sched.c 166 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. u64 idle_clock;
  237. unsigned int clock_deep_idle_events;
  238. u64 tick_timestamp;
  239. atomic_t nr_iowait;
  240. #ifdef CONFIG_SMP
  241. struct sched_domain *sd;
  242. /* For active balancing */
  243. int active_balance;
  244. int push_cpu;
  245. int cpu; /* cpu of this runqueue */
  246. struct task_struct *migration_thread;
  247. struct list_head migration_queue;
  248. #endif
  249. #ifdef CONFIG_SCHEDSTATS
  250. /* latency stats */
  251. struct sched_info rq_sched_info;
  252. /* sys_sched_yield() stats */
  253. unsigned long yld_exp_empty;
  254. unsigned long yld_act_empty;
  255. unsigned long yld_both_empty;
  256. unsigned long yld_cnt;
  257. /* schedule() stats */
  258. unsigned long sched_switch;
  259. unsigned long sched_cnt;
  260. unsigned long sched_goidle;
  261. /* try_to_wake_up() stats */
  262. unsigned long ttwu_cnt;
  263. unsigned long ttwu_local;
  264. #endif
  265. struct lock_class_key rq_lock_key;
  266. };
  267. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  268. static DEFINE_MUTEX(sched_hotcpu_mutex);
  269. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  270. {
  271. rq->curr->sched_class->check_preempt_curr(rq, p);
  272. }
  273. static inline int cpu_of(struct rq *rq)
  274. {
  275. #ifdef CONFIG_SMP
  276. return rq->cpu;
  277. #else
  278. return 0;
  279. #endif
  280. }
  281. /*
  282. * Update the per-runqueue clock, as finegrained as the platform can give
  283. * us, but without assuming monotonicity, etc.:
  284. */
  285. static void __update_rq_clock(struct rq *rq)
  286. {
  287. u64 prev_raw = rq->prev_clock_raw;
  288. u64 now = sched_clock();
  289. s64 delta = now - prev_raw;
  290. u64 clock = rq->clock;
  291. #ifdef CONFIG_SCHED_DEBUG
  292. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  293. #endif
  294. /*
  295. * Protect against sched_clock() occasionally going backwards:
  296. */
  297. if (unlikely(delta < 0)) {
  298. clock++;
  299. rq->clock_warps++;
  300. } else {
  301. /*
  302. * Catch too large forward jumps too:
  303. */
  304. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  305. if (clock < rq->tick_timestamp + TICK_NSEC)
  306. clock = rq->tick_timestamp + TICK_NSEC;
  307. else
  308. clock++;
  309. rq->clock_overflows++;
  310. } else {
  311. if (unlikely(delta > rq->clock_max_delta))
  312. rq->clock_max_delta = delta;
  313. clock += delta;
  314. }
  315. }
  316. rq->prev_clock_raw = now;
  317. rq->clock = clock;
  318. }
  319. static void update_rq_clock(struct rq *rq)
  320. {
  321. if (likely(smp_processor_id() == cpu_of(rq)))
  322. __update_rq_clock(rq);
  323. }
  324. /*
  325. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  326. * See detach_destroy_domains: synchronize_sched for details.
  327. *
  328. * The domain tree of any CPU may only be accessed from within
  329. * preempt-disabled sections.
  330. */
  331. #define for_each_domain(cpu, __sd) \
  332. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  333. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  334. #define this_rq() (&__get_cpu_var(runqueues))
  335. #define task_rq(p) cpu_rq(task_cpu(p))
  336. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  337. /*
  338. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  339. * clock constructed from sched_clock():
  340. */
  341. unsigned long long cpu_clock(int cpu)
  342. {
  343. unsigned long long now;
  344. unsigned long flags;
  345. struct rq *rq;
  346. local_irq_save(flags);
  347. rq = cpu_rq(cpu);
  348. update_rq_clock(rq);
  349. now = rq->clock;
  350. local_irq_restore(flags);
  351. return now;
  352. }
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. /* Change a task's ->cfs_rq if it moves across CPUs */
  355. static inline void set_task_cfs_rq(struct task_struct *p)
  356. {
  357. p->se.cfs_rq = &task_rq(p)->cfs;
  358. }
  359. #else
  360. static inline void set_task_cfs_rq(struct task_struct *p)
  361. {
  362. }
  363. #endif
  364. #ifndef prepare_arch_switch
  365. # define prepare_arch_switch(next) do { } while (0)
  366. #endif
  367. #ifndef finish_arch_switch
  368. # define finish_arch_switch(prev) do { } while (0)
  369. #endif
  370. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  371. static inline int task_running(struct rq *rq, struct task_struct *p)
  372. {
  373. return rq->curr == p;
  374. }
  375. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  376. {
  377. }
  378. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  379. {
  380. #ifdef CONFIG_DEBUG_SPINLOCK
  381. /* this is a valid case when another task releases the spinlock */
  382. rq->lock.owner = current;
  383. #endif
  384. /*
  385. * If we are tracking spinlock dependencies then we have to
  386. * fix up the runqueue lock - which gets 'carried over' from
  387. * prev into current:
  388. */
  389. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  390. spin_unlock_irq(&rq->lock);
  391. }
  392. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  393. static inline int task_running(struct rq *rq, struct task_struct *p)
  394. {
  395. #ifdef CONFIG_SMP
  396. return p->oncpu;
  397. #else
  398. return rq->curr == p;
  399. #endif
  400. }
  401. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  402. {
  403. #ifdef CONFIG_SMP
  404. /*
  405. * We can optimise this out completely for !SMP, because the
  406. * SMP rebalancing from interrupt is the only thing that cares
  407. * here.
  408. */
  409. next->oncpu = 1;
  410. #endif
  411. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  412. spin_unlock_irq(&rq->lock);
  413. #else
  414. spin_unlock(&rq->lock);
  415. #endif
  416. }
  417. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  418. {
  419. #ifdef CONFIG_SMP
  420. /*
  421. * After ->oncpu is cleared, the task can be moved to a different CPU.
  422. * We must ensure this doesn't happen until the switch is completely
  423. * finished.
  424. */
  425. smp_wmb();
  426. prev->oncpu = 0;
  427. #endif
  428. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  429. local_irq_enable();
  430. #endif
  431. }
  432. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  433. /*
  434. * __task_rq_lock - lock the runqueue a given task resides on.
  435. * Must be called interrupts disabled.
  436. */
  437. static inline struct rq *__task_rq_lock(struct task_struct *p)
  438. __acquires(rq->lock)
  439. {
  440. struct rq *rq;
  441. repeat_lock_task:
  442. rq = task_rq(p);
  443. spin_lock(&rq->lock);
  444. if (unlikely(rq != task_rq(p))) {
  445. spin_unlock(&rq->lock);
  446. goto repeat_lock_task;
  447. }
  448. return rq;
  449. }
  450. /*
  451. * task_rq_lock - lock the runqueue a given task resides on and disable
  452. * interrupts. Note the ordering: we can safely lookup the task_rq without
  453. * explicitly disabling preemption.
  454. */
  455. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  456. __acquires(rq->lock)
  457. {
  458. struct rq *rq;
  459. repeat_lock_task:
  460. local_irq_save(*flags);
  461. rq = task_rq(p);
  462. spin_lock(&rq->lock);
  463. if (unlikely(rq != task_rq(p))) {
  464. spin_unlock_irqrestore(&rq->lock, *flags);
  465. goto repeat_lock_task;
  466. }
  467. return rq;
  468. }
  469. static inline void __task_rq_unlock(struct rq *rq)
  470. __releases(rq->lock)
  471. {
  472. spin_unlock(&rq->lock);
  473. }
  474. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  475. __releases(rq->lock)
  476. {
  477. spin_unlock_irqrestore(&rq->lock, *flags);
  478. }
  479. /*
  480. * this_rq_lock - lock this runqueue and disable interrupts.
  481. */
  482. static inline struct rq *this_rq_lock(void)
  483. __acquires(rq->lock)
  484. {
  485. struct rq *rq;
  486. local_irq_disable();
  487. rq = this_rq();
  488. spin_lock(&rq->lock);
  489. return rq;
  490. }
  491. /*
  492. * We are going deep-idle (irqs are disabled):
  493. */
  494. void sched_clock_idle_sleep_event(void)
  495. {
  496. struct rq *rq = cpu_rq(smp_processor_id());
  497. spin_lock(&rq->lock);
  498. __update_rq_clock(rq);
  499. spin_unlock(&rq->lock);
  500. rq->clock_deep_idle_events++;
  501. }
  502. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  503. /*
  504. * We just idled delta nanoseconds (called with irqs disabled):
  505. */
  506. void sched_clock_idle_wakeup_event(u64 delta_ns)
  507. {
  508. struct rq *rq = cpu_rq(smp_processor_id());
  509. u64 now = sched_clock();
  510. rq->idle_clock += delta_ns;
  511. /*
  512. * Override the previous timestamp and ignore all
  513. * sched_clock() deltas that occured while we idled,
  514. * and use the PM-provided delta_ns to advance the
  515. * rq clock:
  516. */
  517. spin_lock(&rq->lock);
  518. rq->prev_clock_raw = now;
  519. rq->clock += delta_ns;
  520. spin_unlock(&rq->lock);
  521. }
  522. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  523. /*
  524. * resched_task - mark a task 'to be rescheduled now'.
  525. *
  526. * On UP this means the setting of the need_resched flag, on SMP it
  527. * might also involve a cross-CPU call to trigger the scheduler on
  528. * the target CPU.
  529. */
  530. #ifdef CONFIG_SMP
  531. #ifndef tsk_is_polling
  532. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  533. #endif
  534. static void resched_task(struct task_struct *p)
  535. {
  536. int cpu;
  537. assert_spin_locked(&task_rq(p)->lock);
  538. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  539. return;
  540. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  541. cpu = task_cpu(p);
  542. if (cpu == smp_processor_id())
  543. return;
  544. /* NEED_RESCHED must be visible before we test polling */
  545. smp_mb();
  546. if (!tsk_is_polling(p))
  547. smp_send_reschedule(cpu);
  548. }
  549. static void resched_cpu(int cpu)
  550. {
  551. struct rq *rq = cpu_rq(cpu);
  552. unsigned long flags;
  553. if (!spin_trylock_irqsave(&rq->lock, flags))
  554. return;
  555. resched_task(cpu_curr(cpu));
  556. spin_unlock_irqrestore(&rq->lock, flags);
  557. }
  558. #else
  559. static inline void resched_task(struct task_struct *p)
  560. {
  561. assert_spin_locked(&task_rq(p)->lock);
  562. set_tsk_need_resched(p);
  563. }
  564. #endif
  565. static u64 div64_likely32(u64 divident, unsigned long divisor)
  566. {
  567. #if BITS_PER_LONG == 32
  568. if (likely(divident <= 0xffffffffULL))
  569. return (u32)divident / divisor;
  570. do_div(divident, divisor);
  571. return divident;
  572. #else
  573. return divident / divisor;
  574. #endif
  575. }
  576. #if BITS_PER_LONG == 32
  577. # define WMULT_CONST (~0UL)
  578. #else
  579. # define WMULT_CONST (1UL << 32)
  580. #endif
  581. #define WMULT_SHIFT 32
  582. /*
  583. * Shift right and round:
  584. */
  585. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  586. static unsigned long
  587. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  588. struct load_weight *lw)
  589. {
  590. u64 tmp;
  591. if (unlikely(!lw->inv_weight))
  592. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  593. tmp = (u64)delta_exec * weight;
  594. /*
  595. * Check whether we'd overflow the 64-bit multiplication:
  596. */
  597. if (unlikely(tmp > WMULT_CONST))
  598. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  599. WMULT_SHIFT/2);
  600. else
  601. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  602. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  603. }
  604. static inline unsigned long
  605. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  606. {
  607. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  608. }
  609. static void update_load_add(struct load_weight *lw, unsigned long inc)
  610. {
  611. lw->weight += inc;
  612. lw->inv_weight = 0;
  613. }
  614. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  615. {
  616. lw->weight -= dec;
  617. lw->inv_weight = 0;
  618. }
  619. /*
  620. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  621. * of tasks with abnormal "nice" values across CPUs the contribution that
  622. * each task makes to its run queue's load is weighted according to its
  623. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  624. * scaled version of the new time slice allocation that they receive on time
  625. * slice expiry etc.
  626. */
  627. #define WEIGHT_IDLEPRIO 2
  628. #define WMULT_IDLEPRIO (1 << 31)
  629. /*
  630. * Nice levels are multiplicative, with a gentle 10% change for every
  631. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  632. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  633. * that remained on nice 0.
  634. *
  635. * The "10% effect" is relative and cumulative: from _any_ nice level,
  636. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  637. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  638. * If a task goes up by ~10% and another task goes down by ~10% then
  639. * the relative distance between them is ~25%.)
  640. */
  641. static const int prio_to_weight[40] = {
  642. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  643. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  644. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  645. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  646. /* 0 */ 1024, 820, 655, 526, 423,
  647. /* 5 */ 335, 272, 215, 172, 137,
  648. /* 10 */ 110, 87, 70, 56, 45,
  649. /* 15 */ 36, 29, 23, 18, 15,
  650. };
  651. /*
  652. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  653. *
  654. * In cases where the weight does not change often, we can use the
  655. * precalculated inverse to speed up arithmetics by turning divisions
  656. * into multiplications:
  657. */
  658. static const u32 prio_to_wmult[40] = {
  659. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  660. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  661. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  662. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  663. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  664. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  665. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  666. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  667. };
  668. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  669. /*
  670. * runqueue iterator, to support SMP load-balancing between different
  671. * scheduling classes, without having to expose their internal data
  672. * structures to the load-balancing proper:
  673. */
  674. struct rq_iterator {
  675. void *arg;
  676. struct task_struct *(*start)(void *);
  677. struct task_struct *(*next)(void *);
  678. };
  679. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  680. unsigned long max_nr_move, unsigned long max_load_move,
  681. struct sched_domain *sd, enum cpu_idle_type idle,
  682. int *all_pinned, unsigned long *load_moved,
  683. int *this_best_prio, struct rq_iterator *iterator);
  684. #include "sched_stats.h"
  685. #include "sched_rt.c"
  686. #include "sched_fair.c"
  687. #include "sched_idletask.c"
  688. #ifdef CONFIG_SCHED_DEBUG
  689. # include "sched_debug.c"
  690. #endif
  691. #define sched_class_highest (&rt_sched_class)
  692. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  693. {
  694. if (rq->curr != rq->idle && ls->load.weight) {
  695. ls->delta_exec += ls->delta_stat;
  696. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  697. ls->delta_stat = 0;
  698. }
  699. }
  700. /*
  701. * Update delta_exec, delta_fair fields for rq.
  702. *
  703. * delta_fair clock advances at a rate inversely proportional to
  704. * total load (rq->ls.load.weight) on the runqueue, while
  705. * delta_exec advances at the same rate as wall-clock (provided
  706. * cpu is not idle).
  707. *
  708. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  709. * runqueue over any given interval. This (smoothened) load is used
  710. * during load balance.
  711. *
  712. * This function is called /before/ updating rq->ls.load
  713. * and when switching tasks.
  714. */
  715. static void update_curr_load(struct rq *rq)
  716. {
  717. struct load_stat *ls = &rq->ls;
  718. u64 start;
  719. start = ls->load_update_start;
  720. ls->load_update_start = rq->clock;
  721. ls->delta_stat += rq->clock - start;
  722. /*
  723. * Stagger updates to ls->delta_fair. Very frequent updates
  724. * can be expensive.
  725. */
  726. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  727. __update_curr_load(rq, ls);
  728. }
  729. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  730. {
  731. update_curr_load(rq);
  732. update_load_add(&rq->ls.load, p->se.load.weight);
  733. }
  734. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  735. {
  736. update_curr_load(rq);
  737. update_load_sub(&rq->ls.load, p->se.load.weight);
  738. }
  739. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  740. {
  741. rq->nr_running++;
  742. inc_load(rq, p);
  743. }
  744. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  745. {
  746. rq->nr_running--;
  747. dec_load(rq, p);
  748. }
  749. static void set_load_weight(struct task_struct *p)
  750. {
  751. p->se.wait_runtime = 0;
  752. if (task_has_rt_policy(p)) {
  753. p->se.load.weight = prio_to_weight[0] * 2;
  754. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  755. return;
  756. }
  757. /*
  758. * SCHED_IDLE tasks get minimal weight:
  759. */
  760. if (p->policy == SCHED_IDLE) {
  761. p->se.load.weight = WEIGHT_IDLEPRIO;
  762. p->se.load.inv_weight = WMULT_IDLEPRIO;
  763. return;
  764. }
  765. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  766. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  767. }
  768. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  769. {
  770. sched_info_queued(p);
  771. p->sched_class->enqueue_task(rq, p, wakeup);
  772. p->se.on_rq = 1;
  773. }
  774. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  775. {
  776. p->sched_class->dequeue_task(rq, p, sleep);
  777. p->se.on_rq = 0;
  778. }
  779. /*
  780. * __normal_prio - return the priority that is based on the static prio
  781. */
  782. static inline int __normal_prio(struct task_struct *p)
  783. {
  784. return p->static_prio;
  785. }
  786. /*
  787. * Calculate the expected normal priority: i.e. priority
  788. * without taking RT-inheritance into account. Might be
  789. * boosted by interactivity modifiers. Changes upon fork,
  790. * setprio syscalls, and whenever the interactivity
  791. * estimator recalculates.
  792. */
  793. static inline int normal_prio(struct task_struct *p)
  794. {
  795. int prio;
  796. if (task_has_rt_policy(p))
  797. prio = MAX_RT_PRIO-1 - p->rt_priority;
  798. else
  799. prio = __normal_prio(p);
  800. return prio;
  801. }
  802. /*
  803. * Calculate the current priority, i.e. the priority
  804. * taken into account by the scheduler. This value might
  805. * be boosted by RT tasks, or might be boosted by
  806. * interactivity modifiers. Will be RT if the task got
  807. * RT-boosted. If not then it returns p->normal_prio.
  808. */
  809. static int effective_prio(struct task_struct *p)
  810. {
  811. p->normal_prio = normal_prio(p);
  812. /*
  813. * If we are RT tasks or we were boosted to RT priority,
  814. * keep the priority unchanged. Otherwise, update priority
  815. * to the normal priority:
  816. */
  817. if (!rt_prio(p->prio))
  818. return p->normal_prio;
  819. return p->prio;
  820. }
  821. /*
  822. * activate_task - move a task to the runqueue.
  823. */
  824. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  825. {
  826. if (p->state == TASK_UNINTERRUPTIBLE)
  827. rq->nr_uninterruptible--;
  828. enqueue_task(rq, p, wakeup);
  829. inc_nr_running(p, rq);
  830. }
  831. /*
  832. * activate_idle_task - move idle task to the _front_ of runqueue.
  833. */
  834. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  835. {
  836. update_rq_clock(rq);
  837. if (p->state == TASK_UNINTERRUPTIBLE)
  838. rq->nr_uninterruptible--;
  839. enqueue_task(rq, p, 0);
  840. inc_nr_running(p, rq);
  841. }
  842. /*
  843. * deactivate_task - remove a task from the runqueue.
  844. */
  845. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  846. {
  847. if (p->state == TASK_UNINTERRUPTIBLE)
  848. rq->nr_uninterruptible++;
  849. dequeue_task(rq, p, sleep);
  850. dec_nr_running(p, rq);
  851. }
  852. /**
  853. * task_curr - is this task currently executing on a CPU?
  854. * @p: the task in question.
  855. */
  856. inline int task_curr(const struct task_struct *p)
  857. {
  858. return cpu_curr(task_cpu(p)) == p;
  859. }
  860. /* Used instead of source_load when we know the type == 0 */
  861. unsigned long weighted_cpuload(const int cpu)
  862. {
  863. return cpu_rq(cpu)->ls.load.weight;
  864. }
  865. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  866. {
  867. #ifdef CONFIG_SMP
  868. task_thread_info(p)->cpu = cpu;
  869. set_task_cfs_rq(p);
  870. #endif
  871. }
  872. #ifdef CONFIG_SMP
  873. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  874. {
  875. int old_cpu = task_cpu(p);
  876. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  877. u64 clock_offset, fair_clock_offset;
  878. clock_offset = old_rq->clock - new_rq->clock;
  879. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  880. if (p->se.wait_start_fair)
  881. p->se.wait_start_fair -= fair_clock_offset;
  882. if (p->se.sleep_start_fair)
  883. p->se.sleep_start_fair -= fair_clock_offset;
  884. #ifdef CONFIG_SCHEDSTATS
  885. if (p->se.wait_start)
  886. p->se.wait_start -= clock_offset;
  887. if (p->se.sleep_start)
  888. p->se.sleep_start -= clock_offset;
  889. if (p->se.block_start)
  890. p->se.block_start -= clock_offset;
  891. #endif
  892. __set_task_cpu(p, new_cpu);
  893. }
  894. struct migration_req {
  895. struct list_head list;
  896. struct task_struct *task;
  897. int dest_cpu;
  898. struct completion done;
  899. };
  900. /*
  901. * The task's runqueue lock must be held.
  902. * Returns true if you have to wait for migration thread.
  903. */
  904. static int
  905. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  906. {
  907. struct rq *rq = task_rq(p);
  908. /*
  909. * If the task is not on a runqueue (and not running), then
  910. * it is sufficient to simply update the task's cpu field.
  911. */
  912. if (!p->se.on_rq && !task_running(rq, p)) {
  913. set_task_cpu(p, dest_cpu);
  914. return 0;
  915. }
  916. init_completion(&req->done);
  917. req->task = p;
  918. req->dest_cpu = dest_cpu;
  919. list_add(&req->list, &rq->migration_queue);
  920. return 1;
  921. }
  922. /*
  923. * wait_task_inactive - wait for a thread to unschedule.
  924. *
  925. * The caller must ensure that the task *will* unschedule sometime soon,
  926. * else this function might spin for a *long* time. This function can't
  927. * be called with interrupts off, or it may introduce deadlock with
  928. * smp_call_function() if an IPI is sent by the same process we are
  929. * waiting to become inactive.
  930. */
  931. void wait_task_inactive(struct task_struct *p)
  932. {
  933. unsigned long flags;
  934. int running, on_rq;
  935. struct rq *rq;
  936. repeat:
  937. /*
  938. * We do the initial early heuristics without holding
  939. * any task-queue locks at all. We'll only try to get
  940. * the runqueue lock when things look like they will
  941. * work out!
  942. */
  943. rq = task_rq(p);
  944. /*
  945. * If the task is actively running on another CPU
  946. * still, just relax and busy-wait without holding
  947. * any locks.
  948. *
  949. * NOTE! Since we don't hold any locks, it's not
  950. * even sure that "rq" stays as the right runqueue!
  951. * But we don't care, since "task_running()" will
  952. * return false if the runqueue has changed and p
  953. * is actually now running somewhere else!
  954. */
  955. while (task_running(rq, p))
  956. cpu_relax();
  957. /*
  958. * Ok, time to look more closely! We need the rq
  959. * lock now, to be *sure*. If we're wrong, we'll
  960. * just go back and repeat.
  961. */
  962. rq = task_rq_lock(p, &flags);
  963. running = task_running(rq, p);
  964. on_rq = p->se.on_rq;
  965. task_rq_unlock(rq, &flags);
  966. /*
  967. * Was it really running after all now that we
  968. * checked with the proper locks actually held?
  969. *
  970. * Oops. Go back and try again..
  971. */
  972. if (unlikely(running)) {
  973. cpu_relax();
  974. goto repeat;
  975. }
  976. /*
  977. * It's not enough that it's not actively running,
  978. * it must be off the runqueue _entirely_, and not
  979. * preempted!
  980. *
  981. * So if it wa still runnable (but just not actively
  982. * running right now), it's preempted, and we should
  983. * yield - it could be a while.
  984. */
  985. if (unlikely(on_rq)) {
  986. yield();
  987. goto repeat;
  988. }
  989. /*
  990. * Ahh, all good. It wasn't running, and it wasn't
  991. * runnable, which means that it will never become
  992. * running in the future either. We're all done!
  993. */
  994. }
  995. /***
  996. * kick_process - kick a running thread to enter/exit the kernel
  997. * @p: the to-be-kicked thread
  998. *
  999. * Cause a process which is running on another CPU to enter
  1000. * kernel-mode, without any delay. (to get signals handled.)
  1001. *
  1002. * NOTE: this function doesnt have to take the runqueue lock,
  1003. * because all it wants to ensure is that the remote task enters
  1004. * the kernel. If the IPI races and the task has been migrated
  1005. * to another CPU then no harm is done and the purpose has been
  1006. * achieved as well.
  1007. */
  1008. void kick_process(struct task_struct *p)
  1009. {
  1010. int cpu;
  1011. preempt_disable();
  1012. cpu = task_cpu(p);
  1013. if ((cpu != smp_processor_id()) && task_curr(p))
  1014. smp_send_reschedule(cpu);
  1015. preempt_enable();
  1016. }
  1017. /*
  1018. * Return a low guess at the load of a migration-source cpu weighted
  1019. * according to the scheduling class and "nice" value.
  1020. *
  1021. * We want to under-estimate the load of migration sources, to
  1022. * balance conservatively.
  1023. */
  1024. static inline unsigned long source_load(int cpu, int type)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. unsigned long total = weighted_cpuload(cpu);
  1028. if (type == 0)
  1029. return total;
  1030. return min(rq->cpu_load[type-1], total);
  1031. }
  1032. /*
  1033. * Return a high guess at the load of a migration-target cpu weighted
  1034. * according to the scheduling class and "nice" value.
  1035. */
  1036. static inline unsigned long target_load(int cpu, int type)
  1037. {
  1038. struct rq *rq = cpu_rq(cpu);
  1039. unsigned long total = weighted_cpuload(cpu);
  1040. if (type == 0)
  1041. return total;
  1042. return max(rq->cpu_load[type-1], total);
  1043. }
  1044. /*
  1045. * Return the average load per task on the cpu's run queue
  1046. */
  1047. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1048. {
  1049. struct rq *rq = cpu_rq(cpu);
  1050. unsigned long total = weighted_cpuload(cpu);
  1051. unsigned long n = rq->nr_running;
  1052. return n ? total / n : SCHED_LOAD_SCALE;
  1053. }
  1054. /*
  1055. * find_idlest_group finds and returns the least busy CPU group within the
  1056. * domain.
  1057. */
  1058. static struct sched_group *
  1059. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1060. {
  1061. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1062. unsigned long min_load = ULONG_MAX, this_load = 0;
  1063. int load_idx = sd->forkexec_idx;
  1064. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1065. do {
  1066. unsigned long load, avg_load;
  1067. int local_group;
  1068. int i;
  1069. /* Skip over this group if it has no CPUs allowed */
  1070. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1071. goto nextgroup;
  1072. local_group = cpu_isset(this_cpu, group->cpumask);
  1073. /* Tally up the load of all CPUs in the group */
  1074. avg_load = 0;
  1075. for_each_cpu_mask(i, group->cpumask) {
  1076. /* Bias balancing toward cpus of our domain */
  1077. if (local_group)
  1078. load = source_load(i, load_idx);
  1079. else
  1080. load = target_load(i, load_idx);
  1081. avg_load += load;
  1082. }
  1083. /* Adjust by relative CPU power of the group */
  1084. avg_load = sg_div_cpu_power(group,
  1085. avg_load * SCHED_LOAD_SCALE);
  1086. if (local_group) {
  1087. this_load = avg_load;
  1088. this = group;
  1089. } else if (avg_load < min_load) {
  1090. min_load = avg_load;
  1091. idlest = group;
  1092. }
  1093. nextgroup:
  1094. group = group->next;
  1095. } while (group != sd->groups);
  1096. if (!idlest || 100*this_load < imbalance*min_load)
  1097. return NULL;
  1098. return idlest;
  1099. }
  1100. /*
  1101. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1102. */
  1103. static int
  1104. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1105. {
  1106. cpumask_t tmp;
  1107. unsigned long load, min_load = ULONG_MAX;
  1108. int idlest = -1;
  1109. int i;
  1110. /* Traverse only the allowed CPUs */
  1111. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1112. for_each_cpu_mask(i, tmp) {
  1113. load = weighted_cpuload(i);
  1114. if (load < min_load || (load == min_load && i == this_cpu)) {
  1115. min_load = load;
  1116. idlest = i;
  1117. }
  1118. }
  1119. return idlest;
  1120. }
  1121. /*
  1122. * sched_balance_self: balance the current task (running on cpu) in domains
  1123. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1124. * SD_BALANCE_EXEC.
  1125. *
  1126. * Balance, ie. select the least loaded group.
  1127. *
  1128. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1129. *
  1130. * preempt must be disabled.
  1131. */
  1132. static int sched_balance_self(int cpu, int flag)
  1133. {
  1134. struct task_struct *t = current;
  1135. struct sched_domain *tmp, *sd = NULL;
  1136. for_each_domain(cpu, tmp) {
  1137. /*
  1138. * If power savings logic is enabled for a domain, stop there.
  1139. */
  1140. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1141. break;
  1142. if (tmp->flags & flag)
  1143. sd = tmp;
  1144. }
  1145. while (sd) {
  1146. cpumask_t span;
  1147. struct sched_group *group;
  1148. int new_cpu, weight;
  1149. if (!(sd->flags & flag)) {
  1150. sd = sd->child;
  1151. continue;
  1152. }
  1153. span = sd->span;
  1154. group = find_idlest_group(sd, t, cpu);
  1155. if (!group) {
  1156. sd = sd->child;
  1157. continue;
  1158. }
  1159. new_cpu = find_idlest_cpu(group, t, cpu);
  1160. if (new_cpu == -1 || new_cpu == cpu) {
  1161. /* Now try balancing at a lower domain level of cpu */
  1162. sd = sd->child;
  1163. continue;
  1164. }
  1165. /* Now try balancing at a lower domain level of new_cpu */
  1166. cpu = new_cpu;
  1167. sd = NULL;
  1168. weight = cpus_weight(span);
  1169. for_each_domain(cpu, tmp) {
  1170. if (weight <= cpus_weight(tmp->span))
  1171. break;
  1172. if (tmp->flags & flag)
  1173. sd = tmp;
  1174. }
  1175. /* while loop will break here if sd == NULL */
  1176. }
  1177. return cpu;
  1178. }
  1179. #endif /* CONFIG_SMP */
  1180. /*
  1181. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1182. * not idle and an idle cpu is available. The span of cpus to
  1183. * search starts with cpus closest then further out as needed,
  1184. * so we always favor a closer, idle cpu.
  1185. *
  1186. * Returns the CPU we should wake onto.
  1187. */
  1188. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1189. static int wake_idle(int cpu, struct task_struct *p)
  1190. {
  1191. cpumask_t tmp;
  1192. struct sched_domain *sd;
  1193. int i;
  1194. /*
  1195. * If it is idle, then it is the best cpu to run this task.
  1196. *
  1197. * This cpu is also the best, if it has more than one task already.
  1198. * Siblings must be also busy(in most cases) as they didn't already
  1199. * pickup the extra load from this cpu and hence we need not check
  1200. * sibling runqueue info. This will avoid the checks and cache miss
  1201. * penalities associated with that.
  1202. */
  1203. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1204. return cpu;
  1205. for_each_domain(cpu, sd) {
  1206. if (sd->flags & SD_WAKE_IDLE) {
  1207. cpus_and(tmp, sd->span, p->cpus_allowed);
  1208. for_each_cpu_mask(i, tmp) {
  1209. if (idle_cpu(i))
  1210. return i;
  1211. }
  1212. } else {
  1213. break;
  1214. }
  1215. }
  1216. return cpu;
  1217. }
  1218. #else
  1219. static inline int wake_idle(int cpu, struct task_struct *p)
  1220. {
  1221. return cpu;
  1222. }
  1223. #endif
  1224. /***
  1225. * try_to_wake_up - wake up a thread
  1226. * @p: the to-be-woken-up thread
  1227. * @state: the mask of task states that can be woken
  1228. * @sync: do a synchronous wakeup?
  1229. *
  1230. * Put it on the run-queue if it's not already there. The "current"
  1231. * thread is always on the run-queue (except when the actual
  1232. * re-schedule is in progress), and as such you're allowed to do
  1233. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1234. * runnable without the overhead of this.
  1235. *
  1236. * returns failure only if the task is already active.
  1237. */
  1238. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1239. {
  1240. int cpu, this_cpu, success = 0;
  1241. unsigned long flags;
  1242. long old_state;
  1243. struct rq *rq;
  1244. #ifdef CONFIG_SMP
  1245. struct sched_domain *sd, *this_sd = NULL;
  1246. unsigned long load, this_load;
  1247. int new_cpu;
  1248. #endif
  1249. rq = task_rq_lock(p, &flags);
  1250. old_state = p->state;
  1251. if (!(old_state & state))
  1252. goto out;
  1253. if (p->se.on_rq)
  1254. goto out_running;
  1255. cpu = task_cpu(p);
  1256. this_cpu = smp_processor_id();
  1257. #ifdef CONFIG_SMP
  1258. if (unlikely(task_running(rq, p)))
  1259. goto out_activate;
  1260. new_cpu = cpu;
  1261. schedstat_inc(rq, ttwu_cnt);
  1262. if (cpu == this_cpu) {
  1263. schedstat_inc(rq, ttwu_local);
  1264. goto out_set_cpu;
  1265. }
  1266. for_each_domain(this_cpu, sd) {
  1267. if (cpu_isset(cpu, sd->span)) {
  1268. schedstat_inc(sd, ttwu_wake_remote);
  1269. this_sd = sd;
  1270. break;
  1271. }
  1272. }
  1273. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1274. goto out_set_cpu;
  1275. /*
  1276. * Check for affine wakeup and passive balancing possibilities.
  1277. */
  1278. if (this_sd) {
  1279. int idx = this_sd->wake_idx;
  1280. unsigned int imbalance;
  1281. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1282. load = source_load(cpu, idx);
  1283. this_load = target_load(this_cpu, idx);
  1284. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1285. if (this_sd->flags & SD_WAKE_AFFINE) {
  1286. unsigned long tl = this_load;
  1287. unsigned long tl_per_task;
  1288. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1289. /*
  1290. * If sync wakeup then subtract the (maximum possible)
  1291. * effect of the currently running task from the load
  1292. * of the current CPU:
  1293. */
  1294. if (sync)
  1295. tl -= current->se.load.weight;
  1296. if ((tl <= load &&
  1297. tl + target_load(cpu, idx) <= tl_per_task) ||
  1298. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1299. /*
  1300. * This domain has SD_WAKE_AFFINE and
  1301. * p is cache cold in this domain, and
  1302. * there is no bad imbalance.
  1303. */
  1304. schedstat_inc(this_sd, ttwu_move_affine);
  1305. goto out_set_cpu;
  1306. }
  1307. }
  1308. /*
  1309. * Start passive balancing when half the imbalance_pct
  1310. * limit is reached.
  1311. */
  1312. if (this_sd->flags & SD_WAKE_BALANCE) {
  1313. if (imbalance*this_load <= 100*load) {
  1314. schedstat_inc(this_sd, ttwu_move_balance);
  1315. goto out_set_cpu;
  1316. }
  1317. }
  1318. }
  1319. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1320. out_set_cpu:
  1321. new_cpu = wake_idle(new_cpu, p);
  1322. if (new_cpu != cpu) {
  1323. set_task_cpu(p, new_cpu);
  1324. task_rq_unlock(rq, &flags);
  1325. /* might preempt at this point */
  1326. rq = task_rq_lock(p, &flags);
  1327. old_state = p->state;
  1328. if (!(old_state & state))
  1329. goto out;
  1330. if (p->se.on_rq)
  1331. goto out_running;
  1332. this_cpu = smp_processor_id();
  1333. cpu = task_cpu(p);
  1334. }
  1335. out_activate:
  1336. #endif /* CONFIG_SMP */
  1337. update_rq_clock(rq);
  1338. activate_task(rq, p, 1);
  1339. /*
  1340. * Sync wakeups (i.e. those types of wakeups where the waker
  1341. * has indicated that it will leave the CPU in short order)
  1342. * don't trigger a preemption, if the woken up task will run on
  1343. * this cpu. (in this case the 'I will reschedule' promise of
  1344. * the waker guarantees that the freshly woken up task is going
  1345. * to be considered on this CPU.)
  1346. */
  1347. if (!sync || cpu != this_cpu)
  1348. check_preempt_curr(rq, p);
  1349. success = 1;
  1350. out_running:
  1351. p->state = TASK_RUNNING;
  1352. out:
  1353. task_rq_unlock(rq, &flags);
  1354. return success;
  1355. }
  1356. int fastcall wake_up_process(struct task_struct *p)
  1357. {
  1358. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1359. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1360. }
  1361. EXPORT_SYMBOL(wake_up_process);
  1362. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1363. {
  1364. return try_to_wake_up(p, state, 0);
  1365. }
  1366. /*
  1367. * Perform scheduler related setup for a newly forked process p.
  1368. * p is forked by current.
  1369. *
  1370. * __sched_fork() is basic setup used by init_idle() too:
  1371. */
  1372. static void __sched_fork(struct task_struct *p)
  1373. {
  1374. p->se.wait_start_fair = 0;
  1375. p->se.exec_start = 0;
  1376. p->se.sum_exec_runtime = 0;
  1377. p->se.prev_sum_exec_runtime = 0;
  1378. p->se.delta_exec = 0;
  1379. p->se.delta_fair_run = 0;
  1380. p->se.delta_fair_sleep = 0;
  1381. p->se.wait_runtime = 0;
  1382. p->se.sleep_start_fair = 0;
  1383. #ifdef CONFIG_SCHEDSTATS
  1384. p->se.wait_start = 0;
  1385. p->se.sum_wait_runtime = 0;
  1386. p->se.sum_sleep_runtime = 0;
  1387. p->se.sleep_start = 0;
  1388. p->se.block_start = 0;
  1389. p->se.sleep_max = 0;
  1390. p->se.block_max = 0;
  1391. p->se.exec_max = 0;
  1392. p->se.wait_max = 0;
  1393. p->se.wait_runtime_overruns = 0;
  1394. p->se.wait_runtime_underruns = 0;
  1395. #endif
  1396. INIT_LIST_HEAD(&p->run_list);
  1397. p->se.on_rq = 0;
  1398. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1399. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1400. #endif
  1401. /*
  1402. * We mark the process as running here, but have not actually
  1403. * inserted it onto the runqueue yet. This guarantees that
  1404. * nobody will actually run it, and a signal or other external
  1405. * event cannot wake it up and insert it on the runqueue either.
  1406. */
  1407. p->state = TASK_RUNNING;
  1408. }
  1409. /*
  1410. * fork()/clone()-time setup:
  1411. */
  1412. void sched_fork(struct task_struct *p, int clone_flags)
  1413. {
  1414. int cpu = get_cpu();
  1415. __sched_fork(p);
  1416. #ifdef CONFIG_SMP
  1417. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1418. #endif
  1419. __set_task_cpu(p, cpu);
  1420. /*
  1421. * Make sure we do not leak PI boosting priority to the child:
  1422. */
  1423. p->prio = current->normal_prio;
  1424. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1425. if (likely(sched_info_on()))
  1426. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1427. #endif
  1428. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1429. p->oncpu = 0;
  1430. #endif
  1431. #ifdef CONFIG_PREEMPT
  1432. /* Want to start with kernel preemption disabled. */
  1433. task_thread_info(p)->preempt_count = 1;
  1434. #endif
  1435. put_cpu();
  1436. }
  1437. /*
  1438. * After fork, child runs first. (default) If set to 0 then
  1439. * parent will (try to) run first.
  1440. */
  1441. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1442. /*
  1443. * wake_up_new_task - wake up a newly created task for the first time.
  1444. *
  1445. * This function will do some initial scheduler statistics housekeeping
  1446. * that must be done for every newly created context, then puts the task
  1447. * on the runqueue and wakes it.
  1448. */
  1449. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1450. {
  1451. unsigned long flags;
  1452. struct rq *rq;
  1453. int this_cpu;
  1454. rq = task_rq_lock(p, &flags);
  1455. BUG_ON(p->state != TASK_RUNNING);
  1456. this_cpu = smp_processor_id(); /* parent's CPU */
  1457. update_rq_clock(rq);
  1458. p->prio = effective_prio(p);
  1459. if (rt_prio(p->prio))
  1460. p->sched_class = &rt_sched_class;
  1461. else
  1462. p->sched_class = &fair_sched_class;
  1463. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1464. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1465. !current->se.on_rq) {
  1466. activate_task(rq, p, 0);
  1467. } else {
  1468. /*
  1469. * Let the scheduling class do new task startup
  1470. * management (if any):
  1471. */
  1472. p->sched_class->task_new(rq, p);
  1473. inc_nr_running(p, rq);
  1474. }
  1475. check_preempt_curr(rq, p);
  1476. task_rq_unlock(rq, &flags);
  1477. }
  1478. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1479. /**
  1480. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1481. * @notifier: notifier struct to register
  1482. */
  1483. void preempt_notifier_register(struct preempt_notifier *notifier)
  1484. {
  1485. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1486. }
  1487. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1488. /**
  1489. * preempt_notifier_unregister - no longer interested in preemption notifications
  1490. * @notifier: notifier struct to unregister
  1491. *
  1492. * This is safe to call from within a preemption notifier.
  1493. */
  1494. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1495. {
  1496. hlist_del(&notifier->link);
  1497. }
  1498. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1499. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1500. {
  1501. struct preempt_notifier *notifier;
  1502. struct hlist_node *node;
  1503. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1504. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1505. }
  1506. static void
  1507. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1508. struct task_struct *next)
  1509. {
  1510. struct preempt_notifier *notifier;
  1511. struct hlist_node *node;
  1512. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1513. notifier->ops->sched_out(notifier, next);
  1514. }
  1515. #else
  1516. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1517. {
  1518. }
  1519. static void
  1520. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1521. struct task_struct *next)
  1522. {
  1523. }
  1524. #endif
  1525. /**
  1526. * prepare_task_switch - prepare to switch tasks
  1527. * @rq: the runqueue preparing to switch
  1528. * @prev: the current task that is being switched out
  1529. * @next: the task we are going to switch to.
  1530. *
  1531. * This is called with the rq lock held and interrupts off. It must
  1532. * be paired with a subsequent finish_task_switch after the context
  1533. * switch.
  1534. *
  1535. * prepare_task_switch sets up locking and calls architecture specific
  1536. * hooks.
  1537. */
  1538. static inline void
  1539. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1540. struct task_struct *next)
  1541. {
  1542. fire_sched_out_preempt_notifiers(prev, next);
  1543. prepare_lock_switch(rq, next);
  1544. prepare_arch_switch(next);
  1545. }
  1546. /**
  1547. * finish_task_switch - clean up after a task-switch
  1548. * @rq: runqueue associated with task-switch
  1549. * @prev: the thread we just switched away from.
  1550. *
  1551. * finish_task_switch must be called after the context switch, paired
  1552. * with a prepare_task_switch call before the context switch.
  1553. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1554. * and do any other architecture-specific cleanup actions.
  1555. *
  1556. * Note that we may have delayed dropping an mm in context_switch(). If
  1557. * so, we finish that here outside of the runqueue lock. (Doing it
  1558. * with the lock held can cause deadlocks; see schedule() for
  1559. * details.)
  1560. */
  1561. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1562. __releases(rq->lock)
  1563. {
  1564. struct mm_struct *mm = rq->prev_mm;
  1565. long prev_state;
  1566. rq->prev_mm = NULL;
  1567. /*
  1568. * A task struct has one reference for the use as "current".
  1569. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1570. * schedule one last time. The schedule call will never return, and
  1571. * the scheduled task must drop that reference.
  1572. * The test for TASK_DEAD must occur while the runqueue locks are
  1573. * still held, otherwise prev could be scheduled on another cpu, die
  1574. * there before we look at prev->state, and then the reference would
  1575. * be dropped twice.
  1576. * Manfred Spraul <manfred@colorfullife.com>
  1577. */
  1578. prev_state = prev->state;
  1579. finish_arch_switch(prev);
  1580. finish_lock_switch(rq, prev);
  1581. fire_sched_in_preempt_notifiers(current);
  1582. if (mm)
  1583. mmdrop(mm);
  1584. if (unlikely(prev_state == TASK_DEAD)) {
  1585. /*
  1586. * Remove function-return probe instances associated with this
  1587. * task and put them back on the free list.
  1588. */
  1589. kprobe_flush_task(prev);
  1590. put_task_struct(prev);
  1591. }
  1592. }
  1593. /**
  1594. * schedule_tail - first thing a freshly forked thread must call.
  1595. * @prev: the thread we just switched away from.
  1596. */
  1597. asmlinkage void schedule_tail(struct task_struct *prev)
  1598. __releases(rq->lock)
  1599. {
  1600. struct rq *rq = this_rq();
  1601. finish_task_switch(rq, prev);
  1602. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1603. /* In this case, finish_task_switch does not reenable preemption */
  1604. preempt_enable();
  1605. #endif
  1606. if (current->set_child_tid)
  1607. put_user(current->pid, current->set_child_tid);
  1608. }
  1609. /*
  1610. * context_switch - switch to the new MM and the new
  1611. * thread's register state.
  1612. */
  1613. static inline void
  1614. context_switch(struct rq *rq, struct task_struct *prev,
  1615. struct task_struct *next)
  1616. {
  1617. struct mm_struct *mm, *oldmm;
  1618. prepare_task_switch(rq, prev, next);
  1619. mm = next->mm;
  1620. oldmm = prev->active_mm;
  1621. /*
  1622. * For paravirt, this is coupled with an exit in switch_to to
  1623. * combine the page table reload and the switch backend into
  1624. * one hypercall.
  1625. */
  1626. arch_enter_lazy_cpu_mode();
  1627. if (unlikely(!mm)) {
  1628. next->active_mm = oldmm;
  1629. atomic_inc(&oldmm->mm_count);
  1630. enter_lazy_tlb(oldmm, next);
  1631. } else
  1632. switch_mm(oldmm, mm, next);
  1633. if (unlikely(!prev->mm)) {
  1634. prev->active_mm = NULL;
  1635. rq->prev_mm = oldmm;
  1636. }
  1637. /*
  1638. * Since the runqueue lock will be released by the next
  1639. * task (which is an invalid locking op but in the case
  1640. * of the scheduler it's an obvious special-case), so we
  1641. * do an early lockdep release here:
  1642. */
  1643. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1644. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1645. #endif
  1646. /* Here we just switch the register state and the stack. */
  1647. switch_to(prev, next, prev);
  1648. barrier();
  1649. /*
  1650. * this_rq must be evaluated again because prev may have moved
  1651. * CPUs since it called schedule(), thus the 'rq' on its stack
  1652. * frame will be invalid.
  1653. */
  1654. finish_task_switch(this_rq(), prev);
  1655. }
  1656. /*
  1657. * nr_running, nr_uninterruptible and nr_context_switches:
  1658. *
  1659. * externally visible scheduler statistics: current number of runnable
  1660. * threads, current number of uninterruptible-sleeping threads, total
  1661. * number of context switches performed since bootup.
  1662. */
  1663. unsigned long nr_running(void)
  1664. {
  1665. unsigned long i, sum = 0;
  1666. for_each_online_cpu(i)
  1667. sum += cpu_rq(i)->nr_running;
  1668. return sum;
  1669. }
  1670. unsigned long nr_uninterruptible(void)
  1671. {
  1672. unsigned long i, sum = 0;
  1673. for_each_possible_cpu(i)
  1674. sum += cpu_rq(i)->nr_uninterruptible;
  1675. /*
  1676. * Since we read the counters lockless, it might be slightly
  1677. * inaccurate. Do not allow it to go below zero though:
  1678. */
  1679. if (unlikely((long)sum < 0))
  1680. sum = 0;
  1681. return sum;
  1682. }
  1683. unsigned long long nr_context_switches(void)
  1684. {
  1685. int i;
  1686. unsigned long long sum = 0;
  1687. for_each_possible_cpu(i)
  1688. sum += cpu_rq(i)->nr_switches;
  1689. return sum;
  1690. }
  1691. unsigned long nr_iowait(void)
  1692. {
  1693. unsigned long i, sum = 0;
  1694. for_each_possible_cpu(i)
  1695. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1696. return sum;
  1697. }
  1698. unsigned long nr_active(void)
  1699. {
  1700. unsigned long i, running = 0, uninterruptible = 0;
  1701. for_each_online_cpu(i) {
  1702. running += cpu_rq(i)->nr_running;
  1703. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1704. }
  1705. if (unlikely((long)uninterruptible < 0))
  1706. uninterruptible = 0;
  1707. return running + uninterruptible;
  1708. }
  1709. /*
  1710. * Update rq->cpu_load[] statistics. This function is usually called every
  1711. * scheduler tick (TICK_NSEC).
  1712. */
  1713. static void update_cpu_load(struct rq *this_rq)
  1714. {
  1715. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1716. unsigned long total_load = this_rq->ls.load.weight;
  1717. unsigned long this_load = total_load;
  1718. struct load_stat *ls = &this_rq->ls;
  1719. int i, scale;
  1720. this_rq->nr_load_updates++;
  1721. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1722. goto do_avg;
  1723. /* Update delta_fair/delta_exec fields first */
  1724. update_curr_load(this_rq);
  1725. fair_delta64 = ls->delta_fair + 1;
  1726. ls->delta_fair = 0;
  1727. exec_delta64 = ls->delta_exec + 1;
  1728. ls->delta_exec = 0;
  1729. sample_interval64 = this_rq->clock - ls->load_update_last;
  1730. ls->load_update_last = this_rq->clock;
  1731. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1732. sample_interval64 = TICK_NSEC;
  1733. if (exec_delta64 > sample_interval64)
  1734. exec_delta64 = sample_interval64;
  1735. idle_delta64 = sample_interval64 - exec_delta64;
  1736. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1737. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1738. this_load = (unsigned long)tmp64;
  1739. do_avg:
  1740. /* Update our load: */
  1741. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1742. unsigned long old_load, new_load;
  1743. /* scale is effectively 1 << i now, and >> i divides by scale */
  1744. old_load = this_rq->cpu_load[i];
  1745. new_load = this_load;
  1746. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1747. }
  1748. }
  1749. #ifdef CONFIG_SMP
  1750. /*
  1751. * double_rq_lock - safely lock two runqueues
  1752. *
  1753. * Note this does not disable interrupts like task_rq_lock,
  1754. * you need to do so manually before calling.
  1755. */
  1756. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1757. __acquires(rq1->lock)
  1758. __acquires(rq2->lock)
  1759. {
  1760. BUG_ON(!irqs_disabled());
  1761. if (rq1 == rq2) {
  1762. spin_lock(&rq1->lock);
  1763. __acquire(rq2->lock); /* Fake it out ;) */
  1764. } else {
  1765. if (rq1 < rq2) {
  1766. spin_lock(&rq1->lock);
  1767. spin_lock(&rq2->lock);
  1768. } else {
  1769. spin_lock(&rq2->lock);
  1770. spin_lock(&rq1->lock);
  1771. }
  1772. }
  1773. update_rq_clock(rq1);
  1774. update_rq_clock(rq2);
  1775. }
  1776. /*
  1777. * double_rq_unlock - safely unlock two runqueues
  1778. *
  1779. * Note this does not restore interrupts like task_rq_unlock,
  1780. * you need to do so manually after calling.
  1781. */
  1782. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1783. __releases(rq1->lock)
  1784. __releases(rq2->lock)
  1785. {
  1786. spin_unlock(&rq1->lock);
  1787. if (rq1 != rq2)
  1788. spin_unlock(&rq2->lock);
  1789. else
  1790. __release(rq2->lock);
  1791. }
  1792. /*
  1793. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1794. */
  1795. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1796. __releases(this_rq->lock)
  1797. __acquires(busiest->lock)
  1798. __acquires(this_rq->lock)
  1799. {
  1800. if (unlikely(!irqs_disabled())) {
  1801. /* printk() doesn't work good under rq->lock */
  1802. spin_unlock(&this_rq->lock);
  1803. BUG_ON(1);
  1804. }
  1805. if (unlikely(!spin_trylock(&busiest->lock))) {
  1806. if (busiest < this_rq) {
  1807. spin_unlock(&this_rq->lock);
  1808. spin_lock(&busiest->lock);
  1809. spin_lock(&this_rq->lock);
  1810. } else
  1811. spin_lock(&busiest->lock);
  1812. }
  1813. }
  1814. /*
  1815. * If dest_cpu is allowed for this process, migrate the task to it.
  1816. * This is accomplished by forcing the cpu_allowed mask to only
  1817. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1818. * the cpu_allowed mask is restored.
  1819. */
  1820. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1821. {
  1822. struct migration_req req;
  1823. unsigned long flags;
  1824. struct rq *rq;
  1825. rq = task_rq_lock(p, &flags);
  1826. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1827. || unlikely(cpu_is_offline(dest_cpu)))
  1828. goto out;
  1829. /* force the process onto the specified CPU */
  1830. if (migrate_task(p, dest_cpu, &req)) {
  1831. /* Need to wait for migration thread (might exit: take ref). */
  1832. struct task_struct *mt = rq->migration_thread;
  1833. get_task_struct(mt);
  1834. task_rq_unlock(rq, &flags);
  1835. wake_up_process(mt);
  1836. put_task_struct(mt);
  1837. wait_for_completion(&req.done);
  1838. return;
  1839. }
  1840. out:
  1841. task_rq_unlock(rq, &flags);
  1842. }
  1843. /*
  1844. * sched_exec - execve() is a valuable balancing opportunity, because at
  1845. * this point the task has the smallest effective memory and cache footprint.
  1846. */
  1847. void sched_exec(void)
  1848. {
  1849. int new_cpu, this_cpu = get_cpu();
  1850. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1851. put_cpu();
  1852. if (new_cpu != this_cpu)
  1853. sched_migrate_task(current, new_cpu);
  1854. }
  1855. /*
  1856. * pull_task - move a task from a remote runqueue to the local runqueue.
  1857. * Both runqueues must be locked.
  1858. */
  1859. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1860. struct rq *this_rq, int this_cpu)
  1861. {
  1862. deactivate_task(src_rq, p, 0);
  1863. set_task_cpu(p, this_cpu);
  1864. activate_task(this_rq, p, 0);
  1865. /*
  1866. * Note that idle threads have a prio of MAX_PRIO, for this test
  1867. * to be always true for them.
  1868. */
  1869. check_preempt_curr(this_rq, p);
  1870. }
  1871. /*
  1872. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1873. */
  1874. static
  1875. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1876. struct sched_domain *sd, enum cpu_idle_type idle,
  1877. int *all_pinned)
  1878. {
  1879. /*
  1880. * We do not migrate tasks that are:
  1881. * 1) running (obviously), or
  1882. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1883. * 3) are cache-hot on their current CPU.
  1884. */
  1885. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1886. return 0;
  1887. *all_pinned = 0;
  1888. if (task_running(rq, p))
  1889. return 0;
  1890. return 1;
  1891. }
  1892. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1893. unsigned long max_nr_move, unsigned long max_load_move,
  1894. struct sched_domain *sd, enum cpu_idle_type idle,
  1895. int *all_pinned, unsigned long *load_moved,
  1896. int *this_best_prio, struct rq_iterator *iterator)
  1897. {
  1898. int pulled = 0, pinned = 0, skip_for_load;
  1899. struct task_struct *p;
  1900. long rem_load_move = max_load_move;
  1901. if (max_nr_move == 0 || max_load_move == 0)
  1902. goto out;
  1903. pinned = 1;
  1904. /*
  1905. * Start the load-balancing iterator:
  1906. */
  1907. p = iterator->start(iterator->arg);
  1908. next:
  1909. if (!p)
  1910. goto out;
  1911. /*
  1912. * To help distribute high priority tasks accross CPUs we don't
  1913. * skip a task if it will be the highest priority task (i.e. smallest
  1914. * prio value) on its new queue regardless of its load weight
  1915. */
  1916. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1917. SCHED_LOAD_SCALE_FUZZ;
  1918. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1919. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1920. p = iterator->next(iterator->arg);
  1921. goto next;
  1922. }
  1923. pull_task(busiest, p, this_rq, this_cpu);
  1924. pulled++;
  1925. rem_load_move -= p->se.load.weight;
  1926. /*
  1927. * We only want to steal up to the prescribed number of tasks
  1928. * and the prescribed amount of weighted load.
  1929. */
  1930. if (pulled < max_nr_move && rem_load_move > 0) {
  1931. if (p->prio < *this_best_prio)
  1932. *this_best_prio = p->prio;
  1933. p = iterator->next(iterator->arg);
  1934. goto next;
  1935. }
  1936. out:
  1937. /*
  1938. * Right now, this is the only place pull_task() is called,
  1939. * so we can safely collect pull_task() stats here rather than
  1940. * inside pull_task().
  1941. */
  1942. schedstat_add(sd, lb_gained[idle], pulled);
  1943. if (all_pinned)
  1944. *all_pinned = pinned;
  1945. *load_moved = max_load_move - rem_load_move;
  1946. return pulled;
  1947. }
  1948. /*
  1949. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1950. * this_rq, as part of a balancing operation within domain "sd".
  1951. * Returns 1 if successful and 0 otherwise.
  1952. *
  1953. * Called with both runqueues locked.
  1954. */
  1955. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1956. unsigned long max_load_move,
  1957. struct sched_domain *sd, enum cpu_idle_type idle,
  1958. int *all_pinned)
  1959. {
  1960. struct sched_class *class = sched_class_highest;
  1961. unsigned long total_load_moved = 0;
  1962. int this_best_prio = this_rq->curr->prio;
  1963. do {
  1964. total_load_moved +=
  1965. class->load_balance(this_rq, this_cpu, busiest,
  1966. ULONG_MAX, max_load_move - total_load_moved,
  1967. sd, idle, all_pinned, &this_best_prio);
  1968. class = class->next;
  1969. } while (class && max_load_move > total_load_moved);
  1970. return total_load_moved > 0;
  1971. }
  1972. /*
  1973. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1974. * part of active balancing operations within "domain".
  1975. * Returns 1 if successful and 0 otherwise.
  1976. *
  1977. * Called with both runqueues locked.
  1978. */
  1979. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1980. struct sched_domain *sd, enum cpu_idle_type idle)
  1981. {
  1982. struct sched_class *class;
  1983. int this_best_prio = MAX_PRIO;
  1984. for (class = sched_class_highest; class; class = class->next)
  1985. if (class->load_balance(this_rq, this_cpu, busiest,
  1986. 1, ULONG_MAX, sd, idle, NULL,
  1987. &this_best_prio))
  1988. return 1;
  1989. return 0;
  1990. }
  1991. /*
  1992. * find_busiest_group finds and returns the busiest CPU group within the
  1993. * domain. It calculates and returns the amount of weighted load which
  1994. * should be moved to restore balance via the imbalance parameter.
  1995. */
  1996. static struct sched_group *
  1997. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1998. unsigned long *imbalance, enum cpu_idle_type idle,
  1999. int *sd_idle, cpumask_t *cpus, int *balance)
  2000. {
  2001. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2002. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2003. unsigned long max_pull;
  2004. unsigned long busiest_load_per_task, busiest_nr_running;
  2005. unsigned long this_load_per_task, this_nr_running;
  2006. int load_idx;
  2007. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2008. int power_savings_balance = 1;
  2009. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2010. unsigned long min_nr_running = ULONG_MAX;
  2011. struct sched_group *group_min = NULL, *group_leader = NULL;
  2012. #endif
  2013. max_load = this_load = total_load = total_pwr = 0;
  2014. busiest_load_per_task = busiest_nr_running = 0;
  2015. this_load_per_task = this_nr_running = 0;
  2016. if (idle == CPU_NOT_IDLE)
  2017. load_idx = sd->busy_idx;
  2018. else if (idle == CPU_NEWLY_IDLE)
  2019. load_idx = sd->newidle_idx;
  2020. else
  2021. load_idx = sd->idle_idx;
  2022. do {
  2023. unsigned long load, group_capacity;
  2024. int local_group;
  2025. int i;
  2026. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2027. unsigned long sum_nr_running, sum_weighted_load;
  2028. local_group = cpu_isset(this_cpu, group->cpumask);
  2029. if (local_group)
  2030. balance_cpu = first_cpu(group->cpumask);
  2031. /* Tally up the load of all CPUs in the group */
  2032. sum_weighted_load = sum_nr_running = avg_load = 0;
  2033. for_each_cpu_mask(i, group->cpumask) {
  2034. struct rq *rq;
  2035. if (!cpu_isset(i, *cpus))
  2036. continue;
  2037. rq = cpu_rq(i);
  2038. if (*sd_idle && rq->nr_running)
  2039. *sd_idle = 0;
  2040. /* Bias balancing toward cpus of our domain */
  2041. if (local_group) {
  2042. if (idle_cpu(i) && !first_idle_cpu) {
  2043. first_idle_cpu = 1;
  2044. balance_cpu = i;
  2045. }
  2046. load = target_load(i, load_idx);
  2047. } else
  2048. load = source_load(i, load_idx);
  2049. avg_load += load;
  2050. sum_nr_running += rq->nr_running;
  2051. sum_weighted_load += weighted_cpuload(i);
  2052. }
  2053. /*
  2054. * First idle cpu or the first cpu(busiest) in this sched group
  2055. * is eligible for doing load balancing at this and above
  2056. * domains. In the newly idle case, we will allow all the cpu's
  2057. * to do the newly idle load balance.
  2058. */
  2059. if (idle != CPU_NEWLY_IDLE && local_group &&
  2060. balance_cpu != this_cpu && balance) {
  2061. *balance = 0;
  2062. goto ret;
  2063. }
  2064. total_load += avg_load;
  2065. total_pwr += group->__cpu_power;
  2066. /* Adjust by relative CPU power of the group */
  2067. avg_load = sg_div_cpu_power(group,
  2068. avg_load * SCHED_LOAD_SCALE);
  2069. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2070. if (local_group) {
  2071. this_load = avg_load;
  2072. this = group;
  2073. this_nr_running = sum_nr_running;
  2074. this_load_per_task = sum_weighted_load;
  2075. } else if (avg_load > max_load &&
  2076. sum_nr_running > group_capacity) {
  2077. max_load = avg_load;
  2078. busiest = group;
  2079. busiest_nr_running = sum_nr_running;
  2080. busiest_load_per_task = sum_weighted_load;
  2081. }
  2082. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2083. /*
  2084. * Busy processors will not participate in power savings
  2085. * balance.
  2086. */
  2087. if (idle == CPU_NOT_IDLE ||
  2088. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2089. goto group_next;
  2090. /*
  2091. * If the local group is idle or completely loaded
  2092. * no need to do power savings balance at this domain
  2093. */
  2094. if (local_group && (this_nr_running >= group_capacity ||
  2095. !this_nr_running))
  2096. power_savings_balance = 0;
  2097. /*
  2098. * If a group is already running at full capacity or idle,
  2099. * don't include that group in power savings calculations
  2100. */
  2101. if (!power_savings_balance || sum_nr_running >= group_capacity
  2102. || !sum_nr_running)
  2103. goto group_next;
  2104. /*
  2105. * Calculate the group which has the least non-idle load.
  2106. * This is the group from where we need to pick up the load
  2107. * for saving power
  2108. */
  2109. if ((sum_nr_running < min_nr_running) ||
  2110. (sum_nr_running == min_nr_running &&
  2111. first_cpu(group->cpumask) <
  2112. first_cpu(group_min->cpumask))) {
  2113. group_min = group;
  2114. min_nr_running = sum_nr_running;
  2115. min_load_per_task = sum_weighted_load /
  2116. sum_nr_running;
  2117. }
  2118. /*
  2119. * Calculate the group which is almost near its
  2120. * capacity but still has some space to pick up some load
  2121. * from other group and save more power
  2122. */
  2123. if (sum_nr_running <= group_capacity - 1) {
  2124. if (sum_nr_running > leader_nr_running ||
  2125. (sum_nr_running == leader_nr_running &&
  2126. first_cpu(group->cpumask) >
  2127. first_cpu(group_leader->cpumask))) {
  2128. group_leader = group;
  2129. leader_nr_running = sum_nr_running;
  2130. }
  2131. }
  2132. group_next:
  2133. #endif
  2134. group = group->next;
  2135. } while (group != sd->groups);
  2136. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2137. goto out_balanced;
  2138. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2139. if (this_load >= avg_load ||
  2140. 100*max_load <= sd->imbalance_pct*this_load)
  2141. goto out_balanced;
  2142. busiest_load_per_task /= busiest_nr_running;
  2143. /*
  2144. * We're trying to get all the cpus to the average_load, so we don't
  2145. * want to push ourselves above the average load, nor do we wish to
  2146. * reduce the max loaded cpu below the average load, as either of these
  2147. * actions would just result in more rebalancing later, and ping-pong
  2148. * tasks around. Thus we look for the minimum possible imbalance.
  2149. * Negative imbalances (*we* are more loaded than anyone else) will
  2150. * be counted as no imbalance for these purposes -- we can't fix that
  2151. * by pulling tasks to us. Be careful of negative numbers as they'll
  2152. * appear as very large values with unsigned longs.
  2153. */
  2154. if (max_load <= busiest_load_per_task)
  2155. goto out_balanced;
  2156. /*
  2157. * In the presence of smp nice balancing, certain scenarios can have
  2158. * max load less than avg load(as we skip the groups at or below
  2159. * its cpu_power, while calculating max_load..)
  2160. */
  2161. if (max_load < avg_load) {
  2162. *imbalance = 0;
  2163. goto small_imbalance;
  2164. }
  2165. /* Don't want to pull so many tasks that a group would go idle */
  2166. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2167. /* How much load to actually move to equalise the imbalance */
  2168. *imbalance = min(max_pull * busiest->__cpu_power,
  2169. (avg_load - this_load) * this->__cpu_power)
  2170. / SCHED_LOAD_SCALE;
  2171. /*
  2172. * if *imbalance is less than the average load per runnable task
  2173. * there is no gaurantee that any tasks will be moved so we'll have
  2174. * a think about bumping its value to force at least one task to be
  2175. * moved
  2176. */
  2177. if (*imbalance < busiest_load_per_task) {
  2178. unsigned long tmp, pwr_now, pwr_move;
  2179. unsigned int imbn;
  2180. small_imbalance:
  2181. pwr_move = pwr_now = 0;
  2182. imbn = 2;
  2183. if (this_nr_running) {
  2184. this_load_per_task /= this_nr_running;
  2185. if (busiest_load_per_task > this_load_per_task)
  2186. imbn = 1;
  2187. } else
  2188. this_load_per_task = SCHED_LOAD_SCALE;
  2189. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2190. busiest_load_per_task * imbn) {
  2191. *imbalance = busiest_load_per_task;
  2192. return busiest;
  2193. }
  2194. /*
  2195. * OK, we don't have enough imbalance to justify moving tasks,
  2196. * however we may be able to increase total CPU power used by
  2197. * moving them.
  2198. */
  2199. pwr_now += busiest->__cpu_power *
  2200. min(busiest_load_per_task, max_load);
  2201. pwr_now += this->__cpu_power *
  2202. min(this_load_per_task, this_load);
  2203. pwr_now /= SCHED_LOAD_SCALE;
  2204. /* Amount of load we'd subtract */
  2205. tmp = sg_div_cpu_power(busiest,
  2206. busiest_load_per_task * SCHED_LOAD_SCALE);
  2207. if (max_load > tmp)
  2208. pwr_move += busiest->__cpu_power *
  2209. min(busiest_load_per_task, max_load - tmp);
  2210. /* Amount of load we'd add */
  2211. if (max_load * busiest->__cpu_power <
  2212. busiest_load_per_task * SCHED_LOAD_SCALE)
  2213. tmp = sg_div_cpu_power(this,
  2214. max_load * busiest->__cpu_power);
  2215. else
  2216. tmp = sg_div_cpu_power(this,
  2217. busiest_load_per_task * SCHED_LOAD_SCALE);
  2218. pwr_move += this->__cpu_power *
  2219. min(this_load_per_task, this_load + tmp);
  2220. pwr_move /= SCHED_LOAD_SCALE;
  2221. /* Move if we gain throughput */
  2222. if (pwr_move > pwr_now)
  2223. *imbalance = busiest_load_per_task;
  2224. }
  2225. return busiest;
  2226. out_balanced:
  2227. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2228. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2229. goto ret;
  2230. if (this == group_leader && group_leader != group_min) {
  2231. *imbalance = min_load_per_task;
  2232. return group_min;
  2233. }
  2234. #endif
  2235. ret:
  2236. *imbalance = 0;
  2237. return NULL;
  2238. }
  2239. /*
  2240. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2241. */
  2242. static struct rq *
  2243. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2244. unsigned long imbalance, cpumask_t *cpus)
  2245. {
  2246. struct rq *busiest = NULL, *rq;
  2247. unsigned long max_load = 0;
  2248. int i;
  2249. for_each_cpu_mask(i, group->cpumask) {
  2250. unsigned long wl;
  2251. if (!cpu_isset(i, *cpus))
  2252. continue;
  2253. rq = cpu_rq(i);
  2254. wl = weighted_cpuload(i);
  2255. if (rq->nr_running == 1 && wl > imbalance)
  2256. continue;
  2257. if (wl > max_load) {
  2258. max_load = wl;
  2259. busiest = rq;
  2260. }
  2261. }
  2262. return busiest;
  2263. }
  2264. /*
  2265. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2266. * so long as it is large enough.
  2267. */
  2268. #define MAX_PINNED_INTERVAL 512
  2269. /*
  2270. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2271. * tasks if there is an imbalance.
  2272. */
  2273. static int load_balance(int this_cpu, struct rq *this_rq,
  2274. struct sched_domain *sd, enum cpu_idle_type idle,
  2275. int *balance)
  2276. {
  2277. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2278. struct sched_group *group;
  2279. unsigned long imbalance;
  2280. struct rq *busiest;
  2281. cpumask_t cpus = CPU_MASK_ALL;
  2282. unsigned long flags;
  2283. /*
  2284. * When power savings policy is enabled for the parent domain, idle
  2285. * sibling can pick up load irrespective of busy siblings. In this case,
  2286. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2287. * portraying it as CPU_NOT_IDLE.
  2288. */
  2289. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2290. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2291. sd_idle = 1;
  2292. schedstat_inc(sd, lb_cnt[idle]);
  2293. redo:
  2294. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2295. &cpus, balance);
  2296. if (*balance == 0)
  2297. goto out_balanced;
  2298. if (!group) {
  2299. schedstat_inc(sd, lb_nobusyg[idle]);
  2300. goto out_balanced;
  2301. }
  2302. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2303. if (!busiest) {
  2304. schedstat_inc(sd, lb_nobusyq[idle]);
  2305. goto out_balanced;
  2306. }
  2307. BUG_ON(busiest == this_rq);
  2308. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2309. ld_moved = 0;
  2310. if (busiest->nr_running > 1) {
  2311. /*
  2312. * Attempt to move tasks. If find_busiest_group has found
  2313. * an imbalance but busiest->nr_running <= 1, the group is
  2314. * still unbalanced. ld_moved simply stays zero, so it is
  2315. * correctly treated as an imbalance.
  2316. */
  2317. local_irq_save(flags);
  2318. double_rq_lock(this_rq, busiest);
  2319. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2320. imbalance, sd, idle, &all_pinned);
  2321. double_rq_unlock(this_rq, busiest);
  2322. local_irq_restore(flags);
  2323. /*
  2324. * some other cpu did the load balance for us.
  2325. */
  2326. if (ld_moved && this_cpu != smp_processor_id())
  2327. resched_cpu(this_cpu);
  2328. /* All tasks on this runqueue were pinned by CPU affinity */
  2329. if (unlikely(all_pinned)) {
  2330. cpu_clear(cpu_of(busiest), cpus);
  2331. if (!cpus_empty(cpus))
  2332. goto redo;
  2333. goto out_balanced;
  2334. }
  2335. }
  2336. if (!ld_moved) {
  2337. schedstat_inc(sd, lb_failed[idle]);
  2338. sd->nr_balance_failed++;
  2339. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2340. spin_lock_irqsave(&busiest->lock, flags);
  2341. /* don't kick the migration_thread, if the curr
  2342. * task on busiest cpu can't be moved to this_cpu
  2343. */
  2344. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2345. spin_unlock_irqrestore(&busiest->lock, flags);
  2346. all_pinned = 1;
  2347. goto out_one_pinned;
  2348. }
  2349. if (!busiest->active_balance) {
  2350. busiest->active_balance = 1;
  2351. busiest->push_cpu = this_cpu;
  2352. active_balance = 1;
  2353. }
  2354. spin_unlock_irqrestore(&busiest->lock, flags);
  2355. if (active_balance)
  2356. wake_up_process(busiest->migration_thread);
  2357. /*
  2358. * We've kicked active balancing, reset the failure
  2359. * counter.
  2360. */
  2361. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2362. }
  2363. } else
  2364. sd->nr_balance_failed = 0;
  2365. if (likely(!active_balance)) {
  2366. /* We were unbalanced, so reset the balancing interval */
  2367. sd->balance_interval = sd->min_interval;
  2368. } else {
  2369. /*
  2370. * If we've begun active balancing, start to back off. This
  2371. * case may not be covered by the all_pinned logic if there
  2372. * is only 1 task on the busy runqueue (because we don't call
  2373. * move_tasks).
  2374. */
  2375. if (sd->balance_interval < sd->max_interval)
  2376. sd->balance_interval *= 2;
  2377. }
  2378. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2379. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2380. return -1;
  2381. return ld_moved;
  2382. out_balanced:
  2383. schedstat_inc(sd, lb_balanced[idle]);
  2384. sd->nr_balance_failed = 0;
  2385. out_one_pinned:
  2386. /* tune up the balancing interval */
  2387. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2388. (sd->balance_interval < sd->max_interval))
  2389. sd->balance_interval *= 2;
  2390. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2391. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2392. return -1;
  2393. return 0;
  2394. }
  2395. /*
  2396. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2397. * tasks if there is an imbalance.
  2398. *
  2399. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2400. * this_rq is locked.
  2401. */
  2402. static int
  2403. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2404. {
  2405. struct sched_group *group;
  2406. struct rq *busiest = NULL;
  2407. unsigned long imbalance;
  2408. int ld_moved = 0;
  2409. int sd_idle = 0;
  2410. int all_pinned = 0;
  2411. cpumask_t cpus = CPU_MASK_ALL;
  2412. /*
  2413. * When power savings policy is enabled for the parent domain, idle
  2414. * sibling can pick up load irrespective of busy siblings. In this case,
  2415. * let the state of idle sibling percolate up as IDLE, instead of
  2416. * portraying it as CPU_NOT_IDLE.
  2417. */
  2418. if (sd->flags & SD_SHARE_CPUPOWER &&
  2419. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2420. sd_idle = 1;
  2421. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2422. redo:
  2423. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2424. &sd_idle, &cpus, NULL);
  2425. if (!group) {
  2426. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2427. goto out_balanced;
  2428. }
  2429. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2430. &cpus);
  2431. if (!busiest) {
  2432. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2433. goto out_balanced;
  2434. }
  2435. BUG_ON(busiest == this_rq);
  2436. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2437. ld_moved = 0;
  2438. if (busiest->nr_running > 1) {
  2439. /* Attempt to move tasks */
  2440. double_lock_balance(this_rq, busiest);
  2441. /* this_rq->clock is already updated */
  2442. update_rq_clock(busiest);
  2443. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2444. imbalance, sd, CPU_NEWLY_IDLE,
  2445. &all_pinned);
  2446. spin_unlock(&busiest->lock);
  2447. if (unlikely(all_pinned)) {
  2448. cpu_clear(cpu_of(busiest), cpus);
  2449. if (!cpus_empty(cpus))
  2450. goto redo;
  2451. }
  2452. }
  2453. if (!ld_moved) {
  2454. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2455. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2456. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2457. return -1;
  2458. } else
  2459. sd->nr_balance_failed = 0;
  2460. return ld_moved;
  2461. out_balanced:
  2462. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2463. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2464. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2465. return -1;
  2466. sd->nr_balance_failed = 0;
  2467. return 0;
  2468. }
  2469. /*
  2470. * idle_balance is called by schedule() if this_cpu is about to become
  2471. * idle. Attempts to pull tasks from other CPUs.
  2472. */
  2473. static void idle_balance(int this_cpu, struct rq *this_rq)
  2474. {
  2475. struct sched_domain *sd;
  2476. int pulled_task = -1;
  2477. unsigned long next_balance = jiffies + HZ;
  2478. for_each_domain(this_cpu, sd) {
  2479. unsigned long interval;
  2480. if (!(sd->flags & SD_LOAD_BALANCE))
  2481. continue;
  2482. if (sd->flags & SD_BALANCE_NEWIDLE)
  2483. /* If we've pulled tasks over stop searching: */
  2484. pulled_task = load_balance_newidle(this_cpu,
  2485. this_rq, sd);
  2486. interval = msecs_to_jiffies(sd->balance_interval);
  2487. if (time_after(next_balance, sd->last_balance + interval))
  2488. next_balance = sd->last_balance + interval;
  2489. if (pulled_task)
  2490. break;
  2491. }
  2492. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2493. /*
  2494. * We are going idle. next_balance may be set based on
  2495. * a busy processor. So reset next_balance.
  2496. */
  2497. this_rq->next_balance = next_balance;
  2498. }
  2499. }
  2500. /*
  2501. * active_load_balance is run by migration threads. It pushes running tasks
  2502. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2503. * running on each physical CPU where possible, and avoids physical /
  2504. * logical imbalances.
  2505. *
  2506. * Called with busiest_rq locked.
  2507. */
  2508. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2509. {
  2510. int target_cpu = busiest_rq->push_cpu;
  2511. struct sched_domain *sd;
  2512. struct rq *target_rq;
  2513. /* Is there any task to move? */
  2514. if (busiest_rq->nr_running <= 1)
  2515. return;
  2516. target_rq = cpu_rq(target_cpu);
  2517. /*
  2518. * This condition is "impossible", if it occurs
  2519. * we need to fix it. Originally reported by
  2520. * Bjorn Helgaas on a 128-cpu setup.
  2521. */
  2522. BUG_ON(busiest_rq == target_rq);
  2523. /* move a task from busiest_rq to target_rq */
  2524. double_lock_balance(busiest_rq, target_rq);
  2525. update_rq_clock(busiest_rq);
  2526. update_rq_clock(target_rq);
  2527. /* Search for an sd spanning us and the target CPU. */
  2528. for_each_domain(target_cpu, sd) {
  2529. if ((sd->flags & SD_LOAD_BALANCE) &&
  2530. cpu_isset(busiest_cpu, sd->span))
  2531. break;
  2532. }
  2533. if (likely(sd)) {
  2534. schedstat_inc(sd, alb_cnt);
  2535. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2536. sd, CPU_IDLE))
  2537. schedstat_inc(sd, alb_pushed);
  2538. else
  2539. schedstat_inc(sd, alb_failed);
  2540. }
  2541. spin_unlock(&target_rq->lock);
  2542. }
  2543. #ifdef CONFIG_NO_HZ
  2544. static struct {
  2545. atomic_t load_balancer;
  2546. cpumask_t cpu_mask;
  2547. } nohz ____cacheline_aligned = {
  2548. .load_balancer = ATOMIC_INIT(-1),
  2549. .cpu_mask = CPU_MASK_NONE,
  2550. };
  2551. /*
  2552. * This routine will try to nominate the ilb (idle load balancing)
  2553. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2554. * load balancing on behalf of all those cpus. If all the cpus in the system
  2555. * go into this tickless mode, then there will be no ilb owner (as there is
  2556. * no need for one) and all the cpus will sleep till the next wakeup event
  2557. * arrives...
  2558. *
  2559. * For the ilb owner, tick is not stopped. And this tick will be used
  2560. * for idle load balancing. ilb owner will still be part of
  2561. * nohz.cpu_mask..
  2562. *
  2563. * While stopping the tick, this cpu will become the ilb owner if there
  2564. * is no other owner. And will be the owner till that cpu becomes busy
  2565. * or if all cpus in the system stop their ticks at which point
  2566. * there is no need for ilb owner.
  2567. *
  2568. * When the ilb owner becomes busy, it nominates another owner, during the
  2569. * next busy scheduler_tick()
  2570. */
  2571. int select_nohz_load_balancer(int stop_tick)
  2572. {
  2573. int cpu = smp_processor_id();
  2574. if (stop_tick) {
  2575. cpu_set(cpu, nohz.cpu_mask);
  2576. cpu_rq(cpu)->in_nohz_recently = 1;
  2577. /*
  2578. * If we are going offline and still the leader, give up!
  2579. */
  2580. if (cpu_is_offline(cpu) &&
  2581. atomic_read(&nohz.load_balancer) == cpu) {
  2582. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2583. BUG();
  2584. return 0;
  2585. }
  2586. /* time for ilb owner also to sleep */
  2587. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2588. if (atomic_read(&nohz.load_balancer) == cpu)
  2589. atomic_set(&nohz.load_balancer, -1);
  2590. return 0;
  2591. }
  2592. if (atomic_read(&nohz.load_balancer) == -1) {
  2593. /* make me the ilb owner */
  2594. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2595. return 1;
  2596. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2597. return 1;
  2598. } else {
  2599. if (!cpu_isset(cpu, nohz.cpu_mask))
  2600. return 0;
  2601. cpu_clear(cpu, nohz.cpu_mask);
  2602. if (atomic_read(&nohz.load_balancer) == cpu)
  2603. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2604. BUG();
  2605. }
  2606. return 0;
  2607. }
  2608. #endif
  2609. static DEFINE_SPINLOCK(balancing);
  2610. /*
  2611. * It checks each scheduling domain to see if it is due to be balanced,
  2612. * and initiates a balancing operation if so.
  2613. *
  2614. * Balancing parameters are set up in arch_init_sched_domains.
  2615. */
  2616. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2617. {
  2618. int balance = 1;
  2619. struct rq *rq = cpu_rq(cpu);
  2620. unsigned long interval;
  2621. struct sched_domain *sd;
  2622. /* Earliest time when we have to do rebalance again */
  2623. unsigned long next_balance = jiffies + 60*HZ;
  2624. int update_next_balance = 0;
  2625. for_each_domain(cpu, sd) {
  2626. if (!(sd->flags & SD_LOAD_BALANCE))
  2627. continue;
  2628. interval = sd->balance_interval;
  2629. if (idle != CPU_IDLE)
  2630. interval *= sd->busy_factor;
  2631. /* scale ms to jiffies */
  2632. interval = msecs_to_jiffies(interval);
  2633. if (unlikely(!interval))
  2634. interval = 1;
  2635. if (interval > HZ*NR_CPUS/10)
  2636. interval = HZ*NR_CPUS/10;
  2637. if (sd->flags & SD_SERIALIZE) {
  2638. if (!spin_trylock(&balancing))
  2639. goto out;
  2640. }
  2641. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2642. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2643. /*
  2644. * We've pulled tasks over so either we're no
  2645. * longer idle, or one of our SMT siblings is
  2646. * not idle.
  2647. */
  2648. idle = CPU_NOT_IDLE;
  2649. }
  2650. sd->last_balance = jiffies;
  2651. }
  2652. if (sd->flags & SD_SERIALIZE)
  2653. spin_unlock(&balancing);
  2654. out:
  2655. if (time_after(next_balance, sd->last_balance + interval)) {
  2656. next_balance = sd->last_balance + interval;
  2657. update_next_balance = 1;
  2658. }
  2659. /*
  2660. * Stop the load balance at this level. There is another
  2661. * CPU in our sched group which is doing load balancing more
  2662. * actively.
  2663. */
  2664. if (!balance)
  2665. break;
  2666. }
  2667. /*
  2668. * next_balance will be updated only when there is a need.
  2669. * When the cpu is attached to null domain for ex, it will not be
  2670. * updated.
  2671. */
  2672. if (likely(update_next_balance))
  2673. rq->next_balance = next_balance;
  2674. }
  2675. /*
  2676. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2677. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2678. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2679. */
  2680. static void run_rebalance_domains(struct softirq_action *h)
  2681. {
  2682. int this_cpu = smp_processor_id();
  2683. struct rq *this_rq = cpu_rq(this_cpu);
  2684. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2685. CPU_IDLE : CPU_NOT_IDLE;
  2686. rebalance_domains(this_cpu, idle);
  2687. #ifdef CONFIG_NO_HZ
  2688. /*
  2689. * If this cpu is the owner for idle load balancing, then do the
  2690. * balancing on behalf of the other idle cpus whose ticks are
  2691. * stopped.
  2692. */
  2693. if (this_rq->idle_at_tick &&
  2694. atomic_read(&nohz.load_balancer) == this_cpu) {
  2695. cpumask_t cpus = nohz.cpu_mask;
  2696. struct rq *rq;
  2697. int balance_cpu;
  2698. cpu_clear(this_cpu, cpus);
  2699. for_each_cpu_mask(balance_cpu, cpus) {
  2700. /*
  2701. * If this cpu gets work to do, stop the load balancing
  2702. * work being done for other cpus. Next load
  2703. * balancing owner will pick it up.
  2704. */
  2705. if (need_resched())
  2706. break;
  2707. rebalance_domains(balance_cpu, CPU_IDLE);
  2708. rq = cpu_rq(balance_cpu);
  2709. if (time_after(this_rq->next_balance, rq->next_balance))
  2710. this_rq->next_balance = rq->next_balance;
  2711. }
  2712. }
  2713. #endif
  2714. }
  2715. /*
  2716. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2717. *
  2718. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2719. * idle load balancing owner or decide to stop the periodic load balancing,
  2720. * if the whole system is idle.
  2721. */
  2722. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2723. {
  2724. #ifdef CONFIG_NO_HZ
  2725. /*
  2726. * If we were in the nohz mode recently and busy at the current
  2727. * scheduler tick, then check if we need to nominate new idle
  2728. * load balancer.
  2729. */
  2730. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2731. rq->in_nohz_recently = 0;
  2732. if (atomic_read(&nohz.load_balancer) == cpu) {
  2733. cpu_clear(cpu, nohz.cpu_mask);
  2734. atomic_set(&nohz.load_balancer, -1);
  2735. }
  2736. if (atomic_read(&nohz.load_balancer) == -1) {
  2737. /*
  2738. * simple selection for now: Nominate the
  2739. * first cpu in the nohz list to be the next
  2740. * ilb owner.
  2741. *
  2742. * TBD: Traverse the sched domains and nominate
  2743. * the nearest cpu in the nohz.cpu_mask.
  2744. */
  2745. int ilb = first_cpu(nohz.cpu_mask);
  2746. if (ilb != NR_CPUS)
  2747. resched_cpu(ilb);
  2748. }
  2749. }
  2750. /*
  2751. * If this cpu is idle and doing idle load balancing for all the
  2752. * cpus with ticks stopped, is it time for that to stop?
  2753. */
  2754. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2755. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2756. resched_cpu(cpu);
  2757. return;
  2758. }
  2759. /*
  2760. * If this cpu is idle and the idle load balancing is done by
  2761. * someone else, then no need raise the SCHED_SOFTIRQ
  2762. */
  2763. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2764. cpu_isset(cpu, nohz.cpu_mask))
  2765. return;
  2766. #endif
  2767. if (time_after_eq(jiffies, rq->next_balance))
  2768. raise_softirq(SCHED_SOFTIRQ);
  2769. }
  2770. #else /* CONFIG_SMP */
  2771. /*
  2772. * on UP we do not need to balance between CPUs:
  2773. */
  2774. static inline void idle_balance(int cpu, struct rq *rq)
  2775. {
  2776. }
  2777. /* Avoid "used but not defined" warning on UP */
  2778. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2779. unsigned long max_nr_move, unsigned long max_load_move,
  2780. struct sched_domain *sd, enum cpu_idle_type idle,
  2781. int *all_pinned, unsigned long *load_moved,
  2782. int *this_best_prio, struct rq_iterator *iterator)
  2783. {
  2784. *load_moved = 0;
  2785. return 0;
  2786. }
  2787. #endif
  2788. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2789. EXPORT_PER_CPU_SYMBOL(kstat);
  2790. /*
  2791. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2792. * that have not yet been banked in case the task is currently running.
  2793. */
  2794. unsigned long long task_sched_runtime(struct task_struct *p)
  2795. {
  2796. unsigned long flags;
  2797. u64 ns, delta_exec;
  2798. struct rq *rq;
  2799. rq = task_rq_lock(p, &flags);
  2800. ns = p->se.sum_exec_runtime;
  2801. if (rq->curr == p) {
  2802. update_rq_clock(rq);
  2803. delta_exec = rq->clock - p->se.exec_start;
  2804. if ((s64)delta_exec > 0)
  2805. ns += delta_exec;
  2806. }
  2807. task_rq_unlock(rq, &flags);
  2808. return ns;
  2809. }
  2810. /*
  2811. * Account user cpu time to a process.
  2812. * @p: the process that the cpu time gets accounted to
  2813. * @hardirq_offset: the offset to subtract from hardirq_count()
  2814. * @cputime: the cpu time spent in user space since the last update
  2815. */
  2816. void account_user_time(struct task_struct *p, cputime_t cputime)
  2817. {
  2818. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2819. cputime64_t tmp;
  2820. p->utime = cputime_add(p->utime, cputime);
  2821. /* Add user time to cpustat. */
  2822. tmp = cputime_to_cputime64(cputime);
  2823. if (TASK_NICE(p) > 0)
  2824. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2825. else
  2826. cpustat->user = cputime64_add(cpustat->user, tmp);
  2827. }
  2828. /*
  2829. * Account system cpu time to a process.
  2830. * @p: the process that the cpu time gets accounted to
  2831. * @hardirq_offset: the offset to subtract from hardirq_count()
  2832. * @cputime: the cpu time spent in kernel space since the last update
  2833. */
  2834. void account_system_time(struct task_struct *p, int hardirq_offset,
  2835. cputime_t cputime)
  2836. {
  2837. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2838. struct rq *rq = this_rq();
  2839. cputime64_t tmp;
  2840. p->stime = cputime_add(p->stime, cputime);
  2841. /* Add system time to cpustat. */
  2842. tmp = cputime_to_cputime64(cputime);
  2843. if (hardirq_count() - hardirq_offset)
  2844. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2845. else if (softirq_count())
  2846. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2847. else if (p != rq->idle)
  2848. cpustat->system = cputime64_add(cpustat->system, tmp);
  2849. else if (atomic_read(&rq->nr_iowait) > 0)
  2850. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2851. else
  2852. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2853. /* Account for system time used */
  2854. acct_update_integrals(p);
  2855. }
  2856. /*
  2857. * Account for involuntary wait time.
  2858. * @p: the process from which the cpu time has been stolen
  2859. * @steal: the cpu time spent in involuntary wait
  2860. */
  2861. void account_steal_time(struct task_struct *p, cputime_t steal)
  2862. {
  2863. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2864. cputime64_t tmp = cputime_to_cputime64(steal);
  2865. struct rq *rq = this_rq();
  2866. if (p == rq->idle) {
  2867. p->stime = cputime_add(p->stime, steal);
  2868. if (atomic_read(&rq->nr_iowait) > 0)
  2869. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2870. else
  2871. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2872. } else
  2873. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2874. }
  2875. /*
  2876. * This function gets called by the timer code, with HZ frequency.
  2877. * We call it with interrupts disabled.
  2878. *
  2879. * It also gets called by the fork code, when changing the parent's
  2880. * timeslices.
  2881. */
  2882. void scheduler_tick(void)
  2883. {
  2884. int cpu = smp_processor_id();
  2885. struct rq *rq = cpu_rq(cpu);
  2886. struct task_struct *curr = rq->curr;
  2887. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2888. spin_lock(&rq->lock);
  2889. __update_rq_clock(rq);
  2890. /*
  2891. * Let rq->clock advance by at least TICK_NSEC:
  2892. */
  2893. if (unlikely(rq->clock < next_tick))
  2894. rq->clock = next_tick;
  2895. rq->tick_timestamp = rq->clock;
  2896. update_cpu_load(rq);
  2897. if (curr != rq->idle) /* FIXME: needed? */
  2898. curr->sched_class->task_tick(rq, curr);
  2899. spin_unlock(&rq->lock);
  2900. #ifdef CONFIG_SMP
  2901. rq->idle_at_tick = idle_cpu(cpu);
  2902. trigger_load_balance(rq, cpu);
  2903. #endif
  2904. }
  2905. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2906. void fastcall add_preempt_count(int val)
  2907. {
  2908. /*
  2909. * Underflow?
  2910. */
  2911. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2912. return;
  2913. preempt_count() += val;
  2914. /*
  2915. * Spinlock count overflowing soon?
  2916. */
  2917. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2918. PREEMPT_MASK - 10);
  2919. }
  2920. EXPORT_SYMBOL(add_preempt_count);
  2921. void fastcall sub_preempt_count(int val)
  2922. {
  2923. /*
  2924. * Underflow?
  2925. */
  2926. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2927. return;
  2928. /*
  2929. * Is the spinlock portion underflowing?
  2930. */
  2931. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2932. !(preempt_count() & PREEMPT_MASK)))
  2933. return;
  2934. preempt_count() -= val;
  2935. }
  2936. EXPORT_SYMBOL(sub_preempt_count);
  2937. #endif
  2938. /*
  2939. * Print scheduling while atomic bug:
  2940. */
  2941. static noinline void __schedule_bug(struct task_struct *prev)
  2942. {
  2943. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2944. prev->comm, preempt_count(), prev->pid);
  2945. debug_show_held_locks(prev);
  2946. if (irqs_disabled())
  2947. print_irqtrace_events(prev);
  2948. dump_stack();
  2949. }
  2950. /*
  2951. * Various schedule()-time debugging checks and statistics:
  2952. */
  2953. static inline void schedule_debug(struct task_struct *prev)
  2954. {
  2955. /*
  2956. * Test if we are atomic. Since do_exit() needs to call into
  2957. * schedule() atomically, we ignore that path for now.
  2958. * Otherwise, whine if we are scheduling when we should not be.
  2959. */
  2960. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2961. __schedule_bug(prev);
  2962. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2963. schedstat_inc(this_rq(), sched_cnt);
  2964. }
  2965. /*
  2966. * Pick up the highest-prio task:
  2967. */
  2968. static inline struct task_struct *
  2969. pick_next_task(struct rq *rq, struct task_struct *prev)
  2970. {
  2971. struct sched_class *class;
  2972. struct task_struct *p;
  2973. /*
  2974. * Optimization: we know that if all tasks are in
  2975. * the fair class we can call that function directly:
  2976. */
  2977. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2978. p = fair_sched_class.pick_next_task(rq);
  2979. if (likely(p))
  2980. return p;
  2981. }
  2982. class = sched_class_highest;
  2983. for ( ; ; ) {
  2984. p = class->pick_next_task(rq);
  2985. if (p)
  2986. return p;
  2987. /*
  2988. * Will never be NULL as the idle class always
  2989. * returns a non-NULL p:
  2990. */
  2991. class = class->next;
  2992. }
  2993. }
  2994. /*
  2995. * schedule() is the main scheduler function.
  2996. */
  2997. asmlinkage void __sched schedule(void)
  2998. {
  2999. struct task_struct *prev, *next;
  3000. long *switch_count;
  3001. struct rq *rq;
  3002. int cpu;
  3003. need_resched:
  3004. preempt_disable();
  3005. cpu = smp_processor_id();
  3006. rq = cpu_rq(cpu);
  3007. rcu_qsctr_inc(cpu);
  3008. prev = rq->curr;
  3009. switch_count = &prev->nivcsw;
  3010. release_kernel_lock(prev);
  3011. need_resched_nonpreemptible:
  3012. schedule_debug(prev);
  3013. spin_lock_irq(&rq->lock);
  3014. clear_tsk_need_resched(prev);
  3015. __update_rq_clock(rq);
  3016. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3017. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3018. unlikely(signal_pending(prev)))) {
  3019. prev->state = TASK_RUNNING;
  3020. } else {
  3021. deactivate_task(rq, prev, 1);
  3022. }
  3023. switch_count = &prev->nvcsw;
  3024. }
  3025. if (unlikely(!rq->nr_running))
  3026. idle_balance(cpu, rq);
  3027. prev->sched_class->put_prev_task(rq, prev);
  3028. next = pick_next_task(rq, prev);
  3029. sched_info_switch(prev, next);
  3030. if (likely(prev != next)) {
  3031. rq->nr_switches++;
  3032. rq->curr = next;
  3033. ++*switch_count;
  3034. context_switch(rq, prev, next); /* unlocks the rq */
  3035. } else
  3036. spin_unlock_irq(&rq->lock);
  3037. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3038. cpu = smp_processor_id();
  3039. rq = cpu_rq(cpu);
  3040. goto need_resched_nonpreemptible;
  3041. }
  3042. preempt_enable_no_resched();
  3043. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3044. goto need_resched;
  3045. }
  3046. EXPORT_SYMBOL(schedule);
  3047. #ifdef CONFIG_PREEMPT
  3048. /*
  3049. * this is the entry point to schedule() from in-kernel preemption
  3050. * off of preempt_enable. Kernel preemptions off return from interrupt
  3051. * occur there and call schedule directly.
  3052. */
  3053. asmlinkage void __sched preempt_schedule(void)
  3054. {
  3055. struct thread_info *ti = current_thread_info();
  3056. #ifdef CONFIG_PREEMPT_BKL
  3057. struct task_struct *task = current;
  3058. int saved_lock_depth;
  3059. #endif
  3060. /*
  3061. * If there is a non-zero preempt_count or interrupts are disabled,
  3062. * we do not want to preempt the current task. Just return..
  3063. */
  3064. if (likely(ti->preempt_count || irqs_disabled()))
  3065. return;
  3066. need_resched:
  3067. add_preempt_count(PREEMPT_ACTIVE);
  3068. /*
  3069. * We keep the big kernel semaphore locked, but we
  3070. * clear ->lock_depth so that schedule() doesnt
  3071. * auto-release the semaphore:
  3072. */
  3073. #ifdef CONFIG_PREEMPT_BKL
  3074. saved_lock_depth = task->lock_depth;
  3075. task->lock_depth = -1;
  3076. #endif
  3077. schedule();
  3078. #ifdef CONFIG_PREEMPT_BKL
  3079. task->lock_depth = saved_lock_depth;
  3080. #endif
  3081. sub_preempt_count(PREEMPT_ACTIVE);
  3082. /* we could miss a preemption opportunity between schedule and now */
  3083. barrier();
  3084. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3085. goto need_resched;
  3086. }
  3087. EXPORT_SYMBOL(preempt_schedule);
  3088. /*
  3089. * this is the entry point to schedule() from kernel preemption
  3090. * off of irq context.
  3091. * Note, that this is called and return with irqs disabled. This will
  3092. * protect us against recursive calling from irq.
  3093. */
  3094. asmlinkage void __sched preempt_schedule_irq(void)
  3095. {
  3096. struct thread_info *ti = current_thread_info();
  3097. #ifdef CONFIG_PREEMPT_BKL
  3098. struct task_struct *task = current;
  3099. int saved_lock_depth;
  3100. #endif
  3101. /* Catch callers which need to be fixed */
  3102. BUG_ON(ti->preempt_count || !irqs_disabled());
  3103. need_resched:
  3104. add_preempt_count(PREEMPT_ACTIVE);
  3105. /*
  3106. * We keep the big kernel semaphore locked, but we
  3107. * clear ->lock_depth so that schedule() doesnt
  3108. * auto-release the semaphore:
  3109. */
  3110. #ifdef CONFIG_PREEMPT_BKL
  3111. saved_lock_depth = task->lock_depth;
  3112. task->lock_depth = -1;
  3113. #endif
  3114. local_irq_enable();
  3115. schedule();
  3116. local_irq_disable();
  3117. #ifdef CONFIG_PREEMPT_BKL
  3118. task->lock_depth = saved_lock_depth;
  3119. #endif
  3120. sub_preempt_count(PREEMPT_ACTIVE);
  3121. /* we could miss a preemption opportunity between schedule and now */
  3122. barrier();
  3123. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3124. goto need_resched;
  3125. }
  3126. #endif /* CONFIG_PREEMPT */
  3127. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3128. void *key)
  3129. {
  3130. return try_to_wake_up(curr->private, mode, sync);
  3131. }
  3132. EXPORT_SYMBOL(default_wake_function);
  3133. /*
  3134. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3135. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3136. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3137. *
  3138. * There are circumstances in which we can try to wake a task which has already
  3139. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3140. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3141. */
  3142. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3143. int nr_exclusive, int sync, void *key)
  3144. {
  3145. struct list_head *tmp, *next;
  3146. list_for_each_safe(tmp, next, &q->task_list) {
  3147. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3148. unsigned flags = curr->flags;
  3149. if (curr->func(curr, mode, sync, key) &&
  3150. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3151. break;
  3152. }
  3153. }
  3154. /**
  3155. * __wake_up - wake up threads blocked on a waitqueue.
  3156. * @q: the waitqueue
  3157. * @mode: which threads
  3158. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3159. * @key: is directly passed to the wakeup function
  3160. */
  3161. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3162. int nr_exclusive, void *key)
  3163. {
  3164. unsigned long flags;
  3165. spin_lock_irqsave(&q->lock, flags);
  3166. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3167. spin_unlock_irqrestore(&q->lock, flags);
  3168. }
  3169. EXPORT_SYMBOL(__wake_up);
  3170. /*
  3171. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3172. */
  3173. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3174. {
  3175. __wake_up_common(q, mode, 1, 0, NULL);
  3176. }
  3177. /**
  3178. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3179. * @q: the waitqueue
  3180. * @mode: which threads
  3181. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3182. *
  3183. * The sync wakeup differs that the waker knows that it will schedule
  3184. * away soon, so while the target thread will be woken up, it will not
  3185. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3186. * with each other. This can prevent needless bouncing between CPUs.
  3187. *
  3188. * On UP it can prevent extra preemption.
  3189. */
  3190. void fastcall
  3191. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3192. {
  3193. unsigned long flags;
  3194. int sync = 1;
  3195. if (unlikely(!q))
  3196. return;
  3197. if (unlikely(!nr_exclusive))
  3198. sync = 0;
  3199. spin_lock_irqsave(&q->lock, flags);
  3200. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3201. spin_unlock_irqrestore(&q->lock, flags);
  3202. }
  3203. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3204. void fastcall complete(struct completion *x)
  3205. {
  3206. unsigned long flags;
  3207. spin_lock_irqsave(&x->wait.lock, flags);
  3208. x->done++;
  3209. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3210. 1, 0, NULL);
  3211. spin_unlock_irqrestore(&x->wait.lock, flags);
  3212. }
  3213. EXPORT_SYMBOL(complete);
  3214. void fastcall complete_all(struct completion *x)
  3215. {
  3216. unsigned long flags;
  3217. spin_lock_irqsave(&x->wait.lock, flags);
  3218. x->done += UINT_MAX/2;
  3219. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3220. 0, 0, NULL);
  3221. spin_unlock_irqrestore(&x->wait.lock, flags);
  3222. }
  3223. EXPORT_SYMBOL(complete_all);
  3224. void fastcall __sched wait_for_completion(struct completion *x)
  3225. {
  3226. might_sleep();
  3227. spin_lock_irq(&x->wait.lock);
  3228. if (!x->done) {
  3229. DECLARE_WAITQUEUE(wait, current);
  3230. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3231. __add_wait_queue_tail(&x->wait, &wait);
  3232. do {
  3233. __set_current_state(TASK_UNINTERRUPTIBLE);
  3234. spin_unlock_irq(&x->wait.lock);
  3235. schedule();
  3236. spin_lock_irq(&x->wait.lock);
  3237. } while (!x->done);
  3238. __remove_wait_queue(&x->wait, &wait);
  3239. }
  3240. x->done--;
  3241. spin_unlock_irq(&x->wait.lock);
  3242. }
  3243. EXPORT_SYMBOL(wait_for_completion);
  3244. unsigned long fastcall __sched
  3245. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3246. {
  3247. might_sleep();
  3248. spin_lock_irq(&x->wait.lock);
  3249. if (!x->done) {
  3250. DECLARE_WAITQUEUE(wait, current);
  3251. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3252. __add_wait_queue_tail(&x->wait, &wait);
  3253. do {
  3254. __set_current_state(TASK_UNINTERRUPTIBLE);
  3255. spin_unlock_irq(&x->wait.lock);
  3256. timeout = schedule_timeout(timeout);
  3257. spin_lock_irq(&x->wait.lock);
  3258. if (!timeout) {
  3259. __remove_wait_queue(&x->wait, &wait);
  3260. goto out;
  3261. }
  3262. } while (!x->done);
  3263. __remove_wait_queue(&x->wait, &wait);
  3264. }
  3265. x->done--;
  3266. out:
  3267. spin_unlock_irq(&x->wait.lock);
  3268. return timeout;
  3269. }
  3270. EXPORT_SYMBOL(wait_for_completion_timeout);
  3271. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3272. {
  3273. int ret = 0;
  3274. might_sleep();
  3275. spin_lock_irq(&x->wait.lock);
  3276. if (!x->done) {
  3277. DECLARE_WAITQUEUE(wait, current);
  3278. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3279. __add_wait_queue_tail(&x->wait, &wait);
  3280. do {
  3281. if (signal_pending(current)) {
  3282. ret = -ERESTARTSYS;
  3283. __remove_wait_queue(&x->wait, &wait);
  3284. goto out;
  3285. }
  3286. __set_current_state(TASK_INTERRUPTIBLE);
  3287. spin_unlock_irq(&x->wait.lock);
  3288. schedule();
  3289. spin_lock_irq(&x->wait.lock);
  3290. } while (!x->done);
  3291. __remove_wait_queue(&x->wait, &wait);
  3292. }
  3293. x->done--;
  3294. out:
  3295. spin_unlock_irq(&x->wait.lock);
  3296. return ret;
  3297. }
  3298. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3299. unsigned long fastcall __sched
  3300. wait_for_completion_interruptible_timeout(struct completion *x,
  3301. unsigned long timeout)
  3302. {
  3303. might_sleep();
  3304. spin_lock_irq(&x->wait.lock);
  3305. if (!x->done) {
  3306. DECLARE_WAITQUEUE(wait, current);
  3307. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3308. __add_wait_queue_tail(&x->wait, &wait);
  3309. do {
  3310. if (signal_pending(current)) {
  3311. timeout = -ERESTARTSYS;
  3312. __remove_wait_queue(&x->wait, &wait);
  3313. goto out;
  3314. }
  3315. __set_current_state(TASK_INTERRUPTIBLE);
  3316. spin_unlock_irq(&x->wait.lock);
  3317. timeout = schedule_timeout(timeout);
  3318. spin_lock_irq(&x->wait.lock);
  3319. if (!timeout) {
  3320. __remove_wait_queue(&x->wait, &wait);
  3321. goto out;
  3322. }
  3323. } while (!x->done);
  3324. __remove_wait_queue(&x->wait, &wait);
  3325. }
  3326. x->done--;
  3327. out:
  3328. spin_unlock_irq(&x->wait.lock);
  3329. return timeout;
  3330. }
  3331. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3332. static inline void
  3333. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3334. {
  3335. spin_lock_irqsave(&q->lock, *flags);
  3336. __add_wait_queue(q, wait);
  3337. spin_unlock(&q->lock);
  3338. }
  3339. static inline void
  3340. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3341. {
  3342. spin_lock_irq(&q->lock);
  3343. __remove_wait_queue(q, wait);
  3344. spin_unlock_irqrestore(&q->lock, *flags);
  3345. }
  3346. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3347. {
  3348. unsigned long flags;
  3349. wait_queue_t wait;
  3350. init_waitqueue_entry(&wait, current);
  3351. current->state = TASK_INTERRUPTIBLE;
  3352. sleep_on_head(q, &wait, &flags);
  3353. schedule();
  3354. sleep_on_tail(q, &wait, &flags);
  3355. }
  3356. EXPORT_SYMBOL(interruptible_sleep_on);
  3357. long __sched
  3358. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3359. {
  3360. unsigned long flags;
  3361. wait_queue_t wait;
  3362. init_waitqueue_entry(&wait, current);
  3363. current->state = TASK_INTERRUPTIBLE;
  3364. sleep_on_head(q, &wait, &flags);
  3365. timeout = schedule_timeout(timeout);
  3366. sleep_on_tail(q, &wait, &flags);
  3367. return timeout;
  3368. }
  3369. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3370. void __sched sleep_on(wait_queue_head_t *q)
  3371. {
  3372. unsigned long flags;
  3373. wait_queue_t wait;
  3374. init_waitqueue_entry(&wait, current);
  3375. current->state = TASK_UNINTERRUPTIBLE;
  3376. sleep_on_head(q, &wait, &flags);
  3377. schedule();
  3378. sleep_on_tail(q, &wait, &flags);
  3379. }
  3380. EXPORT_SYMBOL(sleep_on);
  3381. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3382. {
  3383. unsigned long flags;
  3384. wait_queue_t wait;
  3385. init_waitqueue_entry(&wait, current);
  3386. current->state = TASK_UNINTERRUPTIBLE;
  3387. sleep_on_head(q, &wait, &flags);
  3388. timeout = schedule_timeout(timeout);
  3389. sleep_on_tail(q, &wait, &flags);
  3390. return timeout;
  3391. }
  3392. EXPORT_SYMBOL(sleep_on_timeout);
  3393. #ifdef CONFIG_RT_MUTEXES
  3394. /*
  3395. * rt_mutex_setprio - set the current priority of a task
  3396. * @p: task
  3397. * @prio: prio value (kernel-internal form)
  3398. *
  3399. * This function changes the 'effective' priority of a task. It does
  3400. * not touch ->normal_prio like __setscheduler().
  3401. *
  3402. * Used by the rt_mutex code to implement priority inheritance logic.
  3403. */
  3404. void rt_mutex_setprio(struct task_struct *p, int prio)
  3405. {
  3406. unsigned long flags;
  3407. int oldprio, on_rq;
  3408. struct rq *rq;
  3409. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3410. rq = task_rq_lock(p, &flags);
  3411. update_rq_clock(rq);
  3412. oldprio = p->prio;
  3413. on_rq = p->se.on_rq;
  3414. if (on_rq)
  3415. dequeue_task(rq, p, 0);
  3416. if (rt_prio(prio))
  3417. p->sched_class = &rt_sched_class;
  3418. else
  3419. p->sched_class = &fair_sched_class;
  3420. p->prio = prio;
  3421. if (on_rq) {
  3422. enqueue_task(rq, p, 0);
  3423. /*
  3424. * Reschedule if we are currently running on this runqueue and
  3425. * our priority decreased, or if we are not currently running on
  3426. * this runqueue and our priority is higher than the current's
  3427. */
  3428. if (task_running(rq, p)) {
  3429. if (p->prio > oldprio)
  3430. resched_task(rq->curr);
  3431. } else {
  3432. check_preempt_curr(rq, p);
  3433. }
  3434. }
  3435. task_rq_unlock(rq, &flags);
  3436. }
  3437. #endif
  3438. void set_user_nice(struct task_struct *p, long nice)
  3439. {
  3440. int old_prio, delta, on_rq;
  3441. unsigned long flags;
  3442. struct rq *rq;
  3443. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3444. return;
  3445. /*
  3446. * We have to be careful, if called from sys_setpriority(),
  3447. * the task might be in the middle of scheduling on another CPU.
  3448. */
  3449. rq = task_rq_lock(p, &flags);
  3450. update_rq_clock(rq);
  3451. /*
  3452. * The RT priorities are set via sched_setscheduler(), but we still
  3453. * allow the 'normal' nice value to be set - but as expected
  3454. * it wont have any effect on scheduling until the task is
  3455. * SCHED_FIFO/SCHED_RR:
  3456. */
  3457. if (task_has_rt_policy(p)) {
  3458. p->static_prio = NICE_TO_PRIO(nice);
  3459. goto out_unlock;
  3460. }
  3461. on_rq = p->se.on_rq;
  3462. if (on_rq) {
  3463. dequeue_task(rq, p, 0);
  3464. dec_load(rq, p);
  3465. }
  3466. p->static_prio = NICE_TO_PRIO(nice);
  3467. set_load_weight(p);
  3468. old_prio = p->prio;
  3469. p->prio = effective_prio(p);
  3470. delta = p->prio - old_prio;
  3471. if (on_rq) {
  3472. enqueue_task(rq, p, 0);
  3473. inc_load(rq, p);
  3474. /*
  3475. * If the task increased its priority or is running and
  3476. * lowered its priority, then reschedule its CPU:
  3477. */
  3478. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3479. resched_task(rq->curr);
  3480. }
  3481. out_unlock:
  3482. task_rq_unlock(rq, &flags);
  3483. }
  3484. EXPORT_SYMBOL(set_user_nice);
  3485. /*
  3486. * can_nice - check if a task can reduce its nice value
  3487. * @p: task
  3488. * @nice: nice value
  3489. */
  3490. int can_nice(const struct task_struct *p, const int nice)
  3491. {
  3492. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3493. int nice_rlim = 20 - nice;
  3494. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3495. capable(CAP_SYS_NICE));
  3496. }
  3497. #ifdef __ARCH_WANT_SYS_NICE
  3498. /*
  3499. * sys_nice - change the priority of the current process.
  3500. * @increment: priority increment
  3501. *
  3502. * sys_setpriority is a more generic, but much slower function that
  3503. * does similar things.
  3504. */
  3505. asmlinkage long sys_nice(int increment)
  3506. {
  3507. long nice, retval;
  3508. /*
  3509. * Setpriority might change our priority at the same moment.
  3510. * We don't have to worry. Conceptually one call occurs first
  3511. * and we have a single winner.
  3512. */
  3513. if (increment < -40)
  3514. increment = -40;
  3515. if (increment > 40)
  3516. increment = 40;
  3517. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3518. if (nice < -20)
  3519. nice = -20;
  3520. if (nice > 19)
  3521. nice = 19;
  3522. if (increment < 0 && !can_nice(current, nice))
  3523. return -EPERM;
  3524. retval = security_task_setnice(current, nice);
  3525. if (retval)
  3526. return retval;
  3527. set_user_nice(current, nice);
  3528. return 0;
  3529. }
  3530. #endif
  3531. /**
  3532. * task_prio - return the priority value of a given task.
  3533. * @p: the task in question.
  3534. *
  3535. * This is the priority value as seen by users in /proc.
  3536. * RT tasks are offset by -200. Normal tasks are centered
  3537. * around 0, value goes from -16 to +15.
  3538. */
  3539. int task_prio(const struct task_struct *p)
  3540. {
  3541. return p->prio - MAX_RT_PRIO;
  3542. }
  3543. /**
  3544. * task_nice - return the nice value of a given task.
  3545. * @p: the task in question.
  3546. */
  3547. int task_nice(const struct task_struct *p)
  3548. {
  3549. return TASK_NICE(p);
  3550. }
  3551. EXPORT_SYMBOL_GPL(task_nice);
  3552. /**
  3553. * idle_cpu - is a given cpu idle currently?
  3554. * @cpu: the processor in question.
  3555. */
  3556. int idle_cpu(int cpu)
  3557. {
  3558. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3559. }
  3560. /**
  3561. * idle_task - return the idle task for a given cpu.
  3562. * @cpu: the processor in question.
  3563. */
  3564. struct task_struct *idle_task(int cpu)
  3565. {
  3566. return cpu_rq(cpu)->idle;
  3567. }
  3568. /**
  3569. * find_process_by_pid - find a process with a matching PID value.
  3570. * @pid: the pid in question.
  3571. */
  3572. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3573. {
  3574. return pid ? find_task_by_pid(pid) : current;
  3575. }
  3576. /* Actually do priority change: must hold rq lock. */
  3577. static void
  3578. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3579. {
  3580. BUG_ON(p->se.on_rq);
  3581. p->policy = policy;
  3582. switch (p->policy) {
  3583. case SCHED_NORMAL:
  3584. case SCHED_BATCH:
  3585. case SCHED_IDLE:
  3586. p->sched_class = &fair_sched_class;
  3587. break;
  3588. case SCHED_FIFO:
  3589. case SCHED_RR:
  3590. p->sched_class = &rt_sched_class;
  3591. break;
  3592. }
  3593. p->rt_priority = prio;
  3594. p->normal_prio = normal_prio(p);
  3595. /* we are holding p->pi_lock already */
  3596. p->prio = rt_mutex_getprio(p);
  3597. set_load_weight(p);
  3598. }
  3599. /**
  3600. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3601. * @p: the task in question.
  3602. * @policy: new policy.
  3603. * @param: structure containing the new RT priority.
  3604. *
  3605. * NOTE that the task may be already dead.
  3606. */
  3607. int sched_setscheduler(struct task_struct *p, int policy,
  3608. struct sched_param *param)
  3609. {
  3610. int retval, oldprio, oldpolicy = -1, on_rq;
  3611. unsigned long flags;
  3612. struct rq *rq;
  3613. /* may grab non-irq protected spin_locks */
  3614. BUG_ON(in_interrupt());
  3615. recheck:
  3616. /* double check policy once rq lock held */
  3617. if (policy < 0)
  3618. policy = oldpolicy = p->policy;
  3619. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3620. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3621. policy != SCHED_IDLE)
  3622. return -EINVAL;
  3623. /*
  3624. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3625. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3626. * SCHED_BATCH and SCHED_IDLE is 0.
  3627. */
  3628. if (param->sched_priority < 0 ||
  3629. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3630. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3631. return -EINVAL;
  3632. if (rt_policy(policy) != (param->sched_priority != 0))
  3633. return -EINVAL;
  3634. /*
  3635. * Allow unprivileged RT tasks to decrease priority:
  3636. */
  3637. if (!capable(CAP_SYS_NICE)) {
  3638. if (rt_policy(policy)) {
  3639. unsigned long rlim_rtprio;
  3640. if (!lock_task_sighand(p, &flags))
  3641. return -ESRCH;
  3642. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3643. unlock_task_sighand(p, &flags);
  3644. /* can't set/change the rt policy */
  3645. if (policy != p->policy && !rlim_rtprio)
  3646. return -EPERM;
  3647. /* can't increase priority */
  3648. if (param->sched_priority > p->rt_priority &&
  3649. param->sched_priority > rlim_rtprio)
  3650. return -EPERM;
  3651. }
  3652. /*
  3653. * Like positive nice levels, dont allow tasks to
  3654. * move out of SCHED_IDLE either:
  3655. */
  3656. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3657. return -EPERM;
  3658. /* can't change other user's priorities */
  3659. if ((current->euid != p->euid) &&
  3660. (current->euid != p->uid))
  3661. return -EPERM;
  3662. }
  3663. retval = security_task_setscheduler(p, policy, param);
  3664. if (retval)
  3665. return retval;
  3666. /*
  3667. * make sure no PI-waiters arrive (or leave) while we are
  3668. * changing the priority of the task:
  3669. */
  3670. spin_lock_irqsave(&p->pi_lock, flags);
  3671. /*
  3672. * To be able to change p->policy safely, the apropriate
  3673. * runqueue lock must be held.
  3674. */
  3675. rq = __task_rq_lock(p);
  3676. /* recheck policy now with rq lock held */
  3677. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3678. policy = oldpolicy = -1;
  3679. __task_rq_unlock(rq);
  3680. spin_unlock_irqrestore(&p->pi_lock, flags);
  3681. goto recheck;
  3682. }
  3683. update_rq_clock(rq);
  3684. on_rq = p->se.on_rq;
  3685. if (on_rq)
  3686. deactivate_task(rq, p, 0);
  3687. oldprio = p->prio;
  3688. __setscheduler(rq, p, policy, param->sched_priority);
  3689. if (on_rq) {
  3690. activate_task(rq, p, 0);
  3691. /*
  3692. * Reschedule if we are currently running on this runqueue and
  3693. * our priority decreased, or if we are not currently running on
  3694. * this runqueue and our priority is higher than the current's
  3695. */
  3696. if (task_running(rq, p)) {
  3697. if (p->prio > oldprio)
  3698. resched_task(rq->curr);
  3699. } else {
  3700. check_preempt_curr(rq, p);
  3701. }
  3702. }
  3703. __task_rq_unlock(rq);
  3704. spin_unlock_irqrestore(&p->pi_lock, flags);
  3705. rt_mutex_adjust_pi(p);
  3706. return 0;
  3707. }
  3708. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3709. static int
  3710. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3711. {
  3712. struct sched_param lparam;
  3713. struct task_struct *p;
  3714. int retval;
  3715. if (!param || pid < 0)
  3716. return -EINVAL;
  3717. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3718. return -EFAULT;
  3719. rcu_read_lock();
  3720. retval = -ESRCH;
  3721. p = find_process_by_pid(pid);
  3722. if (p != NULL)
  3723. retval = sched_setscheduler(p, policy, &lparam);
  3724. rcu_read_unlock();
  3725. return retval;
  3726. }
  3727. /**
  3728. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3729. * @pid: the pid in question.
  3730. * @policy: new policy.
  3731. * @param: structure containing the new RT priority.
  3732. */
  3733. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3734. struct sched_param __user *param)
  3735. {
  3736. /* negative values for policy are not valid */
  3737. if (policy < 0)
  3738. return -EINVAL;
  3739. return do_sched_setscheduler(pid, policy, param);
  3740. }
  3741. /**
  3742. * sys_sched_setparam - set/change the RT priority of a thread
  3743. * @pid: the pid in question.
  3744. * @param: structure containing the new RT priority.
  3745. */
  3746. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3747. {
  3748. return do_sched_setscheduler(pid, -1, param);
  3749. }
  3750. /**
  3751. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3752. * @pid: the pid in question.
  3753. */
  3754. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3755. {
  3756. struct task_struct *p;
  3757. int retval = -EINVAL;
  3758. if (pid < 0)
  3759. goto out_nounlock;
  3760. retval = -ESRCH;
  3761. read_lock(&tasklist_lock);
  3762. p = find_process_by_pid(pid);
  3763. if (p) {
  3764. retval = security_task_getscheduler(p);
  3765. if (!retval)
  3766. retval = p->policy;
  3767. }
  3768. read_unlock(&tasklist_lock);
  3769. out_nounlock:
  3770. return retval;
  3771. }
  3772. /**
  3773. * sys_sched_getscheduler - get the RT priority of a thread
  3774. * @pid: the pid in question.
  3775. * @param: structure containing the RT priority.
  3776. */
  3777. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3778. {
  3779. struct sched_param lp;
  3780. struct task_struct *p;
  3781. int retval = -EINVAL;
  3782. if (!param || pid < 0)
  3783. goto out_nounlock;
  3784. read_lock(&tasklist_lock);
  3785. p = find_process_by_pid(pid);
  3786. retval = -ESRCH;
  3787. if (!p)
  3788. goto out_unlock;
  3789. retval = security_task_getscheduler(p);
  3790. if (retval)
  3791. goto out_unlock;
  3792. lp.sched_priority = p->rt_priority;
  3793. read_unlock(&tasklist_lock);
  3794. /*
  3795. * This one might sleep, we cannot do it with a spinlock held ...
  3796. */
  3797. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3798. out_nounlock:
  3799. return retval;
  3800. out_unlock:
  3801. read_unlock(&tasklist_lock);
  3802. return retval;
  3803. }
  3804. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3805. {
  3806. cpumask_t cpus_allowed;
  3807. struct task_struct *p;
  3808. int retval;
  3809. mutex_lock(&sched_hotcpu_mutex);
  3810. read_lock(&tasklist_lock);
  3811. p = find_process_by_pid(pid);
  3812. if (!p) {
  3813. read_unlock(&tasklist_lock);
  3814. mutex_unlock(&sched_hotcpu_mutex);
  3815. return -ESRCH;
  3816. }
  3817. /*
  3818. * It is not safe to call set_cpus_allowed with the
  3819. * tasklist_lock held. We will bump the task_struct's
  3820. * usage count and then drop tasklist_lock.
  3821. */
  3822. get_task_struct(p);
  3823. read_unlock(&tasklist_lock);
  3824. retval = -EPERM;
  3825. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3826. !capable(CAP_SYS_NICE))
  3827. goto out_unlock;
  3828. retval = security_task_setscheduler(p, 0, NULL);
  3829. if (retval)
  3830. goto out_unlock;
  3831. cpus_allowed = cpuset_cpus_allowed(p);
  3832. cpus_and(new_mask, new_mask, cpus_allowed);
  3833. retval = set_cpus_allowed(p, new_mask);
  3834. out_unlock:
  3835. put_task_struct(p);
  3836. mutex_unlock(&sched_hotcpu_mutex);
  3837. return retval;
  3838. }
  3839. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3840. cpumask_t *new_mask)
  3841. {
  3842. if (len < sizeof(cpumask_t)) {
  3843. memset(new_mask, 0, sizeof(cpumask_t));
  3844. } else if (len > sizeof(cpumask_t)) {
  3845. len = sizeof(cpumask_t);
  3846. }
  3847. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3848. }
  3849. /**
  3850. * sys_sched_setaffinity - set the cpu affinity of a process
  3851. * @pid: pid of the process
  3852. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3853. * @user_mask_ptr: user-space pointer to the new cpu mask
  3854. */
  3855. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3856. unsigned long __user *user_mask_ptr)
  3857. {
  3858. cpumask_t new_mask;
  3859. int retval;
  3860. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3861. if (retval)
  3862. return retval;
  3863. return sched_setaffinity(pid, new_mask);
  3864. }
  3865. /*
  3866. * Represents all cpu's present in the system
  3867. * In systems capable of hotplug, this map could dynamically grow
  3868. * as new cpu's are detected in the system via any platform specific
  3869. * method, such as ACPI for e.g.
  3870. */
  3871. cpumask_t cpu_present_map __read_mostly;
  3872. EXPORT_SYMBOL(cpu_present_map);
  3873. #ifndef CONFIG_SMP
  3874. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3875. EXPORT_SYMBOL(cpu_online_map);
  3876. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3877. EXPORT_SYMBOL(cpu_possible_map);
  3878. #endif
  3879. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3880. {
  3881. struct task_struct *p;
  3882. int retval;
  3883. mutex_lock(&sched_hotcpu_mutex);
  3884. read_lock(&tasklist_lock);
  3885. retval = -ESRCH;
  3886. p = find_process_by_pid(pid);
  3887. if (!p)
  3888. goto out_unlock;
  3889. retval = security_task_getscheduler(p);
  3890. if (retval)
  3891. goto out_unlock;
  3892. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3893. out_unlock:
  3894. read_unlock(&tasklist_lock);
  3895. mutex_unlock(&sched_hotcpu_mutex);
  3896. return retval;
  3897. }
  3898. /**
  3899. * sys_sched_getaffinity - get the cpu affinity of a process
  3900. * @pid: pid of the process
  3901. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3902. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3903. */
  3904. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3905. unsigned long __user *user_mask_ptr)
  3906. {
  3907. int ret;
  3908. cpumask_t mask;
  3909. if (len < sizeof(cpumask_t))
  3910. return -EINVAL;
  3911. ret = sched_getaffinity(pid, &mask);
  3912. if (ret < 0)
  3913. return ret;
  3914. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3915. return -EFAULT;
  3916. return sizeof(cpumask_t);
  3917. }
  3918. /**
  3919. * sys_sched_yield - yield the current processor to other threads.
  3920. *
  3921. * This function yields the current CPU to other tasks. If there are no
  3922. * other threads running on this CPU then this function will return.
  3923. */
  3924. asmlinkage long sys_sched_yield(void)
  3925. {
  3926. struct rq *rq = this_rq_lock();
  3927. schedstat_inc(rq, yld_cnt);
  3928. current->sched_class->yield_task(rq, current);
  3929. /*
  3930. * Since we are going to call schedule() anyway, there's
  3931. * no need to preempt or enable interrupts:
  3932. */
  3933. __release(rq->lock);
  3934. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3935. _raw_spin_unlock(&rq->lock);
  3936. preempt_enable_no_resched();
  3937. schedule();
  3938. return 0;
  3939. }
  3940. static void __cond_resched(void)
  3941. {
  3942. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3943. __might_sleep(__FILE__, __LINE__);
  3944. #endif
  3945. /*
  3946. * The BKS might be reacquired before we have dropped
  3947. * PREEMPT_ACTIVE, which could trigger a second
  3948. * cond_resched() call.
  3949. */
  3950. do {
  3951. add_preempt_count(PREEMPT_ACTIVE);
  3952. schedule();
  3953. sub_preempt_count(PREEMPT_ACTIVE);
  3954. } while (need_resched());
  3955. }
  3956. int __sched cond_resched(void)
  3957. {
  3958. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3959. system_state == SYSTEM_RUNNING) {
  3960. __cond_resched();
  3961. return 1;
  3962. }
  3963. return 0;
  3964. }
  3965. EXPORT_SYMBOL(cond_resched);
  3966. /*
  3967. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3968. * call schedule, and on return reacquire the lock.
  3969. *
  3970. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3971. * operations here to prevent schedule() from being called twice (once via
  3972. * spin_unlock(), once by hand).
  3973. */
  3974. int cond_resched_lock(spinlock_t *lock)
  3975. {
  3976. int ret = 0;
  3977. if (need_lockbreak(lock)) {
  3978. spin_unlock(lock);
  3979. cpu_relax();
  3980. ret = 1;
  3981. spin_lock(lock);
  3982. }
  3983. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3984. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3985. _raw_spin_unlock(lock);
  3986. preempt_enable_no_resched();
  3987. __cond_resched();
  3988. ret = 1;
  3989. spin_lock(lock);
  3990. }
  3991. return ret;
  3992. }
  3993. EXPORT_SYMBOL(cond_resched_lock);
  3994. int __sched cond_resched_softirq(void)
  3995. {
  3996. BUG_ON(!in_softirq());
  3997. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3998. local_bh_enable();
  3999. __cond_resched();
  4000. local_bh_disable();
  4001. return 1;
  4002. }
  4003. return 0;
  4004. }
  4005. EXPORT_SYMBOL(cond_resched_softirq);
  4006. /**
  4007. * yield - yield the current processor to other threads.
  4008. *
  4009. * This is a shortcut for kernel-space yielding - it marks the
  4010. * thread runnable and calls sys_sched_yield().
  4011. */
  4012. void __sched yield(void)
  4013. {
  4014. set_current_state(TASK_RUNNING);
  4015. sys_sched_yield();
  4016. }
  4017. EXPORT_SYMBOL(yield);
  4018. /*
  4019. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4020. * that process accounting knows that this is a task in IO wait state.
  4021. *
  4022. * But don't do that if it is a deliberate, throttling IO wait (this task
  4023. * has set its backing_dev_info: the queue against which it should throttle)
  4024. */
  4025. void __sched io_schedule(void)
  4026. {
  4027. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4028. delayacct_blkio_start();
  4029. atomic_inc(&rq->nr_iowait);
  4030. schedule();
  4031. atomic_dec(&rq->nr_iowait);
  4032. delayacct_blkio_end();
  4033. }
  4034. EXPORT_SYMBOL(io_schedule);
  4035. long __sched io_schedule_timeout(long timeout)
  4036. {
  4037. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4038. long ret;
  4039. delayacct_blkio_start();
  4040. atomic_inc(&rq->nr_iowait);
  4041. ret = schedule_timeout(timeout);
  4042. atomic_dec(&rq->nr_iowait);
  4043. delayacct_blkio_end();
  4044. return ret;
  4045. }
  4046. /**
  4047. * sys_sched_get_priority_max - return maximum RT priority.
  4048. * @policy: scheduling class.
  4049. *
  4050. * this syscall returns the maximum rt_priority that can be used
  4051. * by a given scheduling class.
  4052. */
  4053. asmlinkage long sys_sched_get_priority_max(int policy)
  4054. {
  4055. int ret = -EINVAL;
  4056. switch (policy) {
  4057. case SCHED_FIFO:
  4058. case SCHED_RR:
  4059. ret = MAX_USER_RT_PRIO-1;
  4060. break;
  4061. case SCHED_NORMAL:
  4062. case SCHED_BATCH:
  4063. case SCHED_IDLE:
  4064. ret = 0;
  4065. break;
  4066. }
  4067. return ret;
  4068. }
  4069. /**
  4070. * sys_sched_get_priority_min - return minimum RT priority.
  4071. * @policy: scheduling class.
  4072. *
  4073. * this syscall returns the minimum rt_priority that can be used
  4074. * by a given scheduling class.
  4075. */
  4076. asmlinkage long sys_sched_get_priority_min(int policy)
  4077. {
  4078. int ret = -EINVAL;
  4079. switch (policy) {
  4080. case SCHED_FIFO:
  4081. case SCHED_RR:
  4082. ret = 1;
  4083. break;
  4084. case SCHED_NORMAL:
  4085. case SCHED_BATCH:
  4086. case SCHED_IDLE:
  4087. ret = 0;
  4088. }
  4089. return ret;
  4090. }
  4091. /**
  4092. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4093. * @pid: pid of the process.
  4094. * @interval: userspace pointer to the timeslice value.
  4095. *
  4096. * this syscall writes the default timeslice value of a given process
  4097. * into the user-space timespec buffer. A value of '0' means infinity.
  4098. */
  4099. asmlinkage
  4100. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4101. {
  4102. struct task_struct *p;
  4103. int retval = -EINVAL;
  4104. struct timespec t;
  4105. if (pid < 0)
  4106. goto out_nounlock;
  4107. retval = -ESRCH;
  4108. read_lock(&tasklist_lock);
  4109. p = find_process_by_pid(pid);
  4110. if (!p)
  4111. goto out_unlock;
  4112. retval = security_task_getscheduler(p);
  4113. if (retval)
  4114. goto out_unlock;
  4115. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4116. 0 : static_prio_timeslice(p->static_prio), &t);
  4117. read_unlock(&tasklist_lock);
  4118. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4119. out_nounlock:
  4120. return retval;
  4121. out_unlock:
  4122. read_unlock(&tasklist_lock);
  4123. return retval;
  4124. }
  4125. static const char stat_nam[] = "RSDTtZX";
  4126. static void show_task(struct task_struct *p)
  4127. {
  4128. unsigned long free = 0;
  4129. unsigned state;
  4130. state = p->state ? __ffs(p->state) + 1 : 0;
  4131. printk("%-13.13s %c", p->comm,
  4132. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4133. #if BITS_PER_LONG == 32
  4134. if (state == TASK_RUNNING)
  4135. printk(" running ");
  4136. else
  4137. printk(" %08lx ", thread_saved_pc(p));
  4138. #else
  4139. if (state == TASK_RUNNING)
  4140. printk(" running task ");
  4141. else
  4142. printk(" %016lx ", thread_saved_pc(p));
  4143. #endif
  4144. #ifdef CONFIG_DEBUG_STACK_USAGE
  4145. {
  4146. unsigned long *n = end_of_stack(p);
  4147. while (!*n)
  4148. n++;
  4149. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4150. }
  4151. #endif
  4152. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4153. if (state != TASK_RUNNING)
  4154. show_stack(p, NULL);
  4155. }
  4156. void show_state_filter(unsigned long state_filter)
  4157. {
  4158. struct task_struct *g, *p;
  4159. #if BITS_PER_LONG == 32
  4160. printk(KERN_INFO
  4161. " task PC stack pid father\n");
  4162. #else
  4163. printk(KERN_INFO
  4164. " task PC stack pid father\n");
  4165. #endif
  4166. read_lock(&tasklist_lock);
  4167. do_each_thread(g, p) {
  4168. /*
  4169. * reset the NMI-timeout, listing all files on a slow
  4170. * console might take alot of time:
  4171. */
  4172. touch_nmi_watchdog();
  4173. if (!state_filter || (p->state & state_filter))
  4174. show_task(p);
  4175. } while_each_thread(g, p);
  4176. touch_all_softlockup_watchdogs();
  4177. #ifdef CONFIG_SCHED_DEBUG
  4178. sysrq_sched_debug_show();
  4179. #endif
  4180. read_unlock(&tasklist_lock);
  4181. /*
  4182. * Only show locks if all tasks are dumped:
  4183. */
  4184. if (state_filter == -1)
  4185. debug_show_all_locks();
  4186. }
  4187. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4188. {
  4189. idle->sched_class = &idle_sched_class;
  4190. }
  4191. /**
  4192. * init_idle - set up an idle thread for a given CPU
  4193. * @idle: task in question
  4194. * @cpu: cpu the idle task belongs to
  4195. *
  4196. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4197. * flag, to make booting more robust.
  4198. */
  4199. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4200. {
  4201. struct rq *rq = cpu_rq(cpu);
  4202. unsigned long flags;
  4203. __sched_fork(idle);
  4204. idle->se.exec_start = sched_clock();
  4205. idle->prio = idle->normal_prio = MAX_PRIO;
  4206. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4207. __set_task_cpu(idle, cpu);
  4208. spin_lock_irqsave(&rq->lock, flags);
  4209. rq->curr = rq->idle = idle;
  4210. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4211. idle->oncpu = 1;
  4212. #endif
  4213. spin_unlock_irqrestore(&rq->lock, flags);
  4214. /* Set the preempt count _outside_ the spinlocks! */
  4215. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4216. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4217. #else
  4218. task_thread_info(idle)->preempt_count = 0;
  4219. #endif
  4220. /*
  4221. * The idle tasks have their own, simple scheduling class:
  4222. */
  4223. idle->sched_class = &idle_sched_class;
  4224. }
  4225. /*
  4226. * In a system that switches off the HZ timer nohz_cpu_mask
  4227. * indicates which cpus entered this state. This is used
  4228. * in the rcu update to wait only for active cpus. For system
  4229. * which do not switch off the HZ timer nohz_cpu_mask should
  4230. * always be CPU_MASK_NONE.
  4231. */
  4232. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4233. /*
  4234. * Increase the granularity value when there are more CPUs,
  4235. * because with more CPUs the 'effective latency' as visible
  4236. * to users decreases. But the relationship is not linear,
  4237. * so pick a second-best guess by going with the log2 of the
  4238. * number of CPUs.
  4239. *
  4240. * This idea comes from the SD scheduler of Con Kolivas:
  4241. */
  4242. static inline void sched_init_granularity(void)
  4243. {
  4244. unsigned int factor = 1 + ilog2(num_online_cpus());
  4245. const unsigned long limit = 100000000;
  4246. sysctl_sched_min_granularity *= factor;
  4247. if (sysctl_sched_min_granularity > limit)
  4248. sysctl_sched_min_granularity = limit;
  4249. sysctl_sched_latency *= factor;
  4250. if (sysctl_sched_latency > limit)
  4251. sysctl_sched_latency = limit;
  4252. sysctl_sched_runtime_limit = sysctl_sched_latency;
  4253. sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
  4254. }
  4255. #ifdef CONFIG_SMP
  4256. /*
  4257. * This is how migration works:
  4258. *
  4259. * 1) we queue a struct migration_req structure in the source CPU's
  4260. * runqueue and wake up that CPU's migration thread.
  4261. * 2) we down() the locked semaphore => thread blocks.
  4262. * 3) migration thread wakes up (implicitly it forces the migrated
  4263. * thread off the CPU)
  4264. * 4) it gets the migration request and checks whether the migrated
  4265. * task is still in the wrong runqueue.
  4266. * 5) if it's in the wrong runqueue then the migration thread removes
  4267. * it and puts it into the right queue.
  4268. * 6) migration thread up()s the semaphore.
  4269. * 7) we wake up and the migration is done.
  4270. */
  4271. /*
  4272. * Change a given task's CPU affinity. Migrate the thread to a
  4273. * proper CPU and schedule it away if the CPU it's executing on
  4274. * is removed from the allowed bitmask.
  4275. *
  4276. * NOTE: the caller must have a valid reference to the task, the
  4277. * task must not exit() & deallocate itself prematurely. The
  4278. * call is not atomic; no spinlocks may be held.
  4279. */
  4280. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4281. {
  4282. struct migration_req req;
  4283. unsigned long flags;
  4284. struct rq *rq;
  4285. int ret = 0;
  4286. rq = task_rq_lock(p, &flags);
  4287. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4288. ret = -EINVAL;
  4289. goto out;
  4290. }
  4291. p->cpus_allowed = new_mask;
  4292. /* Can the task run on the task's current CPU? If so, we're done */
  4293. if (cpu_isset(task_cpu(p), new_mask))
  4294. goto out;
  4295. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4296. /* Need help from migration thread: drop lock and wait. */
  4297. task_rq_unlock(rq, &flags);
  4298. wake_up_process(rq->migration_thread);
  4299. wait_for_completion(&req.done);
  4300. tlb_migrate_finish(p->mm);
  4301. return 0;
  4302. }
  4303. out:
  4304. task_rq_unlock(rq, &flags);
  4305. return ret;
  4306. }
  4307. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4308. /*
  4309. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4310. * this because either it can't run here any more (set_cpus_allowed()
  4311. * away from this CPU, or CPU going down), or because we're
  4312. * attempting to rebalance this task on exec (sched_exec).
  4313. *
  4314. * So we race with normal scheduler movements, but that's OK, as long
  4315. * as the task is no longer on this CPU.
  4316. *
  4317. * Returns non-zero if task was successfully migrated.
  4318. */
  4319. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4320. {
  4321. struct rq *rq_dest, *rq_src;
  4322. int ret = 0, on_rq;
  4323. if (unlikely(cpu_is_offline(dest_cpu)))
  4324. return ret;
  4325. rq_src = cpu_rq(src_cpu);
  4326. rq_dest = cpu_rq(dest_cpu);
  4327. double_rq_lock(rq_src, rq_dest);
  4328. /* Already moved. */
  4329. if (task_cpu(p) != src_cpu)
  4330. goto out;
  4331. /* Affinity changed (again). */
  4332. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4333. goto out;
  4334. on_rq = p->se.on_rq;
  4335. if (on_rq)
  4336. deactivate_task(rq_src, p, 0);
  4337. set_task_cpu(p, dest_cpu);
  4338. if (on_rq) {
  4339. activate_task(rq_dest, p, 0);
  4340. check_preempt_curr(rq_dest, p);
  4341. }
  4342. ret = 1;
  4343. out:
  4344. double_rq_unlock(rq_src, rq_dest);
  4345. return ret;
  4346. }
  4347. /*
  4348. * migration_thread - this is a highprio system thread that performs
  4349. * thread migration by bumping thread off CPU then 'pushing' onto
  4350. * another runqueue.
  4351. */
  4352. static int migration_thread(void *data)
  4353. {
  4354. int cpu = (long)data;
  4355. struct rq *rq;
  4356. rq = cpu_rq(cpu);
  4357. BUG_ON(rq->migration_thread != current);
  4358. set_current_state(TASK_INTERRUPTIBLE);
  4359. while (!kthread_should_stop()) {
  4360. struct migration_req *req;
  4361. struct list_head *head;
  4362. spin_lock_irq(&rq->lock);
  4363. if (cpu_is_offline(cpu)) {
  4364. spin_unlock_irq(&rq->lock);
  4365. goto wait_to_die;
  4366. }
  4367. if (rq->active_balance) {
  4368. active_load_balance(rq, cpu);
  4369. rq->active_balance = 0;
  4370. }
  4371. head = &rq->migration_queue;
  4372. if (list_empty(head)) {
  4373. spin_unlock_irq(&rq->lock);
  4374. schedule();
  4375. set_current_state(TASK_INTERRUPTIBLE);
  4376. continue;
  4377. }
  4378. req = list_entry(head->next, struct migration_req, list);
  4379. list_del_init(head->next);
  4380. spin_unlock(&rq->lock);
  4381. __migrate_task(req->task, cpu, req->dest_cpu);
  4382. local_irq_enable();
  4383. complete(&req->done);
  4384. }
  4385. __set_current_state(TASK_RUNNING);
  4386. return 0;
  4387. wait_to_die:
  4388. /* Wait for kthread_stop */
  4389. set_current_state(TASK_INTERRUPTIBLE);
  4390. while (!kthread_should_stop()) {
  4391. schedule();
  4392. set_current_state(TASK_INTERRUPTIBLE);
  4393. }
  4394. __set_current_state(TASK_RUNNING);
  4395. return 0;
  4396. }
  4397. #ifdef CONFIG_HOTPLUG_CPU
  4398. /*
  4399. * Figure out where task on dead CPU should go, use force if neccessary.
  4400. * NOTE: interrupts should be disabled by the caller
  4401. */
  4402. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4403. {
  4404. unsigned long flags;
  4405. cpumask_t mask;
  4406. struct rq *rq;
  4407. int dest_cpu;
  4408. restart:
  4409. /* On same node? */
  4410. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4411. cpus_and(mask, mask, p->cpus_allowed);
  4412. dest_cpu = any_online_cpu(mask);
  4413. /* On any allowed CPU? */
  4414. if (dest_cpu == NR_CPUS)
  4415. dest_cpu = any_online_cpu(p->cpus_allowed);
  4416. /* No more Mr. Nice Guy. */
  4417. if (dest_cpu == NR_CPUS) {
  4418. rq = task_rq_lock(p, &flags);
  4419. cpus_setall(p->cpus_allowed);
  4420. dest_cpu = any_online_cpu(p->cpus_allowed);
  4421. task_rq_unlock(rq, &flags);
  4422. /*
  4423. * Don't tell them about moving exiting tasks or
  4424. * kernel threads (both mm NULL), since they never
  4425. * leave kernel.
  4426. */
  4427. if (p->mm && printk_ratelimit())
  4428. printk(KERN_INFO "process %d (%s) no "
  4429. "longer affine to cpu%d\n",
  4430. p->pid, p->comm, dead_cpu);
  4431. }
  4432. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4433. goto restart;
  4434. }
  4435. /*
  4436. * While a dead CPU has no uninterruptible tasks queued at this point,
  4437. * it might still have a nonzero ->nr_uninterruptible counter, because
  4438. * for performance reasons the counter is not stricly tracking tasks to
  4439. * their home CPUs. So we just add the counter to another CPU's counter,
  4440. * to keep the global sum constant after CPU-down:
  4441. */
  4442. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4443. {
  4444. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4445. unsigned long flags;
  4446. local_irq_save(flags);
  4447. double_rq_lock(rq_src, rq_dest);
  4448. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4449. rq_src->nr_uninterruptible = 0;
  4450. double_rq_unlock(rq_src, rq_dest);
  4451. local_irq_restore(flags);
  4452. }
  4453. /* Run through task list and migrate tasks from the dead cpu. */
  4454. static void migrate_live_tasks(int src_cpu)
  4455. {
  4456. struct task_struct *p, *t;
  4457. write_lock_irq(&tasklist_lock);
  4458. do_each_thread(t, p) {
  4459. if (p == current)
  4460. continue;
  4461. if (task_cpu(p) == src_cpu)
  4462. move_task_off_dead_cpu(src_cpu, p);
  4463. } while_each_thread(t, p);
  4464. write_unlock_irq(&tasklist_lock);
  4465. }
  4466. /*
  4467. * Schedules idle task to be the next runnable task on current CPU.
  4468. * It does so by boosting its priority to highest possible and adding it to
  4469. * the _front_ of the runqueue. Used by CPU offline code.
  4470. */
  4471. void sched_idle_next(void)
  4472. {
  4473. int this_cpu = smp_processor_id();
  4474. struct rq *rq = cpu_rq(this_cpu);
  4475. struct task_struct *p = rq->idle;
  4476. unsigned long flags;
  4477. /* cpu has to be offline */
  4478. BUG_ON(cpu_online(this_cpu));
  4479. /*
  4480. * Strictly not necessary since rest of the CPUs are stopped by now
  4481. * and interrupts disabled on the current cpu.
  4482. */
  4483. spin_lock_irqsave(&rq->lock, flags);
  4484. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4485. /* Add idle task to the _front_ of its priority queue: */
  4486. activate_idle_task(p, rq);
  4487. spin_unlock_irqrestore(&rq->lock, flags);
  4488. }
  4489. /*
  4490. * Ensures that the idle task is using init_mm right before its cpu goes
  4491. * offline.
  4492. */
  4493. void idle_task_exit(void)
  4494. {
  4495. struct mm_struct *mm = current->active_mm;
  4496. BUG_ON(cpu_online(smp_processor_id()));
  4497. if (mm != &init_mm)
  4498. switch_mm(mm, &init_mm, current);
  4499. mmdrop(mm);
  4500. }
  4501. /* called under rq->lock with disabled interrupts */
  4502. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4503. {
  4504. struct rq *rq = cpu_rq(dead_cpu);
  4505. /* Must be exiting, otherwise would be on tasklist. */
  4506. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4507. /* Cannot have done final schedule yet: would have vanished. */
  4508. BUG_ON(p->state == TASK_DEAD);
  4509. get_task_struct(p);
  4510. /*
  4511. * Drop lock around migration; if someone else moves it,
  4512. * that's OK. No task can be added to this CPU, so iteration is
  4513. * fine.
  4514. * NOTE: interrupts should be left disabled --dev@
  4515. */
  4516. spin_unlock(&rq->lock);
  4517. move_task_off_dead_cpu(dead_cpu, p);
  4518. spin_lock(&rq->lock);
  4519. put_task_struct(p);
  4520. }
  4521. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4522. static void migrate_dead_tasks(unsigned int dead_cpu)
  4523. {
  4524. struct rq *rq = cpu_rq(dead_cpu);
  4525. struct task_struct *next;
  4526. for ( ; ; ) {
  4527. if (!rq->nr_running)
  4528. break;
  4529. update_rq_clock(rq);
  4530. next = pick_next_task(rq, rq->curr);
  4531. if (!next)
  4532. break;
  4533. migrate_dead(dead_cpu, next);
  4534. }
  4535. }
  4536. #endif /* CONFIG_HOTPLUG_CPU */
  4537. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4538. static struct ctl_table sd_ctl_dir[] = {
  4539. {
  4540. .procname = "sched_domain",
  4541. .mode = 0555,
  4542. },
  4543. {0,},
  4544. };
  4545. static struct ctl_table sd_ctl_root[] = {
  4546. {
  4547. .ctl_name = CTL_KERN,
  4548. .procname = "kernel",
  4549. .mode = 0555,
  4550. .child = sd_ctl_dir,
  4551. },
  4552. {0,},
  4553. };
  4554. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4555. {
  4556. struct ctl_table *entry =
  4557. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4558. BUG_ON(!entry);
  4559. memset(entry, 0, n * sizeof(struct ctl_table));
  4560. return entry;
  4561. }
  4562. static void
  4563. set_table_entry(struct ctl_table *entry,
  4564. const char *procname, void *data, int maxlen,
  4565. mode_t mode, proc_handler *proc_handler)
  4566. {
  4567. entry->procname = procname;
  4568. entry->data = data;
  4569. entry->maxlen = maxlen;
  4570. entry->mode = mode;
  4571. entry->proc_handler = proc_handler;
  4572. }
  4573. static struct ctl_table *
  4574. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4575. {
  4576. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4577. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4578. sizeof(long), 0644, proc_doulongvec_minmax);
  4579. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4580. sizeof(long), 0644, proc_doulongvec_minmax);
  4581. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4582. sizeof(int), 0644, proc_dointvec_minmax);
  4583. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4584. sizeof(int), 0644, proc_dointvec_minmax);
  4585. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4586. sizeof(int), 0644, proc_dointvec_minmax);
  4587. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4588. sizeof(int), 0644, proc_dointvec_minmax);
  4589. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4590. sizeof(int), 0644, proc_dointvec_minmax);
  4591. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4592. sizeof(int), 0644, proc_dointvec_minmax);
  4593. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4594. sizeof(int), 0644, proc_dointvec_minmax);
  4595. set_table_entry(&table[10], "cache_nice_tries",
  4596. &sd->cache_nice_tries,
  4597. sizeof(int), 0644, proc_dointvec_minmax);
  4598. set_table_entry(&table[12], "flags", &sd->flags,
  4599. sizeof(int), 0644, proc_dointvec_minmax);
  4600. return table;
  4601. }
  4602. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4603. {
  4604. struct ctl_table *entry, *table;
  4605. struct sched_domain *sd;
  4606. int domain_num = 0, i;
  4607. char buf[32];
  4608. for_each_domain(cpu, sd)
  4609. domain_num++;
  4610. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4611. i = 0;
  4612. for_each_domain(cpu, sd) {
  4613. snprintf(buf, 32, "domain%d", i);
  4614. entry->procname = kstrdup(buf, GFP_KERNEL);
  4615. entry->mode = 0555;
  4616. entry->child = sd_alloc_ctl_domain_table(sd);
  4617. entry++;
  4618. i++;
  4619. }
  4620. return table;
  4621. }
  4622. static struct ctl_table_header *sd_sysctl_header;
  4623. static void init_sched_domain_sysctl(void)
  4624. {
  4625. int i, cpu_num = num_online_cpus();
  4626. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4627. char buf[32];
  4628. sd_ctl_dir[0].child = entry;
  4629. for (i = 0; i < cpu_num; i++, entry++) {
  4630. snprintf(buf, 32, "cpu%d", i);
  4631. entry->procname = kstrdup(buf, GFP_KERNEL);
  4632. entry->mode = 0555;
  4633. entry->child = sd_alloc_ctl_cpu_table(i);
  4634. }
  4635. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4636. }
  4637. #else
  4638. static void init_sched_domain_sysctl(void)
  4639. {
  4640. }
  4641. #endif
  4642. /*
  4643. * migration_call - callback that gets triggered when a CPU is added.
  4644. * Here we can start up the necessary migration thread for the new CPU.
  4645. */
  4646. static int __cpuinit
  4647. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4648. {
  4649. struct task_struct *p;
  4650. int cpu = (long)hcpu;
  4651. unsigned long flags;
  4652. struct rq *rq;
  4653. switch (action) {
  4654. case CPU_LOCK_ACQUIRE:
  4655. mutex_lock(&sched_hotcpu_mutex);
  4656. break;
  4657. case CPU_UP_PREPARE:
  4658. case CPU_UP_PREPARE_FROZEN:
  4659. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4660. if (IS_ERR(p))
  4661. return NOTIFY_BAD;
  4662. kthread_bind(p, cpu);
  4663. /* Must be high prio: stop_machine expects to yield to it. */
  4664. rq = task_rq_lock(p, &flags);
  4665. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4666. task_rq_unlock(rq, &flags);
  4667. cpu_rq(cpu)->migration_thread = p;
  4668. break;
  4669. case CPU_ONLINE:
  4670. case CPU_ONLINE_FROZEN:
  4671. /* Strictly unneccessary, as first user will wake it. */
  4672. wake_up_process(cpu_rq(cpu)->migration_thread);
  4673. break;
  4674. #ifdef CONFIG_HOTPLUG_CPU
  4675. case CPU_UP_CANCELED:
  4676. case CPU_UP_CANCELED_FROZEN:
  4677. if (!cpu_rq(cpu)->migration_thread)
  4678. break;
  4679. /* Unbind it from offline cpu so it can run. Fall thru. */
  4680. kthread_bind(cpu_rq(cpu)->migration_thread,
  4681. any_online_cpu(cpu_online_map));
  4682. kthread_stop(cpu_rq(cpu)->migration_thread);
  4683. cpu_rq(cpu)->migration_thread = NULL;
  4684. break;
  4685. case CPU_DEAD:
  4686. case CPU_DEAD_FROZEN:
  4687. migrate_live_tasks(cpu);
  4688. rq = cpu_rq(cpu);
  4689. kthread_stop(rq->migration_thread);
  4690. rq->migration_thread = NULL;
  4691. /* Idle task back to normal (off runqueue, low prio) */
  4692. rq = task_rq_lock(rq->idle, &flags);
  4693. update_rq_clock(rq);
  4694. deactivate_task(rq, rq->idle, 0);
  4695. rq->idle->static_prio = MAX_PRIO;
  4696. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4697. rq->idle->sched_class = &idle_sched_class;
  4698. migrate_dead_tasks(cpu);
  4699. task_rq_unlock(rq, &flags);
  4700. migrate_nr_uninterruptible(rq);
  4701. BUG_ON(rq->nr_running != 0);
  4702. /* No need to migrate the tasks: it was best-effort if
  4703. * they didn't take sched_hotcpu_mutex. Just wake up
  4704. * the requestors. */
  4705. spin_lock_irq(&rq->lock);
  4706. while (!list_empty(&rq->migration_queue)) {
  4707. struct migration_req *req;
  4708. req = list_entry(rq->migration_queue.next,
  4709. struct migration_req, list);
  4710. list_del_init(&req->list);
  4711. complete(&req->done);
  4712. }
  4713. spin_unlock_irq(&rq->lock);
  4714. break;
  4715. #endif
  4716. case CPU_LOCK_RELEASE:
  4717. mutex_unlock(&sched_hotcpu_mutex);
  4718. break;
  4719. }
  4720. return NOTIFY_OK;
  4721. }
  4722. /* Register at highest priority so that task migration (migrate_all_tasks)
  4723. * happens before everything else.
  4724. */
  4725. static struct notifier_block __cpuinitdata migration_notifier = {
  4726. .notifier_call = migration_call,
  4727. .priority = 10
  4728. };
  4729. int __init migration_init(void)
  4730. {
  4731. void *cpu = (void *)(long)smp_processor_id();
  4732. int err;
  4733. /* Start one for the boot CPU: */
  4734. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4735. BUG_ON(err == NOTIFY_BAD);
  4736. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4737. register_cpu_notifier(&migration_notifier);
  4738. return 0;
  4739. }
  4740. #endif
  4741. #ifdef CONFIG_SMP
  4742. /* Number of possible processor ids */
  4743. int nr_cpu_ids __read_mostly = NR_CPUS;
  4744. EXPORT_SYMBOL(nr_cpu_ids);
  4745. #undef SCHED_DOMAIN_DEBUG
  4746. #ifdef SCHED_DOMAIN_DEBUG
  4747. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4748. {
  4749. int level = 0;
  4750. if (!sd) {
  4751. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4752. return;
  4753. }
  4754. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4755. do {
  4756. int i;
  4757. char str[NR_CPUS];
  4758. struct sched_group *group = sd->groups;
  4759. cpumask_t groupmask;
  4760. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4761. cpus_clear(groupmask);
  4762. printk(KERN_DEBUG);
  4763. for (i = 0; i < level + 1; i++)
  4764. printk(" ");
  4765. printk("domain %d: ", level);
  4766. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4767. printk("does not load-balance\n");
  4768. if (sd->parent)
  4769. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4770. " has parent");
  4771. break;
  4772. }
  4773. printk("span %s\n", str);
  4774. if (!cpu_isset(cpu, sd->span))
  4775. printk(KERN_ERR "ERROR: domain->span does not contain "
  4776. "CPU%d\n", cpu);
  4777. if (!cpu_isset(cpu, group->cpumask))
  4778. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4779. " CPU%d\n", cpu);
  4780. printk(KERN_DEBUG);
  4781. for (i = 0; i < level + 2; i++)
  4782. printk(" ");
  4783. printk("groups:");
  4784. do {
  4785. if (!group) {
  4786. printk("\n");
  4787. printk(KERN_ERR "ERROR: group is NULL\n");
  4788. break;
  4789. }
  4790. if (!group->__cpu_power) {
  4791. printk("\n");
  4792. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4793. "set\n");
  4794. }
  4795. if (!cpus_weight(group->cpumask)) {
  4796. printk("\n");
  4797. printk(KERN_ERR "ERROR: empty group\n");
  4798. }
  4799. if (cpus_intersects(groupmask, group->cpumask)) {
  4800. printk("\n");
  4801. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4802. }
  4803. cpus_or(groupmask, groupmask, group->cpumask);
  4804. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4805. printk(" %s", str);
  4806. group = group->next;
  4807. } while (group != sd->groups);
  4808. printk("\n");
  4809. if (!cpus_equal(sd->span, groupmask))
  4810. printk(KERN_ERR "ERROR: groups don't span "
  4811. "domain->span\n");
  4812. level++;
  4813. sd = sd->parent;
  4814. if (!sd)
  4815. continue;
  4816. if (!cpus_subset(groupmask, sd->span))
  4817. printk(KERN_ERR "ERROR: parent span is not a superset "
  4818. "of domain->span\n");
  4819. } while (sd);
  4820. }
  4821. #else
  4822. # define sched_domain_debug(sd, cpu) do { } while (0)
  4823. #endif
  4824. static int sd_degenerate(struct sched_domain *sd)
  4825. {
  4826. if (cpus_weight(sd->span) == 1)
  4827. return 1;
  4828. /* Following flags need at least 2 groups */
  4829. if (sd->flags & (SD_LOAD_BALANCE |
  4830. SD_BALANCE_NEWIDLE |
  4831. SD_BALANCE_FORK |
  4832. SD_BALANCE_EXEC |
  4833. SD_SHARE_CPUPOWER |
  4834. SD_SHARE_PKG_RESOURCES)) {
  4835. if (sd->groups != sd->groups->next)
  4836. return 0;
  4837. }
  4838. /* Following flags don't use groups */
  4839. if (sd->flags & (SD_WAKE_IDLE |
  4840. SD_WAKE_AFFINE |
  4841. SD_WAKE_BALANCE))
  4842. return 0;
  4843. return 1;
  4844. }
  4845. static int
  4846. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4847. {
  4848. unsigned long cflags = sd->flags, pflags = parent->flags;
  4849. if (sd_degenerate(parent))
  4850. return 1;
  4851. if (!cpus_equal(sd->span, parent->span))
  4852. return 0;
  4853. /* Does parent contain flags not in child? */
  4854. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4855. if (cflags & SD_WAKE_AFFINE)
  4856. pflags &= ~SD_WAKE_BALANCE;
  4857. /* Flags needing groups don't count if only 1 group in parent */
  4858. if (parent->groups == parent->groups->next) {
  4859. pflags &= ~(SD_LOAD_BALANCE |
  4860. SD_BALANCE_NEWIDLE |
  4861. SD_BALANCE_FORK |
  4862. SD_BALANCE_EXEC |
  4863. SD_SHARE_CPUPOWER |
  4864. SD_SHARE_PKG_RESOURCES);
  4865. }
  4866. if (~cflags & pflags)
  4867. return 0;
  4868. return 1;
  4869. }
  4870. /*
  4871. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4872. * hold the hotplug lock.
  4873. */
  4874. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4875. {
  4876. struct rq *rq = cpu_rq(cpu);
  4877. struct sched_domain *tmp;
  4878. /* Remove the sched domains which do not contribute to scheduling. */
  4879. for (tmp = sd; tmp; tmp = tmp->parent) {
  4880. struct sched_domain *parent = tmp->parent;
  4881. if (!parent)
  4882. break;
  4883. if (sd_parent_degenerate(tmp, parent)) {
  4884. tmp->parent = parent->parent;
  4885. if (parent->parent)
  4886. parent->parent->child = tmp;
  4887. }
  4888. }
  4889. if (sd && sd_degenerate(sd)) {
  4890. sd = sd->parent;
  4891. if (sd)
  4892. sd->child = NULL;
  4893. }
  4894. sched_domain_debug(sd, cpu);
  4895. rcu_assign_pointer(rq->sd, sd);
  4896. }
  4897. /* cpus with isolated domains */
  4898. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4899. /* Setup the mask of cpus configured for isolated domains */
  4900. static int __init isolated_cpu_setup(char *str)
  4901. {
  4902. int ints[NR_CPUS], i;
  4903. str = get_options(str, ARRAY_SIZE(ints), ints);
  4904. cpus_clear(cpu_isolated_map);
  4905. for (i = 1; i <= ints[0]; i++)
  4906. if (ints[i] < NR_CPUS)
  4907. cpu_set(ints[i], cpu_isolated_map);
  4908. return 1;
  4909. }
  4910. __setup ("isolcpus=", isolated_cpu_setup);
  4911. /*
  4912. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4913. * to a function which identifies what group(along with sched group) a CPU
  4914. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4915. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4916. *
  4917. * init_sched_build_groups will build a circular linked list of the groups
  4918. * covered by the given span, and will set each group's ->cpumask correctly,
  4919. * and ->cpu_power to 0.
  4920. */
  4921. static void
  4922. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4923. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4924. struct sched_group **sg))
  4925. {
  4926. struct sched_group *first = NULL, *last = NULL;
  4927. cpumask_t covered = CPU_MASK_NONE;
  4928. int i;
  4929. for_each_cpu_mask(i, span) {
  4930. struct sched_group *sg;
  4931. int group = group_fn(i, cpu_map, &sg);
  4932. int j;
  4933. if (cpu_isset(i, covered))
  4934. continue;
  4935. sg->cpumask = CPU_MASK_NONE;
  4936. sg->__cpu_power = 0;
  4937. for_each_cpu_mask(j, span) {
  4938. if (group_fn(j, cpu_map, NULL) != group)
  4939. continue;
  4940. cpu_set(j, covered);
  4941. cpu_set(j, sg->cpumask);
  4942. }
  4943. if (!first)
  4944. first = sg;
  4945. if (last)
  4946. last->next = sg;
  4947. last = sg;
  4948. }
  4949. last->next = first;
  4950. }
  4951. #define SD_NODES_PER_DOMAIN 16
  4952. #ifdef CONFIG_NUMA
  4953. /**
  4954. * find_next_best_node - find the next node to include in a sched_domain
  4955. * @node: node whose sched_domain we're building
  4956. * @used_nodes: nodes already in the sched_domain
  4957. *
  4958. * Find the next node to include in a given scheduling domain. Simply
  4959. * finds the closest node not already in the @used_nodes map.
  4960. *
  4961. * Should use nodemask_t.
  4962. */
  4963. static int find_next_best_node(int node, unsigned long *used_nodes)
  4964. {
  4965. int i, n, val, min_val, best_node = 0;
  4966. min_val = INT_MAX;
  4967. for (i = 0; i < MAX_NUMNODES; i++) {
  4968. /* Start at @node */
  4969. n = (node + i) % MAX_NUMNODES;
  4970. if (!nr_cpus_node(n))
  4971. continue;
  4972. /* Skip already used nodes */
  4973. if (test_bit(n, used_nodes))
  4974. continue;
  4975. /* Simple min distance search */
  4976. val = node_distance(node, n);
  4977. if (val < min_val) {
  4978. min_val = val;
  4979. best_node = n;
  4980. }
  4981. }
  4982. set_bit(best_node, used_nodes);
  4983. return best_node;
  4984. }
  4985. /**
  4986. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4987. * @node: node whose cpumask we're constructing
  4988. * @size: number of nodes to include in this span
  4989. *
  4990. * Given a node, construct a good cpumask for its sched_domain to span. It
  4991. * should be one that prevents unnecessary balancing, but also spreads tasks
  4992. * out optimally.
  4993. */
  4994. static cpumask_t sched_domain_node_span(int node)
  4995. {
  4996. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4997. cpumask_t span, nodemask;
  4998. int i;
  4999. cpus_clear(span);
  5000. bitmap_zero(used_nodes, MAX_NUMNODES);
  5001. nodemask = node_to_cpumask(node);
  5002. cpus_or(span, span, nodemask);
  5003. set_bit(node, used_nodes);
  5004. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5005. int next_node = find_next_best_node(node, used_nodes);
  5006. nodemask = node_to_cpumask(next_node);
  5007. cpus_or(span, span, nodemask);
  5008. }
  5009. return span;
  5010. }
  5011. #endif
  5012. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5013. /*
  5014. * SMT sched-domains:
  5015. */
  5016. #ifdef CONFIG_SCHED_SMT
  5017. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5018. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5019. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5020. struct sched_group **sg)
  5021. {
  5022. if (sg)
  5023. *sg = &per_cpu(sched_group_cpus, cpu);
  5024. return cpu;
  5025. }
  5026. #endif
  5027. /*
  5028. * multi-core sched-domains:
  5029. */
  5030. #ifdef CONFIG_SCHED_MC
  5031. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5032. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5033. #endif
  5034. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5035. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5036. struct sched_group **sg)
  5037. {
  5038. int group;
  5039. cpumask_t mask = cpu_sibling_map[cpu];
  5040. cpus_and(mask, mask, *cpu_map);
  5041. group = first_cpu(mask);
  5042. if (sg)
  5043. *sg = &per_cpu(sched_group_core, group);
  5044. return group;
  5045. }
  5046. #elif defined(CONFIG_SCHED_MC)
  5047. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5048. struct sched_group **sg)
  5049. {
  5050. if (sg)
  5051. *sg = &per_cpu(sched_group_core, cpu);
  5052. return cpu;
  5053. }
  5054. #endif
  5055. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5056. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5057. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5058. struct sched_group **sg)
  5059. {
  5060. int group;
  5061. #ifdef CONFIG_SCHED_MC
  5062. cpumask_t mask = cpu_coregroup_map(cpu);
  5063. cpus_and(mask, mask, *cpu_map);
  5064. group = first_cpu(mask);
  5065. #elif defined(CONFIG_SCHED_SMT)
  5066. cpumask_t mask = cpu_sibling_map[cpu];
  5067. cpus_and(mask, mask, *cpu_map);
  5068. group = first_cpu(mask);
  5069. #else
  5070. group = cpu;
  5071. #endif
  5072. if (sg)
  5073. *sg = &per_cpu(sched_group_phys, group);
  5074. return group;
  5075. }
  5076. #ifdef CONFIG_NUMA
  5077. /*
  5078. * The init_sched_build_groups can't handle what we want to do with node
  5079. * groups, so roll our own. Now each node has its own list of groups which
  5080. * gets dynamically allocated.
  5081. */
  5082. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5083. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5084. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5085. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5086. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5087. struct sched_group **sg)
  5088. {
  5089. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5090. int group;
  5091. cpus_and(nodemask, nodemask, *cpu_map);
  5092. group = first_cpu(nodemask);
  5093. if (sg)
  5094. *sg = &per_cpu(sched_group_allnodes, group);
  5095. return group;
  5096. }
  5097. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5098. {
  5099. struct sched_group *sg = group_head;
  5100. int j;
  5101. if (!sg)
  5102. return;
  5103. next_sg:
  5104. for_each_cpu_mask(j, sg->cpumask) {
  5105. struct sched_domain *sd;
  5106. sd = &per_cpu(phys_domains, j);
  5107. if (j != first_cpu(sd->groups->cpumask)) {
  5108. /*
  5109. * Only add "power" once for each
  5110. * physical package.
  5111. */
  5112. continue;
  5113. }
  5114. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5115. }
  5116. sg = sg->next;
  5117. if (sg != group_head)
  5118. goto next_sg;
  5119. }
  5120. #endif
  5121. #ifdef CONFIG_NUMA
  5122. /* Free memory allocated for various sched_group structures */
  5123. static void free_sched_groups(const cpumask_t *cpu_map)
  5124. {
  5125. int cpu, i;
  5126. for_each_cpu_mask(cpu, *cpu_map) {
  5127. struct sched_group **sched_group_nodes
  5128. = sched_group_nodes_bycpu[cpu];
  5129. if (!sched_group_nodes)
  5130. continue;
  5131. for (i = 0; i < MAX_NUMNODES; i++) {
  5132. cpumask_t nodemask = node_to_cpumask(i);
  5133. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5134. cpus_and(nodemask, nodemask, *cpu_map);
  5135. if (cpus_empty(nodemask))
  5136. continue;
  5137. if (sg == NULL)
  5138. continue;
  5139. sg = sg->next;
  5140. next_sg:
  5141. oldsg = sg;
  5142. sg = sg->next;
  5143. kfree(oldsg);
  5144. if (oldsg != sched_group_nodes[i])
  5145. goto next_sg;
  5146. }
  5147. kfree(sched_group_nodes);
  5148. sched_group_nodes_bycpu[cpu] = NULL;
  5149. }
  5150. }
  5151. #else
  5152. static void free_sched_groups(const cpumask_t *cpu_map)
  5153. {
  5154. }
  5155. #endif
  5156. /*
  5157. * Initialize sched groups cpu_power.
  5158. *
  5159. * cpu_power indicates the capacity of sched group, which is used while
  5160. * distributing the load between different sched groups in a sched domain.
  5161. * Typically cpu_power for all the groups in a sched domain will be same unless
  5162. * there are asymmetries in the topology. If there are asymmetries, group
  5163. * having more cpu_power will pickup more load compared to the group having
  5164. * less cpu_power.
  5165. *
  5166. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5167. * the maximum number of tasks a group can handle in the presence of other idle
  5168. * or lightly loaded groups in the same sched domain.
  5169. */
  5170. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5171. {
  5172. struct sched_domain *child;
  5173. struct sched_group *group;
  5174. WARN_ON(!sd || !sd->groups);
  5175. if (cpu != first_cpu(sd->groups->cpumask))
  5176. return;
  5177. child = sd->child;
  5178. sd->groups->__cpu_power = 0;
  5179. /*
  5180. * For perf policy, if the groups in child domain share resources
  5181. * (for example cores sharing some portions of the cache hierarchy
  5182. * or SMT), then set this domain groups cpu_power such that each group
  5183. * can handle only one task, when there are other idle groups in the
  5184. * same sched domain.
  5185. */
  5186. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5187. (child->flags &
  5188. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5189. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5190. return;
  5191. }
  5192. /*
  5193. * add cpu_power of each child group to this groups cpu_power
  5194. */
  5195. group = child->groups;
  5196. do {
  5197. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5198. group = group->next;
  5199. } while (group != child->groups);
  5200. }
  5201. /*
  5202. * Build sched domains for a given set of cpus and attach the sched domains
  5203. * to the individual cpus
  5204. */
  5205. static int build_sched_domains(const cpumask_t *cpu_map)
  5206. {
  5207. int i;
  5208. #ifdef CONFIG_NUMA
  5209. struct sched_group **sched_group_nodes = NULL;
  5210. int sd_allnodes = 0;
  5211. /*
  5212. * Allocate the per-node list of sched groups
  5213. */
  5214. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5215. GFP_KERNEL);
  5216. if (!sched_group_nodes) {
  5217. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5218. return -ENOMEM;
  5219. }
  5220. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5221. #endif
  5222. /*
  5223. * Set up domains for cpus specified by the cpu_map.
  5224. */
  5225. for_each_cpu_mask(i, *cpu_map) {
  5226. struct sched_domain *sd = NULL, *p;
  5227. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5228. cpus_and(nodemask, nodemask, *cpu_map);
  5229. #ifdef CONFIG_NUMA
  5230. if (cpus_weight(*cpu_map) >
  5231. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5232. sd = &per_cpu(allnodes_domains, i);
  5233. *sd = SD_ALLNODES_INIT;
  5234. sd->span = *cpu_map;
  5235. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5236. p = sd;
  5237. sd_allnodes = 1;
  5238. } else
  5239. p = NULL;
  5240. sd = &per_cpu(node_domains, i);
  5241. *sd = SD_NODE_INIT;
  5242. sd->span = sched_domain_node_span(cpu_to_node(i));
  5243. sd->parent = p;
  5244. if (p)
  5245. p->child = sd;
  5246. cpus_and(sd->span, sd->span, *cpu_map);
  5247. #endif
  5248. p = sd;
  5249. sd = &per_cpu(phys_domains, i);
  5250. *sd = SD_CPU_INIT;
  5251. sd->span = nodemask;
  5252. sd->parent = p;
  5253. if (p)
  5254. p->child = sd;
  5255. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5256. #ifdef CONFIG_SCHED_MC
  5257. p = sd;
  5258. sd = &per_cpu(core_domains, i);
  5259. *sd = SD_MC_INIT;
  5260. sd->span = cpu_coregroup_map(i);
  5261. cpus_and(sd->span, sd->span, *cpu_map);
  5262. sd->parent = p;
  5263. p->child = sd;
  5264. cpu_to_core_group(i, cpu_map, &sd->groups);
  5265. #endif
  5266. #ifdef CONFIG_SCHED_SMT
  5267. p = sd;
  5268. sd = &per_cpu(cpu_domains, i);
  5269. *sd = SD_SIBLING_INIT;
  5270. sd->span = cpu_sibling_map[i];
  5271. cpus_and(sd->span, sd->span, *cpu_map);
  5272. sd->parent = p;
  5273. p->child = sd;
  5274. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5275. #endif
  5276. }
  5277. #ifdef CONFIG_SCHED_SMT
  5278. /* Set up CPU (sibling) groups */
  5279. for_each_cpu_mask(i, *cpu_map) {
  5280. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5281. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5282. if (i != first_cpu(this_sibling_map))
  5283. continue;
  5284. init_sched_build_groups(this_sibling_map, cpu_map,
  5285. &cpu_to_cpu_group);
  5286. }
  5287. #endif
  5288. #ifdef CONFIG_SCHED_MC
  5289. /* Set up multi-core groups */
  5290. for_each_cpu_mask(i, *cpu_map) {
  5291. cpumask_t this_core_map = cpu_coregroup_map(i);
  5292. cpus_and(this_core_map, this_core_map, *cpu_map);
  5293. if (i != first_cpu(this_core_map))
  5294. continue;
  5295. init_sched_build_groups(this_core_map, cpu_map,
  5296. &cpu_to_core_group);
  5297. }
  5298. #endif
  5299. /* Set up physical groups */
  5300. for (i = 0; i < MAX_NUMNODES; i++) {
  5301. cpumask_t nodemask = node_to_cpumask(i);
  5302. cpus_and(nodemask, nodemask, *cpu_map);
  5303. if (cpus_empty(nodemask))
  5304. continue;
  5305. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5306. }
  5307. #ifdef CONFIG_NUMA
  5308. /* Set up node groups */
  5309. if (sd_allnodes)
  5310. init_sched_build_groups(*cpu_map, cpu_map,
  5311. &cpu_to_allnodes_group);
  5312. for (i = 0; i < MAX_NUMNODES; i++) {
  5313. /* Set up node groups */
  5314. struct sched_group *sg, *prev;
  5315. cpumask_t nodemask = node_to_cpumask(i);
  5316. cpumask_t domainspan;
  5317. cpumask_t covered = CPU_MASK_NONE;
  5318. int j;
  5319. cpus_and(nodemask, nodemask, *cpu_map);
  5320. if (cpus_empty(nodemask)) {
  5321. sched_group_nodes[i] = NULL;
  5322. continue;
  5323. }
  5324. domainspan = sched_domain_node_span(i);
  5325. cpus_and(domainspan, domainspan, *cpu_map);
  5326. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5327. if (!sg) {
  5328. printk(KERN_WARNING "Can not alloc domain group for "
  5329. "node %d\n", i);
  5330. goto error;
  5331. }
  5332. sched_group_nodes[i] = sg;
  5333. for_each_cpu_mask(j, nodemask) {
  5334. struct sched_domain *sd;
  5335. sd = &per_cpu(node_domains, j);
  5336. sd->groups = sg;
  5337. }
  5338. sg->__cpu_power = 0;
  5339. sg->cpumask = nodemask;
  5340. sg->next = sg;
  5341. cpus_or(covered, covered, nodemask);
  5342. prev = sg;
  5343. for (j = 0; j < MAX_NUMNODES; j++) {
  5344. cpumask_t tmp, notcovered;
  5345. int n = (i + j) % MAX_NUMNODES;
  5346. cpus_complement(notcovered, covered);
  5347. cpus_and(tmp, notcovered, *cpu_map);
  5348. cpus_and(tmp, tmp, domainspan);
  5349. if (cpus_empty(tmp))
  5350. break;
  5351. nodemask = node_to_cpumask(n);
  5352. cpus_and(tmp, tmp, nodemask);
  5353. if (cpus_empty(tmp))
  5354. continue;
  5355. sg = kmalloc_node(sizeof(struct sched_group),
  5356. GFP_KERNEL, i);
  5357. if (!sg) {
  5358. printk(KERN_WARNING
  5359. "Can not alloc domain group for node %d\n", j);
  5360. goto error;
  5361. }
  5362. sg->__cpu_power = 0;
  5363. sg->cpumask = tmp;
  5364. sg->next = prev->next;
  5365. cpus_or(covered, covered, tmp);
  5366. prev->next = sg;
  5367. prev = sg;
  5368. }
  5369. }
  5370. #endif
  5371. /* Calculate CPU power for physical packages and nodes */
  5372. #ifdef CONFIG_SCHED_SMT
  5373. for_each_cpu_mask(i, *cpu_map) {
  5374. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5375. init_sched_groups_power(i, sd);
  5376. }
  5377. #endif
  5378. #ifdef CONFIG_SCHED_MC
  5379. for_each_cpu_mask(i, *cpu_map) {
  5380. struct sched_domain *sd = &per_cpu(core_domains, i);
  5381. init_sched_groups_power(i, sd);
  5382. }
  5383. #endif
  5384. for_each_cpu_mask(i, *cpu_map) {
  5385. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5386. init_sched_groups_power(i, sd);
  5387. }
  5388. #ifdef CONFIG_NUMA
  5389. for (i = 0; i < MAX_NUMNODES; i++)
  5390. init_numa_sched_groups_power(sched_group_nodes[i]);
  5391. if (sd_allnodes) {
  5392. struct sched_group *sg;
  5393. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5394. init_numa_sched_groups_power(sg);
  5395. }
  5396. #endif
  5397. /* Attach the domains */
  5398. for_each_cpu_mask(i, *cpu_map) {
  5399. struct sched_domain *sd;
  5400. #ifdef CONFIG_SCHED_SMT
  5401. sd = &per_cpu(cpu_domains, i);
  5402. #elif defined(CONFIG_SCHED_MC)
  5403. sd = &per_cpu(core_domains, i);
  5404. #else
  5405. sd = &per_cpu(phys_domains, i);
  5406. #endif
  5407. cpu_attach_domain(sd, i);
  5408. }
  5409. return 0;
  5410. #ifdef CONFIG_NUMA
  5411. error:
  5412. free_sched_groups(cpu_map);
  5413. return -ENOMEM;
  5414. #endif
  5415. }
  5416. /*
  5417. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5418. */
  5419. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5420. {
  5421. cpumask_t cpu_default_map;
  5422. int err;
  5423. /*
  5424. * Setup mask for cpus without special case scheduling requirements.
  5425. * For now this just excludes isolated cpus, but could be used to
  5426. * exclude other special cases in the future.
  5427. */
  5428. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5429. err = build_sched_domains(&cpu_default_map);
  5430. return err;
  5431. }
  5432. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5433. {
  5434. free_sched_groups(cpu_map);
  5435. }
  5436. /*
  5437. * Detach sched domains from a group of cpus specified in cpu_map
  5438. * These cpus will now be attached to the NULL domain
  5439. */
  5440. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5441. {
  5442. int i;
  5443. for_each_cpu_mask(i, *cpu_map)
  5444. cpu_attach_domain(NULL, i);
  5445. synchronize_sched();
  5446. arch_destroy_sched_domains(cpu_map);
  5447. }
  5448. /*
  5449. * Partition sched domains as specified by the cpumasks below.
  5450. * This attaches all cpus from the cpumasks to the NULL domain,
  5451. * waits for a RCU quiescent period, recalculates sched
  5452. * domain information and then attaches them back to the
  5453. * correct sched domains
  5454. * Call with hotplug lock held
  5455. */
  5456. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5457. {
  5458. cpumask_t change_map;
  5459. int err = 0;
  5460. cpus_and(*partition1, *partition1, cpu_online_map);
  5461. cpus_and(*partition2, *partition2, cpu_online_map);
  5462. cpus_or(change_map, *partition1, *partition2);
  5463. /* Detach sched domains from all of the affected cpus */
  5464. detach_destroy_domains(&change_map);
  5465. if (!cpus_empty(*partition1))
  5466. err = build_sched_domains(partition1);
  5467. if (!err && !cpus_empty(*partition2))
  5468. err = build_sched_domains(partition2);
  5469. return err;
  5470. }
  5471. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5472. static int arch_reinit_sched_domains(void)
  5473. {
  5474. int err;
  5475. mutex_lock(&sched_hotcpu_mutex);
  5476. detach_destroy_domains(&cpu_online_map);
  5477. err = arch_init_sched_domains(&cpu_online_map);
  5478. mutex_unlock(&sched_hotcpu_mutex);
  5479. return err;
  5480. }
  5481. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5482. {
  5483. int ret;
  5484. if (buf[0] != '0' && buf[0] != '1')
  5485. return -EINVAL;
  5486. if (smt)
  5487. sched_smt_power_savings = (buf[0] == '1');
  5488. else
  5489. sched_mc_power_savings = (buf[0] == '1');
  5490. ret = arch_reinit_sched_domains();
  5491. return ret ? ret : count;
  5492. }
  5493. #ifdef CONFIG_SCHED_MC
  5494. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5495. {
  5496. return sprintf(page, "%u\n", sched_mc_power_savings);
  5497. }
  5498. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5499. const char *buf, size_t count)
  5500. {
  5501. return sched_power_savings_store(buf, count, 0);
  5502. }
  5503. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5504. sched_mc_power_savings_store);
  5505. #endif
  5506. #ifdef CONFIG_SCHED_SMT
  5507. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5508. {
  5509. return sprintf(page, "%u\n", sched_smt_power_savings);
  5510. }
  5511. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5512. const char *buf, size_t count)
  5513. {
  5514. return sched_power_savings_store(buf, count, 1);
  5515. }
  5516. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5517. sched_smt_power_savings_store);
  5518. #endif
  5519. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5520. {
  5521. int err = 0;
  5522. #ifdef CONFIG_SCHED_SMT
  5523. if (smt_capable())
  5524. err = sysfs_create_file(&cls->kset.kobj,
  5525. &attr_sched_smt_power_savings.attr);
  5526. #endif
  5527. #ifdef CONFIG_SCHED_MC
  5528. if (!err && mc_capable())
  5529. err = sysfs_create_file(&cls->kset.kobj,
  5530. &attr_sched_mc_power_savings.attr);
  5531. #endif
  5532. return err;
  5533. }
  5534. #endif
  5535. /*
  5536. * Force a reinitialization of the sched domains hierarchy. The domains
  5537. * and groups cannot be updated in place without racing with the balancing
  5538. * code, so we temporarily attach all running cpus to the NULL domain
  5539. * which will prevent rebalancing while the sched domains are recalculated.
  5540. */
  5541. static int update_sched_domains(struct notifier_block *nfb,
  5542. unsigned long action, void *hcpu)
  5543. {
  5544. switch (action) {
  5545. case CPU_UP_PREPARE:
  5546. case CPU_UP_PREPARE_FROZEN:
  5547. case CPU_DOWN_PREPARE:
  5548. case CPU_DOWN_PREPARE_FROZEN:
  5549. detach_destroy_domains(&cpu_online_map);
  5550. return NOTIFY_OK;
  5551. case CPU_UP_CANCELED:
  5552. case CPU_UP_CANCELED_FROZEN:
  5553. case CPU_DOWN_FAILED:
  5554. case CPU_DOWN_FAILED_FROZEN:
  5555. case CPU_ONLINE:
  5556. case CPU_ONLINE_FROZEN:
  5557. case CPU_DEAD:
  5558. case CPU_DEAD_FROZEN:
  5559. /*
  5560. * Fall through and re-initialise the domains.
  5561. */
  5562. break;
  5563. default:
  5564. return NOTIFY_DONE;
  5565. }
  5566. /* The hotplug lock is already held by cpu_up/cpu_down */
  5567. arch_init_sched_domains(&cpu_online_map);
  5568. return NOTIFY_OK;
  5569. }
  5570. void __init sched_init_smp(void)
  5571. {
  5572. cpumask_t non_isolated_cpus;
  5573. mutex_lock(&sched_hotcpu_mutex);
  5574. arch_init_sched_domains(&cpu_online_map);
  5575. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5576. if (cpus_empty(non_isolated_cpus))
  5577. cpu_set(smp_processor_id(), non_isolated_cpus);
  5578. mutex_unlock(&sched_hotcpu_mutex);
  5579. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5580. hotcpu_notifier(update_sched_domains, 0);
  5581. init_sched_domain_sysctl();
  5582. /* Move init over to a non-isolated CPU */
  5583. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5584. BUG();
  5585. sched_init_granularity();
  5586. }
  5587. #else
  5588. void __init sched_init_smp(void)
  5589. {
  5590. sched_init_granularity();
  5591. }
  5592. #endif /* CONFIG_SMP */
  5593. int in_sched_functions(unsigned long addr)
  5594. {
  5595. /* Linker adds these: start and end of __sched functions */
  5596. extern char __sched_text_start[], __sched_text_end[];
  5597. return in_lock_functions(addr) ||
  5598. (addr >= (unsigned long)__sched_text_start
  5599. && addr < (unsigned long)__sched_text_end);
  5600. }
  5601. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5602. {
  5603. cfs_rq->tasks_timeline = RB_ROOT;
  5604. cfs_rq->fair_clock = 1;
  5605. #ifdef CONFIG_FAIR_GROUP_SCHED
  5606. cfs_rq->rq = rq;
  5607. #endif
  5608. }
  5609. void __init sched_init(void)
  5610. {
  5611. u64 now = sched_clock();
  5612. int highest_cpu = 0;
  5613. int i, j;
  5614. /*
  5615. * Link up the scheduling class hierarchy:
  5616. */
  5617. rt_sched_class.next = &fair_sched_class;
  5618. fair_sched_class.next = &idle_sched_class;
  5619. idle_sched_class.next = NULL;
  5620. for_each_possible_cpu(i) {
  5621. struct rt_prio_array *array;
  5622. struct rq *rq;
  5623. rq = cpu_rq(i);
  5624. spin_lock_init(&rq->lock);
  5625. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5626. rq->nr_running = 0;
  5627. rq->clock = 1;
  5628. init_cfs_rq(&rq->cfs, rq);
  5629. #ifdef CONFIG_FAIR_GROUP_SCHED
  5630. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5631. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5632. #endif
  5633. rq->ls.load_update_last = now;
  5634. rq->ls.load_update_start = now;
  5635. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5636. rq->cpu_load[j] = 0;
  5637. #ifdef CONFIG_SMP
  5638. rq->sd = NULL;
  5639. rq->active_balance = 0;
  5640. rq->next_balance = jiffies;
  5641. rq->push_cpu = 0;
  5642. rq->cpu = i;
  5643. rq->migration_thread = NULL;
  5644. INIT_LIST_HEAD(&rq->migration_queue);
  5645. #endif
  5646. atomic_set(&rq->nr_iowait, 0);
  5647. array = &rq->rt.active;
  5648. for (j = 0; j < MAX_RT_PRIO; j++) {
  5649. INIT_LIST_HEAD(array->queue + j);
  5650. __clear_bit(j, array->bitmap);
  5651. }
  5652. highest_cpu = i;
  5653. /* delimiter for bitsearch: */
  5654. __set_bit(MAX_RT_PRIO, array->bitmap);
  5655. }
  5656. set_load_weight(&init_task);
  5657. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5658. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5659. #endif
  5660. #ifdef CONFIG_SMP
  5661. nr_cpu_ids = highest_cpu + 1;
  5662. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5663. #endif
  5664. #ifdef CONFIG_RT_MUTEXES
  5665. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5666. #endif
  5667. /*
  5668. * The boot idle thread does lazy MMU switching as well:
  5669. */
  5670. atomic_inc(&init_mm.mm_count);
  5671. enter_lazy_tlb(&init_mm, current);
  5672. /*
  5673. * Make us the idle thread. Technically, schedule() should not be
  5674. * called from this thread, however somewhere below it might be,
  5675. * but because we are the idle thread, we just pick up running again
  5676. * when this runqueue becomes "idle".
  5677. */
  5678. init_idle(current, smp_processor_id());
  5679. /*
  5680. * During early bootup we pretend to be a normal task:
  5681. */
  5682. current->sched_class = &fair_sched_class;
  5683. }
  5684. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5685. void __might_sleep(char *file, int line)
  5686. {
  5687. #ifdef in_atomic
  5688. static unsigned long prev_jiffy; /* ratelimiting */
  5689. if ((in_atomic() || irqs_disabled()) &&
  5690. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5691. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5692. return;
  5693. prev_jiffy = jiffies;
  5694. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5695. " context at %s:%d\n", file, line);
  5696. printk("in_atomic():%d, irqs_disabled():%d\n",
  5697. in_atomic(), irqs_disabled());
  5698. debug_show_held_locks(current);
  5699. if (irqs_disabled())
  5700. print_irqtrace_events(current);
  5701. dump_stack();
  5702. }
  5703. #endif
  5704. }
  5705. EXPORT_SYMBOL(__might_sleep);
  5706. #endif
  5707. #ifdef CONFIG_MAGIC_SYSRQ
  5708. void normalize_rt_tasks(void)
  5709. {
  5710. struct task_struct *g, *p;
  5711. unsigned long flags;
  5712. struct rq *rq;
  5713. int on_rq;
  5714. read_lock_irq(&tasklist_lock);
  5715. do_each_thread(g, p) {
  5716. p->se.fair_key = 0;
  5717. p->se.wait_runtime = 0;
  5718. p->se.exec_start = 0;
  5719. p->se.wait_start_fair = 0;
  5720. p->se.sleep_start_fair = 0;
  5721. #ifdef CONFIG_SCHEDSTATS
  5722. p->se.wait_start = 0;
  5723. p->se.sleep_start = 0;
  5724. p->se.block_start = 0;
  5725. #endif
  5726. task_rq(p)->cfs.fair_clock = 0;
  5727. task_rq(p)->clock = 0;
  5728. if (!rt_task(p)) {
  5729. /*
  5730. * Renice negative nice level userspace
  5731. * tasks back to 0:
  5732. */
  5733. if (TASK_NICE(p) < 0 && p->mm)
  5734. set_user_nice(p, 0);
  5735. continue;
  5736. }
  5737. spin_lock_irqsave(&p->pi_lock, flags);
  5738. rq = __task_rq_lock(p);
  5739. #ifdef CONFIG_SMP
  5740. /*
  5741. * Do not touch the migration thread:
  5742. */
  5743. if (p == rq->migration_thread)
  5744. goto out_unlock;
  5745. #endif
  5746. update_rq_clock(rq);
  5747. on_rq = p->se.on_rq;
  5748. if (on_rq)
  5749. deactivate_task(rq, p, 0);
  5750. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5751. if (on_rq) {
  5752. activate_task(rq, p, 0);
  5753. resched_task(rq->curr);
  5754. }
  5755. #ifdef CONFIG_SMP
  5756. out_unlock:
  5757. #endif
  5758. __task_rq_unlock(rq);
  5759. spin_unlock_irqrestore(&p->pi_lock, flags);
  5760. } while_each_thread(g, p);
  5761. read_unlock_irq(&tasklist_lock);
  5762. }
  5763. #endif /* CONFIG_MAGIC_SYSRQ */
  5764. #ifdef CONFIG_IA64
  5765. /*
  5766. * These functions are only useful for the IA64 MCA handling.
  5767. *
  5768. * They can only be called when the whole system has been
  5769. * stopped - every CPU needs to be quiescent, and no scheduling
  5770. * activity can take place. Using them for anything else would
  5771. * be a serious bug, and as a result, they aren't even visible
  5772. * under any other configuration.
  5773. */
  5774. /**
  5775. * curr_task - return the current task for a given cpu.
  5776. * @cpu: the processor in question.
  5777. *
  5778. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5779. */
  5780. struct task_struct *curr_task(int cpu)
  5781. {
  5782. return cpu_curr(cpu);
  5783. }
  5784. /**
  5785. * set_curr_task - set the current task for a given cpu.
  5786. * @cpu: the processor in question.
  5787. * @p: the task pointer to set.
  5788. *
  5789. * Description: This function must only be used when non-maskable interrupts
  5790. * are serviced on a separate stack. It allows the architecture to switch the
  5791. * notion of the current task on a cpu in a non-blocking manner. This function
  5792. * must be called with all CPU's synchronized, and interrupts disabled, the
  5793. * and caller must save the original value of the current task (see
  5794. * curr_task() above) and restore that value before reenabling interrupts and
  5795. * re-starting the system.
  5796. *
  5797. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5798. */
  5799. void set_curr_task(int cpu, struct task_struct *p)
  5800. {
  5801. cpu_curr(cpu) = p;
  5802. }
  5803. #endif