iwl-5000.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23. *
  24. *****************************************************************************/
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/init.h>
  28. #include <linux/pci.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/delay.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/wireless.h>
  34. #include <net/mac80211.h>
  35. #include <linux/etherdevice.h>
  36. #include <asm/unaligned.h>
  37. #include "iwl-eeprom.h"
  38. #include "iwl-dev.h"
  39. #include "iwl-core.h"
  40. #include "iwl-io.h"
  41. #include "iwl-sta.h"
  42. #include "iwl-helpers.h"
  43. #include "iwl-5000-hw.h"
  44. /* Highest firmware API version supported */
  45. #define IWL5000_UCODE_API_MAX 1
  46. #define IWL5150_UCODE_API_MAX 1
  47. /* Lowest firmware API version supported */
  48. #define IWL5000_UCODE_API_MIN 1
  49. #define IWL5150_UCODE_API_MIN 1
  50. #define IWL5000_FW_PRE "iwlwifi-5000-"
  51. #define _IWL5000_MODULE_FIRMWARE(api) IWL5000_FW_PRE #api ".ucode"
  52. #define IWL5000_MODULE_FIRMWARE(api) _IWL5000_MODULE_FIRMWARE(api)
  53. #define IWL5150_FW_PRE "iwlwifi-5150-"
  54. #define _IWL5150_MODULE_FIRMWARE(api) IWL5150_FW_PRE #api ".ucode"
  55. #define IWL5150_MODULE_FIRMWARE(api) _IWL5150_MODULE_FIRMWARE(api)
  56. static const u16 iwl5000_default_queue_to_tx_fifo[] = {
  57. IWL_TX_FIFO_AC3,
  58. IWL_TX_FIFO_AC2,
  59. IWL_TX_FIFO_AC1,
  60. IWL_TX_FIFO_AC0,
  61. IWL50_CMD_FIFO_NUM,
  62. IWL_TX_FIFO_HCCA_1,
  63. IWL_TX_FIFO_HCCA_2
  64. };
  65. /* FIXME: same implementation as 4965 */
  66. static int iwl5000_apm_stop_master(struct iwl_priv *priv)
  67. {
  68. int ret = 0;
  69. unsigned long flags;
  70. spin_lock_irqsave(&priv->lock, flags);
  71. /* set stop master bit */
  72. iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
  73. ret = iwl_poll_direct_bit(priv, CSR_RESET,
  74. CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
  75. if (ret < 0)
  76. goto out;
  77. out:
  78. spin_unlock_irqrestore(&priv->lock, flags);
  79. IWL_DEBUG_INFO("stop master\n");
  80. return ret;
  81. }
  82. static int iwl5000_apm_init(struct iwl_priv *priv)
  83. {
  84. int ret = 0;
  85. iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS,
  86. CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
  87. /* disable L0s without affecting L1 :don't wait for ICH L0s bug W/A) */
  88. iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS,
  89. CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
  90. /* Set FH wait threshold to maximum (HW error during stress W/A) */
  91. iwl_set_bit(priv, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
  92. /* enable HAP INTA to move device L1a -> L0s */
  93. iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
  94. CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
  95. iwl_set_bit(priv, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL);
  96. /* set "initialization complete" bit to move adapter
  97. * D0U* --> D0A* state */
  98. iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  99. /* wait for clock stabilization */
  100. ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL,
  101. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
  102. if (ret < 0) {
  103. IWL_DEBUG_INFO("Failed to init the card\n");
  104. return ret;
  105. }
  106. ret = iwl_grab_nic_access(priv);
  107. if (ret)
  108. return ret;
  109. /* enable DMA */
  110. iwl_write_prph(priv, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
  111. udelay(20);
  112. /* disable L1-Active */
  113. iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG,
  114. APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
  115. iwl_release_nic_access(priv);
  116. return ret;
  117. }
  118. /* FIXME: this is identical to 4965 */
  119. static void iwl5000_apm_stop(struct iwl_priv *priv)
  120. {
  121. unsigned long flags;
  122. iwl5000_apm_stop_master(priv);
  123. spin_lock_irqsave(&priv->lock, flags);
  124. iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
  125. udelay(10);
  126. /* clear "init complete" move adapter D0A* --> D0U state */
  127. iwl_clear_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  128. spin_unlock_irqrestore(&priv->lock, flags);
  129. }
  130. static int iwl5000_apm_reset(struct iwl_priv *priv)
  131. {
  132. int ret = 0;
  133. unsigned long flags;
  134. iwl5000_apm_stop_master(priv);
  135. spin_lock_irqsave(&priv->lock, flags);
  136. iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
  137. udelay(10);
  138. /* FIXME: put here L1A -L0S w/a */
  139. iwl_set_bit(priv, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL);
  140. /* set "initialization complete" bit to move adapter
  141. * D0U* --> D0A* state */
  142. iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  143. /* wait for clock stabilization */
  144. ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL,
  145. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
  146. if (ret < 0) {
  147. IWL_DEBUG_INFO("Failed to init the card\n");
  148. goto out;
  149. }
  150. ret = iwl_grab_nic_access(priv);
  151. if (ret)
  152. goto out;
  153. /* enable DMA */
  154. iwl_write_prph(priv, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
  155. udelay(20);
  156. /* disable L1-Active */
  157. iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG,
  158. APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
  159. iwl_release_nic_access(priv);
  160. out:
  161. spin_unlock_irqrestore(&priv->lock, flags);
  162. return ret;
  163. }
  164. static void iwl5000_nic_config(struct iwl_priv *priv)
  165. {
  166. unsigned long flags;
  167. u16 radio_cfg;
  168. u16 link;
  169. spin_lock_irqsave(&priv->lock, flags);
  170. pci_read_config_word(priv->pci_dev, PCI_CFG_LINK_CTRL, &link);
  171. /* L1 is enabled by BIOS */
  172. if ((link & PCI_CFG_LINK_CTRL_VAL_L1_EN) == PCI_CFG_LINK_CTRL_VAL_L1_EN)
  173. /* disable L0S disabled L1A enabled */
  174. iwl_set_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
  175. else
  176. /* L0S enabled L1A disabled */
  177. iwl_clear_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
  178. radio_cfg = iwl_eeprom_query16(priv, EEPROM_RADIO_CONFIG);
  179. /* write radio config values to register */
  180. if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) < EEPROM_5000_RF_CFG_TYPE_MAX)
  181. iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
  182. EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
  183. EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
  184. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  185. /* set CSR_HW_CONFIG_REG for uCode use */
  186. iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
  187. CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
  188. CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
  189. /* W/A : NIC is stuck in a reset state after Early PCIe power off
  190. * (PCIe power is lost before PERST# is asserted),
  191. * causing ME FW to lose ownership and not being able to obtain it back.
  192. */
  193. iwl_grab_nic_access(priv);
  194. iwl_set_bits_mask_prph(priv, APMG_PS_CTRL_REG,
  195. APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
  196. ~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
  197. iwl_release_nic_access(priv);
  198. spin_unlock_irqrestore(&priv->lock, flags);
  199. }
  200. /*
  201. * EEPROM
  202. */
  203. static u32 eeprom_indirect_address(const struct iwl_priv *priv, u32 address)
  204. {
  205. u16 offset = 0;
  206. if ((address & INDIRECT_ADDRESS) == 0)
  207. return address;
  208. switch (address & INDIRECT_TYPE_MSK) {
  209. case INDIRECT_HOST:
  210. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_HOST);
  211. break;
  212. case INDIRECT_GENERAL:
  213. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_GENERAL);
  214. break;
  215. case INDIRECT_REGULATORY:
  216. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_REGULATORY);
  217. break;
  218. case INDIRECT_CALIBRATION:
  219. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_CALIBRATION);
  220. break;
  221. case INDIRECT_PROCESS_ADJST:
  222. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_PROCESS_ADJST);
  223. break;
  224. case INDIRECT_OTHERS:
  225. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_OTHERS);
  226. break;
  227. default:
  228. IWL_ERROR("illegal indirect type: 0x%X\n",
  229. address & INDIRECT_TYPE_MSK);
  230. break;
  231. }
  232. /* translate the offset from words to byte */
  233. return (address & ADDRESS_MSK) + (offset << 1);
  234. }
  235. static u16 iwl5000_eeprom_calib_version(struct iwl_priv *priv)
  236. {
  237. struct iwl_eeprom_calib_hdr {
  238. u8 version;
  239. u8 pa_type;
  240. u16 voltage;
  241. } *hdr;
  242. hdr = (struct iwl_eeprom_calib_hdr *)iwl_eeprom_query_addr(priv,
  243. EEPROM_5000_CALIB_ALL);
  244. return hdr->version;
  245. }
  246. static void iwl5000_gain_computation(struct iwl_priv *priv,
  247. u32 average_noise[NUM_RX_CHAINS],
  248. u16 min_average_noise_antenna_i,
  249. u32 min_average_noise)
  250. {
  251. int i;
  252. s32 delta_g;
  253. struct iwl_chain_noise_data *data = &priv->chain_noise_data;
  254. /* Find Gain Code for the antennas B and C */
  255. for (i = 1; i < NUM_RX_CHAINS; i++) {
  256. if ((data->disconn_array[i])) {
  257. data->delta_gain_code[i] = 0;
  258. continue;
  259. }
  260. delta_g = (1000 * ((s32)average_noise[0] -
  261. (s32)average_noise[i])) / 1500;
  262. /* bound gain by 2 bits value max, 3rd bit is sign */
  263. data->delta_gain_code[i] =
  264. min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
  265. if (delta_g < 0)
  266. /* set negative sign */
  267. data->delta_gain_code[i] |= (1 << 2);
  268. }
  269. IWL_DEBUG_CALIB("Delta gains: ANT_B = %d ANT_C = %d\n",
  270. data->delta_gain_code[1], data->delta_gain_code[2]);
  271. if (!data->radio_write) {
  272. struct iwl_calib_chain_noise_gain_cmd cmd;
  273. memset(&cmd, 0, sizeof(cmd));
  274. cmd.hdr.op_code = IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD;
  275. cmd.hdr.first_group = 0;
  276. cmd.hdr.groups_num = 1;
  277. cmd.hdr.data_valid = 1;
  278. cmd.delta_gain_1 = data->delta_gain_code[1];
  279. cmd.delta_gain_2 = data->delta_gain_code[2];
  280. iwl_send_cmd_pdu_async(priv, REPLY_PHY_CALIBRATION_CMD,
  281. sizeof(cmd), &cmd, NULL);
  282. data->radio_write = 1;
  283. data->state = IWL_CHAIN_NOISE_CALIBRATED;
  284. }
  285. data->chain_noise_a = 0;
  286. data->chain_noise_b = 0;
  287. data->chain_noise_c = 0;
  288. data->chain_signal_a = 0;
  289. data->chain_signal_b = 0;
  290. data->chain_signal_c = 0;
  291. data->beacon_count = 0;
  292. }
  293. static void iwl5000_chain_noise_reset(struct iwl_priv *priv)
  294. {
  295. struct iwl_chain_noise_data *data = &priv->chain_noise_data;
  296. int ret;
  297. if ((data->state == IWL_CHAIN_NOISE_ALIVE) && iwl_is_associated(priv)) {
  298. struct iwl_calib_chain_noise_reset_cmd cmd;
  299. memset(&cmd, 0, sizeof(cmd));
  300. cmd.hdr.op_code = IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD;
  301. cmd.hdr.first_group = 0;
  302. cmd.hdr.groups_num = 1;
  303. cmd.hdr.data_valid = 1;
  304. ret = iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
  305. sizeof(cmd), &cmd);
  306. if (ret)
  307. IWL_ERROR("Could not send REPLY_PHY_CALIBRATION_CMD\n");
  308. data->state = IWL_CHAIN_NOISE_ACCUMULATE;
  309. IWL_DEBUG_CALIB("Run chain_noise_calibrate\n");
  310. }
  311. }
  312. static void iwl5000_rts_tx_cmd_flag(struct ieee80211_tx_info *info,
  313. __le32 *tx_flags)
  314. {
  315. if ((info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) ||
  316. (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
  317. *tx_flags |= TX_CMD_FLG_RTS_CTS_MSK;
  318. else
  319. *tx_flags &= ~TX_CMD_FLG_RTS_CTS_MSK;
  320. }
  321. static struct iwl_sensitivity_ranges iwl5000_sensitivity = {
  322. .min_nrg_cck = 95,
  323. .max_nrg_cck = 0,
  324. .auto_corr_min_ofdm = 90,
  325. .auto_corr_min_ofdm_mrc = 170,
  326. .auto_corr_min_ofdm_x1 = 120,
  327. .auto_corr_min_ofdm_mrc_x1 = 240,
  328. .auto_corr_max_ofdm = 120,
  329. .auto_corr_max_ofdm_mrc = 210,
  330. .auto_corr_max_ofdm_x1 = 155,
  331. .auto_corr_max_ofdm_mrc_x1 = 290,
  332. .auto_corr_min_cck = 125,
  333. .auto_corr_max_cck = 200,
  334. .auto_corr_min_cck_mrc = 170,
  335. .auto_corr_max_cck_mrc = 400,
  336. .nrg_th_cck = 95,
  337. .nrg_th_ofdm = 95,
  338. };
  339. static const u8 *iwl5000_eeprom_query_addr(const struct iwl_priv *priv,
  340. size_t offset)
  341. {
  342. u32 address = eeprom_indirect_address(priv, offset);
  343. BUG_ON(address >= priv->cfg->eeprom_size);
  344. return &priv->eeprom[address];
  345. }
  346. static s32 iwl5150_get_ct_threshold(struct iwl_priv *priv)
  347. {
  348. const s32 volt2temp_coef = -5;
  349. u16 *temp_calib = (u16 *)iwl_eeprom_query_addr(priv,
  350. EEPROM_5000_TEMPERATURE);
  351. /* offset = temperate - voltage / coef */
  352. s32 offset = temp_calib[0] - temp_calib[1] / volt2temp_coef;
  353. s32 threshold = (s32)CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD) - offset;
  354. return threshold * volt2temp_coef;
  355. }
  356. /*
  357. * Calibration
  358. */
  359. static int iwl5000_set_Xtal_calib(struct iwl_priv *priv)
  360. {
  361. struct iwl_calib_xtal_freq_cmd cmd;
  362. u16 *xtal_calib = (u16 *)iwl_eeprom_query_addr(priv, EEPROM_5000_XTAL);
  363. cmd.hdr.op_code = IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD;
  364. cmd.hdr.first_group = 0;
  365. cmd.hdr.groups_num = 1;
  366. cmd.hdr.data_valid = 1;
  367. cmd.cap_pin1 = (u8)xtal_calib[0];
  368. cmd.cap_pin2 = (u8)xtal_calib[1];
  369. return iwl_calib_set(&priv->calib_results[IWL_CALIB_XTAL],
  370. (u8 *)&cmd, sizeof(cmd));
  371. }
  372. static int iwl5000_send_calib_cfg(struct iwl_priv *priv)
  373. {
  374. struct iwl_calib_cfg_cmd calib_cfg_cmd;
  375. struct iwl_host_cmd cmd = {
  376. .id = CALIBRATION_CFG_CMD,
  377. .len = sizeof(struct iwl_calib_cfg_cmd),
  378. .data = &calib_cfg_cmd,
  379. };
  380. memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd));
  381. calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_INIT_CFG_ALL;
  382. calib_cfg_cmd.ucd_calib_cfg.once.start = IWL_CALIB_INIT_CFG_ALL;
  383. calib_cfg_cmd.ucd_calib_cfg.once.send_res = IWL_CALIB_INIT_CFG_ALL;
  384. calib_cfg_cmd.ucd_calib_cfg.flags = IWL_CALIB_INIT_CFG_ALL;
  385. return iwl_send_cmd(priv, &cmd);
  386. }
  387. static void iwl5000_rx_calib_result(struct iwl_priv *priv,
  388. struct iwl_rx_mem_buffer *rxb)
  389. {
  390. struct iwl_rx_packet *pkt = (void *)rxb->skb->data;
  391. struct iwl_calib_hdr *hdr = (struct iwl_calib_hdr *)pkt->u.raw;
  392. int len = le32_to_cpu(pkt->len) & FH_RSCSR_FRAME_SIZE_MSK;
  393. int index;
  394. /* reduce the size of the length field itself */
  395. len -= 4;
  396. /* Define the order in which the results will be sent to the runtime
  397. * uCode. iwl_send_calib_results sends them in a row according to their
  398. * index. We sort them here */
  399. switch (hdr->op_code) {
  400. case IWL_PHY_CALIBRATE_DC_CMD:
  401. index = IWL_CALIB_DC;
  402. break;
  403. case IWL_PHY_CALIBRATE_LO_CMD:
  404. index = IWL_CALIB_LO;
  405. break;
  406. case IWL_PHY_CALIBRATE_TX_IQ_CMD:
  407. index = IWL_CALIB_TX_IQ;
  408. break;
  409. case IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD:
  410. index = IWL_CALIB_TX_IQ_PERD;
  411. break;
  412. case IWL_PHY_CALIBRATE_BASE_BAND_CMD:
  413. index = IWL_CALIB_BASE_BAND;
  414. break;
  415. default:
  416. IWL_ERROR("Unknown calibration notification %d\n",
  417. hdr->op_code);
  418. return;
  419. }
  420. iwl_calib_set(&priv->calib_results[index], pkt->u.raw, len);
  421. }
  422. static void iwl5000_rx_calib_complete(struct iwl_priv *priv,
  423. struct iwl_rx_mem_buffer *rxb)
  424. {
  425. IWL_DEBUG_INFO("Init. calibration is completed, restarting fw.\n");
  426. queue_work(priv->workqueue, &priv->restart);
  427. }
  428. /*
  429. * ucode
  430. */
  431. static int iwl5000_load_section(struct iwl_priv *priv,
  432. struct fw_desc *image,
  433. u32 dst_addr)
  434. {
  435. int ret = 0;
  436. unsigned long flags;
  437. dma_addr_t phy_addr = image->p_addr;
  438. u32 byte_cnt = image->len;
  439. spin_lock_irqsave(&priv->lock, flags);
  440. ret = iwl_grab_nic_access(priv);
  441. if (ret) {
  442. spin_unlock_irqrestore(&priv->lock, flags);
  443. return ret;
  444. }
  445. iwl_write_direct32(priv,
  446. FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
  447. FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
  448. iwl_write_direct32(priv,
  449. FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), dst_addr);
  450. iwl_write_direct32(priv,
  451. FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
  452. phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
  453. iwl_write_direct32(priv,
  454. FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
  455. (iwl_get_dma_hi_addr(phy_addr)
  456. << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
  457. iwl_write_direct32(priv,
  458. FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
  459. 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
  460. 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
  461. FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
  462. iwl_write_direct32(priv,
  463. FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
  464. FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
  465. FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
  466. FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
  467. iwl_release_nic_access(priv);
  468. spin_unlock_irqrestore(&priv->lock, flags);
  469. return 0;
  470. }
  471. static int iwl5000_load_given_ucode(struct iwl_priv *priv,
  472. struct fw_desc *inst_image,
  473. struct fw_desc *data_image)
  474. {
  475. int ret = 0;
  476. ret = iwl5000_load_section(priv, inst_image, RTC_INST_LOWER_BOUND);
  477. if (ret)
  478. return ret;
  479. IWL_DEBUG_INFO("INST uCode section being loaded...\n");
  480. ret = wait_event_interruptible_timeout(priv->wait_command_queue,
  481. priv->ucode_write_complete, 5 * HZ);
  482. if (ret == -ERESTARTSYS) {
  483. IWL_ERROR("Could not load the INST uCode section due "
  484. "to interrupt\n");
  485. return ret;
  486. }
  487. if (!ret) {
  488. IWL_ERROR("Could not load the INST uCode section\n");
  489. return -ETIMEDOUT;
  490. }
  491. priv->ucode_write_complete = 0;
  492. ret = iwl5000_load_section(
  493. priv, data_image, RTC_DATA_LOWER_BOUND);
  494. if (ret)
  495. return ret;
  496. IWL_DEBUG_INFO("DATA uCode section being loaded...\n");
  497. ret = wait_event_interruptible_timeout(priv->wait_command_queue,
  498. priv->ucode_write_complete, 5 * HZ);
  499. if (ret == -ERESTARTSYS) {
  500. IWL_ERROR("Could not load the INST uCode section due "
  501. "to interrupt\n");
  502. return ret;
  503. } else if (!ret) {
  504. IWL_ERROR("Could not load the DATA uCode section\n");
  505. return -ETIMEDOUT;
  506. } else
  507. ret = 0;
  508. priv->ucode_write_complete = 0;
  509. return ret;
  510. }
  511. static int iwl5000_load_ucode(struct iwl_priv *priv)
  512. {
  513. int ret = 0;
  514. /* check whether init ucode should be loaded, or rather runtime ucode */
  515. if (priv->ucode_init.len && (priv->ucode_type == UCODE_NONE)) {
  516. IWL_DEBUG_INFO("Init ucode found. Loading init ucode...\n");
  517. ret = iwl5000_load_given_ucode(priv,
  518. &priv->ucode_init, &priv->ucode_init_data);
  519. if (!ret) {
  520. IWL_DEBUG_INFO("Init ucode load complete.\n");
  521. priv->ucode_type = UCODE_INIT;
  522. }
  523. } else {
  524. IWL_DEBUG_INFO("Init ucode not found, or already loaded. "
  525. "Loading runtime ucode...\n");
  526. ret = iwl5000_load_given_ucode(priv,
  527. &priv->ucode_code, &priv->ucode_data);
  528. if (!ret) {
  529. IWL_DEBUG_INFO("Runtime ucode load complete.\n");
  530. priv->ucode_type = UCODE_RT;
  531. }
  532. }
  533. return ret;
  534. }
  535. static void iwl5000_init_alive_start(struct iwl_priv *priv)
  536. {
  537. int ret = 0;
  538. /* Check alive response for "valid" sign from uCode */
  539. if (priv->card_alive_init.is_valid != UCODE_VALID_OK) {
  540. /* We had an error bringing up the hardware, so take it
  541. * all the way back down so we can try again */
  542. IWL_DEBUG_INFO("Initialize Alive failed.\n");
  543. goto restart;
  544. }
  545. /* initialize uCode was loaded... verify inst image.
  546. * This is a paranoid check, because we would not have gotten the
  547. * "initialize" alive if code weren't properly loaded. */
  548. if (iwl_verify_ucode(priv)) {
  549. /* Runtime instruction load was bad;
  550. * take it all the way back down so we can try again */
  551. IWL_DEBUG_INFO("Bad \"initialize\" uCode load.\n");
  552. goto restart;
  553. }
  554. iwl_clear_stations_table(priv);
  555. ret = priv->cfg->ops->lib->alive_notify(priv);
  556. if (ret) {
  557. IWL_WARNING("Could not complete ALIVE transition: %d\n", ret);
  558. goto restart;
  559. }
  560. iwl5000_send_calib_cfg(priv);
  561. return;
  562. restart:
  563. /* real restart (first load init_ucode) */
  564. queue_work(priv->workqueue, &priv->restart);
  565. }
  566. static void iwl5000_set_wr_ptrs(struct iwl_priv *priv,
  567. int txq_id, u32 index)
  568. {
  569. iwl_write_direct32(priv, HBUS_TARG_WRPTR,
  570. (index & 0xff) | (txq_id << 8));
  571. iwl_write_prph(priv, IWL50_SCD_QUEUE_RDPTR(txq_id), index);
  572. }
  573. static void iwl5000_tx_queue_set_status(struct iwl_priv *priv,
  574. struct iwl_tx_queue *txq,
  575. int tx_fifo_id, int scd_retry)
  576. {
  577. int txq_id = txq->q.id;
  578. int active = test_bit(txq_id, &priv->txq_ctx_active_msk) ? 1 : 0;
  579. iwl_write_prph(priv, IWL50_SCD_QUEUE_STATUS_BITS(txq_id),
  580. (active << IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
  581. (tx_fifo_id << IWL50_SCD_QUEUE_STTS_REG_POS_TXF) |
  582. (1 << IWL50_SCD_QUEUE_STTS_REG_POS_WSL) |
  583. IWL50_SCD_QUEUE_STTS_REG_MSK);
  584. txq->sched_retry = scd_retry;
  585. IWL_DEBUG_INFO("%s %s Queue %d on AC %d\n",
  586. active ? "Activate" : "Deactivate",
  587. scd_retry ? "BA" : "AC", txq_id, tx_fifo_id);
  588. }
  589. static int iwl5000_send_wimax_coex(struct iwl_priv *priv)
  590. {
  591. struct iwl_wimax_coex_cmd coex_cmd;
  592. memset(&coex_cmd, 0, sizeof(coex_cmd));
  593. return iwl_send_cmd_pdu(priv, COEX_PRIORITY_TABLE_CMD,
  594. sizeof(coex_cmd), &coex_cmd);
  595. }
  596. static int iwl5000_alive_notify(struct iwl_priv *priv)
  597. {
  598. u32 a;
  599. unsigned long flags;
  600. int ret;
  601. int i, chan;
  602. u32 reg_val;
  603. spin_lock_irqsave(&priv->lock, flags);
  604. ret = iwl_grab_nic_access(priv);
  605. if (ret) {
  606. spin_unlock_irqrestore(&priv->lock, flags);
  607. return ret;
  608. }
  609. priv->scd_base_addr = iwl_read_prph(priv, IWL50_SCD_SRAM_BASE_ADDR);
  610. a = priv->scd_base_addr + IWL50_SCD_CONTEXT_DATA_OFFSET;
  611. for (; a < priv->scd_base_addr + IWL50_SCD_TX_STTS_BITMAP_OFFSET;
  612. a += 4)
  613. iwl_write_targ_mem(priv, a, 0);
  614. for (; a < priv->scd_base_addr + IWL50_SCD_TRANSLATE_TBL_OFFSET;
  615. a += 4)
  616. iwl_write_targ_mem(priv, a, 0);
  617. for (; a < sizeof(u16) * priv->hw_params.max_txq_num; a += 4)
  618. iwl_write_targ_mem(priv, a, 0);
  619. iwl_write_prph(priv, IWL50_SCD_DRAM_BASE_ADDR,
  620. priv->scd_bc_tbls.dma >> 10);
  621. /* Enable DMA channel */
  622. for (chan = 0; chan < FH50_TCSR_CHNL_NUM ; chan++)
  623. iwl_write_direct32(priv, FH_TCSR_CHNL_TX_CONFIG_REG(chan),
  624. FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
  625. FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
  626. /* Update FH chicken bits */
  627. reg_val = iwl_read_direct32(priv, FH_TX_CHICKEN_BITS_REG);
  628. iwl_write_direct32(priv, FH_TX_CHICKEN_BITS_REG,
  629. reg_val | FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
  630. iwl_write_prph(priv, IWL50_SCD_QUEUECHAIN_SEL,
  631. IWL50_SCD_QUEUECHAIN_SEL_ALL(priv->hw_params.max_txq_num));
  632. iwl_write_prph(priv, IWL50_SCD_AGGR_SEL, 0);
  633. /* initiate the queues */
  634. for (i = 0; i < priv->hw_params.max_txq_num; i++) {
  635. iwl_write_prph(priv, IWL50_SCD_QUEUE_RDPTR(i), 0);
  636. iwl_write_direct32(priv, HBUS_TARG_WRPTR, 0 | (i << 8));
  637. iwl_write_targ_mem(priv, priv->scd_base_addr +
  638. IWL50_SCD_CONTEXT_QUEUE_OFFSET(i), 0);
  639. iwl_write_targ_mem(priv, priv->scd_base_addr +
  640. IWL50_SCD_CONTEXT_QUEUE_OFFSET(i) +
  641. sizeof(u32),
  642. ((SCD_WIN_SIZE <<
  643. IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
  644. IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
  645. ((SCD_FRAME_LIMIT <<
  646. IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
  647. IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
  648. }
  649. iwl_write_prph(priv, IWL50_SCD_INTERRUPT_MASK,
  650. IWL_MASK(0, priv->hw_params.max_txq_num));
  651. /* Activate all Tx DMA/FIFO channels */
  652. priv->cfg->ops->lib->txq_set_sched(priv, IWL_MASK(0, 7));
  653. iwl5000_set_wr_ptrs(priv, IWL_CMD_QUEUE_NUM, 0);
  654. /* map qos queues to fifos one-to-one */
  655. for (i = 0; i < ARRAY_SIZE(iwl5000_default_queue_to_tx_fifo); i++) {
  656. int ac = iwl5000_default_queue_to_tx_fifo[i];
  657. iwl_txq_ctx_activate(priv, i);
  658. iwl5000_tx_queue_set_status(priv, &priv->txq[i], ac, 0);
  659. }
  660. /* TODO - need to initialize those FIFOs inside the loop above,
  661. * not only mark them as active */
  662. iwl_txq_ctx_activate(priv, 4);
  663. iwl_txq_ctx_activate(priv, 7);
  664. iwl_txq_ctx_activate(priv, 8);
  665. iwl_txq_ctx_activate(priv, 9);
  666. iwl_release_nic_access(priv);
  667. spin_unlock_irqrestore(&priv->lock, flags);
  668. iwl5000_send_wimax_coex(priv);
  669. iwl5000_set_Xtal_calib(priv);
  670. iwl_send_calib_results(priv);
  671. return 0;
  672. }
  673. static int iwl5000_hw_set_hw_params(struct iwl_priv *priv)
  674. {
  675. if ((priv->cfg->mod_params->num_of_queues > IWL50_NUM_QUEUES) ||
  676. (priv->cfg->mod_params->num_of_queues < IWL_MIN_NUM_QUEUES)) {
  677. IWL_ERROR("invalid queues_num, should be between %d and %d\n",
  678. IWL_MIN_NUM_QUEUES, IWL50_NUM_QUEUES);
  679. return -EINVAL;
  680. }
  681. priv->hw_params.max_txq_num = priv->cfg->mod_params->num_of_queues;
  682. priv->hw_params.dma_chnl_num = FH50_TCSR_CHNL_NUM;
  683. priv->hw_params.scd_bc_tbls_size =
  684. IWL50_NUM_QUEUES * sizeof(struct iwl5000_scd_bc_tbl);
  685. priv->hw_params.max_stations = IWL5000_STATION_COUNT;
  686. priv->hw_params.bcast_sta_id = IWL5000_BROADCAST_ID;
  687. priv->hw_params.max_data_size = IWL50_RTC_DATA_SIZE;
  688. priv->hw_params.max_inst_size = IWL50_RTC_INST_SIZE;
  689. priv->hw_params.max_bsm_size = 0;
  690. priv->hw_params.fat_channel = BIT(IEEE80211_BAND_2GHZ) |
  691. BIT(IEEE80211_BAND_5GHZ);
  692. priv->hw_params.sens = &iwl5000_sensitivity;
  693. switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
  694. case CSR_HW_REV_TYPE_5100:
  695. priv->hw_params.tx_chains_num = 1;
  696. priv->hw_params.rx_chains_num = 2;
  697. priv->hw_params.valid_tx_ant = ANT_B;
  698. priv->hw_params.valid_rx_ant = ANT_AB;
  699. break;
  700. case CSR_HW_REV_TYPE_5150:
  701. priv->hw_params.tx_chains_num = 1;
  702. priv->hw_params.rx_chains_num = 2;
  703. priv->hw_params.valid_tx_ant = ANT_A;
  704. priv->hw_params.valid_rx_ant = ANT_AB;
  705. break;
  706. case CSR_HW_REV_TYPE_5300:
  707. case CSR_HW_REV_TYPE_5350:
  708. priv->hw_params.tx_chains_num = 3;
  709. priv->hw_params.rx_chains_num = 3;
  710. priv->hw_params.valid_tx_ant = ANT_ABC;
  711. priv->hw_params.valid_rx_ant = ANT_ABC;
  712. break;
  713. }
  714. switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
  715. case CSR_HW_REV_TYPE_5100:
  716. case CSR_HW_REV_TYPE_5300:
  717. case CSR_HW_REV_TYPE_5350:
  718. /* 5X00 and 5350 wants in Celsius */
  719. priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD;
  720. break;
  721. case CSR_HW_REV_TYPE_5150:
  722. /* 5150 wants in Kelvin */
  723. priv->hw_params.ct_kill_threshold =
  724. iwl5150_get_ct_threshold(priv);
  725. break;
  726. }
  727. /* Set initial calibration set */
  728. switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
  729. case CSR_HW_REV_TYPE_5100:
  730. case CSR_HW_REV_TYPE_5300:
  731. case CSR_HW_REV_TYPE_5350:
  732. priv->hw_params.calib_init_cfg =
  733. BIT(IWL_CALIB_XTAL) |
  734. BIT(IWL_CALIB_LO) |
  735. BIT(IWL_CALIB_TX_IQ) |
  736. BIT(IWL_CALIB_TX_IQ_PERD) |
  737. BIT(IWL_CALIB_BASE_BAND);
  738. break;
  739. case CSR_HW_REV_TYPE_5150:
  740. priv->hw_params.calib_init_cfg =
  741. BIT(IWL_CALIB_DC) |
  742. BIT(IWL_CALIB_LO) |
  743. BIT(IWL_CALIB_TX_IQ) |
  744. BIT(IWL_CALIB_BASE_BAND);
  745. break;
  746. }
  747. return 0;
  748. }
  749. /**
  750. * iwl5000_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
  751. */
  752. static void iwl5000_txq_update_byte_cnt_tbl(struct iwl_priv *priv,
  753. struct iwl_tx_queue *txq,
  754. u16 byte_cnt)
  755. {
  756. struct iwl5000_scd_bc_tbl *scd_bc_tbl = priv->scd_bc_tbls.addr;
  757. int write_ptr = txq->q.write_ptr;
  758. int txq_id = txq->q.id;
  759. u8 sec_ctl = 0;
  760. u8 sta_id = 0;
  761. u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE;
  762. __le16 bc_ent;
  763. WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
  764. if (txq_id != IWL_CMD_QUEUE_NUM) {
  765. sta_id = txq->cmd[txq->q.write_ptr]->cmd.tx.sta_id;
  766. sec_ctl = txq->cmd[txq->q.write_ptr]->cmd.tx.sec_ctl;
  767. switch (sec_ctl & TX_CMD_SEC_MSK) {
  768. case TX_CMD_SEC_CCM:
  769. len += CCMP_MIC_LEN;
  770. break;
  771. case TX_CMD_SEC_TKIP:
  772. len += TKIP_ICV_LEN;
  773. break;
  774. case TX_CMD_SEC_WEP:
  775. len += WEP_IV_LEN + WEP_ICV_LEN;
  776. break;
  777. }
  778. }
  779. bc_ent = cpu_to_le16((len & 0xFFF) | (sta_id << 12));
  780. scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
  781. if (txq->q.write_ptr < TFD_QUEUE_SIZE_BC_DUP)
  782. scd_bc_tbl[txq_id].
  783. tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent;
  784. }
  785. static void iwl5000_txq_inval_byte_cnt_tbl(struct iwl_priv *priv,
  786. struct iwl_tx_queue *txq)
  787. {
  788. struct iwl5000_scd_bc_tbl *scd_bc_tbl = priv->scd_bc_tbls.addr;
  789. int txq_id = txq->q.id;
  790. int read_ptr = txq->q.read_ptr;
  791. u8 sta_id = 0;
  792. __le16 bc_ent;
  793. WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX);
  794. if (txq_id != IWL_CMD_QUEUE_NUM)
  795. sta_id = txq->cmd[read_ptr]->cmd.tx.sta_id;
  796. bc_ent = cpu_to_le16(1 | (sta_id << 12));
  797. scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent;
  798. if (txq->q.write_ptr < TFD_QUEUE_SIZE_BC_DUP)
  799. scd_bc_tbl[txq_id].
  800. tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] = bc_ent;
  801. }
  802. static int iwl5000_tx_queue_set_q2ratid(struct iwl_priv *priv, u16 ra_tid,
  803. u16 txq_id)
  804. {
  805. u32 tbl_dw_addr;
  806. u32 tbl_dw;
  807. u16 scd_q2ratid;
  808. scd_q2ratid = ra_tid & IWL_SCD_QUEUE_RA_TID_MAP_RATID_MSK;
  809. tbl_dw_addr = priv->scd_base_addr +
  810. IWL50_SCD_TRANSLATE_TBL_OFFSET_QUEUE(txq_id);
  811. tbl_dw = iwl_read_targ_mem(priv, tbl_dw_addr);
  812. if (txq_id & 0x1)
  813. tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF);
  814. else
  815. tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000);
  816. iwl_write_targ_mem(priv, tbl_dw_addr, tbl_dw);
  817. return 0;
  818. }
  819. static void iwl5000_tx_queue_stop_scheduler(struct iwl_priv *priv, u16 txq_id)
  820. {
  821. /* Simply stop the queue, but don't change any configuration;
  822. * the SCD_ACT_EN bit is the write-enable mask for the ACTIVE bit. */
  823. iwl_write_prph(priv,
  824. IWL50_SCD_QUEUE_STATUS_BITS(txq_id),
  825. (0 << IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE)|
  826. (1 << IWL50_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
  827. }
  828. static int iwl5000_txq_agg_enable(struct iwl_priv *priv, int txq_id,
  829. int tx_fifo, int sta_id, int tid, u16 ssn_idx)
  830. {
  831. unsigned long flags;
  832. int ret;
  833. u16 ra_tid;
  834. if ((IWL50_FIRST_AMPDU_QUEUE > txq_id) ||
  835. (IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES <= txq_id)) {
  836. IWL_WARNING("queue number out of range: %d, must be %d to %d\n",
  837. txq_id, IWL50_FIRST_AMPDU_QUEUE,
  838. IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES - 1);
  839. return -EINVAL;
  840. }
  841. ra_tid = BUILD_RAxTID(sta_id, tid);
  842. /* Modify device's station table to Tx this TID */
  843. iwl_sta_tx_modify_enable_tid(priv, sta_id, tid);
  844. spin_lock_irqsave(&priv->lock, flags);
  845. ret = iwl_grab_nic_access(priv);
  846. if (ret) {
  847. spin_unlock_irqrestore(&priv->lock, flags);
  848. return ret;
  849. }
  850. /* Stop this Tx queue before configuring it */
  851. iwl5000_tx_queue_stop_scheduler(priv, txq_id);
  852. /* Map receiver-address / traffic-ID to this queue */
  853. iwl5000_tx_queue_set_q2ratid(priv, ra_tid, txq_id);
  854. /* Set this queue as a chain-building queue */
  855. iwl_set_bits_prph(priv, IWL50_SCD_QUEUECHAIN_SEL, (1<<txq_id));
  856. /* enable aggregations for the queue */
  857. iwl_set_bits_prph(priv, IWL50_SCD_AGGR_SEL, (1<<txq_id));
  858. /* Place first TFD at index corresponding to start sequence number.
  859. * Assumes that ssn_idx is valid (!= 0xFFF) */
  860. priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
  861. priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
  862. iwl5000_set_wr_ptrs(priv, txq_id, ssn_idx);
  863. /* Set up Tx window size and frame limit for this queue */
  864. iwl_write_targ_mem(priv, priv->scd_base_addr +
  865. IWL50_SCD_CONTEXT_QUEUE_OFFSET(txq_id) +
  866. sizeof(u32),
  867. ((SCD_WIN_SIZE <<
  868. IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
  869. IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
  870. ((SCD_FRAME_LIMIT <<
  871. IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
  872. IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
  873. iwl_set_bits_prph(priv, IWL50_SCD_INTERRUPT_MASK, (1 << txq_id));
  874. /* Set up Status area in SRAM, map to Tx DMA/FIFO, activate the queue */
  875. iwl5000_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 1);
  876. iwl_release_nic_access(priv);
  877. spin_unlock_irqrestore(&priv->lock, flags);
  878. return 0;
  879. }
  880. static int iwl5000_txq_agg_disable(struct iwl_priv *priv, u16 txq_id,
  881. u16 ssn_idx, u8 tx_fifo)
  882. {
  883. int ret;
  884. if ((IWL50_FIRST_AMPDU_QUEUE > txq_id) ||
  885. (IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES <= txq_id)) {
  886. IWL_WARNING("queue number out of range: %d, must be %d to %d\n",
  887. txq_id, IWL50_FIRST_AMPDU_QUEUE,
  888. IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES - 1);
  889. return -EINVAL;
  890. }
  891. ret = iwl_grab_nic_access(priv);
  892. if (ret)
  893. return ret;
  894. iwl5000_tx_queue_stop_scheduler(priv, txq_id);
  895. iwl_clear_bits_prph(priv, IWL50_SCD_AGGR_SEL, (1 << txq_id));
  896. priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
  897. priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
  898. /* supposes that ssn_idx is valid (!= 0xFFF) */
  899. iwl5000_set_wr_ptrs(priv, txq_id, ssn_idx);
  900. iwl_clear_bits_prph(priv, IWL50_SCD_INTERRUPT_MASK, (1 << txq_id));
  901. iwl_txq_ctx_deactivate(priv, txq_id);
  902. iwl5000_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 0);
  903. iwl_release_nic_access(priv);
  904. return 0;
  905. }
  906. static u16 iwl5000_build_addsta_hcmd(const struct iwl_addsta_cmd *cmd, u8 *data)
  907. {
  908. u16 size = (u16)sizeof(struct iwl_addsta_cmd);
  909. memcpy(data, cmd, size);
  910. return size;
  911. }
  912. /*
  913. * Activate/Deactivate Tx DMA/FIFO channels according tx fifos mask
  914. * must be called under priv->lock and mac access
  915. */
  916. static void iwl5000_txq_set_sched(struct iwl_priv *priv, u32 mask)
  917. {
  918. iwl_write_prph(priv, IWL50_SCD_TXFACT, mask);
  919. }
  920. static inline u32 iwl5000_get_scd_ssn(struct iwl5000_tx_resp *tx_resp)
  921. {
  922. return le32_to_cpup((__le32 *)&tx_resp->status +
  923. tx_resp->frame_count) & MAX_SN;
  924. }
  925. static int iwl5000_tx_status_reply_tx(struct iwl_priv *priv,
  926. struct iwl_ht_agg *agg,
  927. struct iwl5000_tx_resp *tx_resp,
  928. int txq_id, u16 start_idx)
  929. {
  930. u16 status;
  931. struct agg_tx_status *frame_status = &tx_resp->status;
  932. struct ieee80211_tx_info *info = NULL;
  933. struct ieee80211_hdr *hdr = NULL;
  934. u32 rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags);
  935. int i, sh, idx;
  936. u16 seq;
  937. if (agg->wait_for_ba)
  938. IWL_DEBUG_TX_REPLY("got tx response w/o block-ack\n");
  939. agg->frame_count = tx_resp->frame_count;
  940. agg->start_idx = start_idx;
  941. agg->rate_n_flags = rate_n_flags;
  942. agg->bitmap = 0;
  943. /* # frames attempted by Tx command */
  944. if (agg->frame_count == 1) {
  945. /* Only one frame was attempted; no block-ack will arrive */
  946. status = le16_to_cpu(frame_status[0].status);
  947. idx = start_idx;
  948. /* FIXME: code repetition */
  949. IWL_DEBUG_TX_REPLY("FrameCnt = %d, StartIdx=%d idx=%d\n",
  950. agg->frame_count, agg->start_idx, idx);
  951. info = IEEE80211_SKB_CB(priv->txq[txq_id].txb[idx].skb[0]);
  952. info->status.rates[0].count = tx_resp->failure_frame + 1;
  953. info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  954. info->flags |= iwl_is_tx_success(status) ?
  955. IEEE80211_TX_STAT_ACK : 0;
  956. iwl_hwrate_to_tx_control(priv, rate_n_flags, info);
  957. /* FIXME: code repetition end */
  958. IWL_DEBUG_TX_REPLY("1 Frame 0x%x failure :%d\n",
  959. status & 0xff, tx_resp->failure_frame);
  960. IWL_DEBUG_TX_REPLY("Rate Info rate_n_flags=%x\n", rate_n_flags);
  961. agg->wait_for_ba = 0;
  962. } else {
  963. /* Two or more frames were attempted; expect block-ack */
  964. u64 bitmap = 0;
  965. int start = agg->start_idx;
  966. /* Construct bit-map of pending frames within Tx window */
  967. for (i = 0; i < agg->frame_count; i++) {
  968. u16 sc;
  969. status = le16_to_cpu(frame_status[i].status);
  970. seq = le16_to_cpu(frame_status[i].sequence);
  971. idx = SEQ_TO_INDEX(seq);
  972. txq_id = SEQ_TO_QUEUE(seq);
  973. if (status & (AGG_TX_STATE_FEW_BYTES_MSK |
  974. AGG_TX_STATE_ABORT_MSK))
  975. continue;
  976. IWL_DEBUG_TX_REPLY("FrameCnt = %d, txq_id=%d idx=%d\n",
  977. agg->frame_count, txq_id, idx);
  978. hdr = iwl_tx_queue_get_hdr(priv, txq_id, idx);
  979. sc = le16_to_cpu(hdr->seq_ctrl);
  980. if (idx != (SEQ_TO_SN(sc) & 0xff)) {
  981. IWL_ERROR("BUG_ON idx doesn't match seq control"
  982. " idx=%d, seq_idx=%d, seq=%d\n",
  983. idx, SEQ_TO_SN(sc),
  984. hdr->seq_ctrl);
  985. return -1;
  986. }
  987. IWL_DEBUG_TX_REPLY("AGG Frame i=%d idx %d seq=%d\n",
  988. i, idx, SEQ_TO_SN(sc));
  989. sh = idx - start;
  990. if (sh > 64) {
  991. sh = (start - idx) + 0xff;
  992. bitmap = bitmap << sh;
  993. sh = 0;
  994. start = idx;
  995. } else if (sh < -64)
  996. sh = 0xff - (start - idx);
  997. else if (sh < 0) {
  998. sh = start - idx;
  999. start = idx;
  1000. bitmap = bitmap << sh;
  1001. sh = 0;
  1002. }
  1003. bitmap |= 1ULL << sh;
  1004. IWL_DEBUG_TX_REPLY("start=%d bitmap=0x%llx\n",
  1005. start, (unsigned long long)bitmap);
  1006. }
  1007. agg->bitmap = bitmap;
  1008. agg->start_idx = start;
  1009. IWL_DEBUG_TX_REPLY("Frames %d start_idx=%d bitmap=0x%llx\n",
  1010. agg->frame_count, agg->start_idx,
  1011. (unsigned long long)agg->bitmap);
  1012. if (bitmap)
  1013. agg->wait_for_ba = 1;
  1014. }
  1015. return 0;
  1016. }
  1017. static void iwl5000_rx_reply_tx(struct iwl_priv *priv,
  1018. struct iwl_rx_mem_buffer *rxb)
  1019. {
  1020. struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data;
  1021. u16 sequence = le16_to_cpu(pkt->hdr.sequence);
  1022. int txq_id = SEQ_TO_QUEUE(sequence);
  1023. int index = SEQ_TO_INDEX(sequence);
  1024. struct iwl_tx_queue *txq = &priv->txq[txq_id];
  1025. struct ieee80211_tx_info *info;
  1026. struct iwl5000_tx_resp *tx_resp = (void *)&pkt->u.raw[0];
  1027. u32 status = le16_to_cpu(tx_resp->status.status);
  1028. int tid;
  1029. int sta_id;
  1030. int freed;
  1031. if ((index >= txq->q.n_bd) || (iwl_queue_used(&txq->q, index) == 0)) {
  1032. IWL_ERROR("Read index for DMA queue txq_id (%d) index %d "
  1033. "is out of range [0-%d] %d %d\n", txq_id,
  1034. index, txq->q.n_bd, txq->q.write_ptr,
  1035. txq->q.read_ptr);
  1036. return;
  1037. }
  1038. info = IEEE80211_SKB_CB(txq->txb[txq->q.read_ptr].skb[0]);
  1039. memset(&info->status, 0, sizeof(info->status));
  1040. tid = (tx_resp->ra_tid & IWL50_TX_RES_TID_MSK) >> IWL50_TX_RES_TID_POS;
  1041. sta_id = (tx_resp->ra_tid & IWL50_TX_RES_RA_MSK) >> IWL50_TX_RES_RA_POS;
  1042. if (txq->sched_retry) {
  1043. const u32 scd_ssn = iwl5000_get_scd_ssn(tx_resp);
  1044. struct iwl_ht_agg *agg = NULL;
  1045. agg = &priv->stations[sta_id].tid[tid].agg;
  1046. iwl5000_tx_status_reply_tx(priv, agg, tx_resp, txq_id, index);
  1047. /* check if BAR is needed */
  1048. if ((tx_resp->frame_count == 1) && !iwl_is_tx_success(status))
  1049. info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1050. if (txq->q.read_ptr != (scd_ssn & 0xff)) {
  1051. index = iwl_queue_dec_wrap(scd_ssn & 0xff, txq->q.n_bd);
  1052. IWL_DEBUG_TX_REPLY("Retry scheduler reclaim "
  1053. "scd_ssn=%d idx=%d txq=%d swq=%d\n",
  1054. scd_ssn , index, txq_id, txq->swq_id);
  1055. freed = iwl_tx_queue_reclaim(priv, txq_id, index);
  1056. priv->stations[sta_id].tid[tid].tfds_in_queue -= freed;
  1057. if (priv->mac80211_registered &&
  1058. (iwl_queue_space(&txq->q) > txq->q.low_mark) &&
  1059. (agg->state != IWL_EMPTYING_HW_QUEUE_DELBA)) {
  1060. if (agg->state == IWL_AGG_OFF)
  1061. ieee80211_wake_queue(priv->hw, txq_id);
  1062. else
  1063. ieee80211_wake_queue(priv->hw,
  1064. txq->swq_id);
  1065. }
  1066. }
  1067. } else {
  1068. BUG_ON(txq_id != txq->swq_id);
  1069. info->status.rates[0].count = tx_resp->failure_frame + 1;
  1070. info->flags |= iwl_is_tx_success(status) ?
  1071. IEEE80211_TX_STAT_ACK : 0;
  1072. iwl_hwrate_to_tx_control(priv,
  1073. le32_to_cpu(tx_resp->rate_n_flags),
  1074. info);
  1075. IWL_DEBUG_TX_REPLY("TXQ %d status %s (0x%08x) rate_n_flags "
  1076. "0x%x retries %d\n",
  1077. txq_id,
  1078. iwl_get_tx_fail_reason(status), status,
  1079. le32_to_cpu(tx_resp->rate_n_flags),
  1080. tx_resp->failure_frame);
  1081. freed = iwl_tx_queue_reclaim(priv, txq_id, index);
  1082. if (ieee80211_is_data_qos(tx_resp->frame_ctrl))
  1083. priv->stations[sta_id].tid[tid].tfds_in_queue -= freed;
  1084. if (priv->mac80211_registered &&
  1085. (iwl_queue_space(&txq->q) > txq->q.low_mark))
  1086. ieee80211_wake_queue(priv->hw, txq_id);
  1087. }
  1088. if (ieee80211_is_data_qos(tx_resp->frame_ctrl))
  1089. iwl_txq_check_empty(priv, sta_id, tid, txq_id);
  1090. if (iwl_check_bits(status, TX_ABORT_REQUIRED_MSK))
  1091. IWL_ERROR("TODO: Implement Tx ABORT REQUIRED!!!\n");
  1092. }
  1093. /* Currently 5000 is the superset of everything */
  1094. static u16 iwl5000_get_hcmd_size(u8 cmd_id, u16 len)
  1095. {
  1096. return len;
  1097. }
  1098. static void iwl5000_setup_deferred_work(struct iwl_priv *priv)
  1099. {
  1100. /* in 5000 the tx power calibration is done in uCode */
  1101. priv->disable_tx_power_cal = 1;
  1102. }
  1103. static void iwl5000_rx_handler_setup(struct iwl_priv *priv)
  1104. {
  1105. /* init calibration handlers */
  1106. priv->rx_handlers[CALIBRATION_RES_NOTIFICATION] =
  1107. iwl5000_rx_calib_result;
  1108. priv->rx_handlers[CALIBRATION_COMPLETE_NOTIFICATION] =
  1109. iwl5000_rx_calib_complete;
  1110. priv->rx_handlers[REPLY_TX] = iwl5000_rx_reply_tx;
  1111. }
  1112. static int iwl5000_hw_valid_rtc_data_addr(u32 addr)
  1113. {
  1114. return (addr >= RTC_DATA_LOWER_BOUND) &&
  1115. (addr < IWL50_RTC_DATA_UPPER_BOUND);
  1116. }
  1117. static int iwl5000_send_rxon_assoc(struct iwl_priv *priv)
  1118. {
  1119. int ret = 0;
  1120. struct iwl5000_rxon_assoc_cmd rxon_assoc;
  1121. const struct iwl_rxon_cmd *rxon1 = &priv->staging_rxon;
  1122. const struct iwl_rxon_cmd *rxon2 = &priv->active_rxon;
  1123. if ((rxon1->flags == rxon2->flags) &&
  1124. (rxon1->filter_flags == rxon2->filter_flags) &&
  1125. (rxon1->cck_basic_rates == rxon2->cck_basic_rates) &&
  1126. (rxon1->ofdm_ht_single_stream_basic_rates ==
  1127. rxon2->ofdm_ht_single_stream_basic_rates) &&
  1128. (rxon1->ofdm_ht_dual_stream_basic_rates ==
  1129. rxon2->ofdm_ht_dual_stream_basic_rates) &&
  1130. (rxon1->ofdm_ht_triple_stream_basic_rates ==
  1131. rxon2->ofdm_ht_triple_stream_basic_rates) &&
  1132. (rxon1->acquisition_data == rxon2->acquisition_data) &&
  1133. (rxon1->rx_chain == rxon2->rx_chain) &&
  1134. (rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates)) {
  1135. IWL_DEBUG_INFO("Using current RXON_ASSOC. Not resending.\n");
  1136. return 0;
  1137. }
  1138. rxon_assoc.flags = priv->staging_rxon.flags;
  1139. rxon_assoc.filter_flags = priv->staging_rxon.filter_flags;
  1140. rxon_assoc.ofdm_basic_rates = priv->staging_rxon.ofdm_basic_rates;
  1141. rxon_assoc.cck_basic_rates = priv->staging_rxon.cck_basic_rates;
  1142. rxon_assoc.reserved1 = 0;
  1143. rxon_assoc.reserved2 = 0;
  1144. rxon_assoc.reserved3 = 0;
  1145. rxon_assoc.ofdm_ht_single_stream_basic_rates =
  1146. priv->staging_rxon.ofdm_ht_single_stream_basic_rates;
  1147. rxon_assoc.ofdm_ht_dual_stream_basic_rates =
  1148. priv->staging_rxon.ofdm_ht_dual_stream_basic_rates;
  1149. rxon_assoc.rx_chain_select_flags = priv->staging_rxon.rx_chain;
  1150. rxon_assoc.ofdm_ht_triple_stream_basic_rates =
  1151. priv->staging_rxon.ofdm_ht_triple_stream_basic_rates;
  1152. rxon_assoc.acquisition_data = priv->staging_rxon.acquisition_data;
  1153. ret = iwl_send_cmd_pdu_async(priv, REPLY_RXON_ASSOC,
  1154. sizeof(rxon_assoc), &rxon_assoc, NULL);
  1155. if (ret)
  1156. return ret;
  1157. return ret;
  1158. }
  1159. static int iwl5000_send_tx_power(struct iwl_priv *priv)
  1160. {
  1161. struct iwl5000_tx_power_dbm_cmd tx_power_cmd;
  1162. /* half dBm need to multiply */
  1163. tx_power_cmd.global_lmt = (s8)(2 * priv->tx_power_user_lmt);
  1164. tx_power_cmd.flags = IWL50_TX_POWER_NO_CLOSED;
  1165. tx_power_cmd.srv_chan_lmt = IWL50_TX_POWER_AUTO;
  1166. return iwl_send_cmd_pdu_async(priv, REPLY_TX_POWER_DBM_CMD,
  1167. sizeof(tx_power_cmd), &tx_power_cmd,
  1168. NULL);
  1169. }
  1170. static void iwl5000_temperature(struct iwl_priv *priv)
  1171. {
  1172. /* store temperature from statistics (in Celsius) */
  1173. priv->temperature = le32_to_cpu(priv->statistics.general.temperature);
  1174. }
  1175. /* Calc max signal level (dBm) among 3 possible receivers */
  1176. static int iwl5000_calc_rssi(struct iwl_priv *priv,
  1177. struct iwl_rx_phy_res *rx_resp)
  1178. {
  1179. /* data from PHY/DSP regarding signal strength, etc.,
  1180. * contents are always there, not configurable by host
  1181. */
  1182. struct iwl5000_non_cfg_phy *ncphy =
  1183. (struct iwl5000_non_cfg_phy *)rx_resp->non_cfg_phy_buf;
  1184. u32 val, rssi_a, rssi_b, rssi_c, max_rssi;
  1185. u8 agc;
  1186. val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_AGC_IDX]);
  1187. agc = (val & IWL50_OFDM_AGC_MSK) >> IWL50_OFDM_AGC_BIT_POS;
  1188. /* Find max rssi among 3 possible receivers.
  1189. * These values are measured by the digital signal processor (DSP).
  1190. * They should stay fairly constant even as the signal strength varies,
  1191. * if the radio's automatic gain control (AGC) is working right.
  1192. * AGC value (see below) will provide the "interesting" info.
  1193. */
  1194. val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_RSSI_AB_IDX]);
  1195. rssi_a = (val & IWL50_OFDM_RSSI_A_MSK) >> IWL50_OFDM_RSSI_A_BIT_POS;
  1196. rssi_b = (val & IWL50_OFDM_RSSI_B_MSK) >> IWL50_OFDM_RSSI_B_BIT_POS;
  1197. val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_RSSI_C_IDX]);
  1198. rssi_c = (val & IWL50_OFDM_RSSI_C_MSK) >> IWL50_OFDM_RSSI_C_BIT_POS;
  1199. max_rssi = max_t(u32, rssi_a, rssi_b);
  1200. max_rssi = max_t(u32, max_rssi, rssi_c);
  1201. IWL_DEBUG_STATS("Rssi In A %d B %d C %d Max %d AGC dB %d\n",
  1202. rssi_a, rssi_b, rssi_c, max_rssi, agc);
  1203. /* dBm = max_rssi dB - agc dB - constant.
  1204. * Higher AGC (higher radio gain) means lower signal. */
  1205. return max_rssi - agc - IWL_RSSI_OFFSET;
  1206. }
  1207. static struct iwl_hcmd_ops iwl5000_hcmd = {
  1208. .rxon_assoc = iwl5000_send_rxon_assoc,
  1209. };
  1210. static struct iwl_hcmd_utils_ops iwl5000_hcmd_utils = {
  1211. .get_hcmd_size = iwl5000_get_hcmd_size,
  1212. .build_addsta_hcmd = iwl5000_build_addsta_hcmd,
  1213. .gain_computation = iwl5000_gain_computation,
  1214. .chain_noise_reset = iwl5000_chain_noise_reset,
  1215. .rts_tx_cmd_flag = iwl5000_rts_tx_cmd_flag,
  1216. .calc_rssi = iwl5000_calc_rssi,
  1217. };
  1218. static struct iwl_lib_ops iwl5000_lib = {
  1219. .set_hw_params = iwl5000_hw_set_hw_params,
  1220. .txq_update_byte_cnt_tbl = iwl5000_txq_update_byte_cnt_tbl,
  1221. .txq_inval_byte_cnt_tbl = iwl5000_txq_inval_byte_cnt_tbl,
  1222. .txq_set_sched = iwl5000_txq_set_sched,
  1223. .txq_agg_enable = iwl5000_txq_agg_enable,
  1224. .txq_agg_disable = iwl5000_txq_agg_disable,
  1225. .rx_handler_setup = iwl5000_rx_handler_setup,
  1226. .setup_deferred_work = iwl5000_setup_deferred_work,
  1227. .is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
  1228. .load_ucode = iwl5000_load_ucode,
  1229. .init_alive_start = iwl5000_init_alive_start,
  1230. .alive_notify = iwl5000_alive_notify,
  1231. .send_tx_power = iwl5000_send_tx_power,
  1232. .temperature = iwl5000_temperature,
  1233. .update_chain_flags = iwl_update_chain_flags,
  1234. .apm_ops = {
  1235. .init = iwl5000_apm_init,
  1236. .reset = iwl5000_apm_reset,
  1237. .stop = iwl5000_apm_stop,
  1238. .config = iwl5000_nic_config,
  1239. .set_pwr_src = iwl_set_pwr_src,
  1240. },
  1241. .eeprom_ops = {
  1242. .regulatory_bands = {
  1243. EEPROM_5000_REG_BAND_1_CHANNELS,
  1244. EEPROM_5000_REG_BAND_2_CHANNELS,
  1245. EEPROM_5000_REG_BAND_3_CHANNELS,
  1246. EEPROM_5000_REG_BAND_4_CHANNELS,
  1247. EEPROM_5000_REG_BAND_5_CHANNELS,
  1248. EEPROM_5000_REG_BAND_24_FAT_CHANNELS,
  1249. EEPROM_5000_REG_BAND_52_FAT_CHANNELS
  1250. },
  1251. .verify_signature = iwlcore_eeprom_verify_signature,
  1252. .acquire_semaphore = iwlcore_eeprom_acquire_semaphore,
  1253. .release_semaphore = iwlcore_eeprom_release_semaphore,
  1254. .calib_version = iwl5000_eeprom_calib_version,
  1255. .query_addr = iwl5000_eeprom_query_addr,
  1256. },
  1257. };
  1258. static struct iwl_ops iwl5000_ops = {
  1259. .lib = &iwl5000_lib,
  1260. .hcmd = &iwl5000_hcmd,
  1261. .utils = &iwl5000_hcmd_utils,
  1262. };
  1263. static struct iwl_mod_params iwl50_mod_params = {
  1264. .num_of_queues = IWL50_NUM_QUEUES,
  1265. .num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES,
  1266. .amsdu_size_8K = 1,
  1267. .restart_fw = 1,
  1268. /* the rest are 0 by default */
  1269. };
  1270. struct iwl_cfg iwl5300_agn_cfg = {
  1271. .name = "5300AGN",
  1272. .fw_name_pre = IWL5000_FW_PRE,
  1273. .ucode_api_max = IWL5000_UCODE_API_MAX,
  1274. .ucode_api_min = IWL5000_UCODE_API_MIN,
  1275. .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
  1276. .ops = &iwl5000_ops,
  1277. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1278. .eeprom_ver = EEPROM_5000_EEPROM_VERSION,
  1279. .eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION,
  1280. .mod_params = &iwl50_mod_params,
  1281. };
  1282. struct iwl_cfg iwl5100_bg_cfg = {
  1283. .name = "5100BG",
  1284. .fw_name_pre = IWL5000_FW_PRE,
  1285. .ucode_api_max = IWL5000_UCODE_API_MAX,
  1286. .ucode_api_min = IWL5000_UCODE_API_MIN,
  1287. .sku = IWL_SKU_G,
  1288. .ops = &iwl5000_ops,
  1289. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1290. .eeprom_ver = EEPROM_5000_EEPROM_VERSION,
  1291. .eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION,
  1292. .mod_params = &iwl50_mod_params,
  1293. };
  1294. struct iwl_cfg iwl5100_abg_cfg = {
  1295. .name = "5100ABG",
  1296. .fw_name_pre = IWL5000_FW_PRE,
  1297. .ucode_api_max = IWL5000_UCODE_API_MAX,
  1298. .ucode_api_min = IWL5000_UCODE_API_MIN,
  1299. .sku = IWL_SKU_A|IWL_SKU_G,
  1300. .ops = &iwl5000_ops,
  1301. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1302. .eeprom_ver = EEPROM_5000_EEPROM_VERSION,
  1303. .eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION,
  1304. .mod_params = &iwl50_mod_params,
  1305. };
  1306. struct iwl_cfg iwl5100_agn_cfg = {
  1307. .name = "5100AGN",
  1308. .fw_name_pre = IWL5000_FW_PRE,
  1309. .ucode_api_max = IWL5000_UCODE_API_MAX,
  1310. .ucode_api_min = IWL5000_UCODE_API_MIN,
  1311. .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
  1312. .ops = &iwl5000_ops,
  1313. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1314. .eeprom_ver = EEPROM_5000_EEPROM_VERSION,
  1315. .eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION,
  1316. .mod_params = &iwl50_mod_params,
  1317. };
  1318. struct iwl_cfg iwl5350_agn_cfg = {
  1319. .name = "5350AGN",
  1320. .fw_name_pre = IWL5000_FW_PRE,
  1321. .ucode_api_max = IWL5000_UCODE_API_MAX,
  1322. .ucode_api_min = IWL5000_UCODE_API_MIN,
  1323. .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
  1324. .ops = &iwl5000_ops,
  1325. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1326. .eeprom_ver = EEPROM_5050_EEPROM_VERSION,
  1327. .eeprom_calib_ver = EEPROM_5050_TX_POWER_VERSION,
  1328. .mod_params = &iwl50_mod_params,
  1329. };
  1330. struct iwl_cfg iwl5150_agn_cfg = {
  1331. .name = "5150AGN",
  1332. .fw_name_pre = IWL5150_FW_PRE,
  1333. .ucode_api_max = IWL5150_UCODE_API_MAX,
  1334. .ucode_api_min = IWL5150_UCODE_API_MIN,
  1335. .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
  1336. .ops = &iwl5000_ops,
  1337. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1338. .eeprom_ver = EEPROM_5050_EEPROM_VERSION,
  1339. .eeprom_calib_ver = EEPROM_5050_TX_POWER_VERSION,
  1340. .mod_params = &iwl50_mod_params,
  1341. };
  1342. MODULE_FIRMWARE(IWL5000_MODULE_FIRMWARE(IWL5000_UCODE_API_MAX));
  1343. MODULE_FIRMWARE(IWL5150_MODULE_FIRMWARE(IWL5150_UCODE_API_MAX));
  1344. module_param_named(disable50, iwl50_mod_params.disable, int, 0444);
  1345. MODULE_PARM_DESC(disable50,
  1346. "manually disable the 50XX radio (default 0 [radio on])");
  1347. module_param_named(swcrypto50, iwl50_mod_params.sw_crypto, bool, 0444);
  1348. MODULE_PARM_DESC(swcrypto50,
  1349. "using software crypto engine (default 0 [hardware])\n");
  1350. module_param_named(debug50, iwl50_mod_params.debug, int, 0444);
  1351. MODULE_PARM_DESC(debug50, "50XX debug output mask");
  1352. module_param_named(queues_num50, iwl50_mod_params.num_of_queues, int, 0444);
  1353. MODULE_PARM_DESC(queues_num50, "number of hw queues in 50xx series");
  1354. module_param_named(11n_disable50, iwl50_mod_params.disable_11n, int, 0444);
  1355. MODULE_PARM_DESC(11n_disable50, "disable 50XX 11n functionality");
  1356. module_param_named(amsdu_size_8K50, iwl50_mod_params.amsdu_size_8K, int, 0444);
  1357. MODULE_PARM_DESC(amsdu_size_8K50, "enable 8K amsdu size in 50XX series");
  1358. module_param_named(fw_restart50, iwl50_mod_params.restart_fw, int, 0444);
  1359. MODULE_PARM_DESC(fw_restart50, "restart firmware in case of error");