lguest.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046
  1. /*P:100 This is the Launcher code, a simple program which lays out the
  2. * "physical" memory for the new Guest by mapping the kernel image and
  3. * the virtual devices, then opens /dev/lguest to tell the kernel
  4. * about the Guest and control it. :*/
  5. #define _LARGEFILE64_SOURCE
  6. #define _GNU_SOURCE
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <unistd.h>
  10. #include <err.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <elf.h>
  14. #include <sys/mman.h>
  15. #include <sys/param.h>
  16. #include <sys/types.h>
  17. #include <sys/stat.h>
  18. #include <sys/wait.h>
  19. #include <fcntl.h>
  20. #include <stdbool.h>
  21. #include <errno.h>
  22. #include <ctype.h>
  23. #include <sys/socket.h>
  24. #include <sys/ioctl.h>
  25. #include <sys/time.h>
  26. #include <time.h>
  27. #include <netinet/in.h>
  28. #include <net/if.h>
  29. #include <linux/sockios.h>
  30. #include <linux/if_tun.h>
  31. #include <sys/uio.h>
  32. #include <termios.h>
  33. #include <getopt.h>
  34. #include <zlib.h>
  35. #include <assert.h>
  36. #include <sched.h>
  37. #include <limits.h>
  38. #include <stddef.h>
  39. #include <signal.h>
  40. #include "linux/lguest_launcher.h"
  41. #include "linux/virtio_config.h"
  42. #include "linux/virtio_net.h"
  43. #include "linux/virtio_blk.h"
  44. #include "linux/virtio_console.h"
  45. #include "linux/virtio_rng.h"
  46. #include "linux/virtio_ring.h"
  47. #include "asm/bootparam.h"
  48. /*L:110 We can ignore the 39 include files we need for this program, but I do
  49. * want to draw attention to the use of kernel-style types.
  50. *
  51. * As Linus said, "C is a Spartan language, and so should your naming be." I
  52. * like these abbreviations, so we define them here. Note that u64 is always
  53. * unsigned long long, which works on all Linux systems: this means that we can
  54. * use %llu in printf for any u64. */
  55. typedef unsigned long long u64;
  56. typedef uint32_t u32;
  57. typedef uint16_t u16;
  58. typedef uint8_t u8;
  59. /*:*/
  60. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  61. #define NET_PEERNUM 1
  62. #define BRIDGE_PFX "bridge:"
  63. #ifndef SIOCBRADDIF
  64. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  65. #endif
  66. /* We can have up to 256 pages for devices. */
  67. #define DEVICE_PAGES 256
  68. /* This will occupy 3 pages: it must be a power of 2. */
  69. #define VIRTQUEUE_NUM 256
  70. /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
  71. * this, and although I wouldn't recommend it, it works quite nicely here. */
  72. static bool verbose;
  73. #define verbose(args...) \
  74. do { if (verbose) printf(args); } while(0)
  75. /*:*/
  76. /* File descriptors for the Waker. */
  77. struct {
  78. int pipe[2];
  79. } waker_fds;
  80. /* The pointer to the start of guest memory. */
  81. static void *guest_base;
  82. /* The maximum guest physical address allowed, and maximum possible. */
  83. static unsigned long guest_limit, guest_max;
  84. /* The pipe for signal hander to write to. */
  85. static int timeoutpipe[2];
  86. static unsigned int timeout_usec = 500;
  87. /* The /dev/lguest file descriptor. */
  88. static int lguest_fd;
  89. /* a per-cpu variable indicating whose vcpu is currently running */
  90. static unsigned int __thread cpu_id;
  91. /* This is our list of devices. */
  92. struct device_list
  93. {
  94. /* Summary information about the devices in our list: ready to pass to
  95. * select() to ask which need servicing.*/
  96. fd_set infds;
  97. int max_infd;
  98. /* Counter to assign interrupt numbers. */
  99. unsigned int next_irq;
  100. /* Counter to print out convenient device numbers. */
  101. unsigned int device_num;
  102. /* The descriptor page for the devices. */
  103. u8 *descpage;
  104. /* A single linked list of devices. */
  105. struct device *dev;
  106. /* And a pointer to the last device for easy append and also for
  107. * configuration appending. */
  108. struct device *lastdev;
  109. };
  110. /* The list of Guest devices, based on command line arguments. */
  111. static struct device_list devices;
  112. /* The device structure describes a single device. */
  113. struct device
  114. {
  115. /* The linked-list pointer. */
  116. struct device *next;
  117. /* The device's descriptor, as mapped into the Guest. */
  118. struct lguest_device_desc *desc;
  119. /* We can't trust desc values once Guest has booted: we use these. */
  120. unsigned int feature_len;
  121. unsigned int num_vq;
  122. /* The name of this device, for --verbose. */
  123. const char *name;
  124. /* If handle_input is set, it wants to be called when this file
  125. * descriptor is ready. */
  126. int fd;
  127. bool (*handle_input)(struct device *me);
  128. /* Any queues attached to this device */
  129. struct virtqueue *vq;
  130. /* Handle status being finalized (ie. feature bits stable). */
  131. void (*ready)(struct device *me);
  132. /* Device-specific data. */
  133. void *priv;
  134. };
  135. /* The virtqueue structure describes a queue attached to a device. */
  136. struct virtqueue
  137. {
  138. struct virtqueue *next;
  139. /* Which device owns me. */
  140. struct device *dev;
  141. /* The configuration for this queue. */
  142. struct lguest_vqconfig config;
  143. /* The actual ring of buffers. */
  144. struct vring vring;
  145. /* Last available index we saw. */
  146. u16 last_avail_idx;
  147. /* The routine to call when the Guest pings us, or timeout. */
  148. void (*handle_output)(struct virtqueue *me, bool timeout);
  149. /* Outstanding buffers */
  150. unsigned int inflight;
  151. /* Is this blocked awaiting a timer? */
  152. bool blocked;
  153. };
  154. /* Remember the arguments to the program so we can "reboot" */
  155. static char **main_args;
  156. /* Since guest is UP and we don't run at the same time, we don't need barriers.
  157. * But I include them in the code in case others copy it. */
  158. #define wmb()
  159. /* Convert an iovec element to the given type.
  160. *
  161. * This is a fairly ugly trick: we need to know the size of the type and
  162. * alignment requirement to check the pointer is kosher. It's also nice to
  163. * have the name of the type in case we report failure.
  164. *
  165. * Typing those three things all the time is cumbersome and error prone, so we
  166. * have a macro which sets them all up and passes to the real function. */
  167. #define convert(iov, type) \
  168. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  169. static void *_convert(struct iovec *iov, size_t size, size_t align,
  170. const char *name)
  171. {
  172. if (iov->iov_len != size)
  173. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  174. if ((unsigned long)iov->iov_base % align != 0)
  175. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  176. return iov->iov_base;
  177. }
  178. /* Wrapper for the last available index. Makes it easier to change. */
  179. #define lg_last_avail(vq) ((vq)->last_avail_idx)
  180. /* The virtio configuration space is defined to be little-endian. x86 is
  181. * little-endian too, but it's nice to be explicit so we have these helpers. */
  182. #define cpu_to_le16(v16) (v16)
  183. #define cpu_to_le32(v32) (v32)
  184. #define cpu_to_le64(v64) (v64)
  185. #define le16_to_cpu(v16) (v16)
  186. #define le32_to_cpu(v32) (v32)
  187. #define le64_to_cpu(v64) (v64)
  188. /* Is this iovec empty? */
  189. static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
  190. {
  191. unsigned int i;
  192. for (i = 0; i < num_iov; i++)
  193. if (iov[i].iov_len)
  194. return false;
  195. return true;
  196. }
  197. /* Take len bytes from the front of this iovec. */
  198. static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
  199. {
  200. unsigned int i;
  201. for (i = 0; i < num_iov; i++) {
  202. unsigned int used;
  203. used = iov[i].iov_len < len ? iov[i].iov_len : len;
  204. iov[i].iov_base += used;
  205. iov[i].iov_len -= used;
  206. len -= used;
  207. }
  208. assert(len == 0);
  209. }
  210. /* The device virtqueue descriptors are followed by feature bitmasks. */
  211. static u8 *get_feature_bits(struct device *dev)
  212. {
  213. return (u8 *)(dev->desc + 1)
  214. + dev->num_vq * sizeof(struct lguest_vqconfig);
  215. }
  216. /*L:100 The Launcher code itself takes us out into userspace, that scary place
  217. * where pointers run wild and free! Unfortunately, like most userspace
  218. * programs, it's quite boring (which is why everyone likes to hack on the
  219. * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
  220. * will get you through this section. Or, maybe not.
  221. *
  222. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  223. * memory and stores it in "guest_base". In other words, Guest physical ==
  224. * Launcher virtual with an offset.
  225. *
  226. * This can be tough to get your head around, but usually it just means that we
  227. * use these trivial conversion functions when the Guest gives us it's
  228. * "physical" addresses: */
  229. static void *from_guest_phys(unsigned long addr)
  230. {
  231. return guest_base + addr;
  232. }
  233. static unsigned long to_guest_phys(const void *addr)
  234. {
  235. return (addr - guest_base);
  236. }
  237. /*L:130
  238. * Loading the Kernel.
  239. *
  240. * We start with couple of simple helper routines. open_or_die() avoids
  241. * error-checking code cluttering the callers: */
  242. static int open_or_die(const char *name, int flags)
  243. {
  244. int fd = open(name, flags);
  245. if (fd < 0)
  246. err(1, "Failed to open %s", name);
  247. return fd;
  248. }
  249. /* map_zeroed_pages() takes a number of pages. */
  250. static void *map_zeroed_pages(unsigned int num)
  251. {
  252. int fd = open_or_die("/dev/zero", O_RDONLY);
  253. void *addr;
  254. /* We use a private mapping (ie. if we write to the page, it will be
  255. * copied). */
  256. addr = mmap(NULL, getpagesize() * num,
  257. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  258. if (addr == MAP_FAILED)
  259. err(1, "Mmaping %u pages of /dev/zero", num);
  260. close(fd);
  261. return addr;
  262. }
  263. /* Get some more pages for a device. */
  264. static void *get_pages(unsigned int num)
  265. {
  266. void *addr = from_guest_phys(guest_limit);
  267. guest_limit += num * getpagesize();
  268. if (guest_limit > guest_max)
  269. errx(1, "Not enough memory for devices");
  270. return addr;
  271. }
  272. /* This routine is used to load the kernel or initrd. It tries mmap, but if
  273. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  274. * it falls back to reading the memory in. */
  275. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  276. {
  277. ssize_t r;
  278. /* We map writable even though for some segments are marked read-only.
  279. * The kernel really wants to be writable: it patches its own
  280. * instructions.
  281. *
  282. * MAP_PRIVATE means that the page won't be copied until a write is
  283. * done to it. This allows us to share untouched memory between
  284. * Guests. */
  285. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  286. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  287. return;
  288. /* pread does a seek and a read in one shot: saves a few lines. */
  289. r = pread(fd, addr, len, offset);
  290. if (r != len)
  291. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  292. }
  293. /* This routine takes an open vmlinux image, which is in ELF, and maps it into
  294. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  295. * by all modern binaries on Linux including the kernel.
  296. *
  297. * The ELF headers give *two* addresses: a physical address, and a virtual
  298. * address. We use the physical address; the Guest will map itself to the
  299. * virtual address.
  300. *
  301. * We return the starting address. */
  302. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  303. {
  304. Elf32_Phdr phdr[ehdr->e_phnum];
  305. unsigned int i;
  306. /* Sanity checks on the main ELF header: an x86 executable with a
  307. * reasonable number of correctly-sized program headers. */
  308. if (ehdr->e_type != ET_EXEC
  309. || ehdr->e_machine != EM_386
  310. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  311. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  312. errx(1, "Malformed elf header");
  313. /* An ELF executable contains an ELF header and a number of "program"
  314. * headers which indicate which parts ("segments") of the program to
  315. * load where. */
  316. /* We read in all the program headers at once: */
  317. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  318. err(1, "Seeking to program headers");
  319. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  320. err(1, "Reading program headers");
  321. /* Try all the headers: there are usually only three. A read-only one,
  322. * a read-write one, and a "note" section which we don't load. */
  323. for (i = 0; i < ehdr->e_phnum; i++) {
  324. /* If this isn't a loadable segment, we ignore it */
  325. if (phdr[i].p_type != PT_LOAD)
  326. continue;
  327. verbose("Section %i: size %i addr %p\n",
  328. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  329. /* We map this section of the file at its physical address. */
  330. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  331. phdr[i].p_offset, phdr[i].p_filesz);
  332. }
  333. /* The entry point is given in the ELF header. */
  334. return ehdr->e_entry;
  335. }
  336. /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
  337. * supposed to jump into it and it will unpack itself. We used to have to
  338. * perform some hairy magic because the unpacking code scared me.
  339. *
  340. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  341. * a small patch to jump over the tricky bits in the Guest, so now we just read
  342. * the funky header so we know where in the file to load, and away we go! */
  343. static unsigned long load_bzimage(int fd)
  344. {
  345. struct boot_params boot;
  346. int r;
  347. /* Modern bzImages get loaded at 1M. */
  348. void *p = from_guest_phys(0x100000);
  349. /* Go back to the start of the file and read the header. It should be
  350. * a Linux boot header (see Documentation/x86/i386/boot.txt) */
  351. lseek(fd, 0, SEEK_SET);
  352. read(fd, &boot, sizeof(boot));
  353. /* Inside the setup_hdr, we expect the magic "HdrS" */
  354. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  355. errx(1, "This doesn't look like a bzImage to me");
  356. /* Skip over the extra sectors of the header. */
  357. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  358. /* Now read everything into memory. in nice big chunks. */
  359. while ((r = read(fd, p, 65536)) > 0)
  360. p += r;
  361. /* Finally, code32_start tells us where to enter the kernel. */
  362. return boot.hdr.code32_start;
  363. }
  364. /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
  365. * come wrapped up in the self-decompressing "bzImage" format. With a little
  366. * work, we can load those, too. */
  367. static unsigned long load_kernel(int fd)
  368. {
  369. Elf32_Ehdr hdr;
  370. /* Read in the first few bytes. */
  371. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  372. err(1, "Reading kernel");
  373. /* If it's an ELF file, it starts with "\177ELF" */
  374. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  375. return map_elf(fd, &hdr);
  376. /* Otherwise we assume it's a bzImage, and try to load it. */
  377. return load_bzimage(fd);
  378. }
  379. /* This is a trivial little helper to align pages. Andi Kleen hated it because
  380. * it calls getpagesize() twice: "it's dumb code."
  381. *
  382. * Kernel guys get really het up about optimization, even when it's not
  383. * necessary. I leave this code as a reaction against that. */
  384. static inline unsigned long page_align(unsigned long addr)
  385. {
  386. /* Add upwards and truncate downwards. */
  387. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  388. }
  389. /*L:180 An "initial ram disk" is a disk image loaded into memory along with
  390. * the kernel which the kernel can use to boot from without needing any
  391. * drivers. Most distributions now use this as standard: the initrd contains
  392. * the code to load the appropriate driver modules for the current machine.
  393. *
  394. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  395. * kernels. He sent me this (and tells me when I break it). */
  396. static unsigned long load_initrd(const char *name, unsigned long mem)
  397. {
  398. int ifd;
  399. struct stat st;
  400. unsigned long len;
  401. ifd = open_or_die(name, O_RDONLY);
  402. /* fstat() is needed to get the file size. */
  403. if (fstat(ifd, &st) < 0)
  404. err(1, "fstat() on initrd '%s'", name);
  405. /* We map the initrd at the top of memory, but mmap wants it to be
  406. * page-aligned, so we round the size up for that. */
  407. len = page_align(st.st_size);
  408. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  409. /* Once a file is mapped, you can close the file descriptor. It's a
  410. * little odd, but quite useful. */
  411. close(ifd);
  412. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  413. /* We return the initrd size. */
  414. return len;
  415. }
  416. /*:*/
  417. /* Simple routine to roll all the commandline arguments together with spaces
  418. * between them. */
  419. static void concat(char *dst, char *args[])
  420. {
  421. unsigned int i, len = 0;
  422. for (i = 0; args[i]; i++) {
  423. if (i) {
  424. strcat(dst+len, " ");
  425. len++;
  426. }
  427. strcpy(dst+len, args[i]);
  428. len += strlen(args[i]);
  429. }
  430. /* In case it's empty. */
  431. dst[len] = '\0';
  432. }
  433. /*L:185 This is where we actually tell the kernel to initialize the Guest. We
  434. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  435. * the base of Guest "physical" memory, the top physical page to allow and the
  436. * entry point for the Guest. */
  437. static void tell_kernel(unsigned long start)
  438. {
  439. unsigned long args[] = { LHREQ_INITIALIZE,
  440. (unsigned long)guest_base,
  441. guest_limit / getpagesize(), start };
  442. verbose("Guest: %p - %p (%#lx)\n",
  443. guest_base, guest_base + guest_limit, guest_limit);
  444. lguest_fd = open_or_die("/dev/lguest", O_RDWR);
  445. if (write(lguest_fd, args, sizeof(args)) < 0)
  446. err(1, "Writing to /dev/lguest");
  447. }
  448. /*:*/
  449. static void add_device_fd(int fd)
  450. {
  451. FD_SET(fd, &devices.infds);
  452. if (fd > devices.max_infd)
  453. devices.max_infd = fd;
  454. }
  455. /*L:200
  456. * The Waker.
  457. *
  458. * With console, block and network devices, we can have lots of input which we
  459. * need to process. We could try to tell the kernel what file descriptors to
  460. * watch, but handing a file descriptor mask through to the kernel is fairly
  461. * icky.
  462. *
  463. * Instead, we clone off a thread which watches the file descriptors and writes
  464. * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
  465. * stop running the Guest. This causes the Launcher to return from the
  466. * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  467. * the LHREQ_BREAK and wake us up again.
  468. *
  469. * This, of course, is merely a different *kind* of icky.
  470. *
  471. * Given my well-known antipathy to threads, I'd prefer to use processes. But
  472. * it's easier to share Guest memory with threads, and trivial to share the
  473. * devices.infds as the Launcher changes it.
  474. */
  475. static int waker(void *unused)
  476. {
  477. /* Close the write end of the pipe: only the Launcher has it open. */
  478. close(waker_fds.pipe[1]);
  479. for (;;) {
  480. fd_set rfds = devices.infds;
  481. unsigned long args[] = { LHREQ_BREAK, 1 };
  482. unsigned int maxfd = devices.max_infd;
  483. /* We also listen to the pipe from the Launcher. */
  484. FD_SET(waker_fds.pipe[0], &rfds);
  485. if (waker_fds.pipe[0] > maxfd)
  486. maxfd = waker_fds.pipe[0];
  487. /* Wait until input is ready from one of the devices. */
  488. select(maxfd+1, &rfds, NULL, NULL, NULL);
  489. /* Message from Launcher? */
  490. if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
  491. char c;
  492. /* If this fails, then assume Launcher has exited.
  493. * Don't do anything on exit: we're just a thread! */
  494. if (read(waker_fds.pipe[0], &c, 1) != 1)
  495. _exit(0);
  496. continue;
  497. }
  498. /* Send LHREQ_BREAK command to snap the Launcher out of it. */
  499. pwrite(lguest_fd, args, sizeof(args), cpu_id);
  500. }
  501. return 0;
  502. }
  503. /* This routine just sets up a pipe to the Waker process. */
  504. static void setup_waker(void)
  505. {
  506. /* This pipe is closed when Launcher dies, telling Waker. */
  507. if (pipe(waker_fds.pipe) != 0)
  508. err(1, "Creating pipe for Waker");
  509. if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
  510. err(1, "Creating Waker");
  511. }
  512. /*
  513. * Device Handling.
  514. *
  515. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  516. * We need to make sure it's not trying to reach into the Launcher itself, so
  517. * we have a convenient routine which checks it and exits with an error message
  518. * if something funny is going on:
  519. */
  520. static void *_check_pointer(unsigned long addr, unsigned int size,
  521. unsigned int line)
  522. {
  523. /* We have to separately check addr and addr+size, because size could
  524. * be huge and addr + size might wrap around. */
  525. if (addr >= guest_limit || addr + size >= guest_limit)
  526. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  527. /* We return a pointer for the caller's convenience, now we know it's
  528. * safe to use. */
  529. return from_guest_phys(addr);
  530. }
  531. /* A macro which transparently hands the line number to the real function. */
  532. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  533. /* Each buffer in the virtqueues is actually a chain of descriptors. This
  534. * function returns the next descriptor in the chain, or vq->vring.num if we're
  535. * at the end. */
  536. static unsigned next_desc(struct virtqueue *vq, unsigned int i)
  537. {
  538. unsigned int next;
  539. /* If this descriptor says it doesn't chain, we're done. */
  540. if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
  541. return vq->vring.num;
  542. /* Check they're not leading us off end of descriptors. */
  543. next = vq->vring.desc[i].next;
  544. /* Make sure compiler knows to grab that: we don't want it changing! */
  545. wmb();
  546. if (next >= vq->vring.num)
  547. errx(1, "Desc next is %u", next);
  548. return next;
  549. }
  550. /* This looks in the virtqueue and for the first available buffer, and converts
  551. * it to an iovec for convenient access. Since descriptors consist of some
  552. * number of output then some number of input descriptors, it's actually two
  553. * iovecs, but we pack them into one and note how many of each there were.
  554. *
  555. * This function returns the descriptor number found, or vq->vring.num (which
  556. * is never a valid descriptor number) if none was found. */
  557. static unsigned get_vq_desc(struct virtqueue *vq,
  558. struct iovec iov[],
  559. unsigned int *out_num, unsigned int *in_num)
  560. {
  561. unsigned int i, head;
  562. u16 last_avail;
  563. /* Check it isn't doing very strange things with descriptor numbers. */
  564. last_avail = lg_last_avail(vq);
  565. if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
  566. errx(1, "Guest moved used index from %u to %u",
  567. last_avail, vq->vring.avail->idx);
  568. /* If there's nothing new since last we looked, return invalid. */
  569. if (vq->vring.avail->idx == last_avail)
  570. return vq->vring.num;
  571. /* Grab the next descriptor number they're advertising, and increment
  572. * the index we've seen. */
  573. head = vq->vring.avail->ring[last_avail % vq->vring.num];
  574. lg_last_avail(vq)++;
  575. /* If their number is silly, that's a fatal mistake. */
  576. if (head >= vq->vring.num)
  577. errx(1, "Guest says index %u is available", head);
  578. /* When we start there are none of either input nor output. */
  579. *out_num = *in_num = 0;
  580. i = head;
  581. do {
  582. /* Grab the first descriptor, and check it's OK. */
  583. iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
  584. iov[*out_num + *in_num].iov_base
  585. = check_pointer(vq->vring.desc[i].addr,
  586. vq->vring.desc[i].len);
  587. /* If this is an input descriptor, increment that count. */
  588. if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
  589. (*in_num)++;
  590. else {
  591. /* If it's an output descriptor, they're all supposed
  592. * to come before any input descriptors. */
  593. if (*in_num)
  594. errx(1, "Descriptor has out after in");
  595. (*out_num)++;
  596. }
  597. /* If we've got too many, that implies a descriptor loop. */
  598. if (*out_num + *in_num > vq->vring.num)
  599. errx(1, "Looped descriptor");
  600. } while ((i = next_desc(vq, i)) != vq->vring.num);
  601. vq->inflight++;
  602. return head;
  603. }
  604. /* After we've used one of their buffers, we tell them about it. We'll then
  605. * want to send them an interrupt, using trigger_irq(). */
  606. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  607. {
  608. struct vring_used_elem *used;
  609. /* The virtqueue contains a ring of used buffers. Get a pointer to the
  610. * next entry in that used ring. */
  611. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  612. used->id = head;
  613. used->len = len;
  614. /* Make sure buffer is written before we update index. */
  615. wmb();
  616. vq->vring.used->idx++;
  617. vq->inflight--;
  618. }
  619. /* This actually sends the interrupt for this virtqueue */
  620. static void trigger_irq(struct virtqueue *vq)
  621. {
  622. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  623. /* If they don't want an interrupt, don't send one, unless empty. */
  624. if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
  625. && vq->inflight)
  626. return;
  627. /* Send the Guest an interrupt tell them we used something up. */
  628. if (write(lguest_fd, buf, sizeof(buf)) != 0)
  629. err(1, "Triggering irq %i", vq->config.irq);
  630. }
  631. /* And here's the combo meal deal. Supersize me! */
  632. static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
  633. {
  634. add_used(vq, head, len);
  635. trigger_irq(vq);
  636. }
  637. /*
  638. * The Console
  639. *
  640. * Here is the input terminal setting we save, and the routine to restore them
  641. * on exit so the user gets their terminal back. */
  642. static struct termios orig_term;
  643. static void restore_term(void)
  644. {
  645. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  646. }
  647. /* We associate some data with the console for our exit hack. */
  648. struct console_abort
  649. {
  650. /* How many times have they hit ^C? */
  651. int count;
  652. /* When did they start? */
  653. struct timeval start;
  654. };
  655. /* This is the routine which handles console input (ie. stdin). */
  656. static bool handle_console_input(struct device *dev)
  657. {
  658. int len;
  659. unsigned int head, in_num, out_num;
  660. struct iovec iov[dev->vq->vring.num];
  661. struct console_abort *abort = dev->priv;
  662. /* First we need a console buffer from the Guests's input virtqueue. */
  663. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  664. /* If they're not ready for input, stop listening to this file
  665. * descriptor. We'll start again once they add an input buffer. */
  666. if (head == dev->vq->vring.num)
  667. return false;
  668. if (out_num)
  669. errx(1, "Output buffers in console in queue?");
  670. /* This is why we convert to iovecs: the readv() call uses them, and so
  671. * it reads straight into the Guest's buffer. */
  672. len = readv(dev->fd, iov, in_num);
  673. if (len <= 0) {
  674. /* This implies that the console is closed, is /dev/null, or
  675. * something went terribly wrong. */
  676. warnx("Failed to get console input, ignoring console.");
  677. /* Put the input terminal back. */
  678. restore_term();
  679. /* Remove callback from input vq, so it doesn't restart us. */
  680. dev->vq->handle_output = NULL;
  681. /* Stop listening to this fd: don't call us again. */
  682. return false;
  683. }
  684. /* Tell the Guest about the new input. */
  685. add_used_and_trigger(dev->vq, head, len);
  686. /* Three ^C within one second? Exit.
  687. *
  688. * This is such a hack, but works surprisingly well. Each ^C has to be
  689. * in a buffer by itself, so they can't be too fast. But we check that
  690. * we get three within about a second, so they can't be too slow. */
  691. if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
  692. if (!abort->count++)
  693. gettimeofday(&abort->start, NULL);
  694. else if (abort->count == 3) {
  695. struct timeval now;
  696. gettimeofday(&now, NULL);
  697. if (now.tv_sec <= abort->start.tv_sec+1) {
  698. unsigned long args[] = { LHREQ_BREAK, 0 };
  699. /* Close the fd so Waker will know it has to
  700. * exit. */
  701. close(waker_fds.pipe[1]);
  702. /* Just in case Waker is blocked in BREAK, send
  703. * unbreak now. */
  704. write(lguest_fd, args, sizeof(args));
  705. exit(2);
  706. }
  707. abort->count = 0;
  708. }
  709. } else
  710. /* Any other key resets the abort counter. */
  711. abort->count = 0;
  712. /* Everything went OK! */
  713. return true;
  714. }
  715. /* Handling output for console is simple: we just get all the output buffers
  716. * and write them to stdout. */
  717. static void handle_console_output(struct virtqueue *vq, bool timeout)
  718. {
  719. unsigned int head, out, in;
  720. int len;
  721. struct iovec iov[vq->vring.num];
  722. /* Keep getting output buffers from the Guest until we run out. */
  723. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  724. if (in)
  725. errx(1, "Input buffers in output queue?");
  726. len = writev(STDOUT_FILENO, iov, out);
  727. add_used_and_trigger(vq, head, len);
  728. }
  729. }
  730. /* This is called when we no longer want to hear about Guest changes to a
  731. * virtqueue. This is more efficient in high-traffic cases, but it means we
  732. * have to set a timer to check if any more changes have occurred. */
  733. static void block_vq(struct virtqueue *vq)
  734. {
  735. struct itimerval itm;
  736. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  737. vq->blocked = true;
  738. itm.it_interval.tv_sec = 0;
  739. itm.it_interval.tv_usec = 0;
  740. itm.it_value.tv_sec = 0;
  741. itm.it_value.tv_usec = timeout_usec;
  742. setitimer(ITIMER_REAL, &itm, NULL);
  743. }
  744. /*
  745. * The Network
  746. *
  747. * Handling output for network is also simple: we get all the output buffers
  748. * and write them (ignoring the first element) to this device's file descriptor
  749. * (/dev/net/tun).
  750. */
  751. static void handle_net_output(struct virtqueue *vq, bool timeout)
  752. {
  753. unsigned int head, out, in, num = 0;
  754. int len;
  755. struct iovec iov[vq->vring.num];
  756. static int last_timeout_num;
  757. /* Keep getting output buffers from the Guest until we run out. */
  758. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  759. if (in)
  760. errx(1, "Input buffers in output queue?");
  761. len = writev(vq->dev->fd, iov, out);
  762. if (len < 0)
  763. err(1, "Writing network packet to tun");
  764. add_used_and_trigger(vq, head, len);
  765. num++;
  766. }
  767. /* Block further kicks and set up a timer if we saw anything. */
  768. if (!timeout && num)
  769. block_vq(vq);
  770. /* We never quite know how long should we wait before we check the
  771. * queue again for more packets. We start at 500 microseconds, and if
  772. * we get fewer packets than last time, we assume we made the timeout
  773. * too small and increase it by 10 microseconds. Otherwise, we drop it
  774. * by one microsecond every time. It seems to work well enough. */
  775. if (timeout) {
  776. if (num < last_timeout_num)
  777. timeout_usec += 10;
  778. else if (timeout_usec > 1)
  779. timeout_usec--;
  780. last_timeout_num = num;
  781. }
  782. }
  783. /* This is where we handle a packet coming in from the tun device to our
  784. * Guest. */
  785. static bool handle_tun_input(struct device *dev)
  786. {
  787. unsigned int head, in_num, out_num;
  788. int len;
  789. struct iovec iov[dev->vq->vring.num];
  790. /* First we need a network buffer from the Guests's recv virtqueue. */
  791. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  792. if (head == dev->vq->vring.num) {
  793. /* Now, it's expected that if we try to send a packet too
  794. * early, the Guest won't be ready yet. Wait until the device
  795. * status says it's ready. */
  796. /* FIXME: Actually want DRIVER_ACTIVE here. */
  797. /* Now tell it we want to know if new things appear. */
  798. dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  799. wmb();
  800. /* We'll turn this back on if input buffers are registered. */
  801. return false;
  802. } else if (out_num)
  803. errx(1, "Output buffers in network recv queue?");
  804. /* Read the packet from the device directly into the Guest's buffer. */
  805. len = readv(dev->fd, iov, in_num);
  806. if (len <= 0)
  807. err(1, "reading network");
  808. /* Tell the Guest about the new packet. */
  809. add_used_and_trigger(dev->vq, head, len);
  810. verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
  811. ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
  812. head != dev->vq->vring.num ? "sent" : "discarded");
  813. /* All good. */
  814. return true;
  815. }
  816. /*L:215 This is the callback attached to the network and console input
  817. * virtqueues: it ensures we try again, in case we stopped console or net
  818. * delivery because Guest didn't have any buffers. */
  819. static void enable_fd(struct virtqueue *vq, bool timeout)
  820. {
  821. add_device_fd(vq->dev->fd);
  822. /* Snap the Waker out of its select loop. */
  823. write(waker_fds.pipe[1], "", 1);
  824. }
  825. static void net_enable_fd(struct virtqueue *vq, bool timeout)
  826. {
  827. /* We don't need to know again when Guest refills receive buffer. */
  828. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  829. enable_fd(vq, timeout);
  830. }
  831. /* When the Guest tells us they updated the status field, we handle it. */
  832. static void update_device_status(struct device *dev)
  833. {
  834. struct virtqueue *vq;
  835. /* This is a reset. */
  836. if (dev->desc->status == 0) {
  837. verbose("Resetting device %s\n", dev->name);
  838. /* Clear any features they've acked. */
  839. memset(get_feature_bits(dev) + dev->feature_len, 0,
  840. dev->feature_len);
  841. /* Zero out the virtqueues. */
  842. for (vq = dev->vq; vq; vq = vq->next) {
  843. memset(vq->vring.desc, 0,
  844. vring_size(vq->config.num, LGUEST_VRING_ALIGN));
  845. lg_last_avail(vq) = 0;
  846. }
  847. } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  848. warnx("Device %s configuration FAILED", dev->name);
  849. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  850. unsigned int i;
  851. verbose("Device %s OK: offered", dev->name);
  852. for (i = 0; i < dev->feature_len; i++)
  853. verbose(" %02x", get_feature_bits(dev)[i]);
  854. verbose(", accepted");
  855. for (i = 0; i < dev->feature_len; i++)
  856. verbose(" %02x", get_feature_bits(dev)
  857. [dev->feature_len+i]);
  858. if (dev->ready)
  859. dev->ready(dev);
  860. }
  861. }
  862. /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
  863. static void handle_output(unsigned long addr)
  864. {
  865. struct device *i;
  866. struct virtqueue *vq;
  867. /* Check each device and virtqueue. */
  868. for (i = devices.dev; i; i = i->next) {
  869. /* Notifications to device descriptors update device status. */
  870. if (from_guest_phys(addr) == i->desc) {
  871. update_device_status(i);
  872. return;
  873. }
  874. /* Notifications to virtqueues mean output has occurred. */
  875. for (vq = i->vq; vq; vq = vq->next) {
  876. if (vq->config.pfn != addr/getpagesize())
  877. continue;
  878. /* Guest should acknowledge (and set features!) before
  879. * using the device. */
  880. if (i->desc->status == 0) {
  881. warnx("%s gave early output", i->name);
  882. return;
  883. }
  884. if (strcmp(vq->dev->name, "console") != 0)
  885. verbose("Output to %s\n", vq->dev->name);
  886. if (vq->handle_output)
  887. vq->handle_output(vq, false);
  888. return;
  889. }
  890. }
  891. /* Early console write is done using notify on a nul-terminated string
  892. * in Guest memory. */
  893. if (addr >= guest_limit)
  894. errx(1, "Bad NOTIFY %#lx", addr);
  895. write(STDOUT_FILENO, from_guest_phys(addr),
  896. strnlen(from_guest_phys(addr), guest_limit - addr));
  897. }
  898. static void handle_timeout(void)
  899. {
  900. char buf[32];
  901. struct device *i;
  902. struct virtqueue *vq;
  903. /* Clear the pipe */
  904. read(timeoutpipe[0], buf, sizeof(buf));
  905. /* Check each device and virtqueue: flush blocked ones. */
  906. for (i = devices.dev; i; i = i->next) {
  907. for (vq = i->vq; vq; vq = vq->next) {
  908. if (!vq->blocked)
  909. continue;
  910. vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  911. vq->blocked = false;
  912. if (vq->handle_output)
  913. vq->handle_output(vq, true);
  914. }
  915. }
  916. }
  917. /* This is called when the Waker wakes us up: check for incoming file
  918. * descriptors. */
  919. static void handle_input(void)
  920. {
  921. /* select() wants a zeroed timeval to mean "don't wait". */
  922. struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
  923. for (;;) {
  924. struct device *i;
  925. fd_set fds = devices.infds;
  926. int num;
  927. num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
  928. /* Could get interrupted */
  929. if (num < 0)
  930. continue;
  931. /* If nothing is ready, we're done. */
  932. if (num == 0)
  933. break;
  934. /* Otherwise, call the device(s) which have readable file
  935. * descriptors and a method of handling them. */
  936. for (i = devices.dev; i; i = i->next) {
  937. if (i->handle_input && FD_ISSET(i->fd, &fds)) {
  938. if (i->handle_input(i))
  939. continue;
  940. /* If handle_input() returns false, it means we
  941. * should no longer service it. Networking and
  942. * console do this when there's no input
  943. * buffers to deliver into. Console also uses
  944. * it when it discovers that stdin is closed. */
  945. FD_CLR(i->fd, &devices.infds);
  946. }
  947. }
  948. /* Is this the timeout fd? */
  949. if (FD_ISSET(timeoutpipe[0], &fds))
  950. handle_timeout();
  951. }
  952. }
  953. /*L:190
  954. * Device Setup
  955. *
  956. * All devices need a descriptor so the Guest knows it exists, and a "struct
  957. * device" so the Launcher can keep track of it. We have common helper
  958. * routines to allocate and manage them.
  959. */
  960. /* The layout of the device page is a "struct lguest_device_desc" followed by a
  961. * number of virtqueue descriptors, then two sets of feature bits, then an
  962. * array of configuration bytes. This routine returns the configuration
  963. * pointer. */
  964. static u8 *device_config(const struct device *dev)
  965. {
  966. return (void *)(dev->desc + 1)
  967. + dev->num_vq * sizeof(struct lguest_vqconfig)
  968. + dev->feature_len * 2;
  969. }
  970. /* This routine allocates a new "struct lguest_device_desc" from descriptor
  971. * table page just above the Guest's normal memory. It returns a pointer to
  972. * that descriptor. */
  973. static struct lguest_device_desc *new_dev_desc(u16 type)
  974. {
  975. struct lguest_device_desc d = { .type = type };
  976. void *p;
  977. /* Figure out where the next device config is, based on the last one. */
  978. if (devices.lastdev)
  979. p = device_config(devices.lastdev)
  980. + devices.lastdev->desc->config_len;
  981. else
  982. p = devices.descpage;
  983. /* We only have one page for all the descriptors. */
  984. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  985. errx(1, "Too many devices");
  986. /* p might not be aligned, so we memcpy in. */
  987. return memcpy(p, &d, sizeof(d));
  988. }
  989. /* Each device descriptor is followed by the description of its virtqueues. We
  990. * specify how many descriptors the virtqueue is to have. */
  991. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  992. void (*handle_output)(struct virtqueue *, bool))
  993. {
  994. unsigned int pages;
  995. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  996. void *p;
  997. /* First we need some memory for this virtqueue. */
  998. pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
  999. / getpagesize();
  1000. p = get_pages(pages);
  1001. /* Initialize the virtqueue */
  1002. vq->next = NULL;
  1003. vq->last_avail_idx = 0;
  1004. vq->dev = dev;
  1005. vq->inflight = 0;
  1006. vq->blocked = false;
  1007. /* Initialize the configuration. */
  1008. vq->config.num = num_descs;
  1009. vq->config.irq = devices.next_irq++;
  1010. vq->config.pfn = to_guest_phys(p) / getpagesize();
  1011. /* Initialize the vring. */
  1012. vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
  1013. /* Append virtqueue to this device's descriptor. We use
  1014. * device_config() to get the end of the device's current virtqueues;
  1015. * we check that we haven't added any config or feature information
  1016. * yet, otherwise we'd be overwriting them. */
  1017. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  1018. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  1019. dev->num_vq++;
  1020. dev->desc->num_vq++;
  1021. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  1022. /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
  1023. * second. */
  1024. for (i = &dev->vq; *i; i = &(*i)->next);
  1025. *i = vq;
  1026. /* Set the routine to call when the Guest does something to this
  1027. * virtqueue. */
  1028. vq->handle_output = handle_output;
  1029. /* As an optimization, set the advisory "Don't Notify Me" flag if we
  1030. * don't have a handler */
  1031. if (!handle_output)
  1032. vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
  1033. }
  1034. /* The first half of the feature bitmask is for us to advertise features. The
  1035. * second half is for the Guest to accept features. */
  1036. static void add_feature(struct device *dev, unsigned bit)
  1037. {
  1038. u8 *features = get_feature_bits(dev);
  1039. /* We can't extend the feature bits once we've added config bytes */
  1040. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  1041. assert(dev->desc->config_len == 0);
  1042. dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
  1043. }
  1044. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  1045. }
  1046. /* This routine sets the configuration fields for an existing device's
  1047. * descriptor. It only works for the last device, but that's OK because that's
  1048. * how we use it. */
  1049. static void set_config(struct device *dev, unsigned len, const void *conf)
  1050. {
  1051. /* Check we haven't overflowed our single page. */
  1052. if (device_config(dev) + len > devices.descpage + getpagesize())
  1053. errx(1, "Too many devices");
  1054. /* Copy in the config information, and store the length. */
  1055. memcpy(device_config(dev), conf, len);
  1056. dev->desc->config_len = len;
  1057. }
  1058. /* This routine does all the creation and setup of a new device, including
  1059. * calling new_dev_desc() to allocate the descriptor and device memory.
  1060. *
  1061. * See what I mean about userspace being boring? */
  1062. static struct device *new_device(const char *name, u16 type, int fd,
  1063. bool (*handle_input)(struct device *))
  1064. {
  1065. struct device *dev = malloc(sizeof(*dev));
  1066. /* Now we populate the fields one at a time. */
  1067. dev->fd = fd;
  1068. /* If we have an input handler for this file descriptor, then we add it
  1069. * to the device_list's fdset and maxfd. */
  1070. if (handle_input)
  1071. add_device_fd(dev->fd);
  1072. dev->desc = new_dev_desc(type);
  1073. dev->handle_input = handle_input;
  1074. dev->name = name;
  1075. dev->vq = NULL;
  1076. dev->ready = NULL;
  1077. dev->feature_len = 0;
  1078. dev->num_vq = 0;
  1079. /* Append to device list. Prepending to a single-linked list is
  1080. * easier, but the user expects the devices to be arranged on the bus
  1081. * in command-line order. The first network device on the command line
  1082. * is eth0, the first block device /dev/vda, etc. */
  1083. if (devices.lastdev)
  1084. devices.lastdev->next = dev;
  1085. else
  1086. devices.dev = dev;
  1087. devices.lastdev = dev;
  1088. return dev;
  1089. }
  1090. /* Our first setup routine is the console. It's a fairly simple device, but
  1091. * UNIX tty handling makes it uglier than it could be. */
  1092. static void setup_console(void)
  1093. {
  1094. struct device *dev;
  1095. /* If we can save the initial standard input settings... */
  1096. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1097. struct termios term = orig_term;
  1098. /* Then we turn off echo, line buffering and ^C etc. We want a
  1099. * raw input stream to the Guest. */
  1100. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1101. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1102. /* If we exit gracefully, the original settings will be
  1103. * restored so the user can see what they're typing. */
  1104. atexit(restore_term);
  1105. }
  1106. dev = new_device("console", VIRTIO_ID_CONSOLE,
  1107. STDIN_FILENO, handle_console_input);
  1108. /* We store the console state in dev->priv, and initialize it. */
  1109. dev->priv = malloc(sizeof(struct console_abort));
  1110. ((struct console_abort *)dev->priv)->count = 0;
  1111. /* The console needs two virtqueues: the input then the output. When
  1112. * they put something the input queue, we make sure we're listening to
  1113. * stdin. When they put something in the output queue, we write it to
  1114. * stdout. */
  1115. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1116. add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
  1117. verbose("device %u: console\n", devices.device_num++);
  1118. }
  1119. /*:*/
  1120. static void timeout_alarm(int sig)
  1121. {
  1122. write(timeoutpipe[1], "", 1);
  1123. }
  1124. static void setup_timeout(void)
  1125. {
  1126. if (pipe(timeoutpipe) != 0)
  1127. err(1, "Creating timeout pipe");
  1128. if (fcntl(timeoutpipe[1], F_SETFL,
  1129. fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
  1130. err(1, "Making timeout pipe nonblocking");
  1131. add_device_fd(timeoutpipe[0]);
  1132. signal(SIGALRM, timeout_alarm);
  1133. }
  1134. /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
  1135. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1136. * used to send packets to another guest in a 1:1 manner.
  1137. *
  1138. * More sopisticated is to use one of the tools developed for project like UML
  1139. * to do networking.
  1140. *
  1141. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1142. * completely generic ("here's my vring, attach to your vring") and would work
  1143. * for any traffic. Of course, namespace and permissions issues need to be
  1144. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1145. * multiple inter-guest channels behind one interface, although it would
  1146. * require some manner of hotplugging new virtio channels.
  1147. *
  1148. * Finally, we could implement a virtio network switch in the kernel. :*/
  1149. static u32 str2ip(const char *ipaddr)
  1150. {
  1151. unsigned int b[4];
  1152. if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
  1153. errx(1, "Failed to parse IP address '%s'", ipaddr);
  1154. return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
  1155. }
  1156. static void str2mac(const char *macaddr, unsigned char mac[6])
  1157. {
  1158. unsigned int m[6];
  1159. if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
  1160. &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
  1161. errx(1, "Failed to parse mac address '%s'", macaddr);
  1162. mac[0] = m[0];
  1163. mac[1] = m[1];
  1164. mac[2] = m[2];
  1165. mac[3] = m[3];
  1166. mac[4] = m[4];
  1167. mac[5] = m[5];
  1168. }
  1169. /* This code is "adapted" from libbridge: it attaches the Host end of the
  1170. * network device to the bridge device specified by the command line.
  1171. *
  1172. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1173. * dislike bridging), and I just try not to break it. */
  1174. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1175. {
  1176. int ifidx;
  1177. struct ifreq ifr;
  1178. if (!*br_name)
  1179. errx(1, "must specify bridge name");
  1180. ifidx = if_nametoindex(if_name);
  1181. if (!ifidx)
  1182. errx(1, "interface %s does not exist!", if_name);
  1183. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1184. ifr.ifr_name[IFNAMSIZ-1] = '\0';
  1185. ifr.ifr_ifindex = ifidx;
  1186. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1187. err(1, "can't add %s to bridge %s", if_name, br_name);
  1188. }
  1189. /* This sets up the Host end of the network device with an IP address, brings
  1190. * it up so packets will flow, the copies the MAC address into the hwaddr
  1191. * pointer. */
  1192. static void configure_device(int fd, const char *tapif, u32 ipaddr)
  1193. {
  1194. struct ifreq ifr;
  1195. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1196. memset(&ifr, 0, sizeof(ifr));
  1197. strcpy(ifr.ifr_name, tapif);
  1198. /* Don't read these incantations. Just cut & paste them like I did! */
  1199. sin->sin_family = AF_INET;
  1200. sin->sin_addr.s_addr = htonl(ipaddr);
  1201. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1202. err(1, "Setting %s interface address", tapif);
  1203. ifr.ifr_flags = IFF_UP;
  1204. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1205. err(1, "Bringing interface %s up", tapif);
  1206. }
  1207. static int get_tun_device(char tapif[IFNAMSIZ])
  1208. {
  1209. struct ifreq ifr;
  1210. int netfd;
  1211. /* Start with this zeroed. Messy but sure. */
  1212. memset(&ifr, 0, sizeof(ifr));
  1213. /* We open the /dev/net/tun device and tell it we want a tap device. A
  1214. * tap device is like a tun device, only somehow different. To tell
  1215. * the truth, I completely blundered my way through this code, but it
  1216. * works now! */
  1217. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1218. ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
  1219. strcpy(ifr.ifr_name, "tap%d");
  1220. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1221. err(1, "configuring /dev/net/tun");
  1222. if (ioctl(netfd, TUNSETOFFLOAD,
  1223. TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
  1224. err(1, "Could not set features for tun device");
  1225. /* We don't need checksums calculated for packets coming in this
  1226. * device: trust us! */
  1227. ioctl(netfd, TUNSETNOCSUM, 1);
  1228. memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
  1229. return netfd;
  1230. }
  1231. /*L:195 Our network is a Host<->Guest network. This can either use bridging or
  1232. * routing, but the principle is the same: it uses the "tun" device to inject
  1233. * packets into the Host as if they came in from a normal network card. We
  1234. * just shunt packets between the Guest and the tun device. */
  1235. static void setup_tun_net(char *arg)
  1236. {
  1237. struct device *dev;
  1238. int netfd, ipfd;
  1239. u32 ip = INADDR_ANY;
  1240. bool bridging = false;
  1241. char tapif[IFNAMSIZ], *p;
  1242. struct virtio_net_config conf;
  1243. netfd = get_tun_device(tapif);
  1244. /* First we create a new network device. */
  1245. dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
  1246. /* Network devices need a receive and a send queue, just like
  1247. * console. */
  1248. add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
  1249. add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
  1250. /* We need a socket to perform the magic network ioctls to bring up the
  1251. * tap interface, connect to the bridge etc. Any socket will do! */
  1252. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1253. if (ipfd < 0)
  1254. err(1, "opening IP socket");
  1255. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1256. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1257. arg += strlen(BRIDGE_PFX);
  1258. bridging = true;
  1259. }
  1260. /* A mac address may follow the bridge name or IP address */
  1261. p = strchr(arg, ':');
  1262. if (p) {
  1263. str2mac(p+1, conf.mac);
  1264. add_feature(dev, VIRTIO_NET_F_MAC);
  1265. *p = '\0';
  1266. }
  1267. /* arg is now either an IP address or a bridge name */
  1268. if (bridging)
  1269. add_to_bridge(ipfd, tapif, arg);
  1270. else
  1271. ip = str2ip(arg);
  1272. /* Set up the tun device. */
  1273. configure_device(ipfd, tapif, ip);
  1274. add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  1275. /* Expect Guest to handle everything except UFO */
  1276. add_feature(dev, VIRTIO_NET_F_CSUM);
  1277. add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
  1278. add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
  1279. add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
  1280. add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
  1281. add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
  1282. add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
  1283. add_feature(dev, VIRTIO_NET_F_HOST_ECN);
  1284. set_config(dev, sizeof(conf), &conf);
  1285. /* We don't need the socket any more; setup is done. */
  1286. close(ipfd);
  1287. devices.device_num++;
  1288. if (bridging)
  1289. verbose("device %u: tun %s attached to bridge: %s\n",
  1290. devices.device_num, tapif, arg);
  1291. else
  1292. verbose("device %u: tun %s: %s\n",
  1293. devices.device_num, tapif, arg);
  1294. }
  1295. /* Our block (disk) device should be really simple: the Guest asks for a block
  1296. * number and we read or write that position in the file. Unfortunately, that
  1297. * was amazingly slow: the Guest waits until the read is finished before
  1298. * running anything else, even if it could have been doing useful work.
  1299. *
  1300. * We could use async I/O, except it's reputed to suck so hard that characters
  1301. * actually go missing from your code when you try to use it.
  1302. *
  1303. * So we farm the I/O out to thread, and communicate with it via a pipe. */
  1304. /* This hangs off device->priv. */
  1305. struct vblk_info
  1306. {
  1307. /* The size of the file. */
  1308. off64_t len;
  1309. /* The file descriptor for the file. */
  1310. int fd;
  1311. /* IO thread listens on this file descriptor [0]. */
  1312. int workpipe[2];
  1313. /* IO thread writes to this file descriptor to mark it done, then
  1314. * Launcher triggers interrupt to Guest. */
  1315. int done_fd;
  1316. };
  1317. /*L:210
  1318. * The Disk
  1319. *
  1320. * Remember that the block device is handled by a separate I/O thread. We head
  1321. * straight into the core of that thread here:
  1322. */
  1323. static bool service_io(struct device *dev)
  1324. {
  1325. struct vblk_info *vblk = dev->priv;
  1326. unsigned int head, out_num, in_num, wlen;
  1327. int ret;
  1328. u8 *in;
  1329. struct virtio_blk_outhdr *out;
  1330. struct iovec iov[dev->vq->vring.num];
  1331. off64_t off;
  1332. /* See if there's a request waiting. If not, nothing to do. */
  1333. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1334. if (head == dev->vq->vring.num)
  1335. return false;
  1336. /* Every block request should contain at least one output buffer
  1337. * (detailing the location on disk and the type of request) and one
  1338. * input buffer (to hold the result). */
  1339. if (out_num == 0 || in_num == 0)
  1340. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1341. head, out_num, in_num);
  1342. out = convert(&iov[0], struct virtio_blk_outhdr);
  1343. in = convert(&iov[out_num+in_num-1], u8);
  1344. off = out->sector * 512;
  1345. /* The block device implements "barriers", where the Guest indicates
  1346. * that it wants all previous writes to occur before this write. We
  1347. * don't have a way of asking our kernel to do a barrier, so we just
  1348. * synchronize all the data in the file. Pretty poor, no? */
  1349. if (out->type & VIRTIO_BLK_T_BARRIER)
  1350. fdatasync(vblk->fd);
  1351. /* In general the virtio block driver is allowed to try SCSI commands.
  1352. * It'd be nice if we supported eject, for example, but we don't. */
  1353. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1354. fprintf(stderr, "Scsi commands unsupported\n");
  1355. *in = VIRTIO_BLK_S_UNSUPP;
  1356. wlen = sizeof(*in);
  1357. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1358. /* Write */
  1359. /* Move to the right location in the block file. This can fail
  1360. * if they try to write past end. */
  1361. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1362. err(1, "Bad seek to sector %llu", out->sector);
  1363. ret = writev(vblk->fd, iov+1, out_num-1);
  1364. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1365. /* Grr... Now we know how long the descriptor they sent was, we
  1366. * make sure they didn't try to write over the end of the block
  1367. * file (possibly extending it). */
  1368. if (ret > 0 && off + ret > vblk->len) {
  1369. /* Trim it back to the correct length */
  1370. ftruncate64(vblk->fd, vblk->len);
  1371. /* Die, bad Guest, die. */
  1372. errx(1, "Write past end %llu+%u", off, ret);
  1373. }
  1374. wlen = sizeof(*in);
  1375. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1376. } else {
  1377. /* Read */
  1378. /* Move to the right location in the block file. This can fail
  1379. * if they try to read past end. */
  1380. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1381. err(1, "Bad seek to sector %llu", out->sector);
  1382. ret = readv(vblk->fd, iov+1, in_num-1);
  1383. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1384. if (ret >= 0) {
  1385. wlen = sizeof(*in) + ret;
  1386. *in = VIRTIO_BLK_S_OK;
  1387. } else {
  1388. wlen = sizeof(*in);
  1389. *in = VIRTIO_BLK_S_IOERR;
  1390. }
  1391. }
  1392. /* OK, so we noted that it was pretty poor to use an fdatasync as a
  1393. * barrier. But Christoph Hellwig points out that we need a sync
  1394. * *afterwards* as well: "Barriers specify no reordering to the front
  1395. * or the back." And Jens Axboe confirmed it, so here we are: */
  1396. if (out->type & VIRTIO_BLK_T_BARRIER)
  1397. fdatasync(vblk->fd);
  1398. /* We can't trigger an IRQ, because we're not the Launcher. It does
  1399. * that when we tell it we're done. */
  1400. add_used(dev->vq, head, wlen);
  1401. return true;
  1402. }
  1403. /* This is the thread which actually services the I/O. */
  1404. static int io_thread(void *_dev)
  1405. {
  1406. struct device *dev = _dev;
  1407. struct vblk_info *vblk = dev->priv;
  1408. char c;
  1409. /* Close other side of workpipe so we get 0 read when main dies. */
  1410. close(vblk->workpipe[1]);
  1411. /* Close the other side of the done_fd pipe. */
  1412. close(dev->fd);
  1413. /* When this read fails, it means Launcher died, so we follow. */
  1414. while (read(vblk->workpipe[0], &c, 1) == 1) {
  1415. /* We acknowledge each request immediately to reduce latency,
  1416. * rather than waiting until we've done them all. I haven't
  1417. * measured to see if it makes any difference.
  1418. *
  1419. * That would be an interesting test, wouldn't it? You could
  1420. * also try having more than one I/O thread. */
  1421. while (service_io(dev))
  1422. write(vblk->done_fd, &c, 1);
  1423. }
  1424. return 0;
  1425. }
  1426. /* Now we've seen the I/O thread, we return to the Launcher to see what happens
  1427. * when that thread tells us it's completed some I/O. */
  1428. static bool handle_io_finish(struct device *dev)
  1429. {
  1430. char c;
  1431. /* If the I/O thread died, presumably it printed the error, so we
  1432. * simply exit. */
  1433. if (read(dev->fd, &c, 1) != 1)
  1434. exit(1);
  1435. /* It did some work, so trigger the irq. */
  1436. trigger_irq(dev->vq);
  1437. return true;
  1438. }
  1439. /* When the Guest submits some I/O, we just need to wake the I/O thread. */
  1440. static void handle_virtblk_output(struct virtqueue *vq, bool timeout)
  1441. {
  1442. struct vblk_info *vblk = vq->dev->priv;
  1443. char c = 0;
  1444. /* Wake up I/O thread and tell it to go to work! */
  1445. if (write(vblk->workpipe[1], &c, 1) != 1)
  1446. /* Presumably it indicated why it died. */
  1447. exit(1);
  1448. }
  1449. /*L:198 This actually sets up a virtual block device. */
  1450. static void setup_block_file(const char *filename)
  1451. {
  1452. int p[2];
  1453. struct device *dev;
  1454. struct vblk_info *vblk;
  1455. void *stack;
  1456. struct virtio_blk_config conf;
  1457. /* This is the pipe the I/O thread will use to tell us I/O is done. */
  1458. pipe(p);
  1459. /* The device responds to return from I/O thread. */
  1460. dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
  1461. /* The device has one virtqueue, where the Guest places requests. */
  1462. add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
  1463. /* Allocate the room for our own bookkeeping */
  1464. vblk = dev->priv = malloc(sizeof(*vblk));
  1465. /* First we open the file and store the length. */
  1466. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1467. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1468. /* We support barriers. */
  1469. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1470. /* Tell Guest how many sectors this device has. */
  1471. conf.capacity = cpu_to_le64(vblk->len / 512);
  1472. /* Tell Guest not to put in too many descriptors at once: two are used
  1473. * for the in and out elements. */
  1474. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1475. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1476. set_config(dev, sizeof(conf), &conf);
  1477. /* The I/O thread writes to this end of the pipe when done. */
  1478. vblk->done_fd = p[1];
  1479. /* This is the second pipe, which is how we tell the I/O thread about
  1480. * more work. */
  1481. pipe(vblk->workpipe);
  1482. /* Create stack for thread and run it. Since stack grows upwards, we
  1483. * point the stack pointer to the end of this region. */
  1484. stack = malloc(32768);
  1485. /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
  1486. * becoming a zombie. */
  1487. if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
  1488. err(1, "Creating clone");
  1489. /* We don't need to keep the I/O thread's end of the pipes open. */
  1490. close(vblk->done_fd);
  1491. close(vblk->workpipe[0]);
  1492. verbose("device %u: virtblock %llu sectors\n",
  1493. devices.device_num, le64_to_cpu(conf.capacity));
  1494. }
  1495. /* Our random number generator device reads from /dev/random into the Guest's
  1496. * input buffers. The usual case is that the Guest doesn't want random numbers
  1497. * and so has no buffers although /dev/random is still readable, whereas
  1498. * console is the reverse.
  1499. *
  1500. * The same logic applies, however. */
  1501. static bool handle_rng_input(struct device *dev)
  1502. {
  1503. int len;
  1504. unsigned int head, in_num, out_num, totlen = 0;
  1505. struct iovec iov[dev->vq->vring.num];
  1506. /* First we need a buffer from the Guests's virtqueue. */
  1507. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1508. /* If they're not ready for input, stop listening to this file
  1509. * descriptor. We'll start again once they add an input buffer. */
  1510. if (head == dev->vq->vring.num)
  1511. return false;
  1512. if (out_num)
  1513. errx(1, "Output buffers in rng?");
  1514. /* This is why we convert to iovecs: the readv() call uses them, and so
  1515. * it reads straight into the Guest's buffer. We loop to make sure we
  1516. * fill it. */
  1517. while (!iov_empty(iov, in_num)) {
  1518. len = readv(dev->fd, iov, in_num);
  1519. if (len <= 0)
  1520. err(1, "Read from /dev/random gave %i", len);
  1521. iov_consume(iov, in_num, len);
  1522. totlen += len;
  1523. }
  1524. /* Tell the Guest about the new input. */
  1525. add_used_and_trigger(dev->vq, head, totlen);
  1526. /* Everything went OK! */
  1527. return true;
  1528. }
  1529. /* And this creates a "hardware" random number device for the Guest. */
  1530. static void setup_rng(void)
  1531. {
  1532. struct device *dev;
  1533. int fd;
  1534. fd = open_or_die("/dev/random", O_RDONLY);
  1535. /* The device responds to return from I/O thread. */
  1536. dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
  1537. /* The device has one virtqueue, where the Guest places inbufs. */
  1538. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1539. verbose("device %u: rng\n", devices.device_num++);
  1540. }
  1541. /* That's the end of device setup. */
  1542. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1543. static void __attribute__((noreturn)) restart_guest(void)
  1544. {
  1545. unsigned int i;
  1546. /* Since we don't track all open fds, we simply close everything beyond
  1547. * stderr. */
  1548. for (i = 3; i < FD_SETSIZE; i++)
  1549. close(i);
  1550. /* The exec automatically gets rid of the I/O and Waker threads. */
  1551. execv(main_args[0], main_args);
  1552. err(1, "Could not exec %s", main_args[0]);
  1553. }
  1554. /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
  1555. * its input and output, and finally, lays it to rest. */
  1556. static void __attribute__((noreturn)) run_guest(void)
  1557. {
  1558. for (;;) {
  1559. unsigned long args[] = { LHREQ_BREAK, 0 };
  1560. unsigned long notify_addr;
  1561. int readval;
  1562. /* We read from the /dev/lguest device to run the Guest. */
  1563. readval = pread(lguest_fd, &notify_addr,
  1564. sizeof(notify_addr), cpu_id);
  1565. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1566. if (readval == sizeof(notify_addr)) {
  1567. verbose("Notify on address %#lx\n", notify_addr);
  1568. handle_output(notify_addr);
  1569. continue;
  1570. /* ENOENT means the Guest died. Reading tells us why. */
  1571. } else if (errno == ENOENT) {
  1572. char reason[1024] = { 0 };
  1573. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1574. errx(1, "%s", reason);
  1575. /* ERESTART means that we need to reboot the guest */
  1576. } else if (errno == ERESTART) {
  1577. restart_guest();
  1578. /* EAGAIN means a signal (timeout).
  1579. * Anything else means a bug or incompatible change. */
  1580. } else if (errno != EAGAIN)
  1581. err(1, "Running guest failed");
  1582. /* Only service input on thread for CPU 0. */
  1583. if (cpu_id != 0)
  1584. continue;
  1585. /* Service input, then unset the BREAK to release the Waker. */
  1586. handle_input();
  1587. if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
  1588. err(1, "Resetting break");
  1589. }
  1590. }
  1591. /*L:240
  1592. * This is the end of the Launcher. The good news: we are over halfway
  1593. * through! The bad news: the most fiendish part of the code still lies ahead
  1594. * of us.
  1595. *
  1596. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1597. * "make Host".
  1598. :*/
  1599. static struct option opts[] = {
  1600. { "verbose", 0, NULL, 'v' },
  1601. { "tunnet", 1, NULL, 't' },
  1602. { "block", 1, NULL, 'b' },
  1603. { "rng", 0, NULL, 'r' },
  1604. { "initrd", 1, NULL, 'i' },
  1605. { NULL },
  1606. };
  1607. static void usage(void)
  1608. {
  1609. errx(1, "Usage: lguest [--verbose] "
  1610. "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
  1611. "|--block=<filename>|--initrd=<filename>]...\n"
  1612. "<mem-in-mb> vmlinux [args...]");
  1613. }
  1614. /*L:105 The main routine is where the real work begins: */
  1615. int main(int argc, char *argv[])
  1616. {
  1617. /* Memory, top-level pagetable, code startpoint and size of the
  1618. * (optional) initrd. */
  1619. unsigned long mem = 0, start, initrd_size = 0;
  1620. /* Two temporaries. */
  1621. int i, c;
  1622. /* The boot information for the Guest. */
  1623. struct boot_params *boot;
  1624. /* If they specify an initrd file to load. */
  1625. const char *initrd_name = NULL;
  1626. /* Save the args: we "reboot" by execing ourselves again. */
  1627. main_args = argv;
  1628. /* We don't "wait" for the children, so prevent them from becoming
  1629. * zombies. */
  1630. signal(SIGCHLD, SIG_IGN);
  1631. /* First we initialize the device list. Since console and network
  1632. * device receive input from a file descriptor, we keep an fdset
  1633. * (infds) and the maximum fd number (max_infd) with the head of the
  1634. * list. We also keep a pointer to the last device. Finally, we keep
  1635. * the next interrupt number to use for devices (1: remember that 0 is
  1636. * used by the timer). */
  1637. FD_ZERO(&devices.infds);
  1638. devices.max_infd = -1;
  1639. devices.lastdev = NULL;
  1640. devices.next_irq = 1;
  1641. cpu_id = 0;
  1642. /* We need to know how much memory so we can set up the device
  1643. * descriptor and memory pages for the devices as we parse the command
  1644. * line. So we quickly look through the arguments to find the amount
  1645. * of memory now. */
  1646. for (i = 1; i < argc; i++) {
  1647. if (argv[i][0] != '-') {
  1648. mem = atoi(argv[i]) * 1024 * 1024;
  1649. /* We start by mapping anonymous pages over all of
  1650. * guest-physical memory range. This fills it with 0,
  1651. * and ensures that the Guest won't be killed when it
  1652. * tries to access it. */
  1653. guest_base = map_zeroed_pages(mem / getpagesize()
  1654. + DEVICE_PAGES);
  1655. guest_limit = mem;
  1656. guest_max = mem + DEVICE_PAGES*getpagesize();
  1657. devices.descpage = get_pages(1);
  1658. break;
  1659. }
  1660. }
  1661. /* The options are fairly straight-forward */
  1662. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1663. switch (c) {
  1664. case 'v':
  1665. verbose = true;
  1666. break;
  1667. case 't':
  1668. setup_tun_net(optarg);
  1669. break;
  1670. case 'b':
  1671. setup_block_file(optarg);
  1672. break;
  1673. case 'r':
  1674. setup_rng();
  1675. break;
  1676. case 'i':
  1677. initrd_name = optarg;
  1678. break;
  1679. default:
  1680. warnx("Unknown argument %s", argv[optind]);
  1681. usage();
  1682. }
  1683. }
  1684. /* After the other arguments we expect memory and kernel image name,
  1685. * followed by command line arguments for the kernel. */
  1686. if (optind + 2 > argc)
  1687. usage();
  1688. verbose("Guest base is at %p\n", guest_base);
  1689. /* We always have a console device */
  1690. setup_console();
  1691. /* We can timeout waiting for Guest network transmit. */
  1692. setup_timeout();
  1693. /* Now we load the kernel */
  1694. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1695. /* Boot information is stashed at physical address 0 */
  1696. boot = from_guest_phys(0);
  1697. /* Map the initrd image if requested (at top of physical memory) */
  1698. if (initrd_name) {
  1699. initrd_size = load_initrd(initrd_name, mem);
  1700. /* These are the location in the Linux boot header where the
  1701. * start and size of the initrd are expected to be found. */
  1702. boot->hdr.ramdisk_image = mem - initrd_size;
  1703. boot->hdr.ramdisk_size = initrd_size;
  1704. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1705. boot->hdr.type_of_loader = 0xFF;
  1706. }
  1707. /* The Linux boot header contains an "E820" memory map: ours is a
  1708. * simple, single region. */
  1709. boot->e820_entries = 1;
  1710. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1711. /* The boot header contains a command line pointer: we put the command
  1712. * line after the boot header. */
  1713. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1714. /* We use a simple helper to copy the arguments separated by spaces. */
  1715. concat((char *)(boot + 1), argv+optind+2);
  1716. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1717. boot->hdr.version = 0x207;
  1718. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1719. boot->hdr.hardware_subarch = 1;
  1720. /* Tell the entry path not to try to reload segment registers. */
  1721. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1722. /* We tell the kernel to initialize the Guest: this returns the open
  1723. * /dev/lguest file descriptor. */
  1724. tell_kernel(start);
  1725. /* We clone off a thread, which wakes the Launcher whenever one of the
  1726. * input file descriptors needs attention. We call this the Waker, and
  1727. * we'll cover it in a moment. */
  1728. setup_waker();
  1729. /* Finally, run the Guest. This doesn't return. */
  1730. run_guest();
  1731. }
  1732. /*:*/
  1733. /*M:999
  1734. * Mastery is done: you now know everything I do.
  1735. *
  1736. * But surely you have seen code, features and bugs in your wanderings which
  1737. * you now yearn to attack? That is the real game, and I look forward to you
  1738. * patching and forking lguest into the Your-Name-Here-visor.
  1739. *
  1740. * Farewell, and good coding!
  1741. * Rusty Russell.
  1742. */