
  3497. btrfs_level_size(root, level - 1));
  3498. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3499. slot++;
  3500. if (cur)
  3501. free_extent_buffer(cur);
  3502. goto next;
  3503. }
  3504. free_extent_buffer(cur);
  3505. }
  3506. if (gen < min_trans) {
  3507. slot++;
  3508. goto next;
  3509. }
  3510. btrfs_node_key_to_cpu(c, key, slot);
  3511. }
  3512. return 0;
  3513. }
  3514. return 1;
  3515. }
  3516. /*
  3517. * search the tree again to find a leaf with greater keys
  3518. * returns 0 if it found something or 1 if there are no greater leaves.
  3519. * returns < 0 on io errors.
  3520. */
  3521. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3522. {
  3523. int slot;
  3524. int level = 1;
  3525. struct extent_buffer *c;
  3526. struct extent_buffer *next = NULL;
  3527. struct btrfs_key key;
  3528. u32 nritems;
  3529. int ret;
  3530. nritems = btrfs_header_nritems(path->nodes[0]);
  3531. if (nritems == 0)
  3532. return 1;
  3533. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3534. btrfs_release_path(root, path);
  3535. path->keep_locks = 1;
  3536. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3537. path->keep_locks = 0;
  3538. if (ret < 0)
  3539. return ret;
  3540. btrfs_set_path_blocking(path);
  3541. nritems = btrfs_header_nritems(path->nodes[0]);
  3542. /*
  3543. * by releasing the path above we dropped all our locks. A balance
  3544. * could have added more items next to the key that used to be
  3545. * at the very end of the block. So, check again here and
  3546. * advance the path if there are now more items available.
  3547. */
  3548. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3549. path->slots[0]++;
  3550. goto done;
  3551. }
  3552. while (level < BTRFS_MAX_LEVEL) {
  3553. if (!path->nodes[level])
  3554. return 1;
  3555. slot = path->slots[level] + 1;
  3556. c = path->nodes[level];
  3557. if (slot >= btrfs_header_nritems(c)) {
  3558. level++;
  3559. if (level == BTRFS_MAX_LEVEL)
  3560. return 1;
  3561. continue;
  3562. }
  3563. if (next) {
  3564. btrfs_tree_unlock(next);
  3565. free_extent_buffer(next);
  3566. }
  3567. /* the path was set to blocking above */
  3568. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3569. path->reada)
  3570. reada_for_search(root, path, level, slot, 0);
  3571. next = read_node_slot(root, c, slot);
  3572. if (!path->skip_locking) {
  3573. btrfs_assert_tree_locked(c);
  3574. btrfs_tree_lock(next);
  3575. btrfs_set_lock_blocking(next);
  3576. }
  3577. break;
  3578. }
  3579. path->slots[level] = slot;
  3580. while (1) {
  3581. level--;
  3582. c = path->nodes[level];
  3583. if (path->locks[level])
  3584. btrfs_tree_unlock(c);
  3585. free_extent_buffer(c);
  3586. path->nodes[level] = next;
  3587. path->slots[level] = 0;
  3588. if (!path->skip_locking)
  3589. path->locks[level] = 1;
  3590. if (!level)
  3591. break;
  3592. btrfs_set_path_blocking(path);
  3593. if (level == 1 && path->locks[1] && path->reada)
  3594. reada_for_search(root, path, level, slot, 0);
  3595. next = read_node_slot(root, next, 0);
  3596. if (!path->skip_locking) {
  3597. btrfs_assert_tree_locked(path->nodes[level]);
  3598. btrfs_tree_lock(next);
  3599. btrfs_set_lock_blocking(next);
  3600. }
  3601. }
  3602. done:
  3603. unlock_up(path, 0, 1);
  3604. return 0;
  3605. }
  3606. /*
  3607. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3608. * searching until it gets past min_objectid or finds an item of 'type'
  3609. *
  3610. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3611. */
  3612. int btrfs_previous_item(struct btrfs_root *root,
  3613. struct btrfs_path *path, u64 min_objectid,
  3614. int type)
  3615. {
  3616. struct btrfs_key found_key;
  3617. struct extent_buffer *leaf;
  3618. u32 nritems;
  3619. int ret;
  3620. while (1) {
  3621. if (path->slots[0] == 0) {
  3622. btrfs_set_path_blocking(path);
  3623. ret = btrfs_prev_leaf(root, path);
  3624. if (ret != 0)
  3625. return ret;
  3626. } else {
  3627. path->slots[0]--;
  3628. }
  3629. leaf = path->nodes[0];
  3630. nritems = btrfs_header_nritems(leaf);
  3631. if (nritems == 0)
  3632. return 1;
  3633. if (path->slots[0] == nritems)
  3634. path->slots[0]--;
  3635. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3636. if (found_key.type == type)
  3637. return 0;
  3638. if (found_key.objectid < min_objectid)
  3639. break;
  3640. if (found_key.objectid == min_objectid &&
  3641. found_key.type < type)
  3642. break;
  3643. }
  3644. return 1;
  3645. }