vmx.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int __read_mostly bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, S_IRUGO);
  37. static int __read_mostly enable_vpid = 1;
  38. module_param_named(vpid, enable_vpid, bool, 0444);
  39. static int __read_mostly flexpriority_enabled = 1;
  40. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  41. static int __read_mostly enable_ept = 1;
  42. module_param_named(ept, enable_ept, bool, S_IRUGO);
  43. static int __read_mostly emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. enum emulation_result invalid_state_emulation_result;
  83. /* Support for vnmi-less CPUs */
  84. int soft_vnmi_blocked;
  85. ktime_t entry_time;
  86. s64 vnmi_blocked_time;
  87. };
  88. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  89. {
  90. return container_of(vcpu, struct vcpu_vmx, vcpu);
  91. }
  92. static int init_rmode(struct kvm *kvm);
  93. static u64 construct_eptp(unsigned long root_hpa);
  94. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  95. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  96. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  97. static unsigned long *vmx_io_bitmap_a;
  98. static unsigned long *vmx_io_bitmap_b;
  99. static unsigned long *vmx_msr_bitmap_legacy;
  100. static unsigned long *vmx_msr_bitmap_longmode;
  101. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  102. static DEFINE_SPINLOCK(vmx_vpid_lock);
  103. static struct vmcs_config {
  104. int size;
  105. int order;
  106. u32 revision_id;
  107. u32 pin_based_exec_ctrl;
  108. u32 cpu_based_exec_ctrl;
  109. u32 cpu_based_2nd_exec_ctrl;
  110. u32 vmexit_ctrl;
  111. u32 vmentry_ctrl;
  112. } vmcs_config;
  113. static struct vmx_capability {
  114. u32 ept;
  115. u32 vpid;
  116. } vmx_capability;
  117. #define VMX_SEGMENT_FIELD(seg) \
  118. [VCPU_SREG_##seg] = { \
  119. .selector = GUEST_##seg##_SELECTOR, \
  120. .base = GUEST_##seg##_BASE, \
  121. .limit = GUEST_##seg##_LIMIT, \
  122. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  123. }
  124. static struct kvm_vmx_segment_field {
  125. unsigned selector;
  126. unsigned base;
  127. unsigned limit;
  128. unsigned ar_bytes;
  129. } kvm_vmx_segment_fields[] = {
  130. VMX_SEGMENT_FIELD(CS),
  131. VMX_SEGMENT_FIELD(DS),
  132. VMX_SEGMENT_FIELD(ES),
  133. VMX_SEGMENT_FIELD(FS),
  134. VMX_SEGMENT_FIELD(GS),
  135. VMX_SEGMENT_FIELD(SS),
  136. VMX_SEGMENT_FIELD(TR),
  137. VMX_SEGMENT_FIELD(LDTR),
  138. };
  139. /*
  140. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  141. * away by decrementing the array size.
  142. */
  143. static const u32 vmx_msr_index[] = {
  144. #ifdef CONFIG_X86_64
  145. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  146. #endif
  147. MSR_EFER, MSR_K6_STAR,
  148. };
  149. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  150. static void load_msrs(struct kvm_msr_entry *e, int n)
  151. {
  152. int i;
  153. for (i = 0; i < n; ++i)
  154. wrmsrl(e[i].index, e[i].data);
  155. }
  156. static void save_msrs(struct kvm_msr_entry *e, int n)
  157. {
  158. int i;
  159. for (i = 0; i < n; ++i)
  160. rdmsrl(e[i].index, e[i].data);
  161. }
  162. static inline int is_page_fault(u32 intr_info)
  163. {
  164. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  165. INTR_INFO_VALID_MASK)) ==
  166. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int is_no_device(u32 intr_info)
  169. {
  170. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  171. INTR_INFO_VALID_MASK)) ==
  172. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  173. }
  174. static inline int is_invalid_opcode(u32 intr_info)
  175. {
  176. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  177. INTR_INFO_VALID_MASK)) ==
  178. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  179. }
  180. static inline int is_external_interrupt(u32 intr_info)
  181. {
  182. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  183. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  184. }
  185. static inline int cpu_has_vmx_msr_bitmap(void)
  186. {
  187. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  188. }
  189. static inline int cpu_has_vmx_tpr_shadow(void)
  190. {
  191. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  192. }
  193. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  194. {
  195. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  196. }
  197. static inline int cpu_has_secondary_exec_ctrls(void)
  198. {
  199. return vmcs_config.cpu_based_exec_ctrl &
  200. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  201. }
  202. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  203. {
  204. return vmcs_config.cpu_based_2nd_exec_ctrl &
  205. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  206. }
  207. static inline bool cpu_has_vmx_flexpriority(void)
  208. {
  209. return cpu_has_vmx_tpr_shadow() &&
  210. cpu_has_vmx_virtualize_apic_accesses();
  211. }
  212. static inline int cpu_has_vmx_invept_individual_addr(void)
  213. {
  214. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  215. }
  216. static inline int cpu_has_vmx_invept_context(void)
  217. {
  218. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  219. }
  220. static inline int cpu_has_vmx_invept_global(void)
  221. {
  222. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  223. }
  224. static inline int cpu_has_vmx_ept(void)
  225. {
  226. return vmcs_config.cpu_based_2nd_exec_ctrl &
  227. SECONDARY_EXEC_ENABLE_EPT;
  228. }
  229. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  230. {
  231. return flexpriority_enabled &&
  232. (cpu_has_vmx_virtualize_apic_accesses()) &&
  233. (irqchip_in_kernel(kvm));
  234. }
  235. static inline int cpu_has_vmx_vpid(void)
  236. {
  237. return vmcs_config.cpu_based_2nd_exec_ctrl &
  238. SECONDARY_EXEC_ENABLE_VPID;
  239. }
  240. static inline int cpu_has_virtual_nmis(void)
  241. {
  242. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  243. }
  244. static inline bool report_flexpriority(void)
  245. {
  246. return flexpriority_enabled;
  247. }
  248. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  249. {
  250. int i;
  251. for (i = 0; i < vmx->nmsrs; ++i)
  252. if (vmx->guest_msrs[i].index == msr)
  253. return i;
  254. return -1;
  255. }
  256. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  257. {
  258. struct {
  259. u64 vpid : 16;
  260. u64 rsvd : 48;
  261. u64 gva;
  262. } operand = { vpid, 0, gva };
  263. asm volatile (__ex(ASM_VMX_INVVPID)
  264. /* CF==1 or ZF==1 --> rc = -1 */
  265. "; ja 1f ; ud2 ; 1:"
  266. : : "a"(&operand), "c"(ext) : "cc", "memory");
  267. }
  268. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  269. {
  270. struct {
  271. u64 eptp, gpa;
  272. } operand = {eptp, gpa};
  273. asm volatile (__ex(ASM_VMX_INVEPT)
  274. /* CF==1 or ZF==1 --> rc = -1 */
  275. "; ja 1f ; ud2 ; 1:\n"
  276. : : "a" (&operand), "c" (ext) : "cc", "memory");
  277. }
  278. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  279. {
  280. int i;
  281. i = __find_msr_index(vmx, msr);
  282. if (i >= 0)
  283. return &vmx->guest_msrs[i];
  284. return NULL;
  285. }
  286. static void vmcs_clear(struct vmcs *vmcs)
  287. {
  288. u64 phys_addr = __pa(vmcs);
  289. u8 error;
  290. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  291. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  292. : "cc", "memory");
  293. if (error)
  294. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  295. vmcs, phys_addr);
  296. }
  297. static void __vcpu_clear(void *arg)
  298. {
  299. struct vcpu_vmx *vmx = arg;
  300. int cpu = raw_smp_processor_id();
  301. if (vmx->vcpu.cpu == cpu)
  302. vmcs_clear(vmx->vmcs);
  303. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  304. per_cpu(current_vmcs, cpu) = NULL;
  305. rdtscll(vmx->vcpu.arch.host_tsc);
  306. list_del(&vmx->local_vcpus_link);
  307. vmx->vcpu.cpu = -1;
  308. vmx->launched = 0;
  309. }
  310. static void vcpu_clear(struct vcpu_vmx *vmx)
  311. {
  312. if (vmx->vcpu.cpu == -1)
  313. return;
  314. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  315. }
  316. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  317. {
  318. if (vmx->vpid == 0)
  319. return;
  320. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  321. }
  322. static inline void ept_sync_global(void)
  323. {
  324. if (cpu_has_vmx_invept_global())
  325. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  326. }
  327. static inline void ept_sync_context(u64 eptp)
  328. {
  329. if (enable_ept) {
  330. if (cpu_has_vmx_invept_context())
  331. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  332. else
  333. ept_sync_global();
  334. }
  335. }
  336. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  337. {
  338. if (enable_ept) {
  339. if (cpu_has_vmx_invept_individual_addr())
  340. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  341. eptp, gpa);
  342. else
  343. ept_sync_context(eptp);
  344. }
  345. }
  346. static unsigned long vmcs_readl(unsigned long field)
  347. {
  348. unsigned long value;
  349. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  350. : "=a"(value) : "d"(field) : "cc");
  351. return value;
  352. }
  353. static u16 vmcs_read16(unsigned long field)
  354. {
  355. return vmcs_readl(field);
  356. }
  357. static u32 vmcs_read32(unsigned long field)
  358. {
  359. return vmcs_readl(field);
  360. }
  361. static u64 vmcs_read64(unsigned long field)
  362. {
  363. #ifdef CONFIG_X86_64
  364. return vmcs_readl(field);
  365. #else
  366. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  367. #endif
  368. }
  369. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  370. {
  371. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  372. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  373. dump_stack();
  374. }
  375. static void vmcs_writel(unsigned long field, unsigned long value)
  376. {
  377. u8 error;
  378. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  379. : "=q"(error) : "a"(value), "d"(field) : "cc");
  380. if (unlikely(error))
  381. vmwrite_error(field, value);
  382. }
  383. static void vmcs_write16(unsigned long field, u16 value)
  384. {
  385. vmcs_writel(field, value);
  386. }
  387. static void vmcs_write32(unsigned long field, u32 value)
  388. {
  389. vmcs_writel(field, value);
  390. }
  391. static void vmcs_write64(unsigned long field, u64 value)
  392. {
  393. vmcs_writel(field, value);
  394. #ifndef CONFIG_X86_64
  395. asm volatile ("");
  396. vmcs_writel(field+1, value >> 32);
  397. #endif
  398. }
  399. static void vmcs_clear_bits(unsigned long field, u32 mask)
  400. {
  401. vmcs_writel(field, vmcs_readl(field) & ~mask);
  402. }
  403. static void vmcs_set_bits(unsigned long field, u32 mask)
  404. {
  405. vmcs_writel(field, vmcs_readl(field) | mask);
  406. }
  407. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  408. {
  409. u32 eb;
  410. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  411. if (!vcpu->fpu_active)
  412. eb |= 1u << NM_VECTOR;
  413. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  414. if (vcpu->guest_debug &
  415. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  416. eb |= 1u << DB_VECTOR;
  417. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  418. eb |= 1u << BP_VECTOR;
  419. }
  420. if (vcpu->arch.rmode.vm86_active)
  421. eb = ~0;
  422. if (enable_ept)
  423. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  424. vmcs_write32(EXCEPTION_BITMAP, eb);
  425. }
  426. static void reload_tss(void)
  427. {
  428. /*
  429. * VT restores TR but not its size. Useless.
  430. */
  431. struct descriptor_table gdt;
  432. struct desc_struct *descs;
  433. kvm_get_gdt(&gdt);
  434. descs = (void *)gdt.base;
  435. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  436. load_TR_desc();
  437. }
  438. static void load_transition_efer(struct vcpu_vmx *vmx)
  439. {
  440. int efer_offset = vmx->msr_offset_efer;
  441. u64 host_efer = vmx->host_msrs[efer_offset].data;
  442. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  443. u64 ignore_bits;
  444. if (efer_offset < 0)
  445. return;
  446. /*
  447. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  448. * outside long mode
  449. */
  450. ignore_bits = EFER_NX | EFER_SCE;
  451. #ifdef CONFIG_X86_64
  452. ignore_bits |= EFER_LMA | EFER_LME;
  453. /* SCE is meaningful only in long mode on Intel */
  454. if (guest_efer & EFER_LMA)
  455. ignore_bits &= ~(u64)EFER_SCE;
  456. #endif
  457. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  458. return;
  459. vmx->host_state.guest_efer_loaded = 1;
  460. guest_efer &= ~ignore_bits;
  461. guest_efer |= host_efer & ignore_bits;
  462. wrmsrl(MSR_EFER, guest_efer);
  463. vmx->vcpu.stat.efer_reload++;
  464. }
  465. static void reload_host_efer(struct vcpu_vmx *vmx)
  466. {
  467. if (vmx->host_state.guest_efer_loaded) {
  468. vmx->host_state.guest_efer_loaded = 0;
  469. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  470. }
  471. }
  472. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  473. {
  474. struct vcpu_vmx *vmx = to_vmx(vcpu);
  475. if (vmx->host_state.loaded)
  476. return;
  477. vmx->host_state.loaded = 1;
  478. /*
  479. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  480. * allow segment selectors with cpl > 0 or ti == 1.
  481. */
  482. vmx->host_state.ldt_sel = kvm_read_ldt();
  483. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  484. vmx->host_state.fs_sel = kvm_read_fs();
  485. if (!(vmx->host_state.fs_sel & 7)) {
  486. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  487. vmx->host_state.fs_reload_needed = 0;
  488. } else {
  489. vmcs_write16(HOST_FS_SELECTOR, 0);
  490. vmx->host_state.fs_reload_needed = 1;
  491. }
  492. vmx->host_state.gs_sel = kvm_read_gs();
  493. if (!(vmx->host_state.gs_sel & 7))
  494. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  495. else {
  496. vmcs_write16(HOST_GS_SELECTOR, 0);
  497. vmx->host_state.gs_ldt_reload_needed = 1;
  498. }
  499. #ifdef CONFIG_X86_64
  500. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  501. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  502. #else
  503. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  504. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  505. #endif
  506. #ifdef CONFIG_X86_64
  507. if (is_long_mode(&vmx->vcpu))
  508. save_msrs(vmx->host_msrs +
  509. vmx->msr_offset_kernel_gs_base, 1);
  510. #endif
  511. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  512. load_transition_efer(vmx);
  513. }
  514. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  515. {
  516. unsigned long flags;
  517. if (!vmx->host_state.loaded)
  518. return;
  519. ++vmx->vcpu.stat.host_state_reload;
  520. vmx->host_state.loaded = 0;
  521. if (vmx->host_state.fs_reload_needed)
  522. kvm_load_fs(vmx->host_state.fs_sel);
  523. if (vmx->host_state.gs_ldt_reload_needed) {
  524. kvm_load_ldt(vmx->host_state.ldt_sel);
  525. /*
  526. * If we have to reload gs, we must take care to
  527. * preserve our gs base.
  528. */
  529. local_irq_save(flags);
  530. kvm_load_gs(vmx->host_state.gs_sel);
  531. #ifdef CONFIG_X86_64
  532. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  533. #endif
  534. local_irq_restore(flags);
  535. }
  536. reload_tss();
  537. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  538. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  539. reload_host_efer(vmx);
  540. }
  541. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  542. {
  543. preempt_disable();
  544. __vmx_load_host_state(vmx);
  545. preempt_enable();
  546. }
  547. /*
  548. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  549. * vcpu mutex is already taken.
  550. */
  551. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  552. {
  553. struct vcpu_vmx *vmx = to_vmx(vcpu);
  554. u64 phys_addr = __pa(vmx->vmcs);
  555. u64 tsc_this, delta, new_offset;
  556. if (vcpu->cpu != cpu) {
  557. vcpu_clear(vmx);
  558. kvm_migrate_timers(vcpu);
  559. vpid_sync_vcpu_all(vmx);
  560. local_irq_disable();
  561. list_add(&vmx->local_vcpus_link,
  562. &per_cpu(vcpus_on_cpu, cpu));
  563. local_irq_enable();
  564. }
  565. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  566. u8 error;
  567. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  568. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  569. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  570. : "cc");
  571. if (error)
  572. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  573. vmx->vmcs, phys_addr);
  574. }
  575. if (vcpu->cpu != cpu) {
  576. struct descriptor_table dt;
  577. unsigned long sysenter_esp;
  578. vcpu->cpu = cpu;
  579. /*
  580. * Linux uses per-cpu TSS and GDT, so set these when switching
  581. * processors.
  582. */
  583. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  584. kvm_get_gdt(&dt);
  585. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  586. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  587. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  588. /*
  589. * Make sure the time stamp counter is monotonous.
  590. */
  591. rdtscll(tsc_this);
  592. if (tsc_this < vcpu->arch.host_tsc) {
  593. delta = vcpu->arch.host_tsc - tsc_this;
  594. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  595. vmcs_write64(TSC_OFFSET, new_offset);
  596. }
  597. }
  598. }
  599. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  600. {
  601. __vmx_load_host_state(to_vmx(vcpu));
  602. }
  603. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  604. {
  605. if (vcpu->fpu_active)
  606. return;
  607. vcpu->fpu_active = 1;
  608. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  609. if (vcpu->arch.cr0 & X86_CR0_TS)
  610. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  611. update_exception_bitmap(vcpu);
  612. }
  613. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  614. {
  615. if (!vcpu->fpu_active)
  616. return;
  617. vcpu->fpu_active = 0;
  618. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  619. update_exception_bitmap(vcpu);
  620. }
  621. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  622. {
  623. return vmcs_readl(GUEST_RFLAGS);
  624. }
  625. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  626. {
  627. if (vcpu->arch.rmode.vm86_active)
  628. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  629. vmcs_writel(GUEST_RFLAGS, rflags);
  630. }
  631. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  632. {
  633. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  634. int ret = 0;
  635. if (interruptibility & GUEST_INTR_STATE_STI)
  636. ret |= X86_SHADOW_INT_STI;
  637. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  638. ret |= X86_SHADOW_INT_MOV_SS;
  639. return ret & mask;
  640. }
  641. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  642. {
  643. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  644. u32 interruptibility = interruptibility_old;
  645. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  646. if (mask & X86_SHADOW_INT_MOV_SS)
  647. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  648. if (mask & X86_SHADOW_INT_STI)
  649. interruptibility |= GUEST_INTR_STATE_STI;
  650. if ((interruptibility != interruptibility_old))
  651. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  652. }
  653. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  654. {
  655. unsigned long rip;
  656. rip = kvm_rip_read(vcpu);
  657. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  658. kvm_rip_write(vcpu, rip);
  659. /* skipping an emulated instruction also counts */
  660. vmx_set_interrupt_shadow(vcpu, 0);
  661. }
  662. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  663. bool has_error_code, u32 error_code)
  664. {
  665. struct vcpu_vmx *vmx = to_vmx(vcpu);
  666. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  667. if (has_error_code) {
  668. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  669. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  670. }
  671. if (vcpu->arch.rmode.vm86_active) {
  672. vmx->rmode.irq.pending = true;
  673. vmx->rmode.irq.vector = nr;
  674. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  675. if (nr == BP_VECTOR || nr == OF_VECTOR)
  676. vmx->rmode.irq.rip++;
  677. intr_info |= INTR_TYPE_SOFT_INTR;
  678. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  679. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  680. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  681. return;
  682. }
  683. if (kvm_exception_is_soft(nr)) {
  684. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  685. vmx->vcpu.arch.event_exit_inst_len);
  686. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  687. } else
  688. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  689. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  690. }
  691. /*
  692. * Swap MSR entry in host/guest MSR entry array.
  693. */
  694. #ifdef CONFIG_X86_64
  695. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  696. {
  697. struct kvm_msr_entry tmp;
  698. tmp = vmx->guest_msrs[to];
  699. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  700. vmx->guest_msrs[from] = tmp;
  701. tmp = vmx->host_msrs[to];
  702. vmx->host_msrs[to] = vmx->host_msrs[from];
  703. vmx->host_msrs[from] = tmp;
  704. }
  705. #endif
  706. /*
  707. * Set up the vmcs to automatically save and restore system
  708. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  709. * mode, as fiddling with msrs is very expensive.
  710. */
  711. static void setup_msrs(struct vcpu_vmx *vmx)
  712. {
  713. int save_nmsrs;
  714. unsigned long *msr_bitmap;
  715. vmx_load_host_state(vmx);
  716. save_nmsrs = 0;
  717. #ifdef CONFIG_X86_64
  718. if (is_long_mode(&vmx->vcpu)) {
  719. int index;
  720. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  721. if (index >= 0)
  722. move_msr_up(vmx, index, save_nmsrs++);
  723. index = __find_msr_index(vmx, MSR_LSTAR);
  724. if (index >= 0)
  725. move_msr_up(vmx, index, save_nmsrs++);
  726. index = __find_msr_index(vmx, MSR_CSTAR);
  727. if (index >= 0)
  728. move_msr_up(vmx, index, save_nmsrs++);
  729. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  730. if (index >= 0)
  731. move_msr_up(vmx, index, save_nmsrs++);
  732. /*
  733. * MSR_K6_STAR is only needed on long mode guests, and only
  734. * if efer.sce is enabled.
  735. */
  736. index = __find_msr_index(vmx, MSR_K6_STAR);
  737. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  738. move_msr_up(vmx, index, save_nmsrs++);
  739. }
  740. #endif
  741. vmx->save_nmsrs = save_nmsrs;
  742. #ifdef CONFIG_X86_64
  743. vmx->msr_offset_kernel_gs_base =
  744. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  745. #endif
  746. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  747. if (cpu_has_vmx_msr_bitmap()) {
  748. if (is_long_mode(&vmx->vcpu))
  749. msr_bitmap = vmx_msr_bitmap_longmode;
  750. else
  751. msr_bitmap = vmx_msr_bitmap_legacy;
  752. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  753. }
  754. }
  755. /*
  756. * reads and returns guest's timestamp counter "register"
  757. * guest_tsc = host_tsc + tsc_offset -- 21.3
  758. */
  759. static u64 guest_read_tsc(void)
  760. {
  761. u64 host_tsc, tsc_offset;
  762. rdtscll(host_tsc);
  763. tsc_offset = vmcs_read64(TSC_OFFSET);
  764. return host_tsc + tsc_offset;
  765. }
  766. /*
  767. * writes 'guest_tsc' into guest's timestamp counter "register"
  768. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  769. */
  770. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  771. {
  772. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  773. }
  774. /*
  775. * Reads an msr value (of 'msr_index') into 'pdata'.
  776. * Returns 0 on success, non-0 otherwise.
  777. * Assumes vcpu_load() was already called.
  778. */
  779. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  780. {
  781. u64 data;
  782. struct kvm_msr_entry *msr;
  783. if (!pdata) {
  784. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  785. return -EINVAL;
  786. }
  787. switch (msr_index) {
  788. #ifdef CONFIG_X86_64
  789. case MSR_FS_BASE:
  790. data = vmcs_readl(GUEST_FS_BASE);
  791. break;
  792. case MSR_GS_BASE:
  793. data = vmcs_readl(GUEST_GS_BASE);
  794. break;
  795. case MSR_EFER:
  796. return kvm_get_msr_common(vcpu, msr_index, pdata);
  797. #endif
  798. case MSR_IA32_TIME_STAMP_COUNTER:
  799. data = guest_read_tsc();
  800. break;
  801. case MSR_IA32_SYSENTER_CS:
  802. data = vmcs_read32(GUEST_SYSENTER_CS);
  803. break;
  804. case MSR_IA32_SYSENTER_EIP:
  805. data = vmcs_readl(GUEST_SYSENTER_EIP);
  806. break;
  807. case MSR_IA32_SYSENTER_ESP:
  808. data = vmcs_readl(GUEST_SYSENTER_ESP);
  809. break;
  810. default:
  811. vmx_load_host_state(to_vmx(vcpu));
  812. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  813. if (msr) {
  814. data = msr->data;
  815. break;
  816. }
  817. return kvm_get_msr_common(vcpu, msr_index, pdata);
  818. }
  819. *pdata = data;
  820. return 0;
  821. }
  822. /*
  823. * Writes msr value into into the appropriate "register".
  824. * Returns 0 on success, non-0 otherwise.
  825. * Assumes vcpu_load() was already called.
  826. */
  827. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  828. {
  829. struct vcpu_vmx *vmx = to_vmx(vcpu);
  830. struct kvm_msr_entry *msr;
  831. u64 host_tsc;
  832. int ret = 0;
  833. switch (msr_index) {
  834. case MSR_EFER:
  835. vmx_load_host_state(vmx);
  836. ret = kvm_set_msr_common(vcpu, msr_index, data);
  837. break;
  838. #ifdef CONFIG_X86_64
  839. case MSR_FS_BASE:
  840. vmcs_writel(GUEST_FS_BASE, data);
  841. break;
  842. case MSR_GS_BASE:
  843. vmcs_writel(GUEST_GS_BASE, data);
  844. break;
  845. #endif
  846. case MSR_IA32_SYSENTER_CS:
  847. vmcs_write32(GUEST_SYSENTER_CS, data);
  848. break;
  849. case MSR_IA32_SYSENTER_EIP:
  850. vmcs_writel(GUEST_SYSENTER_EIP, data);
  851. break;
  852. case MSR_IA32_SYSENTER_ESP:
  853. vmcs_writel(GUEST_SYSENTER_ESP, data);
  854. break;
  855. case MSR_IA32_TIME_STAMP_COUNTER:
  856. rdtscll(host_tsc);
  857. guest_write_tsc(data, host_tsc);
  858. break;
  859. case MSR_P6_PERFCTR0:
  860. case MSR_P6_PERFCTR1:
  861. case MSR_P6_EVNTSEL0:
  862. case MSR_P6_EVNTSEL1:
  863. /*
  864. * Just discard all writes to the performance counters; this
  865. * should keep both older linux and windows 64-bit guests
  866. * happy
  867. */
  868. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  869. break;
  870. case MSR_IA32_CR_PAT:
  871. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  872. vmcs_write64(GUEST_IA32_PAT, data);
  873. vcpu->arch.pat = data;
  874. break;
  875. }
  876. /* Otherwise falls through to kvm_set_msr_common */
  877. default:
  878. vmx_load_host_state(vmx);
  879. msr = find_msr_entry(vmx, msr_index);
  880. if (msr) {
  881. msr->data = data;
  882. break;
  883. }
  884. ret = kvm_set_msr_common(vcpu, msr_index, data);
  885. }
  886. return ret;
  887. }
  888. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  889. {
  890. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  891. switch (reg) {
  892. case VCPU_REGS_RSP:
  893. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  894. break;
  895. case VCPU_REGS_RIP:
  896. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  897. break;
  898. default:
  899. break;
  900. }
  901. }
  902. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  903. {
  904. int old_debug = vcpu->guest_debug;
  905. unsigned long flags;
  906. vcpu->guest_debug = dbg->control;
  907. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  908. vcpu->guest_debug = 0;
  909. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  910. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  911. else
  912. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  913. flags = vmcs_readl(GUEST_RFLAGS);
  914. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  915. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  916. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  917. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  918. vmcs_writel(GUEST_RFLAGS, flags);
  919. update_exception_bitmap(vcpu);
  920. return 0;
  921. }
  922. static __init int cpu_has_kvm_support(void)
  923. {
  924. return cpu_has_vmx();
  925. }
  926. static __init int vmx_disabled_by_bios(void)
  927. {
  928. u64 msr;
  929. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  930. return (msr & (FEATURE_CONTROL_LOCKED |
  931. FEATURE_CONTROL_VMXON_ENABLED))
  932. == FEATURE_CONTROL_LOCKED;
  933. /* locked but not enabled */
  934. }
  935. static void hardware_enable(void *garbage)
  936. {
  937. int cpu = raw_smp_processor_id();
  938. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  939. u64 old;
  940. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  941. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  942. if ((old & (FEATURE_CONTROL_LOCKED |
  943. FEATURE_CONTROL_VMXON_ENABLED))
  944. != (FEATURE_CONTROL_LOCKED |
  945. FEATURE_CONTROL_VMXON_ENABLED))
  946. /* enable and lock */
  947. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  948. FEATURE_CONTROL_LOCKED |
  949. FEATURE_CONTROL_VMXON_ENABLED);
  950. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  951. asm volatile (ASM_VMX_VMXON_RAX
  952. : : "a"(&phys_addr), "m"(phys_addr)
  953. : "memory", "cc");
  954. }
  955. static void vmclear_local_vcpus(void)
  956. {
  957. int cpu = raw_smp_processor_id();
  958. struct vcpu_vmx *vmx, *n;
  959. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  960. local_vcpus_link)
  961. __vcpu_clear(vmx);
  962. }
  963. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  964. * tricks.
  965. */
  966. static void kvm_cpu_vmxoff(void)
  967. {
  968. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  969. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  970. }
  971. static void hardware_disable(void *garbage)
  972. {
  973. vmclear_local_vcpus();
  974. kvm_cpu_vmxoff();
  975. }
  976. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  977. u32 msr, u32 *result)
  978. {
  979. u32 vmx_msr_low, vmx_msr_high;
  980. u32 ctl = ctl_min | ctl_opt;
  981. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  982. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  983. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  984. /* Ensure minimum (required) set of control bits are supported. */
  985. if (ctl_min & ~ctl)
  986. return -EIO;
  987. *result = ctl;
  988. return 0;
  989. }
  990. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  991. {
  992. u32 vmx_msr_low, vmx_msr_high;
  993. u32 min, opt, min2, opt2;
  994. u32 _pin_based_exec_control = 0;
  995. u32 _cpu_based_exec_control = 0;
  996. u32 _cpu_based_2nd_exec_control = 0;
  997. u32 _vmexit_control = 0;
  998. u32 _vmentry_control = 0;
  999. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1000. opt = PIN_BASED_VIRTUAL_NMIS;
  1001. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1002. &_pin_based_exec_control) < 0)
  1003. return -EIO;
  1004. min = CPU_BASED_HLT_EXITING |
  1005. #ifdef CONFIG_X86_64
  1006. CPU_BASED_CR8_LOAD_EXITING |
  1007. CPU_BASED_CR8_STORE_EXITING |
  1008. #endif
  1009. CPU_BASED_CR3_LOAD_EXITING |
  1010. CPU_BASED_CR3_STORE_EXITING |
  1011. CPU_BASED_USE_IO_BITMAPS |
  1012. CPU_BASED_MOV_DR_EXITING |
  1013. CPU_BASED_USE_TSC_OFFSETING |
  1014. CPU_BASED_INVLPG_EXITING;
  1015. opt = CPU_BASED_TPR_SHADOW |
  1016. CPU_BASED_USE_MSR_BITMAPS |
  1017. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1018. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1019. &_cpu_based_exec_control) < 0)
  1020. return -EIO;
  1021. #ifdef CONFIG_X86_64
  1022. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1023. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1024. ~CPU_BASED_CR8_STORE_EXITING;
  1025. #endif
  1026. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1027. min2 = 0;
  1028. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1029. SECONDARY_EXEC_WBINVD_EXITING |
  1030. SECONDARY_EXEC_ENABLE_VPID |
  1031. SECONDARY_EXEC_ENABLE_EPT;
  1032. if (adjust_vmx_controls(min2, opt2,
  1033. MSR_IA32_VMX_PROCBASED_CTLS2,
  1034. &_cpu_based_2nd_exec_control) < 0)
  1035. return -EIO;
  1036. }
  1037. #ifndef CONFIG_X86_64
  1038. if (!(_cpu_based_2nd_exec_control &
  1039. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1040. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1041. #endif
  1042. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1043. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1044. enabled */
  1045. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1046. CPU_BASED_CR3_STORE_EXITING |
  1047. CPU_BASED_INVLPG_EXITING);
  1048. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1049. &_cpu_based_exec_control) < 0)
  1050. return -EIO;
  1051. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1052. vmx_capability.ept, vmx_capability.vpid);
  1053. }
  1054. min = 0;
  1055. #ifdef CONFIG_X86_64
  1056. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1057. #endif
  1058. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1059. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1060. &_vmexit_control) < 0)
  1061. return -EIO;
  1062. min = 0;
  1063. opt = VM_ENTRY_LOAD_IA32_PAT;
  1064. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1065. &_vmentry_control) < 0)
  1066. return -EIO;
  1067. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1068. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1069. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1070. return -EIO;
  1071. #ifdef CONFIG_X86_64
  1072. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1073. if (vmx_msr_high & (1u<<16))
  1074. return -EIO;
  1075. #endif
  1076. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1077. if (((vmx_msr_high >> 18) & 15) != 6)
  1078. return -EIO;
  1079. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1080. vmcs_conf->order = get_order(vmcs_config.size);
  1081. vmcs_conf->revision_id = vmx_msr_low;
  1082. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1083. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1084. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1085. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1086. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1087. return 0;
  1088. }
  1089. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1090. {
  1091. int node = cpu_to_node(cpu);
  1092. struct page *pages;
  1093. struct vmcs *vmcs;
  1094. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1095. if (!pages)
  1096. return NULL;
  1097. vmcs = page_address(pages);
  1098. memset(vmcs, 0, vmcs_config.size);
  1099. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1100. return vmcs;
  1101. }
  1102. static struct vmcs *alloc_vmcs(void)
  1103. {
  1104. return alloc_vmcs_cpu(raw_smp_processor_id());
  1105. }
  1106. static void free_vmcs(struct vmcs *vmcs)
  1107. {
  1108. free_pages((unsigned long)vmcs, vmcs_config.order);
  1109. }
  1110. static void free_kvm_area(void)
  1111. {
  1112. int cpu;
  1113. for_each_online_cpu(cpu)
  1114. free_vmcs(per_cpu(vmxarea, cpu));
  1115. }
  1116. static __init int alloc_kvm_area(void)
  1117. {
  1118. int cpu;
  1119. for_each_online_cpu(cpu) {
  1120. struct vmcs *vmcs;
  1121. vmcs = alloc_vmcs_cpu(cpu);
  1122. if (!vmcs) {
  1123. free_kvm_area();
  1124. return -ENOMEM;
  1125. }
  1126. per_cpu(vmxarea, cpu) = vmcs;
  1127. }
  1128. return 0;
  1129. }
  1130. static __init int hardware_setup(void)
  1131. {
  1132. if (setup_vmcs_config(&vmcs_config) < 0)
  1133. return -EIO;
  1134. if (boot_cpu_has(X86_FEATURE_NX))
  1135. kvm_enable_efer_bits(EFER_NX);
  1136. if (!cpu_has_vmx_vpid())
  1137. enable_vpid = 0;
  1138. if (!cpu_has_vmx_ept())
  1139. enable_ept = 0;
  1140. if (!cpu_has_vmx_flexpriority())
  1141. flexpriority_enabled = 0;
  1142. if (!cpu_has_vmx_tpr_shadow())
  1143. kvm_x86_ops->update_cr8_intercept = NULL;
  1144. return alloc_kvm_area();
  1145. }
  1146. static __exit void hardware_unsetup(void)
  1147. {
  1148. free_kvm_area();
  1149. }
  1150. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1151. {
  1152. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1153. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1154. vmcs_write16(sf->selector, save->selector);
  1155. vmcs_writel(sf->base, save->base);
  1156. vmcs_write32(sf->limit, save->limit);
  1157. vmcs_write32(sf->ar_bytes, save->ar);
  1158. } else {
  1159. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1160. << AR_DPL_SHIFT;
  1161. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1162. }
  1163. }
  1164. static void enter_pmode(struct kvm_vcpu *vcpu)
  1165. {
  1166. unsigned long flags;
  1167. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1168. vmx->emulation_required = 1;
  1169. vcpu->arch.rmode.vm86_active = 0;
  1170. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1171. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1172. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1173. flags = vmcs_readl(GUEST_RFLAGS);
  1174. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1175. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1176. vmcs_writel(GUEST_RFLAGS, flags);
  1177. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1178. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1179. update_exception_bitmap(vcpu);
  1180. if (emulate_invalid_guest_state)
  1181. return;
  1182. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1183. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1184. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1185. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1186. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1187. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1188. vmcs_write16(GUEST_CS_SELECTOR,
  1189. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1190. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1191. }
  1192. static gva_t rmode_tss_base(struct kvm *kvm)
  1193. {
  1194. if (!kvm->arch.tss_addr) {
  1195. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1196. kvm->memslots[0].npages - 3;
  1197. return base_gfn << PAGE_SHIFT;
  1198. }
  1199. return kvm->arch.tss_addr;
  1200. }
  1201. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1202. {
  1203. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1204. save->selector = vmcs_read16(sf->selector);
  1205. save->base = vmcs_readl(sf->base);
  1206. save->limit = vmcs_read32(sf->limit);
  1207. save->ar = vmcs_read32(sf->ar_bytes);
  1208. vmcs_write16(sf->selector, save->base >> 4);
  1209. vmcs_write32(sf->base, save->base & 0xfffff);
  1210. vmcs_write32(sf->limit, 0xffff);
  1211. vmcs_write32(sf->ar_bytes, 0xf3);
  1212. }
  1213. static void enter_rmode(struct kvm_vcpu *vcpu)
  1214. {
  1215. unsigned long flags;
  1216. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1217. vmx->emulation_required = 1;
  1218. vcpu->arch.rmode.vm86_active = 1;
  1219. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1220. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1221. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1222. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1223. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1224. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1225. flags = vmcs_readl(GUEST_RFLAGS);
  1226. vcpu->arch.rmode.save_iopl
  1227. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1228. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1229. vmcs_writel(GUEST_RFLAGS, flags);
  1230. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1231. update_exception_bitmap(vcpu);
  1232. if (emulate_invalid_guest_state)
  1233. goto continue_rmode;
  1234. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1235. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1236. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1237. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1238. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1239. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1240. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1241. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1242. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1243. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1244. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1245. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1246. continue_rmode:
  1247. kvm_mmu_reset_context(vcpu);
  1248. init_rmode(vcpu->kvm);
  1249. }
  1250. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1251. {
  1252. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1253. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1254. vcpu->arch.shadow_efer = efer;
  1255. if (!msr)
  1256. return;
  1257. if (efer & EFER_LMA) {
  1258. vmcs_write32(VM_ENTRY_CONTROLS,
  1259. vmcs_read32(VM_ENTRY_CONTROLS) |
  1260. VM_ENTRY_IA32E_MODE);
  1261. msr->data = efer;
  1262. } else {
  1263. vmcs_write32(VM_ENTRY_CONTROLS,
  1264. vmcs_read32(VM_ENTRY_CONTROLS) &
  1265. ~VM_ENTRY_IA32E_MODE);
  1266. msr->data = efer & ~EFER_LME;
  1267. }
  1268. setup_msrs(vmx);
  1269. }
  1270. #ifdef CONFIG_X86_64
  1271. static void enter_lmode(struct kvm_vcpu *vcpu)
  1272. {
  1273. u32 guest_tr_ar;
  1274. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1275. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1276. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1277. __func__);
  1278. vmcs_write32(GUEST_TR_AR_BYTES,
  1279. (guest_tr_ar & ~AR_TYPE_MASK)
  1280. | AR_TYPE_BUSY_64_TSS);
  1281. }
  1282. vcpu->arch.shadow_efer |= EFER_LMA;
  1283. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1284. }
  1285. static void exit_lmode(struct kvm_vcpu *vcpu)
  1286. {
  1287. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1288. vmcs_write32(VM_ENTRY_CONTROLS,
  1289. vmcs_read32(VM_ENTRY_CONTROLS)
  1290. & ~VM_ENTRY_IA32E_MODE);
  1291. }
  1292. #endif
  1293. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1294. {
  1295. vpid_sync_vcpu_all(to_vmx(vcpu));
  1296. if (enable_ept)
  1297. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1298. }
  1299. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1300. {
  1301. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1302. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1303. }
  1304. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1305. {
  1306. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1307. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1308. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1309. return;
  1310. }
  1311. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1312. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1313. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1314. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1315. }
  1316. }
  1317. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1318. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1319. unsigned long cr0,
  1320. struct kvm_vcpu *vcpu)
  1321. {
  1322. if (!(cr0 & X86_CR0_PG)) {
  1323. /* From paging/starting to nonpaging */
  1324. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1325. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1326. (CPU_BASED_CR3_LOAD_EXITING |
  1327. CPU_BASED_CR3_STORE_EXITING));
  1328. vcpu->arch.cr0 = cr0;
  1329. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1330. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1331. *hw_cr0 &= ~X86_CR0_WP;
  1332. } else if (!is_paging(vcpu)) {
  1333. /* From nonpaging to paging */
  1334. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1335. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1336. ~(CPU_BASED_CR3_LOAD_EXITING |
  1337. CPU_BASED_CR3_STORE_EXITING));
  1338. vcpu->arch.cr0 = cr0;
  1339. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1340. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1341. *hw_cr0 &= ~X86_CR0_WP;
  1342. }
  1343. }
  1344. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1345. struct kvm_vcpu *vcpu)
  1346. {
  1347. if (!is_paging(vcpu)) {
  1348. *hw_cr4 &= ~X86_CR4_PAE;
  1349. *hw_cr4 |= X86_CR4_PSE;
  1350. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1351. *hw_cr4 &= ~X86_CR4_PAE;
  1352. }
  1353. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1354. {
  1355. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1356. KVM_VM_CR0_ALWAYS_ON;
  1357. vmx_fpu_deactivate(vcpu);
  1358. if (vcpu->arch.rmode.vm86_active && (cr0 & X86_CR0_PE))
  1359. enter_pmode(vcpu);
  1360. if (!vcpu->arch.rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1361. enter_rmode(vcpu);
  1362. #ifdef CONFIG_X86_64
  1363. if (vcpu->arch.shadow_efer & EFER_LME) {
  1364. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1365. enter_lmode(vcpu);
  1366. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1367. exit_lmode(vcpu);
  1368. }
  1369. #endif
  1370. if (enable_ept)
  1371. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1372. vmcs_writel(CR0_READ_SHADOW, cr0);
  1373. vmcs_writel(GUEST_CR0, hw_cr0);
  1374. vcpu->arch.cr0 = cr0;
  1375. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1376. vmx_fpu_activate(vcpu);
  1377. }
  1378. static u64 construct_eptp(unsigned long root_hpa)
  1379. {
  1380. u64 eptp;
  1381. /* TODO write the value reading from MSR */
  1382. eptp = VMX_EPT_DEFAULT_MT |
  1383. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1384. eptp |= (root_hpa & PAGE_MASK);
  1385. return eptp;
  1386. }
  1387. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1388. {
  1389. unsigned long guest_cr3;
  1390. u64 eptp;
  1391. guest_cr3 = cr3;
  1392. if (enable_ept) {
  1393. eptp = construct_eptp(cr3);
  1394. vmcs_write64(EPT_POINTER, eptp);
  1395. ept_sync_context(eptp);
  1396. ept_load_pdptrs(vcpu);
  1397. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1398. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1399. }
  1400. vmx_flush_tlb(vcpu);
  1401. vmcs_writel(GUEST_CR3, guest_cr3);
  1402. if (vcpu->arch.cr0 & X86_CR0_PE)
  1403. vmx_fpu_deactivate(vcpu);
  1404. }
  1405. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1406. {
  1407. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.vm86_active ?
  1408. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1409. vcpu->arch.cr4 = cr4;
  1410. if (enable_ept)
  1411. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1412. vmcs_writel(CR4_READ_SHADOW, cr4);
  1413. vmcs_writel(GUEST_CR4, hw_cr4);
  1414. }
  1415. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1416. {
  1417. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1418. return vmcs_readl(sf->base);
  1419. }
  1420. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1421. struct kvm_segment *var, int seg)
  1422. {
  1423. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1424. u32 ar;
  1425. var->base = vmcs_readl(sf->base);
  1426. var->limit = vmcs_read32(sf->limit);
  1427. var->selector = vmcs_read16(sf->selector);
  1428. ar = vmcs_read32(sf->ar_bytes);
  1429. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1430. ar = 0;
  1431. var->type = ar & 15;
  1432. var->s = (ar >> 4) & 1;
  1433. var->dpl = (ar >> 5) & 3;
  1434. var->present = (ar >> 7) & 1;
  1435. var->avl = (ar >> 12) & 1;
  1436. var->l = (ar >> 13) & 1;
  1437. var->db = (ar >> 14) & 1;
  1438. var->g = (ar >> 15) & 1;
  1439. var->unusable = (ar >> 16) & 1;
  1440. }
  1441. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1442. {
  1443. struct kvm_segment kvm_seg;
  1444. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1445. return 0;
  1446. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1447. return 3;
  1448. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1449. return kvm_seg.selector & 3;
  1450. }
  1451. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1452. {
  1453. u32 ar;
  1454. if (var->unusable)
  1455. ar = 1 << 16;
  1456. else {
  1457. ar = var->type & 15;
  1458. ar |= (var->s & 1) << 4;
  1459. ar |= (var->dpl & 3) << 5;
  1460. ar |= (var->present & 1) << 7;
  1461. ar |= (var->avl & 1) << 12;
  1462. ar |= (var->l & 1) << 13;
  1463. ar |= (var->db & 1) << 14;
  1464. ar |= (var->g & 1) << 15;
  1465. }
  1466. if (ar == 0) /* a 0 value means unusable */
  1467. ar = AR_UNUSABLE_MASK;
  1468. return ar;
  1469. }
  1470. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1471. struct kvm_segment *var, int seg)
  1472. {
  1473. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1474. u32 ar;
  1475. if (vcpu->arch.rmode.vm86_active && seg == VCPU_SREG_TR) {
  1476. vcpu->arch.rmode.tr.selector = var->selector;
  1477. vcpu->arch.rmode.tr.base = var->base;
  1478. vcpu->arch.rmode.tr.limit = var->limit;
  1479. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1480. return;
  1481. }
  1482. vmcs_writel(sf->base, var->base);
  1483. vmcs_write32(sf->limit, var->limit);
  1484. vmcs_write16(sf->selector, var->selector);
  1485. if (vcpu->arch.rmode.vm86_active && var->s) {
  1486. /*
  1487. * Hack real-mode segments into vm86 compatibility.
  1488. */
  1489. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1490. vmcs_writel(sf->base, 0xf0000);
  1491. ar = 0xf3;
  1492. } else
  1493. ar = vmx_segment_access_rights(var);
  1494. vmcs_write32(sf->ar_bytes, ar);
  1495. }
  1496. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1497. {
  1498. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1499. *db = (ar >> 14) & 1;
  1500. *l = (ar >> 13) & 1;
  1501. }
  1502. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1503. {
  1504. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1505. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1506. }
  1507. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1508. {
  1509. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1510. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1511. }
  1512. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1513. {
  1514. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1515. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1516. }
  1517. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1518. {
  1519. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1520. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1521. }
  1522. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1523. {
  1524. struct kvm_segment var;
  1525. u32 ar;
  1526. vmx_get_segment(vcpu, &var, seg);
  1527. ar = vmx_segment_access_rights(&var);
  1528. if (var.base != (var.selector << 4))
  1529. return false;
  1530. if (var.limit != 0xffff)
  1531. return false;
  1532. if (ar != 0xf3)
  1533. return false;
  1534. return true;
  1535. }
  1536. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1537. {
  1538. struct kvm_segment cs;
  1539. unsigned int cs_rpl;
  1540. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1541. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1542. if (cs.unusable)
  1543. return false;
  1544. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1545. return false;
  1546. if (!cs.s)
  1547. return false;
  1548. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1549. if (cs.dpl > cs_rpl)
  1550. return false;
  1551. } else {
  1552. if (cs.dpl != cs_rpl)
  1553. return false;
  1554. }
  1555. if (!cs.present)
  1556. return false;
  1557. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1558. return true;
  1559. }
  1560. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1561. {
  1562. struct kvm_segment ss;
  1563. unsigned int ss_rpl;
  1564. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1565. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1566. if (ss.unusable)
  1567. return true;
  1568. if (ss.type != 3 && ss.type != 7)
  1569. return false;
  1570. if (!ss.s)
  1571. return false;
  1572. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1573. return false;
  1574. if (!ss.present)
  1575. return false;
  1576. return true;
  1577. }
  1578. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1579. {
  1580. struct kvm_segment var;
  1581. unsigned int rpl;
  1582. vmx_get_segment(vcpu, &var, seg);
  1583. rpl = var.selector & SELECTOR_RPL_MASK;
  1584. if (var.unusable)
  1585. return true;
  1586. if (!var.s)
  1587. return false;
  1588. if (!var.present)
  1589. return false;
  1590. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1591. if (var.dpl < rpl) /* DPL < RPL */
  1592. return false;
  1593. }
  1594. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1595. * rights flags
  1596. */
  1597. return true;
  1598. }
  1599. static bool tr_valid(struct kvm_vcpu *vcpu)
  1600. {
  1601. struct kvm_segment tr;
  1602. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1603. if (tr.unusable)
  1604. return false;
  1605. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1606. return false;
  1607. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1608. return false;
  1609. if (!tr.present)
  1610. return false;
  1611. return true;
  1612. }
  1613. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1614. {
  1615. struct kvm_segment ldtr;
  1616. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1617. if (ldtr.unusable)
  1618. return true;
  1619. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1620. return false;
  1621. if (ldtr.type != 2)
  1622. return false;
  1623. if (!ldtr.present)
  1624. return false;
  1625. return true;
  1626. }
  1627. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1628. {
  1629. struct kvm_segment cs, ss;
  1630. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1631. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1632. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1633. (ss.selector & SELECTOR_RPL_MASK));
  1634. }
  1635. /*
  1636. * Check if guest state is valid. Returns true if valid, false if
  1637. * not.
  1638. * We assume that registers are always usable
  1639. */
  1640. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1641. {
  1642. /* real mode guest state checks */
  1643. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1644. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1645. return false;
  1646. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1647. return false;
  1648. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1649. return false;
  1650. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1651. return false;
  1652. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1653. return false;
  1654. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1655. return false;
  1656. } else {
  1657. /* protected mode guest state checks */
  1658. if (!cs_ss_rpl_check(vcpu))
  1659. return false;
  1660. if (!code_segment_valid(vcpu))
  1661. return false;
  1662. if (!stack_segment_valid(vcpu))
  1663. return false;
  1664. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1665. return false;
  1666. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1667. return false;
  1668. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1669. return false;
  1670. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1671. return false;
  1672. if (!tr_valid(vcpu))
  1673. return false;
  1674. if (!ldtr_valid(vcpu))
  1675. return false;
  1676. }
  1677. /* TODO:
  1678. * - Add checks on RIP
  1679. * - Add checks on RFLAGS
  1680. */
  1681. return true;
  1682. }
  1683. static int init_rmode_tss(struct kvm *kvm)
  1684. {
  1685. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1686. u16 data = 0;
  1687. int ret = 0;
  1688. int r;
  1689. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1690. if (r < 0)
  1691. goto out;
  1692. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1693. r = kvm_write_guest_page(kvm, fn++, &data,
  1694. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1695. if (r < 0)
  1696. goto out;
  1697. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1698. if (r < 0)
  1699. goto out;
  1700. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1701. if (r < 0)
  1702. goto out;
  1703. data = ~0;
  1704. r = kvm_write_guest_page(kvm, fn, &data,
  1705. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1706. sizeof(u8));
  1707. if (r < 0)
  1708. goto out;
  1709. ret = 1;
  1710. out:
  1711. return ret;
  1712. }
  1713. static int init_rmode_identity_map(struct kvm *kvm)
  1714. {
  1715. int i, r, ret;
  1716. pfn_t identity_map_pfn;
  1717. u32 tmp;
  1718. if (!enable_ept)
  1719. return 1;
  1720. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1721. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1722. "haven't been allocated!\n");
  1723. return 0;
  1724. }
  1725. if (likely(kvm->arch.ept_identity_pagetable_done))
  1726. return 1;
  1727. ret = 0;
  1728. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1729. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1730. if (r < 0)
  1731. goto out;
  1732. /* Set up identity-mapping pagetable for EPT in real mode */
  1733. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1734. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1735. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1736. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1737. &tmp, i * sizeof(tmp), sizeof(tmp));
  1738. if (r < 0)
  1739. goto out;
  1740. }
  1741. kvm->arch.ept_identity_pagetable_done = true;
  1742. ret = 1;
  1743. out:
  1744. return ret;
  1745. }
  1746. static void seg_setup(int seg)
  1747. {
  1748. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1749. vmcs_write16(sf->selector, 0);
  1750. vmcs_writel(sf->base, 0);
  1751. vmcs_write32(sf->limit, 0xffff);
  1752. vmcs_write32(sf->ar_bytes, 0xf3);
  1753. }
  1754. static int alloc_apic_access_page(struct kvm *kvm)
  1755. {
  1756. struct kvm_userspace_memory_region kvm_userspace_mem;
  1757. int r = 0;
  1758. down_write(&kvm->slots_lock);
  1759. if (kvm->arch.apic_access_page)
  1760. goto out;
  1761. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1762. kvm_userspace_mem.flags = 0;
  1763. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1764. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1765. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1766. if (r)
  1767. goto out;
  1768. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1769. out:
  1770. up_write(&kvm->slots_lock);
  1771. return r;
  1772. }
  1773. static int alloc_identity_pagetable(struct kvm *kvm)
  1774. {
  1775. struct kvm_userspace_memory_region kvm_userspace_mem;
  1776. int r = 0;
  1777. down_write(&kvm->slots_lock);
  1778. if (kvm->arch.ept_identity_pagetable)
  1779. goto out;
  1780. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1781. kvm_userspace_mem.flags = 0;
  1782. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1783. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1784. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1785. if (r)
  1786. goto out;
  1787. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1788. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1789. out:
  1790. up_write(&kvm->slots_lock);
  1791. return r;
  1792. }
  1793. static void allocate_vpid(struct vcpu_vmx *vmx)
  1794. {
  1795. int vpid;
  1796. vmx->vpid = 0;
  1797. if (!enable_vpid)
  1798. return;
  1799. spin_lock(&vmx_vpid_lock);
  1800. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1801. if (vpid < VMX_NR_VPIDS) {
  1802. vmx->vpid = vpid;
  1803. __set_bit(vpid, vmx_vpid_bitmap);
  1804. }
  1805. spin_unlock(&vmx_vpid_lock);
  1806. }
  1807. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1808. {
  1809. int f = sizeof(unsigned long);
  1810. if (!cpu_has_vmx_msr_bitmap())
  1811. return;
  1812. /*
  1813. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1814. * have the write-low and read-high bitmap offsets the wrong way round.
  1815. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1816. */
  1817. if (msr <= 0x1fff) {
  1818. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1819. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1820. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1821. msr &= 0x1fff;
  1822. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1823. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1824. }
  1825. }
  1826. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1827. {
  1828. if (!longmode_only)
  1829. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1830. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1831. }
  1832. /*
  1833. * Sets up the vmcs for emulated real mode.
  1834. */
  1835. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1836. {
  1837. u32 host_sysenter_cs, msr_low, msr_high;
  1838. u32 junk;
  1839. u64 host_pat, tsc_this, tsc_base;
  1840. unsigned long a;
  1841. struct descriptor_table dt;
  1842. int i;
  1843. unsigned long kvm_vmx_return;
  1844. u32 exec_control;
  1845. /* I/O */
  1846. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1847. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1848. if (cpu_has_vmx_msr_bitmap())
  1849. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1850. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1851. /* Control */
  1852. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1853. vmcs_config.pin_based_exec_ctrl);
  1854. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1855. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1856. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1857. #ifdef CONFIG_X86_64
  1858. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1859. CPU_BASED_CR8_LOAD_EXITING;
  1860. #endif
  1861. }
  1862. if (!enable_ept)
  1863. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1864. CPU_BASED_CR3_LOAD_EXITING |
  1865. CPU_BASED_INVLPG_EXITING;
  1866. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1867. if (cpu_has_secondary_exec_ctrls()) {
  1868. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1869. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1870. exec_control &=
  1871. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1872. if (vmx->vpid == 0)
  1873. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1874. if (!enable_ept)
  1875. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1876. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1877. }
  1878. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1879. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1880. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1881. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1882. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1883. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1884. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1885. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1886. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1887. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1888. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1889. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1890. #ifdef CONFIG_X86_64
  1891. rdmsrl(MSR_FS_BASE, a);
  1892. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1893. rdmsrl(MSR_GS_BASE, a);
  1894. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1895. #else
  1896. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1897. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1898. #endif
  1899. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1900. kvm_get_idt(&dt);
  1901. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1902. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1903. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1904. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1905. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1906. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1907. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1908. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1909. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1910. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1911. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1912. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1913. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1914. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1915. host_pat = msr_low | ((u64) msr_high << 32);
  1916. vmcs_write64(HOST_IA32_PAT, host_pat);
  1917. }
  1918. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1919. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1920. host_pat = msr_low | ((u64) msr_high << 32);
  1921. /* Write the default value follow host pat */
  1922. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1923. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1924. vmx->vcpu.arch.pat = host_pat;
  1925. }
  1926. for (i = 0; i < NR_VMX_MSR; ++i) {
  1927. u32 index = vmx_msr_index[i];
  1928. u32 data_low, data_high;
  1929. u64 data;
  1930. int j = vmx->nmsrs;
  1931. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1932. continue;
  1933. if (wrmsr_safe(index, data_low, data_high) < 0)
  1934. continue;
  1935. data = data_low | ((u64)data_high << 32);
  1936. vmx->host_msrs[j].index = index;
  1937. vmx->host_msrs[j].reserved = 0;
  1938. vmx->host_msrs[j].data = data;
  1939. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1940. ++vmx->nmsrs;
  1941. }
  1942. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1943. /* 22.2.1, 20.8.1 */
  1944. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1945. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1946. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1947. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1948. rdtscll(tsc_this);
  1949. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1950. tsc_base = tsc_this;
  1951. guest_write_tsc(0, tsc_base);
  1952. return 0;
  1953. }
  1954. static int init_rmode(struct kvm *kvm)
  1955. {
  1956. if (!init_rmode_tss(kvm))
  1957. return 0;
  1958. if (!init_rmode_identity_map(kvm))
  1959. return 0;
  1960. return 1;
  1961. }
  1962. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1963. {
  1964. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1965. u64 msr;
  1966. int ret;
  1967. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1968. down_read(&vcpu->kvm->slots_lock);
  1969. if (!init_rmode(vmx->vcpu.kvm)) {
  1970. ret = -ENOMEM;
  1971. goto out;
  1972. }
  1973. vmx->vcpu.arch.rmode.vm86_active = 0;
  1974. vmx->soft_vnmi_blocked = 0;
  1975. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1976. kvm_set_cr8(&vmx->vcpu, 0);
  1977. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1978. if (vmx->vcpu.vcpu_id == 0)
  1979. msr |= MSR_IA32_APICBASE_BSP;
  1980. kvm_set_apic_base(&vmx->vcpu, msr);
  1981. fx_init(&vmx->vcpu);
  1982. seg_setup(VCPU_SREG_CS);
  1983. /*
  1984. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1985. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1986. */
  1987. if (vmx->vcpu.vcpu_id == 0) {
  1988. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1989. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1990. } else {
  1991. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1992. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1993. }
  1994. seg_setup(VCPU_SREG_DS);
  1995. seg_setup(VCPU_SREG_ES);
  1996. seg_setup(VCPU_SREG_FS);
  1997. seg_setup(VCPU_SREG_GS);
  1998. seg_setup(VCPU_SREG_SS);
  1999. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2000. vmcs_writel(GUEST_TR_BASE, 0);
  2001. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2002. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2003. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2004. vmcs_writel(GUEST_LDTR_BASE, 0);
  2005. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2006. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2007. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2008. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2009. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2010. vmcs_writel(GUEST_RFLAGS, 0x02);
  2011. if (vmx->vcpu.vcpu_id == 0)
  2012. kvm_rip_write(vcpu, 0xfff0);
  2013. else
  2014. kvm_rip_write(vcpu, 0);
  2015. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2016. vmcs_writel(GUEST_DR7, 0x400);
  2017. vmcs_writel(GUEST_GDTR_BASE, 0);
  2018. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2019. vmcs_writel(GUEST_IDTR_BASE, 0);
  2020. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2021. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2022. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2023. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2024. /* Special registers */
  2025. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2026. setup_msrs(vmx);
  2027. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2028. if (cpu_has_vmx_tpr_shadow()) {
  2029. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2030. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2031. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2032. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2033. vmcs_write32(TPR_THRESHOLD, 0);
  2034. }
  2035. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2036. vmcs_write64(APIC_ACCESS_ADDR,
  2037. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2038. if (vmx->vpid != 0)
  2039. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2040. vmx->vcpu.arch.cr0 = 0x60000010;
  2041. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2042. vmx_set_cr4(&vmx->vcpu, 0);
  2043. vmx_set_efer(&vmx->vcpu, 0);
  2044. vmx_fpu_activate(&vmx->vcpu);
  2045. update_exception_bitmap(&vmx->vcpu);
  2046. vpid_sync_vcpu_all(vmx);
  2047. ret = 0;
  2048. /* HACK: Don't enable emulation on guest boot/reset */
  2049. vmx->emulation_required = 0;
  2050. out:
  2051. up_read(&vcpu->kvm->slots_lock);
  2052. return ret;
  2053. }
  2054. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2055. {
  2056. u32 cpu_based_vm_exec_control;
  2057. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2058. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2059. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2060. }
  2061. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2062. {
  2063. u32 cpu_based_vm_exec_control;
  2064. if (!cpu_has_virtual_nmis()) {
  2065. enable_irq_window(vcpu);
  2066. return;
  2067. }
  2068. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2069. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2070. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2071. }
  2072. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2073. {
  2074. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2075. uint32_t intr;
  2076. int irq = vcpu->arch.interrupt.nr;
  2077. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2078. ++vcpu->stat.irq_injections;
  2079. if (vcpu->arch.rmode.vm86_active) {
  2080. vmx->rmode.irq.pending = true;
  2081. vmx->rmode.irq.vector = irq;
  2082. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2083. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2084. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2085. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2086. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2087. return;
  2088. }
  2089. intr = irq | INTR_INFO_VALID_MASK;
  2090. if (vcpu->arch.interrupt.soft) {
  2091. intr |= INTR_TYPE_SOFT_INTR;
  2092. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2093. vmx->vcpu.arch.event_exit_inst_len);
  2094. } else
  2095. intr |= INTR_TYPE_EXT_INTR;
  2096. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2097. }
  2098. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2099. {
  2100. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2101. if (!cpu_has_virtual_nmis()) {
  2102. /*
  2103. * Tracking the NMI-blocked state in software is built upon
  2104. * finding the next open IRQ window. This, in turn, depends on
  2105. * well-behaving guests: They have to keep IRQs disabled at
  2106. * least as long as the NMI handler runs. Otherwise we may
  2107. * cause NMI nesting, maybe breaking the guest. But as this is
  2108. * highly unlikely, we can live with the residual risk.
  2109. */
  2110. vmx->soft_vnmi_blocked = 1;
  2111. vmx->vnmi_blocked_time = 0;
  2112. }
  2113. ++vcpu->stat.nmi_injections;
  2114. if (vcpu->arch.rmode.vm86_active) {
  2115. vmx->rmode.irq.pending = true;
  2116. vmx->rmode.irq.vector = NMI_VECTOR;
  2117. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2118. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2119. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2120. INTR_INFO_VALID_MASK);
  2121. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2122. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2123. return;
  2124. }
  2125. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2126. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2127. }
  2128. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2129. {
  2130. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2131. return 0;
  2132. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2133. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2134. GUEST_INTR_STATE_NMI));
  2135. }
  2136. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2137. {
  2138. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2139. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2140. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2141. }
  2142. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2143. {
  2144. int ret;
  2145. struct kvm_userspace_memory_region tss_mem = {
  2146. .slot = TSS_PRIVATE_MEMSLOT,
  2147. .guest_phys_addr = addr,
  2148. .memory_size = PAGE_SIZE * 3,
  2149. .flags = 0,
  2150. };
  2151. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2152. if (ret)
  2153. return ret;
  2154. kvm->arch.tss_addr = addr;
  2155. return 0;
  2156. }
  2157. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2158. int vec, u32 err_code)
  2159. {
  2160. /*
  2161. * Instruction with address size override prefix opcode 0x67
  2162. * Cause the #SS fault with 0 error code in VM86 mode.
  2163. */
  2164. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2165. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2166. return 1;
  2167. /*
  2168. * Forward all other exceptions that are valid in real mode.
  2169. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2170. * the required debugging infrastructure rework.
  2171. */
  2172. switch (vec) {
  2173. case DB_VECTOR:
  2174. if (vcpu->guest_debug &
  2175. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2176. return 0;
  2177. kvm_queue_exception(vcpu, vec);
  2178. return 1;
  2179. case BP_VECTOR:
  2180. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2181. return 0;
  2182. /* fall through */
  2183. case DE_VECTOR:
  2184. case OF_VECTOR:
  2185. case BR_VECTOR:
  2186. case UD_VECTOR:
  2187. case DF_VECTOR:
  2188. case SS_VECTOR:
  2189. case GP_VECTOR:
  2190. case MF_VECTOR:
  2191. kvm_queue_exception(vcpu, vec);
  2192. return 1;
  2193. }
  2194. return 0;
  2195. }
  2196. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2197. {
  2198. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2199. u32 intr_info, ex_no, error_code;
  2200. unsigned long cr2, rip, dr6;
  2201. u32 vect_info;
  2202. enum emulation_result er;
  2203. vect_info = vmx->idt_vectoring_info;
  2204. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2205. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2206. !is_page_fault(intr_info))
  2207. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2208. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2209. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2210. return 1; /* already handled by vmx_vcpu_run() */
  2211. if (is_no_device(intr_info)) {
  2212. vmx_fpu_activate(vcpu);
  2213. return 1;
  2214. }
  2215. if (is_invalid_opcode(intr_info)) {
  2216. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2217. if (er != EMULATE_DONE)
  2218. kvm_queue_exception(vcpu, UD_VECTOR);
  2219. return 1;
  2220. }
  2221. error_code = 0;
  2222. rip = kvm_rip_read(vcpu);
  2223. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2224. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2225. if (is_page_fault(intr_info)) {
  2226. /* EPT won't cause page fault directly */
  2227. if (enable_ept)
  2228. BUG();
  2229. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2230. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2231. (u32)((u64)cr2 >> 32), handler);
  2232. if (kvm_event_needs_reinjection(vcpu))
  2233. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2234. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2235. }
  2236. if (vcpu->arch.rmode.vm86_active &&
  2237. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2238. error_code)) {
  2239. if (vcpu->arch.halt_request) {
  2240. vcpu->arch.halt_request = 0;
  2241. return kvm_emulate_halt(vcpu);
  2242. }
  2243. return 1;
  2244. }
  2245. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2246. switch (ex_no) {
  2247. case DB_VECTOR:
  2248. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2249. if (!(vcpu->guest_debug &
  2250. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2251. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2252. kvm_queue_exception(vcpu, DB_VECTOR);
  2253. return 1;
  2254. }
  2255. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2256. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2257. /* fall through */
  2258. case BP_VECTOR:
  2259. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2260. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2261. kvm_run->debug.arch.exception = ex_no;
  2262. break;
  2263. default:
  2264. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2265. kvm_run->ex.exception = ex_no;
  2266. kvm_run->ex.error_code = error_code;
  2267. break;
  2268. }
  2269. return 0;
  2270. }
  2271. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2272. struct kvm_run *kvm_run)
  2273. {
  2274. ++vcpu->stat.irq_exits;
  2275. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2276. return 1;
  2277. }
  2278. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2279. {
  2280. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2281. return 0;
  2282. }
  2283. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2284. {
  2285. unsigned long exit_qualification;
  2286. int size, in, string;
  2287. unsigned port;
  2288. ++vcpu->stat.io_exits;
  2289. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2290. string = (exit_qualification & 16) != 0;
  2291. if (string) {
  2292. if (emulate_instruction(vcpu,
  2293. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2294. return 0;
  2295. return 1;
  2296. }
  2297. size = (exit_qualification & 7) + 1;
  2298. in = (exit_qualification & 8) != 0;
  2299. port = exit_qualification >> 16;
  2300. skip_emulated_instruction(vcpu);
  2301. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2302. }
  2303. static void
  2304. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2305. {
  2306. /*
  2307. * Patch in the VMCALL instruction:
  2308. */
  2309. hypercall[0] = 0x0f;
  2310. hypercall[1] = 0x01;
  2311. hypercall[2] = 0xc1;
  2312. }
  2313. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2314. {
  2315. unsigned long exit_qualification;
  2316. int cr;
  2317. int reg;
  2318. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2319. cr = exit_qualification & 15;
  2320. reg = (exit_qualification >> 8) & 15;
  2321. switch ((exit_qualification >> 4) & 3) {
  2322. case 0: /* mov to cr */
  2323. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2324. (u32)kvm_register_read(vcpu, reg),
  2325. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2326. handler);
  2327. switch (cr) {
  2328. case 0:
  2329. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2330. skip_emulated_instruction(vcpu);
  2331. return 1;
  2332. case 3:
  2333. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2334. skip_emulated_instruction(vcpu);
  2335. return 1;
  2336. case 4:
  2337. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2338. skip_emulated_instruction(vcpu);
  2339. return 1;
  2340. case 8: {
  2341. u8 cr8_prev = kvm_get_cr8(vcpu);
  2342. u8 cr8 = kvm_register_read(vcpu, reg);
  2343. kvm_set_cr8(vcpu, cr8);
  2344. skip_emulated_instruction(vcpu);
  2345. if (irqchip_in_kernel(vcpu->kvm))
  2346. return 1;
  2347. if (cr8_prev <= cr8)
  2348. return 1;
  2349. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2350. return 0;
  2351. }
  2352. };
  2353. break;
  2354. case 2: /* clts */
  2355. vmx_fpu_deactivate(vcpu);
  2356. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2357. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2358. vmx_fpu_activate(vcpu);
  2359. KVMTRACE_0D(CLTS, vcpu, handler);
  2360. skip_emulated_instruction(vcpu);
  2361. return 1;
  2362. case 1: /*mov from cr*/
  2363. switch (cr) {
  2364. case 3:
  2365. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2366. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2367. (u32)kvm_register_read(vcpu, reg),
  2368. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2369. handler);
  2370. skip_emulated_instruction(vcpu);
  2371. return 1;
  2372. case 8:
  2373. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2374. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2375. (u32)kvm_register_read(vcpu, reg), handler);
  2376. skip_emulated_instruction(vcpu);
  2377. return 1;
  2378. }
  2379. break;
  2380. case 3: /* lmsw */
  2381. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2382. skip_emulated_instruction(vcpu);
  2383. return 1;
  2384. default:
  2385. break;
  2386. }
  2387. kvm_run->exit_reason = 0;
  2388. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2389. (int)(exit_qualification >> 4) & 3, cr);
  2390. return 0;
  2391. }
  2392. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2393. {
  2394. unsigned long exit_qualification;
  2395. unsigned long val;
  2396. int dr, reg;
  2397. dr = vmcs_readl(GUEST_DR7);
  2398. if (dr & DR7_GD) {
  2399. /*
  2400. * As the vm-exit takes precedence over the debug trap, we
  2401. * need to emulate the latter, either for the host or the
  2402. * guest debugging itself.
  2403. */
  2404. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2405. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2406. kvm_run->debug.arch.dr7 = dr;
  2407. kvm_run->debug.arch.pc =
  2408. vmcs_readl(GUEST_CS_BASE) +
  2409. vmcs_readl(GUEST_RIP);
  2410. kvm_run->debug.arch.exception = DB_VECTOR;
  2411. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2412. return 0;
  2413. } else {
  2414. vcpu->arch.dr7 &= ~DR7_GD;
  2415. vcpu->arch.dr6 |= DR6_BD;
  2416. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2417. kvm_queue_exception(vcpu, DB_VECTOR);
  2418. return 1;
  2419. }
  2420. }
  2421. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2422. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2423. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2424. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2425. switch (dr) {
  2426. case 0 ... 3:
  2427. val = vcpu->arch.db[dr];
  2428. break;
  2429. case 6:
  2430. val = vcpu->arch.dr6;
  2431. break;
  2432. case 7:
  2433. val = vcpu->arch.dr7;
  2434. break;
  2435. default:
  2436. val = 0;
  2437. }
  2438. kvm_register_write(vcpu, reg, val);
  2439. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2440. } else {
  2441. val = vcpu->arch.regs[reg];
  2442. switch (dr) {
  2443. case 0 ... 3:
  2444. vcpu->arch.db[dr] = val;
  2445. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2446. vcpu->arch.eff_db[dr] = val;
  2447. break;
  2448. case 4 ... 5:
  2449. if (vcpu->arch.cr4 & X86_CR4_DE)
  2450. kvm_queue_exception(vcpu, UD_VECTOR);
  2451. break;
  2452. case 6:
  2453. if (val & 0xffffffff00000000ULL) {
  2454. kvm_queue_exception(vcpu, GP_VECTOR);
  2455. break;
  2456. }
  2457. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2458. break;
  2459. case 7:
  2460. if (val & 0xffffffff00000000ULL) {
  2461. kvm_queue_exception(vcpu, GP_VECTOR);
  2462. break;
  2463. }
  2464. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2465. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2466. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2467. vcpu->arch.switch_db_regs =
  2468. (val & DR7_BP_EN_MASK);
  2469. }
  2470. break;
  2471. }
  2472. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2473. }
  2474. skip_emulated_instruction(vcpu);
  2475. return 1;
  2476. }
  2477. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2478. {
  2479. kvm_emulate_cpuid(vcpu);
  2480. return 1;
  2481. }
  2482. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2483. {
  2484. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2485. u64 data;
  2486. if (vmx_get_msr(vcpu, ecx, &data)) {
  2487. kvm_inject_gp(vcpu, 0);
  2488. return 1;
  2489. }
  2490. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2491. handler);
  2492. /* FIXME: handling of bits 32:63 of rax, rdx */
  2493. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2494. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2495. skip_emulated_instruction(vcpu);
  2496. return 1;
  2497. }
  2498. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2499. {
  2500. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2501. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2502. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2503. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2504. handler);
  2505. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2506. kvm_inject_gp(vcpu, 0);
  2507. return 1;
  2508. }
  2509. skip_emulated_instruction(vcpu);
  2510. return 1;
  2511. }
  2512. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2513. struct kvm_run *kvm_run)
  2514. {
  2515. return 1;
  2516. }
  2517. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2518. struct kvm_run *kvm_run)
  2519. {
  2520. u32 cpu_based_vm_exec_control;
  2521. /* clear pending irq */
  2522. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2523. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2524. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2525. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2526. ++vcpu->stat.irq_window_exits;
  2527. /*
  2528. * If the user space waits to inject interrupts, exit as soon as
  2529. * possible
  2530. */
  2531. if (!irqchip_in_kernel(vcpu->kvm) &&
  2532. kvm_run->request_interrupt_window &&
  2533. !kvm_cpu_has_interrupt(vcpu)) {
  2534. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2535. return 0;
  2536. }
  2537. return 1;
  2538. }
  2539. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2540. {
  2541. skip_emulated_instruction(vcpu);
  2542. return kvm_emulate_halt(vcpu);
  2543. }
  2544. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2545. {
  2546. skip_emulated_instruction(vcpu);
  2547. kvm_emulate_hypercall(vcpu);
  2548. return 1;
  2549. }
  2550. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2551. {
  2552. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2553. kvm_mmu_invlpg(vcpu, exit_qualification);
  2554. skip_emulated_instruction(vcpu);
  2555. return 1;
  2556. }
  2557. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2558. {
  2559. skip_emulated_instruction(vcpu);
  2560. /* TODO: Add support for VT-d/pass-through device */
  2561. return 1;
  2562. }
  2563. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2564. {
  2565. unsigned long exit_qualification;
  2566. enum emulation_result er;
  2567. unsigned long offset;
  2568. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2569. offset = exit_qualification & 0xffful;
  2570. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2571. if (er != EMULATE_DONE) {
  2572. printk(KERN_ERR
  2573. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2574. offset);
  2575. return -ENOTSUPP;
  2576. }
  2577. return 1;
  2578. }
  2579. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2580. {
  2581. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2582. unsigned long exit_qualification;
  2583. u16 tss_selector;
  2584. int reason, type, idt_v;
  2585. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2586. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2587. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2588. reason = (u32)exit_qualification >> 30;
  2589. if (reason == TASK_SWITCH_GATE && idt_v) {
  2590. switch (type) {
  2591. case INTR_TYPE_NMI_INTR:
  2592. vcpu->arch.nmi_injected = false;
  2593. if (cpu_has_virtual_nmis())
  2594. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2595. GUEST_INTR_STATE_NMI);
  2596. break;
  2597. case INTR_TYPE_EXT_INTR:
  2598. case INTR_TYPE_SOFT_INTR:
  2599. kvm_clear_interrupt_queue(vcpu);
  2600. break;
  2601. case INTR_TYPE_HARD_EXCEPTION:
  2602. case INTR_TYPE_SOFT_EXCEPTION:
  2603. kvm_clear_exception_queue(vcpu);
  2604. break;
  2605. default:
  2606. break;
  2607. }
  2608. }
  2609. tss_selector = exit_qualification;
  2610. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2611. type != INTR_TYPE_EXT_INTR &&
  2612. type != INTR_TYPE_NMI_INTR))
  2613. skip_emulated_instruction(vcpu);
  2614. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2615. return 0;
  2616. /* clear all local breakpoint enable flags */
  2617. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2618. /*
  2619. * TODO: What about debug traps on tss switch?
  2620. * Are we supposed to inject them and update dr6?
  2621. */
  2622. return 1;
  2623. }
  2624. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2625. {
  2626. unsigned long exit_qualification;
  2627. gpa_t gpa;
  2628. int gla_validity;
  2629. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2630. if (exit_qualification & (1 << 6)) {
  2631. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2632. return -ENOTSUPP;
  2633. }
  2634. gla_validity = (exit_qualification >> 7) & 0x3;
  2635. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2636. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2637. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2638. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2639. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2640. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2641. (long unsigned int)exit_qualification);
  2642. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2643. kvm_run->hw.hardware_exit_reason = 0;
  2644. return -ENOTSUPP;
  2645. }
  2646. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2647. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2648. }
  2649. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2650. {
  2651. u32 cpu_based_vm_exec_control;
  2652. /* clear pending NMI */
  2653. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2654. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2655. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2656. ++vcpu->stat.nmi_window_exits;
  2657. return 1;
  2658. }
  2659. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2660. struct kvm_run *kvm_run)
  2661. {
  2662. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2663. enum emulation_result err = EMULATE_DONE;
  2664. preempt_enable();
  2665. local_irq_enable();
  2666. while (!guest_state_valid(vcpu)) {
  2667. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2668. if (err == EMULATE_DO_MMIO)
  2669. break;
  2670. if (err != EMULATE_DONE) {
  2671. kvm_report_emulation_failure(vcpu, "emulation failure");
  2672. return;
  2673. }
  2674. if (signal_pending(current))
  2675. break;
  2676. if (need_resched())
  2677. schedule();
  2678. }
  2679. local_irq_disable();
  2680. preempt_disable();
  2681. vmx->invalid_state_emulation_result = err;
  2682. }
  2683. /*
  2684. * The exit handlers return 1 if the exit was handled fully and guest execution
  2685. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2686. * to be done to userspace and return 0.
  2687. */
  2688. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2689. struct kvm_run *kvm_run) = {
  2690. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2691. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2692. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2693. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2694. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2695. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2696. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2697. [EXIT_REASON_CPUID] = handle_cpuid,
  2698. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2699. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2700. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2701. [EXIT_REASON_HLT] = handle_halt,
  2702. [EXIT_REASON_INVLPG] = handle_invlpg,
  2703. [EXIT_REASON_VMCALL] = handle_vmcall,
  2704. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2705. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2706. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2707. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2708. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2709. };
  2710. static const int kvm_vmx_max_exit_handlers =
  2711. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2712. /*
  2713. * The guest has exited. See if we can fix it or if we need userspace
  2714. * assistance.
  2715. */
  2716. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2717. {
  2718. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2719. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2720. u32 vectoring_info = vmx->idt_vectoring_info;
  2721. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2722. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2723. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2724. * we just return 0 */
  2725. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2726. if (guest_state_valid(vcpu))
  2727. vmx->emulation_required = 0;
  2728. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2729. }
  2730. /* Access CR3 don't cause VMExit in paging mode, so we need
  2731. * to sync with guest real CR3. */
  2732. if (enable_ept && is_paging(vcpu)) {
  2733. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2734. ept_load_pdptrs(vcpu);
  2735. }
  2736. if (unlikely(vmx->fail)) {
  2737. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2738. kvm_run->fail_entry.hardware_entry_failure_reason
  2739. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2740. return 0;
  2741. }
  2742. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2743. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2744. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2745. exit_reason != EXIT_REASON_TASK_SWITCH))
  2746. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2747. "(0x%x) and exit reason is 0x%x\n",
  2748. __func__, vectoring_info, exit_reason);
  2749. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2750. if (vmx_interrupt_allowed(vcpu)) {
  2751. vmx->soft_vnmi_blocked = 0;
  2752. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2753. vcpu->arch.nmi_pending) {
  2754. /*
  2755. * This CPU don't support us in finding the end of an
  2756. * NMI-blocked window if the guest runs with IRQs
  2757. * disabled. So we pull the trigger after 1 s of
  2758. * futile waiting, but inform the user about this.
  2759. */
  2760. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2761. "state on VCPU %d after 1 s timeout\n",
  2762. __func__, vcpu->vcpu_id);
  2763. vmx->soft_vnmi_blocked = 0;
  2764. }
  2765. }
  2766. if (exit_reason < kvm_vmx_max_exit_handlers
  2767. && kvm_vmx_exit_handlers[exit_reason])
  2768. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2769. else {
  2770. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2771. kvm_run->hw.hardware_exit_reason = exit_reason;
  2772. }
  2773. return 0;
  2774. }
  2775. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2776. {
  2777. if (irr == -1 || tpr < irr) {
  2778. vmcs_write32(TPR_THRESHOLD, 0);
  2779. return;
  2780. }
  2781. vmcs_write32(TPR_THRESHOLD, irr);
  2782. }
  2783. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2784. {
  2785. u32 exit_intr_info;
  2786. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2787. bool unblock_nmi;
  2788. u8 vector;
  2789. int type;
  2790. bool idtv_info_valid;
  2791. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2792. /* We need to handle NMIs before interrupts are enabled */
  2793. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2794. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  2795. KVMTRACE_0D(NMI, &vmx->vcpu, handler);
  2796. asm("int $2");
  2797. }
  2798. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2799. if (cpu_has_virtual_nmis()) {
  2800. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2801. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2802. /*
  2803. * SDM 3: 27.7.1.2 (September 2008)
  2804. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2805. * a guest IRET fault.
  2806. * SDM 3: 23.2.2 (September 2008)
  2807. * Bit 12 is undefined in any of the following cases:
  2808. * If the VM exit sets the valid bit in the IDT-vectoring
  2809. * information field.
  2810. * If the VM exit is due to a double fault.
  2811. */
  2812. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2813. vector != DF_VECTOR && !idtv_info_valid)
  2814. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2815. GUEST_INTR_STATE_NMI);
  2816. } else if (unlikely(vmx->soft_vnmi_blocked))
  2817. vmx->vnmi_blocked_time +=
  2818. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2819. vmx->vcpu.arch.nmi_injected = false;
  2820. kvm_clear_exception_queue(&vmx->vcpu);
  2821. kvm_clear_interrupt_queue(&vmx->vcpu);
  2822. if (!idtv_info_valid)
  2823. return;
  2824. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2825. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2826. switch (type) {
  2827. case INTR_TYPE_NMI_INTR:
  2828. vmx->vcpu.arch.nmi_injected = true;
  2829. /*
  2830. * SDM 3: 27.7.1.2 (September 2008)
  2831. * Clear bit "block by NMI" before VM entry if a NMI
  2832. * delivery faulted.
  2833. */
  2834. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2835. GUEST_INTR_STATE_NMI);
  2836. break;
  2837. case INTR_TYPE_SOFT_EXCEPTION:
  2838. vmx->vcpu.arch.event_exit_inst_len =
  2839. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2840. /* fall through */
  2841. case INTR_TYPE_HARD_EXCEPTION:
  2842. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2843. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2844. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  2845. } else
  2846. kvm_queue_exception(&vmx->vcpu, vector);
  2847. break;
  2848. case INTR_TYPE_SOFT_INTR:
  2849. vmx->vcpu.arch.event_exit_inst_len =
  2850. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2851. /* fall through */
  2852. case INTR_TYPE_EXT_INTR:
  2853. kvm_queue_interrupt(&vmx->vcpu, vector,
  2854. type == INTR_TYPE_SOFT_INTR);
  2855. break;
  2856. default:
  2857. break;
  2858. }
  2859. }
  2860. /*
  2861. * Failure to inject an interrupt should give us the information
  2862. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2863. * when fetching the interrupt redirection bitmap in the real-mode
  2864. * tss, this doesn't happen. So we do it ourselves.
  2865. */
  2866. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2867. {
  2868. vmx->rmode.irq.pending = 0;
  2869. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2870. return;
  2871. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2872. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2873. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2874. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2875. return;
  2876. }
  2877. vmx->idt_vectoring_info =
  2878. VECTORING_INFO_VALID_MASK
  2879. | INTR_TYPE_EXT_INTR
  2880. | vmx->rmode.irq.vector;
  2881. }
  2882. #ifdef CONFIG_X86_64
  2883. #define R "r"
  2884. #define Q "q"
  2885. #else
  2886. #define R "e"
  2887. #define Q "l"
  2888. #endif
  2889. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2890. {
  2891. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2892. /* Record the guest's net vcpu time for enforced NMI injections. */
  2893. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2894. vmx->entry_time = ktime_get();
  2895. /* Handle invalid guest state instead of entering VMX */
  2896. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2897. handle_invalid_guest_state(vcpu, kvm_run);
  2898. return;
  2899. }
  2900. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2901. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2902. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2903. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2904. /*
  2905. * Loading guest fpu may have cleared host cr0.ts
  2906. */
  2907. vmcs_writel(HOST_CR0, read_cr0());
  2908. set_debugreg(vcpu->arch.dr6, 6);
  2909. asm(
  2910. /* Store host registers */
  2911. "push %%"R"dx; push %%"R"bp;"
  2912. "push %%"R"cx \n\t"
  2913. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2914. "je 1f \n\t"
  2915. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2916. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2917. "1: \n\t"
  2918. /* Check if vmlaunch of vmresume is needed */
  2919. "cmpl $0, %c[launched](%0) \n\t"
  2920. /* Load guest registers. Don't clobber flags. */
  2921. "mov %c[cr2](%0), %%"R"ax \n\t"
  2922. "mov %%"R"ax, %%cr2 \n\t"
  2923. "mov %c[rax](%0), %%"R"ax \n\t"
  2924. "mov %c[rbx](%0), %%"R"bx \n\t"
  2925. "mov %c[rdx](%0), %%"R"dx \n\t"
  2926. "mov %c[rsi](%0), %%"R"si \n\t"
  2927. "mov %c[rdi](%0), %%"R"di \n\t"
  2928. "mov %c[rbp](%0), %%"R"bp \n\t"
  2929. #ifdef CONFIG_X86_64
  2930. "mov %c[r8](%0), %%r8 \n\t"
  2931. "mov %c[r9](%0), %%r9 \n\t"
  2932. "mov %c[r10](%0), %%r10 \n\t"
  2933. "mov %c[r11](%0), %%r11 \n\t"
  2934. "mov %c[r12](%0), %%r12 \n\t"
  2935. "mov %c[r13](%0), %%r13 \n\t"
  2936. "mov %c[r14](%0), %%r14 \n\t"
  2937. "mov %c[r15](%0), %%r15 \n\t"
  2938. #endif
  2939. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2940. /* Enter guest mode */
  2941. "jne .Llaunched \n\t"
  2942. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2943. "jmp .Lkvm_vmx_return \n\t"
  2944. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2945. ".Lkvm_vmx_return: "
  2946. /* Save guest registers, load host registers, keep flags */
  2947. "xchg %0, (%%"R"sp) \n\t"
  2948. "mov %%"R"ax, %c[rax](%0) \n\t"
  2949. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2950. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2951. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2952. "mov %%"R"si, %c[rsi](%0) \n\t"
  2953. "mov %%"R"di, %c[rdi](%0) \n\t"
  2954. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2955. #ifdef CONFIG_X86_64
  2956. "mov %%r8, %c[r8](%0) \n\t"
  2957. "mov %%r9, %c[r9](%0) \n\t"
  2958. "mov %%r10, %c[r10](%0) \n\t"
  2959. "mov %%r11, %c[r11](%0) \n\t"
  2960. "mov %%r12, %c[r12](%0) \n\t"
  2961. "mov %%r13, %c[r13](%0) \n\t"
  2962. "mov %%r14, %c[r14](%0) \n\t"
  2963. "mov %%r15, %c[r15](%0) \n\t"
  2964. #endif
  2965. "mov %%cr2, %%"R"ax \n\t"
  2966. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2967. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2968. "setbe %c[fail](%0) \n\t"
  2969. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2970. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2971. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2972. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2973. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2974. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2975. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2976. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2977. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2978. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2979. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2980. #ifdef CONFIG_X86_64
  2981. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2982. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2983. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2984. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2985. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2986. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2987. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2988. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2989. #endif
  2990. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2991. : "cc", "memory"
  2992. , R"bx", R"di", R"si"
  2993. #ifdef CONFIG_X86_64
  2994. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2995. #endif
  2996. );
  2997. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2998. vcpu->arch.regs_dirty = 0;
  2999. get_debugreg(vcpu->arch.dr6, 6);
  3000. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3001. if (vmx->rmode.irq.pending)
  3002. fixup_rmode_irq(vmx);
  3003. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3004. vmx->launched = 1;
  3005. vmx_complete_interrupts(vmx);
  3006. }
  3007. #undef R
  3008. #undef Q
  3009. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3010. {
  3011. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3012. if (vmx->vmcs) {
  3013. vcpu_clear(vmx);
  3014. free_vmcs(vmx->vmcs);
  3015. vmx->vmcs = NULL;
  3016. }
  3017. }
  3018. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3019. {
  3020. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3021. spin_lock(&vmx_vpid_lock);
  3022. if (vmx->vpid != 0)
  3023. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3024. spin_unlock(&vmx_vpid_lock);
  3025. vmx_free_vmcs(vcpu);
  3026. kfree(vmx->host_msrs);
  3027. kfree(vmx->guest_msrs);
  3028. kvm_vcpu_uninit(vcpu);
  3029. kmem_cache_free(kvm_vcpu_cache, vmx);
  3030. }
  3031. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3032. {
  3033. int err;
  3034. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3035. int cpu;
  3036. if (!vmx)
  3037. return ERR_PTR(-ENOMEM);
  3038. allocate_vpid(vmx);
  3039. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3040. if (err)
  3041. goto free_vcpu;
  3042. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3043. if (!vmx->guest_msrs) {
  3044. err = -ENOMEM;
  3045. goto uninit_vcpu;
  3046. }
  3047. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3048. if (!vmx->host_msrs)
  3049. goto free_guest_msrs;
  3050. vmx->vmcs = alloc_vmcs();
  3051. if (!vmx->vmcs)
  3052. goto free_msrs;
  3053. vmcs_clear(vmx->vmcs);
  3054. cpu = get_cpu();
  3055. vmx_vcpu_load(&vmx->vcpu, cpu);
  3056. err = vmx_vcpu_setup(vmx);
  3057. vmx_vcpu_put(&vmx->vcpu);
  3058. put_cpu();
  3059. if (err)
  3060. goto free_vmcs;
  3061. if (vm_need_virtualize_apic_accesses(kvm))
  3062. if (alloc_apic_access_page(kvm) != 0)
  3063. goto free_vmcs;
  3064. if (enable_ept)
  3065. if (alloc_identity_pagetable(kvm) != 0)
  3066. goto free_vmcs;
  3067. return &vmx->vcpu;
  3068. free_vmcs:
  3069. free_vmcs(vmx->vmcs);
  3070. free_msrs:
  3071. kfree(vmx->host_msrs);
  3072. free_guest_msrs:
  3073. kfree(vmx->guest_msrs);
  3074. uninit_vcpu:
  3075. kvm_vcpu_uninit(&vmx->vcpu);
  3076. free_vcpu:
  3077. kmem_cache_free(kvm_vcpu_cache, vmx);
  3078. return ERR_PTR(err);
  3079. }
  3080. static void __init vmx_check_processor_compat(void *rtn)
  3081. {
  3082. struct vmcs_config vmcs_conf;
  3083. *(int *)rtn = 0;
  3084. if (setup_vmcs_config(&vmcs_conf) < 0)
  3085. *(int *)rtn = -EIO;
  3086. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3087. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3088. smp_processor_id());
  3089. *(int *)rtn = -EIO;
  3090. }
  3091. }
  3092. static int get_ept_level(void)
  3093. {
  3094. return VMX_EPT_DEFAULT_GAW + 1;
  3095. }
  3096. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3097. {
  3098. u64 ret;
  3099. /* For VT-d and EPT combination
  3100. * 1. MMIO: always map as UC
  3101. * 2. EPT with VT-d:
  3102. * a. VT-d without snooping control feature: can't guarantee the
  3103. * result, try to trust guest.
  3104. * b. VT-d with snooping control feature: snooping control feature of
  3105. * VT-d engine can guarantee the cache correctness. Just set it
  3106. * to WB to keep consistent with host. So the same as item 3.
  3107. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3108. * consistent with host MTRR
  3109. */
  3110. if (is_mmio)
  3111. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3112. else if (vcpu->kvm->arch.iommu_domain &&
  3113. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3114. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3115. VMX_EPT_MT_EPTE_SHIFT;
  3116. else
  3117. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3118. | VMX_EPT_IGMT_BIT;
  3119. return ret;
  3120. }
  3121. static struct kvm_x86_ops vmx_x86_ops = {
  3122. .cpu_has_kvm_support = cpu_has_kvm_support,
  3123. .disabled_by_bios = vmx_disabled_by_bios,
  3124. .hardware_setup = hardware_setup,
  3125. .hardware_unsetup = hardware_unsetup,
  3126. .check_processor_compatibility = vmx_check_processor_compat,
  3127. .hardware_enable = hardware_enable,
  3128. .hardware_disable = hardware_disable,
  3129. .cpu_has_accelerated_tpr = report_flexpriority,
  3130. .vcpu_create = vmx_create_vcpu,
  3131. .vcpu_free = vmx_free_vcpu,
  3132. .vcpu_reset = vmx_vcpu_reset,
  3133. .prepare_guest_switch = vmx_save_host_state,
  3134. .vcpu_load = vmx_vcpu_load,
  3135. .vcpu_put = vmx_vcpu_put,
  3136. .set_guest_debug = set_guest_debug,
  3137. .get_msr = vmx_get_msr,
  3138. .set_msr = vmx_set_msr,
  3139. .get_segment_base = vmx_get_segment_base,
  3140. .get_segment = vmx_get_segment,
  3141. .set_segment = vmx_set_segment,
  3142. .get_cpl = vmx_get_cpl,
  3143. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3144. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3145. .set_cr0 = vmx_set_cr0,
  3146. .set_cr3 = vmx_set_cr3,
  3147. .set_cr4 = vmx_set_cr4,
  3148. .set_efer = vmx_set_efer,
  3149. .get_idt = vmx_get_idt,
  3150. .set_idt = vmx_set_idt,
  3151. .get_gdt = vmx_get_gdt,
  3152. .set_gdt = vmx_set_gdt,
  3153. .cache_reg = vmx_cache_reg,
  3154. .get_rflags = vmx_get_rflags,
  3155. .set_rflags = vmx_set_rflags,
  3156. .tlb_flush = vmx_flush_tlb,
  3157. .run = vmx_vcpu_run,
  3158. .handle_exit = vmx_handle_exit,
  3159. .skip_emulated_instruction = skip_emulated_instruction,
  3160. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3161. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3162. .patch_hypercall = vmx_patch_hypercall,
  3163. .set_irq = vmx_inject_irq,
  3164. .set_nmi = vmx_inject_nmi,
  3165. .queue_exception = vmx_queue_exception,
  3166. .interrupt_allowed = vmx_interrupt_allowed,
  3167. .nmi_allowed = vmx_nmi_allowed,
  3168. .enable_nmi_window = enable_nmi_window,
  3169. .enable_irq_window = enable_irq_window,
  3170. .update_cr8_intercept = update_cr8_intercept,
  3171. .set_tss_addr = vmx_set_tss_addr,
  3172. .get_tdp_level = get_ept_level,
  3173. .get_mt_mask = vmx_get_mt_mask,
  3174. };
  3175. static int __init vmx_init(void)
  3176. {
  3177. int r;
  3178. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3179. if (!vmx_io_bitmap_a)
  3180. return -ENOMEM;
  3181. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3182. if (!vmx_io_bitmap_b) {
  3183. r = -ENOMEM;
  3184. goto out;
  3185. }
  3186. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3187. if (!vmx_msr_bitmap_legacy) {
  3188. r = -ENOMEM;
  3189. goto out1;
  3190. }
  3191. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3192. if (!vmx_msr_bitmap_longmode) {
  3193. r = -ENOMEM;
  3194. goto out2;
  3195. }
  3196. /*
  3197. * Allow direct access to the PC debug port (it is often used for I/O
  3198. * delays, but the vmexits simply slow things down).
  3199. */
  3200. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3201. clear_bit(0x80, vmx_io_bitmap_a);
  3202. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3203. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3204. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3205. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3206. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3207. if (r)
  3208. goto out3;
  3209. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3210. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3211. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3212. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3213. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3214. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3215. if (enable_ept) {
  3216. bypass_guest_pf = 0;
  3217. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3218. VMX_EPT_WRITABLE_MASK);
  3219. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3220. VMX_EPT_EXECUTABLE_MASK);
  3221. kvm_enable_tdp();
  3222. } else
  3223. kvm_disable_tdp();
  3224. if (bypass_guest_pf)
  3225. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3226. ept_sync_global();
  3227. return 0;
  3228. out3:
  3229. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3230. out2:
  3231. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3232. out1:
  3233. free_page((unsigned long)vmx_io_bitmap_b);
  3234. out:
  3235. free_page((unsigned long)vmx_io_bitmap_a);
  3236. return r;
  3237. }
  3238. static void __exit vmx_exit(void)
  3239. {
  3240. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3241. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3242. free_page((unsigned long)vmx_io_bitmap_b);
  3243. free_page((unsigned long)vmx_io_bitmap_a);
  3244. kvm_exit();
  3245. }
  3246. module_init(vmx_init)
  3247. module_exit(vmx_exit)