cfq-iosched.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private[0])
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. unsigned int new_weight;
  159. bool needs_update;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queus average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. int ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. };
  190. /*
  191. * Per block device queue structure
  192. */
  193. struct cfq_data {
  194. struct request_queue *queue;
  195. /* Root service tree for cfq_groups */
  196. struct cfq_rb_root grp_service_tree;
  197. struct cfq_group root_group;
  198. /*
  199. * The priority currently being served
  200. */
  201. enum wl_prio_t serving_prio;
  202. enum wl_type_t serving_type;
  203. unsigned long workload_expires;
  204. struct cfq_group *serving_group;
  205. /*
  206. * Each priority tree is sorted by next_request position. These
  207. * trees are used when determining if two or more queues are
  208. * interleaving requests (see cfq_close_cooperator).
  209. */
  210. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  211. unsigned int busy_queues;
  212. unsigned int busy_sync_queues;
  213. int rq_in_driver;
  214. int rq_in_flight[2];
  215. /*
  216. * queue-depth detection
  217. */
  218. int rq_queued;
  219. int hw_tag;
  220. /*
  221. * hw_tag can be
  222. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  223. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  224. * 0 => no NCQ
  225. */
  226. int hw_tag_est_depth;
  227. unsigned int hw_tag_samples;
  228. /*
  229. * idle window management
  230. */
  231. struct timer_list idle_slice_timer;
  232. struct work_struct unplug_work;
  233. struct cfq_queue *active_queue;
  234. struct cfq_io_context *active_cic;
  235. /*
  236. * async queue for each priority case
  237. */
  238. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  239. struct cfq_queue *async_idle_cfqq;
  240. sector_t last_position;
  241. /*
  242. * tunables, see top of file
  243. */
  244. unsigned int cfq_quantum;
  245. unsigned int cfq_fifo_expire[2];
  246. unsigned int cfq_back_penalty;
  247. unsigned int cfq_back_max;
  248. unsigned int cfq_slice[2];
  249. unsigned int cfq_slice_async_rq;
  250. unsigned int cfq_slice_idle;
  251. unsigned int cfq_group_idle;
  252. unsigned int cfq_latency;
  253. unsigned int cic_index;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. /* Number of groups which are on blkcg->blkg_list */
  263. unsigned int nr_blkcg_linked_grps;
  264. };
  265. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  266. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  267. enum wl_prio_t prio,
  268. enum wl_type_t type)
  269. {
  270. if (!cfqg)
  271. return NULL;
  272. if (prio == IDLE_WORKLOAD)
  273. return &cfqg->service_tree_idle;
  274. return &cfqg->service_trees[prio][type];
  275. }
  276. enum cfqq_state_flags {
  277. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  278. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  279. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  280. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  281. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  282. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  283. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  284. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  285. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  286. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  287. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  288. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  289. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  290. };
  291. #define CFQ_CFQQ_FNS(name) \
  292. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  293. { \
  294. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  295. } \
  296. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  297. { \
  298. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  299. } \
  300. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  301. { \
  302. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  303. }
  304. CFQ_CFQQ_FNS(on_rr);
  305. CFQ_CFQQ_FNS(wait_request);
  306. CFQ_CFQQ_FNS(must_dispatch);
  307. CFQ_CFQQ_FNS(must_alloc_slice);
  308. CFQ_CFQQ_FNS(fifo_expire);
  309. CFQ_CFQQ_FNS(idle_window);
  310. CFQ_CFQQ_FNS(prio_changed);
  311. CFQ_CFQQ_FNS(slice_new);
  312. CFQ_CFQQ_FNS(sync);
  313. CFQ_CFQQ_FNS(coop);
  314. CFQ_CFQQ_FNS(split_coop);
  315. CFQ_CFQQ_FNS(deep);
  316. CFQ_CFQQ_FNS(wait_busy);
  317. #undef CFQ_CFQQ_FNS
  318. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  319. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  321. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  322. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  323. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  324. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  325. blkg_path(&(cfqg)->blkg), ##args); \
  326. #else
  327. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  328. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  329. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  330. #endif
  331. #define cfq_log(cfqd, fmt, args...) \
  332. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  333. /* Traverses through cfq group service trees */
  334. #define for_each_cfqg_st(cfqg, i, j, st) \
  335. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  336. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  337. : &cfqg->service_tree_idle; \
  338. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  339. (i == IDLE_WORKLOAD && j == 0); \
  340. j++, st = i < IDLE_WORKLOAD ? \
  341. &cfqg->service_trees[i][j]: NULL) \
  342. static inline bool iops_mode(struct cfq_data *cfqd)
  343. {
  344. /*
  345. * If we are not idling on queues and it is a NCQ drive, parallel
  346. * execution of requests is on and measuring time is not possible
  347. * in most of the cases until and unless we drive shallower queue
  348. * depths and that becomes a performance bottleneck. In such cases
  349. * switch to start providing fairness in terms of number of IOs.
  350. */
  351. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  352. return true;
  353. else
  354. return false;
  355. }
  356. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  357. {
  358. if (cfq_class_idle(cfqq))
  359. return IDLE_WORKLOAD;
  360. if (cfq_class_rt(cfqq))
  361. return RT_WORKLOAD;
  362. return BE_WORKLOAD;
  363. }
  364. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  365. {
  366. if (!cfq_cfqq_sync(cfqq))
  367. return ASYNC_WORKLOAD;
  368. if (!cfq_cfqq_idle_window(cfqq))
  369. return SYNC_NOIDLE_WORKLOAD;
  370. return SYNC_WORKLOAD;
  371. }
  372. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  373. struct cfq_data *cfqd,
  374. struct cfq_group *cfqg)
  375. {
  376. if (wl == IDLE_WORKLOAD)
  377. return cfqg->service_tree_idle.count;
  378. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  379. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  380. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  381. }
  382. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  383. struct cfq_group *cfqg)
  384. {
  385. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  386. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  387. }
  388. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  389. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  390. struct io_context *, gfp_t);
  391. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  392. struct io_context *);
  393. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  394. bool is_sync)
  395. {
  396. return cic->cfqq[is_sync];
  397. }
  398. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  399. struct cfq_queue *cfqq, bool is_sync)
  400. {
  401. cic->cfqq[is_sync] = cfqq;
  402. }
  403. #define CIC_DEAD_KEY 1ul
  404. #define CIC_DEAD_INDEX_SHIFT 1
  405. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  406. {
  407. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  408. }
  409. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  410. {
  411. struct cfq_data *cfqd = cic->key;
  412. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  413. return NULL;
  414. return cfqd;
  415. }
  416. /*
  417. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  418. * set (in which case it could also be direct WRITE).
  419. */
  420. static inline bool cfq_bio_sync(struct bio *bio)
  421. {
  422. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  423. }
  424. /*
  425. * scheduler run of queue, if there are requests pending and no one in the
  426. * driver that will restart queueing
  427. */
  428. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  429. {
  430. if (cfqd->busy_queues) {
  431. cfq_log(cfqd, "schedule dispatch");
  432. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  433. }
  434. }
  435. /*
  436. * Scale schedule slice based on io priority. Use the sync time slice only
  437. * if a queue is marked sync and has sync io queued. A sync queue with async
  438. * io only, should not get full sync slice length.
  439. */
  440. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  441. unsigned short prio)
  442. {
  443. const int base_slice = cfqd->cfq_slice[sync];
  444. WARN_ON(prio >= IOPRIO_BE_NR);
  445. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  446. }
  447. static inline int
  448. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  449. {
  450. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  451. }
  452. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  453. {
  454. u64 d = delta << CFQ_SERVICE_SHIFT;
  455. d = d * BLKIO_WEIGHT_DEFAULT;
  456. do_div(d, cfqg->weight);
  457. return d;
  458. }
  459. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  460. {
  461. s64 delta = (s64)(vdisktime - min_vdisktime);
  462. if (delta > 0)
  463. min_vdisktime = vdisktime;
  464. return min_vdisktime;
  465. }
  466. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  467. {
  468. s64 delta = (s64)(vdisktime - min_vdisktime);
  469. if (delta < 0)
  470. min_vdisktime = vdisktime;
  471. return min_vdisktime;
  472. }
  473. static void update_min_vdisktime(struct cfq_rb_root *st)
  474. {
  475. struct cfq_group *cfqg;
  476. if (st->left) {
  477. cfqg = rb_entry_cfqg(st->left);
  478. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  479. cfqg->vdisktime);
  480. }
  481. }
  482. /*
  483. * get averaged number of queues of RT/BE priority.
  484. * average is updated, with a formula that gives more weight to higher numbers,
  485. * to quickly follows sudden increases and decrease slowly
  486. */
  487. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  488. struct cfq_group *cfqg, bool rt)
  489. {
  490. unsigned min_q, max_q;
  491. unsigned mult = cfq_hist_divisor - 1;
  492. unsigned round = cfq_hist_divisor / 2;
  493. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  494. min_q = min(cfqg->busy_queues_avg[rt], busy);
  495. max_q = max(cfqg->busy_queues_avg[rt], busy);
  496. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  497. cfq_hist_divisor;
  498. return cfqg->busy_queues_avg[rt];
  499. }
  500. static inline unsigned
  501. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  502. {
  503. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  504. return cfq_target_latency * cfqg->weight / st->total_weight;
  505. }
  506. static inline unsigned
  507. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  508. {
  509. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  510. if (cfqd->cfq_latency) {
  511. /*
  512. * interested queues (we consider only the ones with the same
  513. * priority class in the cfq group)
  514. */
  515. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  516. cfq_class_rt(cfqq));
  517. unsigned sync_slice = cfqd->cfq_slice[1];
  518. unsigned expect_latency = sync_slice * iq;
  519. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  520. if (expect_latency > group_slice) {
  521. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  522. /* scale low_slice according to IO priority
  523. * and sync vs async */
  524. unsigned low_slice =
  525. min(slice, base_low_slice * slice / sync_slice);
  526. /* the adapted slice value is scaled to fit all iqs
  527. * into the target latency */
  528. slice = max(slice * group_slice / expect_latency,
  529. low_slice);
  530. }
  531. }
  532. return slice;
  533. }
  534. static inline void
  535. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  536. {
  537. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  538. cfqq->slice_start = jiffies;
  539. cfqq->slice_end = jiffies + slice;
  540. cfqq->allocated_slice = slice;
  541. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  542. }
  543. /*
  544. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  545. * isn't valid until the first request from the dispatch is activated
  546. * and the slice time set.
  547. */
  548. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  549. {
  550. if (cfq_cfqq_slice_new(cfqq))
  551. return false;
  552. if (time_before(jiffies, cfqq->slice_end))
  553. return false;
  554. return true;
  555. }
  556. /*
  557. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  558. * We choose the request that is closest to the head right now. Distance
  559. * behind the head is penalized and only allowed to a certain extent.
  560. */
  561. static struct request *
  562. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  563. {
  564. sector_t s1, s2, d1 = 0, d2 = 0;
  565. unsigned long back_max;
  566. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  567. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  568. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  569. if (rq1 == NULL || rq1 == rq2)
  570. return rq2;
  571. if (rq2 == NULL)
  572. return rq1;
  573. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  574. return rq1;
  575. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  576. return rq2;
  577. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  578. return rq1;
  579. else if ((rq2->cmd_flags & REQ_META) &&
  580. !(rq1->cmd_flags & REQ_META))
  581. return rq2;
  582. s1 = blk_rq_pos(rq1);
  583. s2 = blk_rq_pos(rq2);
  584. /*
  585. * by definition, 1KiB is 2 sectors
  586. */
  587. back_max = cfqd->cfq_back_max * 2;
  588. /*
  589. * Strict one way elevator _except_ in the case where we allow
  590. * short backward seeks which are biased as twice the cost of a
  591. * similar forward seek.
  592. */
  593. if (s1 >= last)
  594. d1 = s1 - last;
  595. else if (s1 + back_max >= last)
  596. d1 = (last - s1) * cfqd->cfq_back_penalty;
  597. else
  598. wrap |= CFQ_RQ1_WRAP;
  599. if (s2 >= last)
  600. d2 = s2 - last;
  601. else if (s2 + back_max >= last)
  602. d2 = (last - s2) * cfqd->cfq_back_penalty;
  603. else
  604. wrap |= CFQ_RQ2_WRAP;
  605. /* Found required data */
  606. /*
  607. * By doing switch() on the bit mask "wrap" we avoid having to
  608. * check two variables for all permutations: --> faster!
  609. */
  610. switch (wrap) {
  611. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  612. if (d1 < d2)
  613. return rq1;
  614. else if (d2 < d1)
  615. return rq2;
  616. else {
  617. if (s1 >= s2)
  618. return rq1;
  619. else
  620. return rq2;
  621. }
  622. case CFQ_RQ2_WRAP:
  623. return rq1;
  624. case CFQ_RQ1_WRAP:
  625. return rq2;
  626. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  627. default:
  628. /*
  629. * Since both rqs are wrapped,
  630. * start with the one that's further behind head
  631. * (--> only *one* back seek required),
  632. * since back seek takes more time than forward.
  633. */
  634. if (s1 <= s2)
  635. return rq1;
  636. else
  637. return rq2;
  638. }
  639. }
  640. /*
  641. * The below is leftmost cache rbtree addon
  642. */
  643. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  644. {
  645. /* Service tree is empty */
  646. if (!root->count)
  647. return NULL;
  648. if (!root->left)
  649. root->left = rb_first(&root->rb);
  650. if (root->left)
  651. return rb_entry(root->left, struct cfq_queue, rb_node);
  652. return NULL;
  653. }
  654. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  655. {
  656. if (!root->left)
  657. root->left = rb_first(&root->rb);
  658. if (root->left)
  659. return rb_entry_cfqg(root->left);
  660. return NULL;
  661. }
  662. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  663. {
  664. rb_erase(n, root);
  665. RB_CLEAR_NODE(n);
  666. }
  667. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  668. {
  669. if (root->left == n)
  670. root->left = NULL;
  671. rb_erase_init(n, &root->rb);
  672. --root->count;
  673. }
  674. /*
  675. * would be nice to take fifo expire time into account as well
  676. */
  677. static struct request *
  678. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  679. struct request *last)
  680. {
  681. struct rb_node *rbnext = rb_next(&last->rb_node);
  682. struct rb_node *rbprev = rb_prev(&last->rb_node);
  683. struct request *next = NULL, *prev = NULL;
  684. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  685. if (rbprev)
  686. prev = rb_entry_rq(rbprev);
  687. if (rbnext)
  688. next = rb_entry_rq(rbnext);
  689. else {
  690. rbnext = rb_first(&cfqq->sort_list);
  691. if (rbnext && rbnext != &last->rb_node)
  692. next = rb_entry_rq(rbnext);
  693. }
  694. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  695. }
  696. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  697. struct cfq_queue *cfqq)
  698. {
  699. /*
  700. * just an approximation, should be ok.
  701. */
  702. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  703. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  704. }
  705. static inline s64
  706. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  707. {
  708. return cfqg->vdisktime - st->min_vdisktime;
  709. }
  710. static void
  711. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  712. {
  713. struct rb_node **node = &st->rb.rb_node;
  714. struct rb_node *parent = NULL;
  715. struct cfq_group *__cfqg;
  716. s64 key = cfqg_key(st, cfqg);
  717. int left = 1;
  718. while (*node != NULL) {
  719. parent = *node;
  720. __cfqg = rb_entry_cfqg(parent);
  721. if (key < cfqg_key(st, __cfqg))
  722. node = &parent->rb_left;
  723. else {
  724. node = &parent->rb_right;
  725. left = 0;
  726. }
  727. }
  728. if (left)
  729. st->left = &cfqg->rb_node;
  730. rb_link_node(&cfqg->rb_node, parent, node);
  731. rb_insert_color(&cfqg->rb_node, &st->rb);
  732. }
  733. static void
  734. cfq_update_group_weight(struct cfq_group *cfqg)
  735. {
  736. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  737. if (cfqg->needs_update) {
  738. cfqg->weight = cfqg->new_weight;
  739. cfqg->needs_update = false;
  740. }
  741. }
  742. static void
  743. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  744. {
  745. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  746. cfq_update_group_weight(cfqg);
  747. __cfq_group_service_tree_add(st, cfqg);
  748. st->total_weight += cfqg->weight;
  749. }
  750. static void
  751. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  752. {
  753. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  754. struct cfq_group *__cfqg;
  755. struct rb_node *n;
  756. cfqg->nr_cfqq++;
  757. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  758. return;
  759. /*
  760. * Currently put the group at the end. Later implement something
  761. * so that groups get lesser vtime based on their weights, so that
  762. * if group does not loose all if it was not continuously backlogged.
  763. */
  764. n = rb_last(&st->rb);
  765. if (n) {
  766. __cfqg = rb_entry_cfqg(n);
  767. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  768. } else
  769. cfqg->vdisktime = st->min_vdisktime;
  770. cfq_group_service_tree_add(st, cfqg);
  771. }
  772. static void
  773. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  774. {
  775. st->total_weight -= cfqg->weight;
  776. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  777. cfq_rb_erase(&cfqg->rb_node, st);
  778. }
  779. static void
  780. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  781. {
  782. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  783. BUG_ON(cfqg->nr_cfqq < 1);
  784. cfqg->nr_cfqq--;
  785. /* If there are other cfq queues under this group, don't delete it */
  786. if (cfqg->nr_cfqq)
  787. return;
  788. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  789. cfq_group_service_tree_del(st, cfqg);
  790. cfqg->saved_workload_slice = 0;
  791. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  792. }
  793. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  794. unsigned int *unaccounted_time)
  795. {
  796. unsigned int slice_used;
  797. /*
  798. * Queue got expired before even a single request completed or
  799. * got expired immediately after first request completion.
  800. */
  801. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  802. /*
  803. * Also charge the seek time incurred to the group, otherwise
  804. * if there are mutiple queues in the group, each can dispatch
  805. * a single request on seeky media and cause lots of seek time
  806. * and group will never know it.
  807. */
  808. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  809. 1);
  810. } else {
  811. slice_used = jiffies - cfqq->slice_start;
  812. if (slice_used > cfqq->allocated_slice) {
  813. *unaccounted_time = slice_used - cfqq->allocated_slice;
  814. slice_used = cfqq->allocated_slice;
  815. }
  816. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  817. *unaccounted_time += cfqq->slice_start -
  818. cfqq->dispatch_start;
  819. }
  820. return slice_used;
  821. }
  822. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  823. struct cfq_queue *cfqq)
  824. {
  825. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  826. unsigned int used_sl, charge, unaccounted_sl = 0;
  827. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  828. - cfqg->service_tree_idle.count;
  829. BUG_ON(nr_sync < 0);
  830. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  831. if (iops_mode(cfqd))
  832. charge = cfqq->slice_dispatch;
  833. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  834. charge = cfqq->allocated_slice;
  835. /* Can't update vdisktime while group is on service tree */
  836. cfq_group_service_tree_del(st, cfqg);
  837. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  838. /* If a new weight was requested, update now, off tree */
  839. cfq_group_service_tree_add(st, cfqg);
  840. /* This group is being expired. Save the context */
  841. if (time_after(cfqd->workload_expires, jiffies)) {
  842. cfqg->saved_workload_slice = cfqd->workload_expires
  843. - jiffies;
  844. cfqg->saved_workload = cfqd->serving_type;
  845. cfqg->saved_serving_prio = cfqd->serving_prio;
  846. } else
  847. cfqg->saved_workload_slice = 0;
  848. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  849. st->min_vdisktime);
  850. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  851. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  852. iops_mode(cfqd), cfqq->nr_sectors);
  853. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  854. unaccounted_sl);
  855. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  856. }
  857. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  858. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  859. {
  860. if (blkg)
  861. return container_of(blkg, struct cfq_group, blkg);
  862. return NULL;
  863. }
  864. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  865. unsigned int weight)
  866. {
  867. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  868. cfqg->new_weight = weight;
  869. cfqg->needs_update = true;
  870. }
  871. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  872. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  873. {
  874. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  875. unsigned int major, minor;
  876. /*
  877. * Add group onto cgroup list. It might happen that bdi->dev is
  878. * not initialized yet. Initialize this new group without major
  879. * and minor info and this info will be filled in once a new thread
  880. * comes for IO.
  881. */
  882. if (bdi->dev) {
  883. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  884. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  885. (void *)cfqd, MKDEV(major, minor));
  886. } else
  887. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  888. (void *)cfqd, 0);
  889. cfqd->nr_blkcg_linked_grps++;
  890. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  891. /* Add group on cfqd list */
  892. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  893. }
  894. /*
  895. * Should be called from sleepable context. No request queue lock as per
  896. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  897. * from sleepable context.
  898. */
  899. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  900. {
  901. struct cfq_group *cfqg = NULL;
  902. int i, j, ret;
  903. struct cfq_rb_root *st;
  904. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  905. if (!cfqg)
  906. return NULL;
  907. for_each_cfqg_st(cfqg, i, j, st)
  908. *st = CFQ_RB_ROOT;
  909. RB_CLEAR_NODE(&cfqg->rb_node);
  910. /*
  911. * Take the initial reference that will be released on destroy
  912. * This can be thought of a joint reference by cgroup and
  913. * elevator which will be dropped by either elevator exit
  914. * or cgroup deletion path depending on who is exiting first.
  915. */
  916. cfqg->ref = 1;
  917. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  918. if (ret) {
  919. kfree(cfqg);
  920. return NULL;
  921. }
  922. return cfqg;
  923. }
  924. static struct cfq_group *
  925. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  926. {
  927. struct cfq_group *cfqg = NULL;
  928. void *key = cfqd;
  929. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  930. unsigned int major, minor;
  931. /*
  932. * This is the common case when there are no blkio cgroups.
  933. * Avoid lookup in this case
  934. */
  935. if (blkcg == &blkio_root_cgroup)
  936. cfqg = &cfqd->root_group;
  937. else
  938. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  939. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  940. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  941. cfqg->blkg.dev = MKDEV(major, minor);
  942. }
  943. return cfqg;
  944. }
  945. /*
  946. * Search for the cfq group current task belongs to. request_queue lock must
  947. * be held.
  948. */
  949. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  950. {
  951. struct blkio_cgroup *blkcg;
  952. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  953. struct request_queue *q = cfqd->queue;
  954. rcu_read_lock();
  955. blkcg = task_blkio_cgroup(current);
  956. cfqg = cfq_find_cfqg(cfqd, blkcg);
  957. if (cfqg) {
  958. rcu_read_unlock();
  959. return cfqg;
  960. }
  961. /*
  962. * Need to allocate a group. Allocation of group also needs allocation
  963. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  964. * we need to drop rcu lock and queue_lock before we call alloc.
  965. *
  966. * Not taking any queue reference here and assuming that queue is
  967. * around by the time we return. CFQ queue allocation code does
  968. * the same. It might be racy though.
  969. */
  970. rcu_read_unlock();
  971. spin_unlock_irq(q->queue_lock);
  972. cfqg = cfq_alloc_cfqg(cfqd);
  973. spin_lock_irq(q->queue_lock);
  974. rcu_read_lock();
  975. blkcg = task_blkio_cgroup(current);
  976. /*
  977. * If some other thread already allocated the group while we were
  978. * not holding queue lock, free up the group
  979. */
  980. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  981. if (__cfqg) {
  982. kfree(cfqg);
  983. rcu_read_unlock();
  984. return __cfqg;
  985. }
  986. if (!cfqg)
  987. cfqg = &cfqd->root_group;
  988. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  989. rcu_read_unlock();
  990. return cfqg;
  991. }
  992. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  993. {
  994. cfqg->ref++;
  995. return cfqg;
  996. }
  997. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  998. {
  999. /* Currently, all async queues are mapped to root group */
  1000. if (!cfq_cfqq_sync(cfqq))
  1001. cfqg = &cfqq->cfqd->root_group;
  1002. cfqq->cfqg = cfqg;
  1003. /* cfqq reference on cfqg */
  1004. cfqq->cfqg->ref++;
  1005. }
  1006. static void cfq_put_cfqg(struct cfq_group *cfqg)
  1007. {
  1008. struct cfq_rb_root *st;
  1009. int i, j;
  1010. BUG_ON(cfqg->ref <= 0);
  1011. cfqg->ref--;
  1012. if (cfqg->ref)
  1013. return;
  1014. for_each_cfqg_st(cfqg, i, j, st)
  1015. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1016. free_percpu(cfqg->blkg.stats_cpu);
  1017. kfree(cfqg);
  1018. }
  1019. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1020. {
  1021. /* Something wrong if we are trying to remove same group twice */
  1022. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1023. hlist_del_init(&cfqg->cfqd_node);
  1024. /*
  1025. * Put the reference taken at the time of creation so that when all
  1026. * queues are gone, group can be destroyed.
  1027. */
  1028. cfq_put_cfqg(cfqg);
  1029. }
  1030. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1031. {
  1032. struct hlist_node *pos, *n;
  1033. struct cfq_group *cfqg;
  1034. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1035. /*
  1036. * If cgroup removal path got to blk_group first and removed
  1037. * it from cgroup list, then it will take care of destroying
  1038. * cfqg also.
  1039. */
  1040. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1041. cfq_destroy_cfqg(cfqd, cfqg);
  1042. }
  1043. }
  1044. /*
  1045. * Blk cgroup controller notification saying that blkio_group object is being
  1046. * delinked as associated cgroup object is going away. That also means that
  1047. * no new IO will come in this group. So get rid of this group as soon as
  1048. * any pending IO in the group is finished.
  1049. *
  1050. * This function is called under rcu_read_lock(). key is the rcu protected
  1051. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1052. * read lock.
  1053. *
  1054. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1055. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1056. * path got to it first.
  1057. */
  1058. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1059. {
  1060. unsigned long flags;
  1061. struct cfq_data *cfqd = key;
  1062. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1063. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1064. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1065. }
  1066. #else /* GROUP_IOSCHED */
  1067. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1068. {
  1069. return &cfqd->root_group;
  1070. }
  1071. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1072. {
  1073. return cfqg;
  1074. }
  1075. static inline void
  1076. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1077. cfqq->cfqg = cfqg;
  1078. }
  1079. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1080. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1081. #endif /* GROUP_IOSCHED */
  1082. /*
  1083. * The cfqd->service_trees holds all pending cfq_queue's that have
  1084. * requests waiting to be processed. It is sorted in the order that
  1085. * we will service the queues.
  1086. */
  1087. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1088. bool add_front)
  1089. {
  1090. struct rb_node **p, *parent;
  1091. struct cfq_queue *__cfqq;
  1092. unsigned long rb_key;
  1093. struct cfq_rb_root *service_tree;
  1094. int left;
  1095. int new_cfqq = 1;
  1096. int group_changed = 0;
  1097. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1098. cfqq_type(cfqq));
  1099. if (cfq_class_idle(cfqq)) {
  1100. rb_key = CFQ_IDLE_DELAY;
  1101. parent = rb_last(&service_tree->rb);
  1102. if (parent && parent != &cfqq->rb_node) {
  1103. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1104. rb_key += __cfqq->rb_key;
  1105. } else
  1106. rb_key += jiffies;
  1107. } else if (!add_front) {
  1108. /*
  1109. * Get our rb key offset. Subtract any residual slice
  1110. * value carried from last service. A negative resid
  1111. * count indicates slice overrun, and this should position
  1112. * the next service time further away in the tree.
  1113. */
  1114. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1115. rb_key -= cfqq->slice_resid;
  1116. cfqq->slice_resid = 0;
  1117. } else {
  1118. rb_key = -HZ;
  1119. __cfqq = cfq_rb_first(service_tree);
  1120. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1121. }
  1122. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1123. new_cfqq = 0;
  1124. /*
  1125. * same position, nothing more to do
  1126. */
  1127. if (rb_key == cfqq->rb_key &&
  1128. cfqq->service_tree == service_tree)
  1129. return;
  1130. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1131. cfqq->service_tree = NULL;
  1132. }
  1133. left = 1;
  1134. parent = NULL;
  1135. cfqq->service_tree = service_tree;
  1136. p = &service_tree->rb.rb_node;
  1137. while (*p) {
  1138. struct rb_node **n;
  1139. parent = *p;
  1140. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1141. /*
  1142. * sort by key, that represents service time.
  1143. */
  1144. if (time_before(rb_key, __cfqq->rb_key))
  1145. n = &(*p)->rb_left;
  1146. else {
  1147. n = &(*p)->rb_right;
  1148. left = 0;
  1149. }
  1150. p = n;
  1151. }
  1152. if (left)
  1153. service_tree->left = &cfqq->rb_node;
  1154. cfqq->rb_key = rb_key;
  1155. rb_link_node(&cfqq->rb_node, parent, p);
  1156. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1157. service_tree->count++;
  1158. if ((add_front || !new_cfqq) && !group_changed)
  1159. return;
  1160. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1161. }
  1162. static struct cfq_queue *
  1163. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1164. sector_t sector, struct rb_node **ret_parent,
  1165. struct rb_node ***rb_link)
  1166. {
  1167. struct rb_node **p, *parent;
  1168. struct cfq_queue *cfqq = NULL;
  1169. parent = NULL;
  1170. p = &root->rb_node;
  1171. while (*p) {
  1172. struct rb_node **n;
  1173. parent = *p;
  1174. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1175. /*
  1176. * Sort strictly based on sector. Smallest to the left,
  1177. * largest to the right.
  1178. */
  1179. if (sector > blk_rq_pos(cfqq->next_rq))
  1180. n = &(*p)->rb_right;
  1181. else if (sector < blk_rq_pos(cfqq->next_rq))
  1182. n = &(*p)->rb_left;
  1183. else
  1184. break;
  1185. p = n;
  1186. cfqq = NULL;
  1187. }
  1188. *ret_parent = parent;
  1189. if (rb_link)
  1190. *rb_link = p;
  1191. return cfqq;
  1192. }
  1193. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1194. {
  1195. struct rb_node **p, *parent;
  1196. struct cfq_queue *__cfqq;
  1197. if (cfqq->p_root) {
  1198. rb_erase(&cfqq->p_node, cfqq->p_root);
  1199. cfqq->p_root = NULL;
  1200. }
  1201. if (cfq_class_idle(cfqq))
  1202. return;
  1203. if (!cfqq->next_rq)
  1204. return;
  1205. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1206. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1207. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1208. if (!__cfqq) {
  1209. rb_link_node(&cfqq->p_node, parent, p);
  1210. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1211. } else
  1212. cfqq->p_root = NULL;
  1213. }
  1214. /*
  1215. * Update cfqq's position in the service tree.
  1216. */
  1217. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1218. {
  1219. /*
  1220. * Resorting requires the cfqq to be on the RR list already.
  1221. */
  1222. if (cfq_cfqq_on_rr(cfqq)) {
  1223. cfq_service_tree_add(cfqd, cfqq, 0);
  1224. cfq_prio_tree_add(cfqd, cfqq);
  1225. }
  1226. }
  1227. /*
  1228. * add to busy list of queues for service, trying to be fair in ordering
  1229. * the pending list according to last request service
  1230. */
  1231. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1232. {
  1233. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1234. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1235. cfq_mark_cfqq_on_rr(cfqq);
  1236. cfqd->busy_queues++;
  1237. if (cfq_cfqq_sync(cfqq))
  1238. cfqd->busy_sync_queues++;
  1239. cfq_resort_rr_list(cfqd, cfqq);
  1240. }
  1241. /*
  1242. * Called when the cfqq no longer has requests pending, remove it from
  1243. * the service tree.
  1244. */
  1245. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1246. {
  1247. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1248. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1249. cfq_clear_cfqq_on_rr(cfqq);
  1250. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1251. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1252. cfqq->service_tree = NULL;
  1253. }
  1254. if (cfqq->p_root) {
  1255. rb_erase(&cfqq->p_node, cfqq->p_root);
  1256. cfqq->p_root = NULL;
  1257. }
  1258. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1259. BUG_ON(!cfqd->busy_queues);
  1260. cfqd->busy_queues--;
  1261. if (cfq_cfqq_sync(cfqq))
  1262. cfqd->busy_sync_queues--;
  1263. }
  1264. /*
  1265. * rb tree support functions
  1266. */
  1267. static void cfq_del_rq_rb(struct request *rq)
  1268. {
  1269. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1270. const int sync = rq_is_sync(rq);
  1271. BUG_ON(!cfqq->queued[sync]);
  1272. cfqq->queued[sync]--;
  1273. elv_rb_del(&cfqq->sort_list, rq);
  1274. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1275. /*
  1276. * Queue will be deleted from service tree when we actually
  1277. * expire it later. Right now just remove it from prio tree
  1278. * as it is empty.
  1279. */
  1280. if (cfqq->p_root) {
  1281. rb_erase(&cfqq->p_node, cfqq->p_root);
  1282. cfqq->p_root = NULL;
  1283. }
  1284. }
  1285. }
  1286. static void cfq_add_rq_rb(struct request *rq)
  1287. {
  1288. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1289. struct cfq_data *cfqd = cfqq->cfqd;
  1290. struct request *__alias, *prev;
  1291. cfqq->queued[rq_is_sync(rq)]++;
  1292. /*
  1293. * looks a little odd, but the first insert might return an alias.
  1294. * if that happens, put the alias on the dispatch list
  1295. */
  1296. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1297. cfq_dispatch_insert(cfqd->queue, __alias);
  1298. if (!cfq_cfqq_on_rr(cfqq))
  1299. cfq_add_cfqq_rr(cfqd, cfqq);
  1300. /*
  1301. * check if this request is a better next-serve candidate
  1302. */
  1303. prev = cfqq->next_rq;
  1304. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1305. /*
  1306. * adjust priority tree position, if ->next_rq changes
  1307. */
  1308. if (prev != cfqq->next_rq)
  1309. cfq_prio_tree_add(cfqd, cfqq);
  1310. BUG_ON(!cfqq->next_rq);
  1311. }
  1312. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1313. {
  1314. elv_rb_del(&cfqq->sort_list, rq);
  1315. cfqq->queued[rq_is_sync(rq)]--;
  1316. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1317. rq_data_dir(rq), rq_is_sync(rq));
  1318. cfq_add_rq_rb(rq);
  1319. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1320. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1321. rq_is_sync(rq));
  1322. }
  1323. static struct request *
  1324. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1325. {
  1326. struct task_struct *tsk = current;
  1327. struct cfq_io_context *cic;
  1328. struct cfq_queue *cfqq;
  1329. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1330. if (!cic)
  1331. return NULL;
  1332. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1333. if (cfqq) {
  1334. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1335. return elv_rb_find(&cfqq->sort_list, sector);
  1336. }
  1337. return NULL;
  1338. }
  1339. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1340. {
  1341. struct cfq_data *cfqd = q->elevator->elevator_data;
  1342. cfqd->rq_in_driver++;
  1343. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1344. cfqd->rq_in_driver);
  1345. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1346. }
  1347. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1348. {
  1349. struct cfq_data *cfqd = q->elevator->elevator_data;
  1350. WARN_ON(!cfqd->rq_in_driver);
  1351. cfqd->rq_in_driver--;
  1352. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1353. cfqd->rq_in_driver);
  1354. }
  1355. static void cfq_remove_request(struct request *rq)
  1356. {
  1357. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1358. if (cfqq->next_rq == rq)
  1359. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1360. list_del_init(&rq->queuelist);
  1361. cfq_del_rq_rb(rq);
  1362. cfqq->cfqd->rq_queued--;
  1363. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1364. rq_data_dir(rq), rq_is_sync(rq));
  1365. if (rq->cmd_flags & REQ_META) {
  1366. WARN_ON(!cfqq->meta_pending);
  1367. cfqq->meta_pending--;
  1368. }
  1369. }
  1370. static int cfq_merge(struct request_queue *q, struct request **req,
  1371. struct bio *bio)
  1372. {
  1373. struct cfq_data *cfqd = q->elevator->elevator_data;
  1374. struct request *__rq;
  1375. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1376. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1377. *req = __rq;
  1378. return ELEVATOR_FRONT_MERGE;
  1379. }
  1380. return ELEVATOR_NO_MERGE;
  1381. }
  1382. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1383. int type)
  1384. {
  1385. if (type == ELEVATOR_FRONT_MERGE) {
  1386. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1387. cfq_reposition_rq_rb(cfqq, req);
  1388. }
  1389. }
  1390. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1391. struct bio *bio)
  1392. {
  1393. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1394. bio_data_dir(bio), cfq_bio_sync(bio));
  1395. }
  1396. static void
  1397. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1398. struct request *next)
  1399. {
  1400. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1401. /*
  1402. * reposition in fifo if next is older than rq
  1403. */
  1404. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1405. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1406. list_move(&rq->queuelist, &next->queuelist);
  1407. rq_set_fifo_time(rq, rq_fifo_time(next));
  1408. }
  1409. if (cfqq->next_rq == next)
  1410. cfqq->next_rq = rq;
  1411. cfq_remove_request(next);
  1412. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1413. rq_data_dir(next), rq_is_sync(next));
  1414. }
  1415. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1416. struct bio *bio)
  1417. {
  1418. struct cfq_data *cfqd = q->elevator->elevator_data;
  1419. struct cfq_io_context *cic;
  1420. struct cfq_queue *cfqq;
  1421. /*
  1422. * Disallow merge of a sync bio into an async request.
  1423. */
  1424. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1425. return false;
  1426. /*
  1427. * Lookup the cfqq that this bio will be queued with. Allow
  1428. * merge only if rq is queued there.
  1429. */
  1430. cic = cfq_cic_lookup(cfqd, current->io_context);
  1431. if (!cic)
  1432. return false;
  1433. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1434. return cfqq == RQ_CFQQ(rq);
  1435. }
  1436. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1437. {
  1438. del_timer(&cfqd->idle_slice_timer);
  1439. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1440. }
  1441. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1442. struct cfq_queue *cfqq)
  1443. {
  1444. if (cfqq) {
  1445. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1446. cfqd->serving_prio, cfqd->serving_type);
  1447. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1448. cfqq->slice_start = 0;
  1449. cfqq->dispatch_start = jiffies;
  1450. cfqq->allocated_slice = 0;
  1451. cfqq->slice_end = 0;
  1452. cfqq->slice_dispatch = 0;
  1453. cfqq->nr_sectors = 0;
  1454. cfq_clear_cfqq_wait_request(cfqq);
  1455. cfq_clear_cfqq_must_dispatch(cfqq);
  1456. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1457. cfq_clear_cfqq_fifo_expire(cfqq);
  1458. cfq_mark_cfqq_slice_new(cfqq);
  1459. cfq_del_timer(cfqd, cfqq);
  1460. }
  1461. cfqd->active_queue = cfqq;
  1462. }
  1463. /*
  1464. * current cfqq expired its slice (or was too idle), select new one
  1465. */
  1466. static void
  1467. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1468. bool timed_out)
  1469. {
  1470. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1471. if (cfq_cfqq_wait_request(cfqq))
  1472. cfq_del_timer(cfqd, cfqq);
  1473. cfq_clear_cfqq_wait_request(cfqq);
  1474. cfq_clear_cfqq_wait_busy(cfqq);
  1475. /*
  1476. * If this cfqq is shared between multiple processes, check to
  1477. * make sure that those processes are still issuing I/Os within
  1478. * the mean seek distance. If not, it may be time to break the
  1479. * queues apart again.
  1480. */
  1481. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1482. cfq_mark_cfqq_split_coop(cfqq);
  1483. /*
  1484. * store what was left of this slice, if the queue idled/timed out
  1485. */
  1486. if (timed_out) {
  1487. if (cfq_cfqq_slice_new(cfqq))
  1488. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1489. else
  1490. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1491. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1492. }
  1493. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1494. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1495. cfq_del_cfqq_rr(cfqd, cfqq);
  1496. cfq_resort_rr_list(cfqd, cfqq);
  1497. if (cfqq == cfqd->active_queue)
  1498. cfqd->active_queue = NULL;
  1499. if (cfqd->active_cic) {
  1500. put_io_context(cfqd->active_cic->ioc);
  1501. cfqd->active_cic = NULL;
  1502. }
  1503. }
  1504. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1505. {
  1506. struct cfq_queue *cfqq = cfqd->active_queue;
  1507. if (cfqq)
  1508. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1509. }
  1510. /*
  1511. * Get next queue for service. Unless we have a queue preemption,
  1512. * we'll simply select the first cfqq in the service tree.
  1513. */
  1514. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1515. {
  1516. struct cfq_rb_root *service_tree =
  1517. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1518. cfqd->serving_type);
  1519. if (!cfqd->rq_queued)
  1520. return NULL;
  1521. /* There is nothing to dispatch */
  1522. if (!service_tree)
  1523. return NULL;
  1524. if (RB_EMPTY_ROOT(&service_tree->rb))
  1525. return NULL;
  1526. return cfq_rb_first(service_tree);
  1527. }
  1528. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1529. {
  1530. struct cfq_group *cfqg;
  1531. struct cfq_queue *cfqq;
  1532. int i, j;
  1533. struct cfq_rb_root *st;
  1534. if (!cfqd->rq_queued)
  1535. return NULL;
  1536. cfqg = cfq_get_next_cfqg(cfqd);
  1537. if (!cfqg)
  1538. return NULL;
  1539. for_each_cfqg_st(cfqg, i, j, st)
  1540. if ((cfqq = cfq_rb_first(st)) != NULL)
  1541. return cfqq;
  1542. return NULL;
  1543. }
  1544. /*
  1545. * Get and set a new active queue for service.
  1546. */
  1547. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1548. struct cfq_queue *cfqq)
  1549. {
  1550. if (!cfqq)
  1551. cfqq = cfq_get_next_queue(cfqd);
  1552. __cfq_set_active_queue(cfqd, cfqq);
  1553. return cfqq;
  1554. }
  1555. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1556. struct request *rq)
  1557. {
  1558. if (blk_rq_pos(rq) >= cfqd->last_position)
  1559. return blk_rq_pos(rq) - cfqd->last_position;
  1560. else
  1561. return cfqd->last_position - blk_rq_pos(rq);
  1562. }
  1563. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1564. struct request *rq)
  1565. {
  1566. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1567. }
  1568. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1569. struct cfq_queue *cur_cfqq)
  1570. {
  1571. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1572. struct rb_node *parent, *node;
  1573. struct cfq_queue *__cfqq;
  1574. sector_t sector = cfqd->last_position;
  1575. if (RB_EMPTY_ROOT(root))
  1576. return NULL;
  1577. /*
  1578. * First, if we find a request starting at the end of the last
  1579. * request, choose it.
  1580. */
  1581. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1582. if (__cfqq)
  1583. return __cfqq;
  1584. /*
  1585. * If the exact sector wasn't found, the parent of the NULL leaf
  1586. * will contain the closest sector.
  1587. */
  1588. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1589. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1590. return __cfqq;
  1591. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1592. node = rb_next(&__cfqq->p_node);
  1593. else
  1594. node = rb_prev(&__cfqq->p_node);
  1595. if (!node)
  1596. return NULL;
  1597. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1598. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1599. return __cfqq;
  1600. return NULL;
  1601. }
  1602. /*
  1603. * cfqd - obvious
  1604. * cur_cfqq - passed in so that we don't decide that the current queue is
  1605. * closely cooperating with itself.
  1606. *
  1607. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1608. * one request, and that cfqd->last_position reflects a position on the disk
  1609. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1610. * assumption.
  1611. */
  1612. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1613. struct cfq_queue *cur_cfqq)
  1614. {
  1615. struct cfq_queue *cfqq;
  1616. if (cfq_class_idle(cur_cfqq))
  1617. return NULL;
  1618. if (!cfq_cfqq_sync(cur_cfqq))
  1619. return NULL;
  1620. if (CFQQ_SEEKY(cur_cfqq))
  1621. return NULL;
  1622. /*
  1623. * Don't search priority tree if it's the only queue in the group.
  1624. */
  1625. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1626. return NULL;
  1627. /*
  1628. * We should notice if some of the queues are cooperating, eg
  1629. * working closely on the same area of the disk. In that case,
  1630. * we can group them together and don't waste time idling.
  1631. */
  1632. cfqq = cfqq_close(cfqd, cur_cfqq);
  1633. if (!cfqq)
  1634. return NULL;
  1635. /* If new queue belongs to different cfq_group, don't choose it */
  1636. if (cur_cfqq->cfqg != cfqq->cfqg)
  1637. return NULL;
  1638. /*
  1639. * It only makes sense to merge sync queues.
  1640. */
  1641. if (!cfq_cfqq_sync(cfqq))
  1642. return NULL;
  1643. if (CFQQ_SEEKY(cfqq))
  1644. return NULL;
  1645. /*
  1646. * Do not merge queues of different priority classes
  1647. */
  1648. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1649. return NULL;
  1650. return cfqq;
  1651. }
  1652. /*
  1653. * Determine whether we should enforce idle window for this queue.
  1654. */
  1655. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1656. {
  1657. enum wl_prio_t prio = cfqq_prio(cfqq);
  1658. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1659. BUG_ON(!service_tree);
  1660. BUG_ON(!service_tree->count);
  1661. if (!cfqd->cfq_slice_idle)
  1662. return false;
  1663. /* We never do for idle class queues. */
  1664. if (prio == IDLE_WORKLOAD)
  1665. return false;
  1666. /* We do for queues that were marked with idle window flag. */
  1667. if (cfq_cfqq_idle_window(cfqq) &&
  1668. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1669. return true;
  1670. /*
  1671. * Otherwise, we do only if they are the last ones
  1672. * in their service tree.
  1673. */
  1674. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1675. return true;
  1676. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1677. service_tree->count);
  1678. return false;
  1679. }
  1680. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1681. {
  1682. struct cfq_queue *cfqq = cfqd->active_queue;
  1683. struct cfq_io_context *cic;
  1684. unsigned long sl, group_idle = 0;
  1685. /*
  1686. * SSD device without seek penalty, disable idling. But only do so
  1687. * for devices that support queuing, otherwise we still have a problem
  1688. * with sync vs async workloads.
  1689. */
  1690. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1691. return;
  1692. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1693. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1694. /*
  1695. * idle is disabled, either manually or by past process history
  1696. */
  1697. if (!cfq_should_idle(cfqd, cfqq)) {
  1698. /* no queue idling. Check for group idling */
  1699. if (cfqd->cfq_group_idle)
  1700. group_idle = cfqd->cfq_group_idle;
  1701. else
  1702. return;
  1703. }
  1704. /*
  1705. * still active requests from this queue, don't idle
  1706. */
  1707. if (cfqq->dispatched)
  1708. return;
  1709. /*
  1710. * task has exited, don't wait
  1711. */
  1712. cic = cfqd->active_cic;
  1713. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1714. return;
  1715. /*
  1716. * If our average think time is larger than the remaining time
  1717. * slice, then don't idle. This avoids overrunning the allotted
  1718. * time slice.
  1719. */
  1720. if (sample_valid(cic->ttime_samples) &&
  1721. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1722. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1723. cic->ttime_mean);
  1724. return;
  1725. }
  1726. /* There are other queues in the group, don't do group idle */
  1727. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1728. return;
  1729. cfq_mark_cfqq_wait_request(cfqq);
  1730. if (group_idle)
  1731. sl = cfqd->cfq_group_idle;
  1732. else
  1733. sl = cfqd->cfq_slice_idle;
  1734. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1735. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1736. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1737. group_idle ? 1 : 0);
  1738. }
  1739. /*
  1740. * Move request from internal lists to the request queue dispatch list.
  1741. */
  1742. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1743. {
  1744. struct cfq_data *cfqd = q->elevator->elevator_data;
  1745. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1746. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1747. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1748. cfq_remove_request(rq);
  1749. cfqq->dispatched++;
  1750. (RQ_CFQG(rq))->dispatched++;
  1751. elv_dispatch_sort(q, rq);
  1752. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1753. cfqq->nr_sectors += blk_rq_sectors(rq);
  1754. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1755. rq_data_dir(rq), rq_is_sync(rq));
  1756. }
  1757. /*
  1758. * return expired entry, or NULL to just start from scratch in rbtree
  1759. */
  1760. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1761. {
  1762. struct request *rq = NULL;
  1763. if (cfq_cfqq_fifo_expire(cfqq))
  1764. return NULL;
  1765. cfq_mark_cfqq_fifo_expire(cfqq);
  1766. if (list_empty(&cfqq->fifo))
  1767. return NULL;
  1768. rq = rq_entry_fifo(cfqq->fifo.next);
  1769. if (time_before(jiffies, rq_fifo_time(rq)))
  1770. rq = NULL;
  1771. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1772. return rq;
  1773. }
  1774. static inline int
  1775. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1776. {
  1777. const int base_rq = cfqd->cfq_slice_async_rq;
  1778. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1779. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1780. }
  1781. /*
  1782. * Must be called with the queue_lock held.
  1783. */
  1784. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1785. {
  1786. int process_refs, io_refs;
  1787. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1788. process_refs = cfqq->ref - io_refs;
  1789. BUG_ON(process_refs < 0);
  1790. return process_refs;
  1791. }
  1792. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1793. {
  1794. int process_refs, new_process_refs;
  1795. struct cfq_queue *__cfqq;
  1796. /*
  1797. * If there are no process references on the new_cfqq, then it is
  1798. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1799. * chain may have dropped their last reference (not just their
  1800. * last process reference).
  1801. */
  1802. if (!cfqq_process_refs(new_cfqq))
  1803. return;
  1804. /* Avoid a circular list and skip interim queue merges */
  1805. while ((__cfqq = new_cfqq->new_cfqq)) {
  1806. if (__cfqq == cfqq)
  1807. return;
  1808. new_cfqq = __cfqq;
  1809. }
  1810. process_refs = cfqq_process_refs(cfqq);
  1811. new_process_refs = cfqq_process_refs(new_cfqq);
  1812. /*
  1813. * If the process for the cfqq has gone away, there is no
  1814. * sense in merging the queues.
  1815. */
  1816. if (process_refs == 0 || new_process_refs == 0)
  1817. return;
  1818. /*
  1819. * Merge in the direction of the lesser amount of work.
  1820. */
  1821. if (new_process_refs >= process_refs) {
  1822. cfqq->new_cfqq = new_cfqq;
  1823. new_cfqq->ref += process_refs;
  1824. } else {
  1825. new_cfqq->new_cfqq = cfqq;
  1826. cfqq->ref += new_process_refs;
  1827. }
  1828. }
  1829. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1830. struct cfq_group *cfqg, enum wl_prio_t prio)
  1831. {
  1832. struct cfq_queue *queue;
  1833. int i;
  1834. bool key_valid = false;
  1835. unsigned long lowest_key = 0;
  1836. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1837. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1838. /* select the one with lowest rb_key */
  1839. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1840. if (queue &&
  1841. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1842. lowest_key = queue->rb_key;
  1843. cur_best = i;
  1844. key_valid = true;
  1845. }
  1846. }
  1847. return cur_best;
  1848. }
  1849. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1850. {
  1851. unsigned slice;
  1852. unsigned count;
  1853. struct cfq_rb_root *st;
  1854. unsigned group_slice;
  1855. enum wl_prio_t original_prio = cfqd->serving_prio;
  1856. /* Choose next priority. RT > BE > IDLE */
  1857. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1858. cfqd->serving_prio = RT_WORKLOAD;
  1859. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1860. cfqd->serving_prio = BE_WORKLOAD;
  1861. else {
  1862. cfqd->serving_prio = IDLE_WORKLOAD;
  1863. cfqd->workload_expires = jiffies + 1;
  1864. return;
  1865. }
  1866. if (original_prio != cfqd->serving_prio)
  1867. goto new_workload;
  1868. /*
  1869. * For RT and BE, we have to choose also the type
  1870. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1871. * expiration time
  1872. */
  1873. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1874. count = st->count;
  1875. /*
  1876. * check workload expiration, and that we still have other queues ready
  1877. */
  1878. if (count && !time_after(jiffies, cfqd->workload_expires))
  1879. return;
  1880. new_workload:
  1881. /* otherwise select new workload type */
  1882. cfqd->serving_type =
  1883. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1884. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1885. count = st->count;
  1886. /*
  1887. * the workload slice is computed as a fraction of target latency
  1888. * proportional to the number of queues in that workload, over
  1889. * all the queues in the same priority class
  1890. */
  1891. group_slice = cfq_group_slice(cfqd, cfqg);
  1892. slice = group_slice * count /
  1893. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1894. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1895. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1896. unsigned int tmp;
  1897. /*
  1898. * Async queues are currently system wide. Just taking
  1899. * proportion of queues with-in same group will lead to higher
  1900. * async ratio system wide as generally root group is going
  1901. * to have higher weight. A more accurate thing would be to
  1902. * calculate system wide asnc/sync ratio.
  1903. */
  1904. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1905. tmp = tmp/cfqd->busy_queues;
  1906. slice = min_t(unsigned, slice, tmp);
  1907. /* async workload slice is scaled down according to
  1908. * the sync/async slice ratio. */
  1909. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1910. } else
  1911. /* sync workload slice is at least 2 * cfq_slice_idle */
  1912. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1913. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1914. cfq_log(cfqd, "workload slice:%d", slice);
  1915. cfqd->workload_expires = jiffies + slice;
  1916. }
  1917. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1918. {
  1919. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1920. struct cfq_group *cfqg;
  1921. if (RB_EMPTY_ROOT(&st->rb))
  1922. return NULL;
  1923. cfqg = cfq_rb_first_group(st);
  1924. update_min_vdisktime(st);
  1925. return cfqg;
  1926. }
  1927. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1928. {
  1929. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1930. cfqd->serving_group = cfqg;
  1931. /* Restore the workload type data */
  1932. if (cfqg->saved_workload_slice) {
  1933. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1934. cfqd->serving_type = cfqg->saved_workload;
  1935. cfqd->serving_prio = cfqg->saved_serving_prio;
  1936. } else
  1937. cfqd->workload_expires = jiffies - 1;
  1938. choose_service_tree(cfqd, cfqg);
  1939. }
  1940. /*
  1941. * Select a queue for service. If we have a current active queue,
  1942. * check whether to continue servicing it, or retrieve and set a new one.
  1943. */
  1944. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1945. {
  1946. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1947. cfqq = cfqd->active_queue;
  1948. if (!cfqq)
  1949. goto new_queue;
  1950. if (!cfqd->rq_queued)
  1951. return NULL;
  1952. /*
  1953. * We were waiting for group to get backlogged. Expire the queue
  1954. */
  1955. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1956. goto expire;
  1957. /*
  1958. * The active queue has run out of time, expire it and select new.
  1959. */
  1960. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1961. /*
  1962. * If slice had not expired at the completion of last request
  1963. * we might not have turned on wait_busy flag. Don't expire
  1964. * the queue yet. Allow the group to get backlogged.
  1965. *
  1966. * The very fact that we have used the slice, that means we
  1967. * have been idling all along on this queue and it should be
  1968. * ok to wait for this request to complete.
  1969. */
  1970. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1971. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1972. cfqq = NULL;
  1973. goto keep_queue;
  1974. } else
  1975. goto check_group_idle;
  1976. }
  1977. /*
  1978. * The active queue has requests and isn't expired, allow it to
  1979. * dispatch.
  1980. */
  1981. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1982. goto keep_queue;
  1983. /*
  1984. * If another queue has a request waiting within our mean seek
  1985. * distance, let it run. The expire code will check for close
  1986. * cooperators and put the close queue at the front of the service
  1987. * tree. If possible, merge the expiring queue with the new cfqq.
  1988. */
  1989. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1990. if (new_cfqq) {
  1991. if (!cfqq->new_cfqq)
  1992. cfq_setup_merge(cfqq, new_cfqq);
  1993. goto expire;
  1994. }
  1995. /*
  1996. * No requests pending. If the active queue still has requests in
  1997. * flight or is idling for a new request, allow either of these
  1998. * conditions to happen (or time out) before selecting a new queue.
  1999. */
  2000. if (timer_pending(&cfqd->idle_slice_timer)) {
  2001. cfqq = NULL;
  2002. goto keep_queue;
  2003. }
  2004. /*
  2005. * This is a deep seek queue, but the device is much faster than
  2006. * the queue can deliver, don't idle
  2007. **/
  2008. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2009. (cfq_cfqq_slice_new(cfqq) ||
  2010. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2011. cfq_clear_cfqq_deep(cfqq);
  2012. cfq_clear_cfqq_idle_window(cfqq);
  2013. }
  2014. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2015. cfqq = NULL;
  2016. goto keep_queue;
  2017. }
  2018. /*
  2019. * If group idle is enabled and there are requests dispatched from
  2020. * this group, wait for requests to complete.
  2021. */
  2022. check_group_idle:
  2023. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  2024. && cfqq->cfqg->dispatched) {
  2025. cfqq = NULL;
  2026. goto keep_queue;
  2027. }
  2028. expire:
  2029. cfq_slice_expired(cfqd, 0);
  2030. new_queue:
  2031. /*
  2032. * Current queue expired. Check if we have to switch to a new
  2033. * service tree
  2034. */
  2035. if (!new_cfqq)
  2036. cfq_choose_cfqg(cfqd);
  2037. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2038. keep_queue:
  2039. return cfqq;
  2040. }
  2041. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2042. {
  2043. int dispatched = 0;
  2044. while (cfqq->next_rq) {
  2045. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2046. dispatched++;
  2047. }
  2048. BUG_ON(!list_empty(&cfqq->fifo));
  2049. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2050. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2051. return dispatched;
  2052. }
  2053. /*
  2054. * Drain our current requests. Used for barriers and when switching
  2055. * io schedulers on-the-fly.
  2056. */
  2057. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2058. {
  2059. struct cfq_queue *cfqq;
  2060. int dispatched = 0;
  2061. /* Expire the timeslice of the current active queue first */
  2062. cfq_slice_expired(cfqd, 0);
  2063. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2064. __cfq_set_active_queue(cfqd, cfqq);
  2065. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2066. }
  2067. BUG_ON(cfqd->busy_queues);
  2068. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2069. return dispatched;
  2070. }
  2071. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2072. struct cfq_queue *cfqq)
  2073. {
  2074. /* the queue hasn't finished any request, can't estimate */
  2075. if (cfq_cfqq_slice_new(cfqq))
  2076. return true;
  2077. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2078. cfqq->slice_end))
  2079. return true;
  2080. return false;
  2081. }
  2082. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2083. {
  2084. unsigned int max_dispatch;
  2085. /*
  2086. * Drain async requests before we start sync IO
  2087. */
  2088. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2089. return false;
  2090. /*
  2091. * If this is an async queue and we have sync IO in flight, let it wait
  2092. */
  2093. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2094. return false;
  2095. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2096. if (cfq_class_idle(cfqq))
  2097. max_dispatch = 1;
  2098. /*
  2099. * Does this cfqq already have too much IO in flight?
  2100. */
  2101. if (cfqq->dispatched >= max_dispatch) {
  2102. bool promote_sync = false;
  2103. /*
  2104. * idle queue must always only have a single IO in flight
  2105. */
  2106. if (cfq_class_idle(cfqq))
  2107. return false;
  2108. /*
  2109. * If there is only one sync queue
  2110. * we can ignore async queue here and give the sync
  2111. * queue no dispatch limit. The reason is a sync queue can
  2112. * preempt async queue, limiting the sync queue doesn't make
  2113. * sense. This is useful for aiostress test.
  2114. */
  2115. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2116. promote_sync = true;
  2117. /*
  2118. * We have other queues, don't allow more IO from this one
  2119. */
  2120. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2121. !promote_sync)
  2122. return false;
  2123. /*
  2124. * Sole queue user, no limit
  2125. */
  2126. if (cfqd->busy_queues == 1 || promote_sync)
  2127. max_dispatch = -1;
  2128. else
  2129. /*
  2130. * Normally we start throttling cfqq when cfq_quantum/2
  2131. * requests have been dispatched. But we can drive
  2132. * deeper queue depths at the beginning of slice
  2133. * subjected to upper limit of cfq_quantum.
  2134. * */
  2135. max_dispatch = cfqd->cfq_quantum;
  2136. }
  2137. /*
  2138. * Async queues must wait a bit before being allowed dispatch.
  2139. * We also ramp up the dispatch depth gradually for async IO,
  2140. * based on the last sync IO we serviced
  2141. */
  2142. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2143. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2144. unsigned int depth;
  2145. depth = last_sync / cfqd->cfq_slice[1];
  2146. if (!depth && !cfqq->dispatched)
  2147. depth = 1;
  2148. if (depth < max_dispatch)
  2149. max_dispatch = depth;
  2150. }
  2151. /*
  2152. * If we're below the current max, allow a dispatch
  2153. */
  2154. return cfqq->dispatched < max_dispatch;
  2155. }
  2156. /*
  2157. * Dispatch a request from cfqq, moving them to the request queue
  2158. * dispatch list.
  2159. */
  2160. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2161. {
  2162. struct request *rq;
  2163. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2164. if (!cfq_may_dispatch(cfqd, cfqq))
  2165. return false;
  2166. /*
  2167. * follow expired path, else get first next available
  2168. */
  2169. rq = cfq_check_fifo(cfqq);
  2170. if (!rq)
  2171. rq = cfqq->next_rq;
  2172. /*
  2173. * insert request into driver dispatch list
  2174. */
  2175. cfq_dispatch_insert(cfqd->queue, rq);
  2176. if (!cfqd->active_cic) {
  2177. struct cfq_io_context *cic = RQ_CIC(rq);
  2178. atomic_long_inc(&cic->ioc->refcount);
  2179. cfqd->active_cic = cic;
  2180. }
  2181. return true;
  2182. }
  2183. /*
  2184. * Find the cfqq that we need to service and move a request from that to the
  2185. * dispatch list
  2186. */
  2187. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2188. {
  2189. struct cfq_data *cfqd = q->elevator->elevator_data;
  2190. struct cfq_queue *cfqq;
  2191. if (!cfqd->busy_queues)
  2192. return 0;
  2193. if (unlikely(force))
  2194. return cfq_forced_dispatch(cfqd);
  2195. cfqq = cfq_select_queue(cfqd);
  2196. if (!cfqq)
  2197. return 0;
  2198. /*
  2199. * Dispatch a request from this cfqq, if it is allowed
  2200. */
  2201. if (!cfq_dispatch_request(cfqd, cfqq))
  2202. return 0;
  2203. cfqq->slice_dispatch++;
  2204. cfq_clear_cfqq_must_dispatch(cfqq);
  2205. /*
  2206. * expire an async queue immediately if it has used up its slice. idle
  2207. * queue always expire after 1 dispatch round.
  2208. */
  2209. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2210. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2211. cfq_class_idle(cfqq))) {
  2212. cfqq->slice_end = jiffies + 1;
  2213. cfq_slice_expired(cfqd, 0);
  2214. }
  2215. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2216. return 1;
  2217. }
  2218. /*
  2219. * task holds one reference to the queue, dropped when task exits. each rq
  2220. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2221. *
  2222. * Each cfq queue took a reference on the parent group. Drop it now.
  2223. * queue lock must be held here.
  2224. */
  2225. static void cfq_put_queue(struct cfq_queue *cfqq)
  2226. {
  2227. struct cfq_data *cfqd = cfqq->cfqd;
  2228. struct cfq_group *cfqg;
  2229. BUG_ON(cfqq->ref <= 0);
  2230. cfqq->ref--;
  2231. if (cfqq->ref)
  2232. return;
  2233. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2234. BUG_ON(rb_first(&cfqq->sort_list));
  2235. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2236. cfqg = cfqq->cfqg;
  2237. if (unlikely(cfqd->active_queue == cfqq)) {
  2238. __cfq_slice_expired(cfqd, cfqq, 0);
  2239. cfq_schedule_dispatch(cfqd);
  2240. }
  2241. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2242. kmem_cache_free(cfq_pool, cfqq);
  2243. cfq_put_cfqg(cfqg);
  2244. }
  2245. /*
  2246. * Call func for each cic attached to this ioc.
  2247. */
  2248. static void
  2249. call_for_each_cic(struct io_context *ioc,
  2250. void (*func)(struct io_context *, struct cfq_io_context *))
  2251. {
  2252. struct cfq_io_context *cic;
  2253. struct hlist_node *n;
  2254. rcu_read_lock();
  2255. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2256. func(ioc, cic);
  2257. rcu_read_unlock();
  2258. }
  2259. static void cfq_cic_free_rcu(struct rcu_head *head)
  2260. {
  2261. struct cfq_io_context *cic;
  2262. cic = container_of(head, struct cfq_io_context, rcu_head);
  2263. kmem_cache_free(cfq_ioc_pool, cic);
  2264. elv_ioc_count_dec(cfq_ioc_count);
  2265. if (ioc_gone) {
  2266. /*
  2267. * CFQ scheduler is exiting, grab exit lock and check
  2268. * the pending io context count. If it hits zero,
  2269. * complete ioc_gone and set it back to NULL
  2270. */
  2271. spin_lock(&ioc_gone_lock);
  2272. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2273. complete(ioc_gone);
  2274. ioc_gone = NULL;
  2275. }
  2276. spin_unlock(&ioc_gone_lock);
  2277. }
  2278. }
  2279. static void cfq_cic_free(struct cfq_io_context *cic)
  2280. {
  2281. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2282. }
  2283. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2284. {
  2285. unsigned long flags;
  2286. unsigned long dead_key = (unsigned long) cic->key;
  2287. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2288. spin_lock_irqsave(&ioc->lock, flags);
  2289. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2290. hlist_del_rcu(&cic->cic_list);
  2291. spin_unlock_irqrestore(&ioc->lock, flags);
  2292. cfq_cic_free(cic);
  2293. }
  2294. /*
  2295. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2296. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2297. * and ->trim() which is called with the task lock held
  2298. */
  2299. static void cfq_free_io_context(struct io_context *ioc)
  2300. {
  2301. /*
  2302. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2303. * so no more cic's are allowed to be linked into this ioc. So it
  2304. * should be ok to iterate over the known list, we will see all cic's
  2305. * since no new ones are added.
  2306. */
  2307. call_for_each_cic(ioc, cic_free_func);
  2308. }
  2309. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2310. {
  2311. struct cfq_queue *__cfqq, *next;
  2312. /*
  2313. * If this queue was scheduled to merge with another queue, be
  2314. * sure to drop the reference taken on that queue (and others in
  2315. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2316. */
  2317. __cfqq = cfqq->new_cfqq;
  2318. while (__cfqq) {
  2319. if (__cfqq == cfqq) {
  2320. WARN(1, "cfqq->new_cfqq loop detected\n");
  2321. break;
  2322. }
  2323. next = __cfqq->new_cfqq;
  2324. cfq_put_queue(__cfqq);
  2325. __cfqq = next;
  2326. }
  2327. }
  2328. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2329. {
  2330. if (unlikely(cfqq == cfqd->active_queue)) {
  2331. __cfq_slice_expired(cfqd, cfqq, 0);
  2332. cfq_schedule_dispatch(cfqd);
  2333. }
  2334. cfq_put_cooperator(cfqq);
  2335. cfq_put_queue(cfqq);
  2336. }
  2337. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2338. struct cfq_io_context *cic)
  2339. {
  2340. struct io_context *ioc = cic->ioc;
  2341. list_del_init(&cic->queue_list);
  2342. /*
  2343. * Make sure dead mark is seen for dead queues
  2344. */
  2345. smp_wmb();
  2346. cic->key = cfqd_dead_key(cfqd);
  2347. if (ioc->ioc_data == cic)
  2348. rcu_assign_pointer(ioc->ioc_data, NULL);
  2349. if (cic->cfqq[BLK_RW_ASYNC]) {
  2350. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2351. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2352. }
  2353. if (cic->cfqq[BLK_RW_SYNC]) {
  2354. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2355. cic->cfqq[BLK_RW_SYNC] = NULL;
  2356. }
  2357. }
  2358. static void cfq_exit_single_io_context(struct io_context *ioc,
  2359. struct cfq_io_context *cic)
  2360. {
  2361. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2362. if (cfqd) {
  2363. struct request_queue *q = cfqd->queue;
  2364. unsigned long flags;
  2365. spin_lock_irqsave(q->queue_lock, flags);
  2366. /*
  2367. * Ensure we get a fresh copy of the ->key to prevent
  2368. * race between exiting task and queue
  2369. */
  2370. smp_read_barrier_depends();
  2371. if (cic->key == cfqd)
  2372. __cfq_exit_single_io_context(cfqd, cic);
  2373. spin_unlock_irqrestore(q->queue_lock, flags);
  2374. }
  2375. }
  2376. /*
  2377. * The process that ioc belongs to has exited, we need to clean up
  2378. * and put the internal structures we have that belongs to that process.
  2379. */
  2380. static void cfq_exit_io_context(struct io_context *ioc)
  2381. {
  2382. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2383. }
  2384. static struct cfq_io_context *
  2385. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2386. {
  2387. struct cfq_io_context *cic;
  2388. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2389. cfqd->queue->node);
  2390. if (cic) {
  2391. cic->last_end_request = jiffies;
  2392. INIT_LIST_HEAD(&cic->queue_list);
  2393. INIT_HLIST_NODE(&cic->cic_list);
  2394. cic->dtor = cfq_free_io_context;
  2395. cic->exit = cfq_exit_io_context;
  2396. elv_ioc_count_inc(cfq_ioc_count);
  2397. }
  2398. return cic;
  2399. }
  2400. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2401. {
  2402. struct task_struct *tsk = current;
  2403. int ioprio_class;
  2404. if (!cfq_cfqq_prio_changed(cfqq))
  2405. return;
  2406. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2407. switch (ioprio_class) {
  2408. default:
  2409. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2410. case IOPRIO_CLASS_NONE:
  2411. /*
  2412. * no prio set, inherit CPU scheduling settings
  2413. */
  2414. cfqq->ioprio = task_nice_ioprio(tsk);
  2415. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2416. break;
  2417. case IOPRIO_CLASS_RT:
  2418. cfqq->ioprio = task_ioprio(ioc);
  2419. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2420. break;
  2421. case IOPRIO_CLASS_BE:
  2422. cfqq->ioprio = task_ioprio(ioc);
  2423. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2424. break;
  2425. case IOPRIO_CLASS_IDLE:
  2426. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2427. cfqq->ioprio = 7;
  2428. cfq_clear_cfqq_idle_window(cfqq);
  2429. break;
  2430. }
  2431. /*
  2432. * keep track of original prio settings in case we have to temporarily
  2433. * elevate the priority of this queue
  2434. */
  2435. cfqq->org_ioprio = cfqq->ioprio;
  2436. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2437. cfq_clear_cfqq_prio_changed(cfqq);
  2438. }
  2439. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2440. {
  2441. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2442. struct cfq_queue *cfqq;
  2443. unsigned long flags;
  2444. if (unlikely(!cfqd))
  2445. return;
  2446. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2447. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2448. if (cfqq) {
  2449. struct cfq_queue *new_cfqq;
  2450. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2451. GFP_ATOMIC);
  2452. if (new_cfqq) {
  2453. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2454. cfq_put_queue(cfqq);
  2455. }
  2456. }
  2457. cfqq = cic->cfqq[BLK_RW_SYNC];
  2458. if (cfqq)
  2459. cfq_mark_cfqq_prio_changed(cfqq);
  2460. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2461. }
  2462. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2463. {
  2464. call_for_each_cic(ioc, changed_ioprio);
  2465. ioc->ioprio_changed = 0;
  2466. }
  2467. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2468. pid_t pid, bool is_sync)
  2469. {
  2470. RB_CLEAR_NODE(&cfqq->rb_node);
  2471. RB_CLEAR_NODE(&cfqq->p_node);
  2472. INIT_LIST_HEAD(&cfqq->fifo);
  2473. cfqq->ref = 0;
  2474. cfqq->cfqd = cfqd;
  2475. cfq_mark_cfqq_prio_changed(cfqq);
  2476. if (is_sync) {
  2477. if (!cfq_class_idle(cfqq))
  2478. cfq_mark_cfqq_idle_window(cfqq);
  2479. cfq_mark_cfqq_sync(cfqq);
  2480. }
  2481. cfqq->pid = pid;
  2482. }
  2483. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2484. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2485. {
  2486. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2487. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2488. unsigned long flags;
  2489. struct request_queue *q;
  2490. if (unlikely(!cfqd))
  2491. return;
  2492. q = cfqd->queue;
  2493. spin_lock_irqsave(q->queue_lock, flags);
  2494. if (sync_cfqq) {
  2495. /*
  2496. * Drop reference to sync queue. A new sync queue will be
  2497. * assigned in new group upon arrival of a fresh request.
  2498. */
  2499. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2500. cic_set_cfqq(cic, NULL, 1);
  2501. cfq_put_queue(sync_cfqq);
  2502. }
  2503. spin_unlock_irqrestore(q->queue_lock, flags);
  2504. }
  2505. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2506. {
  2507. call_for_each_cic(ioc, changed_cgroup);
  2508. ioc->cgroup_changed = 0;
  2509. }
  2510. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2511. static struct cfq_queue *
  2512. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2513. struct io_context *ioc, gfp_t gfp_mask)
  2514. {
  2515. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2516. struct cfq_io_context *cic;
  2517. struct cfq_group *cfqg;
  2518. retry:
  2519. cfqg = cfq_get_cfqg(cfqd);
  2520. cic = cfq_cic_lookup(cfqd, ioc);
  2521. /* cic always exists here */
  2522. cfqq = cic_to_cfqq(cic, is_sync);
  2523. /*
  2524. * Always try a new alloc if we fell back to the OOM cfqq
  2525. * originally, since it should just be a temporary situation.
  2526. */
  2527. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2528. cfqq = NULL;
  2529. if (new_cfqq) {
  2530. cfqq = new_cfqq;
  2531. new_cfqq = NULL;
  2532. } else if (gfp_mask & __GFP_WAIT) {
  2533. spin_unlock_irq(cfqd->queue->queue_lock);
  2534. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2535. gfp_mask | __GFP_ZERO,
  2536. cfqd->queue->node);
  2537. spin_lock_irq(cfqd->queue->queue_lock);
  2538. if (new_cfqq)
  2539. goto retry;
  2540. } else {
  2541. cfqq = kmem_cache_alloc_node(cfq_pool,
  2542. gfp_mask | __GFP_ZERO,
  2543. cfqd->queue->node);
  2544. }
  2545. if (cfqq) {
  2546. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2547. cfq_init_prio_data(cfqq, ioc);
  2548. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2549. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2550. } else
  2551. cfqq = &cfqd->oom_cfqq;
  2552. }
  2553. if (new_cfqq)
  2554. kmem_cache_free(cfq_pool, new_cfqq);
  2555. return cfqq;
  2556. }
  2557. static struct cfq_queue **
  2558. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2559. {
  2560. switch (ioprio_class) {
  2561. case IOPRIO_CLASS_RT:
  2562. return &cfqd->async_cfqq[0][ioprio];
  2563. case IOPRIO_CLASS_BE:
  2564. return &cfqd->async_cfqq[1][ioprio];
  2565. case IOPRIO_CLASS_IDLE:
  2566. return &cfqd->async_idle_cfqq;
  2567. default:
  2568. BUG();
  2569. }
  2570. }
  2571. static struct cfq_queue *
  2572. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2573. gfp_t gfp_mask)
  2574. {
  2575. const int ioprio = task_ioprio(ioc);
  2576. const int ioprio_class = task_ioprio_class(ioc);
  2577. struct cfq_queue **async_cfqq = NULL;
  2578. struct cfq_queue *cfqq = NULL;
  2579. if (!is_sync) {
  2580. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2581. cfqq = *async_cfqq;
  2582. }
  2583. if (!cfqq)
  2584. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2585. /*
  2586. * pin the queue now that it's allocated, scheduler exit will prune it
  2587. */
  2588. if (!is_sync && !(*async_cfqq)) {
  2589. cfqq->ref++;
  2590. *async_cfqq = cfqq;
  2591. }
  2592. cfqq->ref++;
  2593. return cfqq;
  2594. }
  2595. /*
  2596. * We drop cfq io contexts lazily, so we may find a dead one.
  2597. */
  2598. static void
  2599. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2600. struct cfq_io_context *cic)
  2601. {
  2602. unsigned long flags;
  2603. WARN_ON(!list_empty(&cic->queue_list));
  2604. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2605. spin_lock_irqsave(&ioc->lock, flags);
  2606. BUG_ON(ioc->ioc_data == cic);
  2607. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2608. hlist_del_rcu(&cic->cic_list);
  2609. spin_unlock_irqrestore(&ioc->lock, flags);
  2610. cfq_cic_free(cic);
  2611. }
  2612. static struct cfq_io_context *
  2613. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2614. {
  2615. struct cfq_io_context *cic;
  2616. unsigned long flags;
  2617. if (unlikely(!ioc))
  2618. return NULL;
  2619. rcu_read_lock();
  2620. /*
  2621. * we maintain a last-hit cache, to avoid browsing over the tree
  2622. */
  2623. cic = rcu_dereference(ioc->ioc_data);
  2624. if (cic && cic->key == cfqd) {
  2625. rcu_read_unlock();
  2626. return cic;
  2627. }
  2628. do {
  2629. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2630. rcu_read_unlock();
  2631. if (!cic)
  2632. break;
  2633. if (unlikely(cic->key != cfqd)) {
  2634. cfq_drop_dead_cic(cfqd, ioc, cic);
  2635. rcu_read_lock();
  2636. continue;
  2637. }
  2638. spin_lock_irqsave(&ioc->lock, flags);
  2639. rcu_assign_pointer(ioc->ioc_data, cic);
  2640. spin_unlock_irqrestore(&ioc->lock, flags);
  2641. break;
  2642. } while (1);
  2643. return cic;
  2644. }
  2645. /*
  2646. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2647. * the process specific cfq io context when entered from the block layer.
  2648. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2649. */
  2650. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2651. struct cfq_io_context *cic, gfp_t gfp_mask)
  2652. {
  2653. unsigned long flags;
  2654. int ret;
  2655. ret = radix_tree_preload(gfp_mask);
  2656. if (!ret) {
  2657. cic->ioc = ioc;
  2658. cic->key = cfqd;
  2659. spin_lock_irqsave(&ioc->lock, flags);
  2660. ret = radix_tree_insert(&ioc->radix_root,
  2661. cfqd->cic_index, cic);
  2662. if (!ret)
  2663. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2664. spin_unlock_irqrestore(&ioc->lock, flags);
  2665. radix_tree_preload_end();
  2666. if (!ret) {
  2667. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2668. list_add(&cic->queue_list, &cfqd->cic_list);
  2669. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2670. }
  2671. }
  2672. if (ret)
  2673. printk(KERN_ERR "cfq: cic link failed!\n");
  2674. return ret;
  2675. }
  2676. /*
  2677. * Setup general io context and cfq io context. There can be several cfq
  2678. * io contexts per general io context, if this process is doing io to more
  2679. * than one device managed by cfq.
  2680. */
  2681. static struct cfq_io_context *
  2682. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2683. {
  2684. struct io_context *ioc = NULL;
  2685. struct cfq_io_context *cic;
  2686. might_sleep_if(gfp_mask & __GFP_WAIT);
  2687. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2688. if (!ioc)
  2689. return NULL;
  2690. cic = cfq_cic_lookup(cfqd, ioc);
  2691. if (cic)
  2692. goto out;
  2693. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2694. if (cic == NULL)
  2695. goto err;
  2696. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2697. goto err_free;
  2698. out:
  2699. smp_read_barrier_depends();
  2700. if (unlikely(ioc->ioprio_changed))
  2701. cfq_ioc_set_ioprio(ioc);
  2702. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2703. if (unlikely(ioc->cgroup_changed))
  2704. cfq_ioc_set_cgroup(ioc);
  2705. #endif
  2706. return cic;
  2707. err_free:
  2708. cfq_cic_free(cic);
  2709. err:
  2710. put_io_context(ioc);
  2711. return NULL;
  2712. }
  2713. static void
  2714. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2715. {
  2716. unsigned long elapsed = jiffies - cic->last_end_request;
  2717. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2718. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2719. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2720. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2721. }
  2722. static void
  2723. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2724. struct request *rq)
  2725. {
  2726. sector_t sdist = 0;
  2727. sector_t n_sec = blk_rq_sectors(rq);
  2728. if (cfqq->last_request_pos) {
  2729. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2730. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2731. else
  2732. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2733. }
  2734. cfqq->seek_history <<= 1;
  2735. if (blk_queue_nonrot(cfqd->queue))
  2736. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2737. else
  2738. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2739. }
  2740. /*
  2741. * Disable idle window if the process thinks too long or seeks so much that
  2742. * it doesn't matter
  2743. */
  2744. static void
  2745. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2746. struct cfq_io_context *cic)
  2747. {
  2748. int old_idle, enable_idle;
  2749. /*
  2750. * Don't idle for async or idle io prio class
  2751. */
  2752. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2753. return;
  2754. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2755. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2756. cfq_mark_cfqq_deep(cfqq);
  2757. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2758. enable_idle = 0;
  2759. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2760. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2761. enable_idle = 0;
  2762. else if (sample_valid(cic->ttime_samples)) {
  2763. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2764. enable_idle = 0;
  2765. else
  2766. enable_idle = 1;
  2767. }
  2768. if (old_idle != enable_idle) {
  2769. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2770. if (enable_idle)
  2771. cfq_mark_cfqq_idle_window(cfqq);
  2772. else
  2773. cfq_clear_cfqq_idle_window(cfqq);
  2774. }
  2775. }
  2776. /*
  2777. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2778. * no or if we aren't sure, a 1 will cause a preempt.
  2779. */
  2780. static bool
  2781. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2782. struct request *rq)
  2783. {
  2784. struct cfq_queue *cfqq;
  2785. cfqq = cfqd->active_queue;
  2786. if (!cfqq)
  2787. return false;
  2788. if (cfq_class_idle(new_cfqq))
  2789. return false;
  2790. if (cfq_class_idle(cfqq))
  2791. return true;
  2792. /*
  2793. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2794. */
  2795. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2796. return false;
  2797. /*
  2798. * if the new request is sync, but the currently running queue is
  2799. * not, let the sync request have priority.
  2800. */
  2801. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2802. return true;
  2803. if (new_cfqq->cfqg != cfqq->cfqg)
  2804. return false;
  2805. if (cfq_slice_used(cfqq))
  2806. return true;
  2807. /* Allow preemption only if we are idling on sync-noidle tree */
  2808. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2809. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2810. new_cfqq->service_tree->count == 2 &&
  2811. RB_EMPTY_ROOT(&cfqq->sort_list))
  2812. return true;
  2813. /*
  2814. * So both queues are sync. Let the new request get disk time if
  2815. * it's a metadata request and the current queue is doing regular IO.
  2816. */
  2817. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2818. return true;
  2819. /*
  2820. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2821. */
  2822. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2823. return true;
  2824. /* An idle queue should not be idle now for some reason */
  2825. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2826. return true;
  2827. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2828. return false;
  2829. /*
  2830. * if this request is as-good as one we would expect from the
  2831. * current cfqq, let it preempt
  2832. */
  2833. if (cfq_rq_close(cfqd, cfqq, rq))
  2834. return true;
  2835. return false;
  2836. }
  2837. /*
  2838. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2839. * let it have half of its nominal slice.
  2840. */
  2841. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2842. {
  2843. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2844. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2845. cfq_slice_expired(cfqd, 1);
  2846. /*
  2847. * workload type is changed, don't save slice, otherwise preempt
  2848. * doesn't happen
  2849. */
  2850. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2851. cfqq->cfqg->saved_workload_slice = 0;
  2852. /*
  2853. * Put the new queue at the front of the of the current list,
  2854. * so we know that it will be selected next.
  2855. */
  2856. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2857. cfq_service_tree_add(cfqd, cfqq, 1);
  2858. cfqq->slice_end = 0;
  2859. cfq_mark_cfqq_slice_new(cfqq);
  2860. }
  2861. /*
  2862. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2863. * something we should do about it
  2864. */
  2865. static void
  2866. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2867. struct request *rq)
  2868. {
  2869. struct cfq_io_context *cic = RQ_CIC(rq);
  2870. cfqd->rq_queued++;
  2871. if (rq->cmd_flags & REQ_META)
  2872. cfqq->meta_pending++;
  2873. cfq_update_io_thinktime(cfqd, cic);
  2874. cfq_update_io_seektime(cfqd, cfqq, rq);
  2875. cfq_update_idle_window(cfqd, cfqq, cic);
  2876. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2877. if (cfqq == cfqd->active_queue) {
  2878. /*
  2879. * Remember that we saw a request from this process, but
  2880. * don't start queuing just yet. Otherwise we risk seeing lots
  2881. * of tiny requests, because we disrupt the normal plugging
  2882. * and merging. If the request is already larger than a single
  2883. * page, let it rip immediately. For that case we assume that
  2884. * merging is already done. Ditto for a busy system that
  2885. * has other work pending, don't risk delaying until the
  2886. * idle timer unplug to continue working.
  2887. */
  2888. if (cfq_cfqq_wait_request(cfqq)) {
  2889. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2890. cfqd->busy_queues > 1) {
  2891. cfq_del_timer(cfqd, cfqq);
  2892. cfq_clear_cfqq_wait_request(cfqq);
  2893. __blk_run_queue(cfqd->queue);
  2894. } else {
  2895. cfq_blkiocg_update_idle_time_stats(
  2896. &cfqq->cfqg->blkg);
  2897. cfq_mark_cfqq_must_dispatch(cfqq);
  2898. }
  2899. }
  2900. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2901. /*
  2902. * not the active queue - expire current slice if it is
  2903. * idle and has expired it's mean thinktime or this new queue
  2904. * has some old slice time left and is of higher priority or
  2905. * this new queue is RT and the current one is BE
  2906. */
  2907. cfq_preempt_queue(cfqd, cfqq);
  2908. __blk_run_queue(cfqd->queue);
  2909. }
  2910. }
  2911. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2912. {
  2913. struct cfq_data *cfqd = q->elevator->elevator_data;
  2914. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2915. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2916. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2917. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2918. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2919. cfq_add_rq_rb(rq);
  2920. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2921. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2922. rq_is_sync(rq));
  2923. cfq_rq_enqueued(cfqd, cfqq, rq);
  2924. }
  2925. /*
  2926. * Update hw_tag based on peak queue depth over 50 samples under
  2927. * sufficient load.
  2928. */
  2929. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2930. {
  2931. struct cfq_queue *cfqq = cfqd->active_queue;
  2932. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2933. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2934. if (cfqd->hw_tag == 1)
  2935. return;
  2936. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2937. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2938. return;
  2939. /*
  2940. * If active queue hasn't enough requests and can idle, cfq might not
  2941. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2942. * case
  2943. */
  2944. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2945. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2946. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2947. return;
  2948. if (cfqd->hw_tag_samples++ < 50)
  2949. return;
  2950. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2951. cfqd->hw_tag = 1;
  2952. else
  2953. cfqd->hw_tag = 0;
  2954. }
  2955. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2956. {
  2957. struct cfq_io_context *cic = cfqd->active_cic;
  2958. /* If the queue already has requests, don't wait */
  2959. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2960. return false;
  2961. /* If there are other queues in the group, don't wait */
  2962. if (cfqq->cfqg->nr_cfqq > 1)
  2963. return false;
  2964. if (cfq_slice_used(cfqq))
  2965. return true;
  2966. /* if slice left is less than think time, wait busy */
  2967. if (cic && sample_valid(cic->ttime_samples)
  2968. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2969. return true;
  2970. /*
  2971. * If think times is less than a jiffy than ttime_mean=0 and above
  2972. * will not be true. It might happen that slice has not expired yet
  2973. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2974. * case where think time is less than a jiffy, mark the queue wait
  2975. * busy if only 1 jiffy is left in the slice.
  2976. */
  2977. if (cfqq->slice_end - jiffies == 1)
  2978. return true;
  2979. return false;
  2980. }
  2981. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2982. {
  2983. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2984. struct cfq_data *cfqd = cfqq->cfqd;
  2985. const int sync = rq_is_sync(rq);
  2986. unsigned long now;
  2987. now = jiffies;
  2988. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2989. !!(rq->cmd_flags & REQ_NOIDLE));
  2990. cfq_update_hw_tag(cfqd);
  2991. WARN_ON(!cfqd->rq_in_driver);
  2992. WARN_ON(!cfqq->dispatched);
  2993. cfqd->rq_in_driver--;
  2994. cfqq->dispatched--;
  2995. (RQ_CFQG(rq))->dispatched--;
  2996. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2997. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2998. rq_data_dir(rq), rq_is_sync(rq));
  2999. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  3000. if (sync) {
  3001. RQ_CIC(rq)->last_end_request = now;
  3002. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  3003. cfqd->last_delayed_sync = now;
  3004. }
  3005. /*
  3006. * If this is the active queue, check if it needs to be expired,
  3007. * or if we want to idle in case it has no pending requests.
  3008. */
  3009. if (cfqd->active_queue == cfqq) {
  3010. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3011. if (cfq_cfqq_slice_new(cfqq)) {
  3012. cfq_set_prio_slice(cfqd, cfqq);
  3013. cfq_clear_cfqq_slice_new(cfqq);
  3014. }
  3015. /*
  3016. * Should we wait for next request to come in before we expire
  3017. * the queue.
  3018. */
  3019. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3020. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3021. if (!cfqd->cfq_slice_idle)
  3022. extend_sl = cfqd->cfq_group_idle;
  3023. cfqq->slice_end = jiffies + extend_sl;
  3024. cfq_mark_cfqq_wait_busy(cfqq);
  3025. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3026. }
  3027. /*
  3028. * Idling is not enabled on:
  3029. * - expired queues
  3030. * - idle-priority queues
  3031. * - async queues
  3032. * - queues with still some requests queued
  3033. * - when there is a close cooperator
  3034. */
  3035. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3036. cfq_slice_expired(cfqd, 1);
  3037. else if (sync && cfqq_empty &&
  3038. !cfq_close_cooperator(cfqd, cfqq)) {
  3039. cfq_arm_slice_timer(cfqd);
  3040. }
  3041. }
  3042. if (!cfqd->rq_in_driver)
  3043. cfq_schedule_dispatch(cfqd);
  3044. }
  3045. /*
  3046. * we temporarily boost lower priority queues if they are holding fs exclusive
  3047. * resources. they are boosted to normal prio (CLASS_BE/4)
  3048. */
  3049. static void cfq_prio_boost(struct cfq_queue *cfqq)
  3050. {
  3051. if (has_fs_excl()) {
  3052. /*
  3053. * boost idle prio on transactions that would lock out other
  3054. * users of the filesystem
  3055. */
  3056. if (cfq_class_idle(cfqq))
  3057. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  3058. if (cfqq->ioprio > IOPRIO_NORM)
  3059. cfqq->ioprio = IOPRIO_NORM;
  3060. } else {
  3061. /*
  3062. * unboost the queue (if needed)
  3063. */
  3064. cfqq->ioprio_class = cfqq->org_ioprio_class;
  3065. cfqq->ioprio = cfqq->org_ioprio;
  3066. }
  3067. }
  3068. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3069. {
  3070. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3071. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3072. return ELV_MQUEUE_MUST;
  3073. }
  3074. return ELV_MQUEUE_MAY;
  3075. }
  3076. static int cfq_may_queue(struct request_queue *q, int rw)
  3077. {
  3078. struct cfq_data *cfqd = q->elevator->elevator_data;
  3079. struct task_struct *tsk = current;
  3080. struct cfq_io_context *cic;
  3081. struct cfq_queue *cfqq;
  3082. /*
  3083. * don't force setup of a queue from here, as a call to may_queue
  3084. * does not necessarily imply that a request actually will be queued.
  3085. * so just lookup a possibly existing queue, or return 'may queue'
  3086. * if that fails
  3087. */
  3088. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3089. if (!cic)
  3090. return ELV_MQUEUE_MAY;
  3091. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3092. if (cfqq) {
  3093. cfq_init_prio_data(cfqq, cic->ioc);
  3094. cfq_prio_boost(cfqq);
  3095. return __cfq_may_queue(cfqq);
  3096. }
  3097. return ELV_MQUEUE_MAY;
  3098. }
  3099. /*
  3100. * queue lock held here
  3101. */
  3102. static void cfq_put_request(struct request *rq)
  3103. {
  3104. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3105. if (cfqq) {
  3106. const int rw = rq_data_dir(rq);
  3107. BUG_ON(!cfqq->allocated[rw]);
  3108. cfqq->allocated[rw]--;
  3109. put_io_context(RQ_CIC(rq)->ioc);
  3110. rq->elevator_private[0] = NULL;
  3111. rq->elevator_private[1] = NULL;
  3112. /* Put down rq reference on cfqg */
  3113. cfq_put_cfqg(RQ_CFQG(rq));
  3114. rq->elevator_private[2] = NULL;
  3115. cfq_put_queue(cfqq);
  3116. }
  3117. }
  3118. static struct cfq_queue *
  3119. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3120. struct cfq_queue *cfqq)
  3121. {
  3122. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3123. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3124. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3125. cfq_put_queue(cfqq);
  3126. return cic_to_cfqq(cic, 1);
  3127. }
  3128. /*
  3129. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3130. * was the last process referring to said cfqq.
  3131. */
  3132. static struct cfq_queue *
  3133. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3134. {
  3135. if (cfqq_process_refs(cfqq) == 1) {
  3136. cfqq->pid = current->pid;
  3137. cfq_clear_cfqq_coop(cfqq);
  3138. cfq_clear_cfqq_split_coop(cfqq);
  3139. return cfqq;
  3140. }
  3141. cic_set_cfqq(cic, NULL, 1);
  3142. cfq_put_cooperator(cfqq);
  3143. cfq_put_queue(cfqq);
  3144. return NULL;
  3145. }
  3146. /*
  3147. * Allocate cfq data structures associated with this request.
  3148. */
  3149. static int
  3150. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3151. {
  3152. struct cfq_data *cfqd = q->elevator->elevator_data;
  3153. struct cfq_io_context *cic;
  3154. const int rw = rq_data_dir(rq);
  3155. const bool is_sync = rq_is_sync(rq);
  3156. struct cfq_queue *cfqq;
  3157. unsigned long flags;
  3158. might_sleep_if(gfp_mask & __GFP_WAIT);
  3159. cic = cfq_get_io_context(cfqd, gfp_mask);
  3160. spin_lock_irqsave(q->queue_lock, flags);
  3161. if (!cic)
  3162. goto queue_fail;
  3163. new_queue:
  3164. cfqq = cic_to_cfqq(cic, is_sync);
  3165. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3166. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3167. cic_set_cfqq(cic, cfqq, is_sync);
  3168. } else {
  3169. /*
  3170. * If the queue was seeky for too long, break it apart.
  3171. */
  3172. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3173. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3174. cfqq = split_cfqq(cic, cfqq);
  3175. if (!cfqq)
  3176. goto new_queue;
  3177. }
  3178. /*
  3179. * Check to see if this queue is scheduled to merge with
  3180. * another, closely cooperating queue. The merging of
  3181. * queues happens here as it must be done in process context.
  3182. * The reference on new_cfqq was taken in merge_cfqqs.
  3183. */
  3184. if (cfqq->new_cfqq)
  3185. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3186. }
  3187. cfqq->allocated[rw]++;
  3188. cfqq->ref++;
  3189. rq->elevator_private[0] = cic;
  3190. rq->elevator_private[1] = cfqq;
  3191. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3192. spin_unlock_irqrestore(q->queue_lock, flags);
  3193. return 0;
  3194. queue_fail:
  3195. if (cic)
  3196. put_io_context(cic->ioc);
  3197. cfq_schedule_dispatch(cfqd);
  3198. spin_unlock_irqrestore(q->queue_lock, flags);
  3199. cfq_log(cfqd, "set_request fail");
  3200. return 1;
  3201. }
  3202. static void cfq_kick_queue(struct work_struct *work)
  3203. {
  3204. struct cfq_data *cfqd =
  3205. container_of(work, struct cfq_data, unplug_work);
  3206. struct request_queue *q = cfqd->queue;
  3207. spin_lock_irq(q->queue_lock);
  3208. __blk_run_queue(cfqd->queue);
  3209. spin_unlock_irq(q->queue_lock);
  3210. }
  3211. /*
  3212. * Timer running if the active_queue is currently idling inside its time slice
  3213. */
  3214. static void cfq_idle_slice_timer(unsigned long data)
  3215. {
  3216. struct cfq_data *cfqd = (struct cfq_data *) data;
  3217. struct cfq_queue *cfqq;
  3218. unsigned long flags;
  3219. int timed_out = 1;
  3220. cfq_log(cfqd, "idle timer fired");
  3221. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3222. cfqq = cfqd->active_queue;
  3223. if (cfqq) {
  3224. timed_out = 0;
  3225. /*
  3226. * We saw a request before the queue expired, let it through
  3227. */
  3228. if (cfq_cfqq_must_dispatch(cfqq))
  3229. goto out_kick;
  3230. /*
  3231. * expired
  3232. */
  3233. if (cfq_slice_used(cfqq))
  3234. goto expire;
  3235. /*
  3236. * only expire and reinvoke request handler, if there are
  3237. * other queues with pending requests
  3238. */
  3239. if (!cfqd->busy_queues)
  3240. goto out_cont;
  3241. /*
  3242. * not expired and it has a request pending, let it dispatch
  3243. */
  3244. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3245. goto out_kick;
  3246. /*
  3247. * Queue depth flag is reset only when the idle didn't succeed
  3248. */
  3249. cfq_clear_cfqq_deep(cfqq);
  3250. }
  3251. expire:
  3252. cfq_slice_expired(cfqd, timed_out);
  3253. out_kick:
  3254. cfq_schedule_dispatch(cfqd);
  3255. out_cont:
  3256. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3257. }
  3258. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3259. {
  3260. del_timer_sync(&cfqd->idle_slice_timer);
  3261. cancel_work_sync(&cfqd->unplug_work);
  3262. }
  3263. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3264. {
  3265. int i;
  3266. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3267. if (cfqd->async_cfqq[0][i])
  3268. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3269. if (cfqd->async_cfqq[1][i])
  3270. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3271. }
  3272. if (cfqd->async_idle_cfqq)
  3273. cfq_put_queue(cfqd->async_idle_cfqq);
  3274. }
  3275. static void cfq_exit_queue(struct elevator_queue *e)
  3276. {
  3277. struct cfq_data *cfqd = e->elevator_data;
  3278. struct request_queue *q = cfqd->queue;
  3279. bool wait = false;
  3280. cfq_shutdown_timer_wq(cfqd);
  3281. spin_lock_irq(q->queue_lock);
  3282. if (cfqd->active_queue)
  3283. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3284. while (!list_empty(&cfqd->cic_list)) {
  3285. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3286. struct cfq_io_context,
  3287. queue_list);
  3288. __cfq_exit_single_io_context(cfqd, cic);
  3289. }
  3290. cfq_put_async_queues(cfqd);
  3291. cfq_release_cfq_groups(cfqd);
  3292. /*
  3293. * If there are groups which we could not unlink from blkcg list,
  3294. * wait for a rcu period for them to be freed.
  3295. */
  3296. if (cfqd->nr_blkcg_linked_grps)
  3297. wait = true;
  3298. spin_unlock_irq(q->queue_lock);
  3299. cfq_shutdown_timer_wq(cfqd);
  3300. spin_lock(&cic_index_lock);
  3301. ida_remove(&cic_index_ida, cfqd->cic_index);
  3302. spin_unlock(&cic_index_lock);
  3303. /*
  3304. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3305. * Do this wait only if there are other unlinked groups out
  3306. * there. This can happen if cgroup deletion path claimed the
  3307. * responsibility of cleaning up a group before queue cleanup code
  3308. * get to the group.
  3309. *
  3310. * Do not call synchronize_rcu() unconditionally as there are drivers
  3311. * which create/delete request queue hundreds of times during scan/boot
  3312. * and synchronize_rcu() can take significant time and slow down boot.
  3313. */
  3314. if (wait)
  3315. synchronize_rcu();
  3316. kfree(cfqd);
  3317. }
  3318. static int cfq_alloc_cic_index(void)
  3319. {
  3320. int index, error;
  3321. do {
  3322. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3323. return -ENOMEM;
  3324. spin_lock(&cic_index_lock);
  3325. error = ida_get_new(&cic_index_ida, &index);
  3326. spin_unlock(&cic_index_lock);
  3327. if (error && error != -EAGAIN)
  3328. return error;
  3329. } while (error);
  3330. return index;
  3331. }
  3332. static void *cfq_init_queue(struct request_queue *q)
  3333. {
  3334. struct cfq_data *cfqd;
  3335. int i, j;
  3336. struct cfq_group *cfqg;
  3337. struct cfq_rb_root *st;
  3338. i = cfq_alloc_cic_index();
  3339. if (i < 0)
  3340. return NULL;
  3341. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3342. if (!cfqd)
  3343. return NULL;
  3344. /*
  3345. * Don't need take queue_lock in the routine, since we are
  3346. * initializing the ioscheduler, and nobody is using cfqd
  3347. */
  3348. cfqd->cic_index = i;
  3349. /* Init root service tree */
  3350. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3351. /* Init root group */
  3352. cfqg = &cfqd->root_group;
  3353. for_each_cfqg_st(cfqg, i, j, st)
  3354. *st = CFQ_RB_ROOT;
  3355. RB_CLEAR_NODE(&cfqg->rb_node);
  3356. /* Give preference to root group over other groups */
  3357. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3358. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3359. /*
  3360. * Set root group reference to 2. One reference will be dropped when
  3361. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3362. * Other reference will remain there as we don't want to delete this
  3363. * group as it is statically allocated and gets destroyed when
  3364. * throtl_data goes away.
  3365. */
  3366. cfqg->ref = 2;
  3367. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3368. kfree(cfqg);
  3369. kfree(cfqd);
  3370. return NULL;
  3371. }
  3372. rcu_read_lock();
  3373. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3374. (void *)cfqd, 0);
  3375. rcu_read_unlock();
  3376. cfqd->nr_blkcg_linked_grps++;
  3377. /* Add group on cfqd->cfqg_list */
  3378. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3379. #endif
  3380. /*
  3381. * Not strictly needed (since RB_ROOT just clears the node and we
  3382. * zeroed cfqd on alloc), but better be safe in case someone decides
  3383. * to add magic to the rb code
  3384. */
  3385. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3386. cfqd->prio_trees[i] = RB_ROOT;
  3387. /*
  3388. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3389. * Grab a permanent reference to it, so that the normal code flow
  3390. * will not attempt to free it.
  3391. */
  3392. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3393. cfqd->oom_cfqq.ref++;
  3394. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3395. INIT_LIST_HEAD(&cfqd->cic_list);
  3396. cfqd->queue = q;
  3397. init_timer(&cfqd->idle_slice_timer);
  3398. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3399. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3400. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3401. cfqd->cfq_quantum = cfq_quantum;
  3402. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3403. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3404. cfqd->cfq_back_max = cfq_back_max;
  3405. cfqd->cfq_back_penalty = cfq_back_penalty;
  3406. cfqd->cfq_slice[0] = cfq_slice_async;
  3407. cfqd->cfq_slice[1] = cfq_slice_sync;
  3408. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3409. cfqd->cfq_slice_idle = cfq_slice_idle;
  3410. cfqd->cfq_group_idle = cfq_group_idle;
  3411. cfqd->cfq_latency = 1;
  3412. cfqd->hw_tag = -1;
  3413. /*
  3414. * we optimistically start assuming sync ops weren't delayed in last
  3415. * second, in order to have larger depth for async operations.
  3416. */
  3417. cfqd->last_delayed_sync = jiffies - HZ;
  3418. return cfqd;
  3419. }
  3420. static void cfq_slab_kill(void)
  3421. {
  3422. /*
  3423. * Caller already ensured that pending RCU callbacks are completed,
  3424. * so we should have no busy allocations at this point.
  3425. */
  3426. if (cfq_pool)
  3427. kmem_cache_destroy(cfq_pool);
  3428. if (cfq_ioc_pool)
  3429. kmem_cache_destroy(cfq_ioc_pool);
  3430. }
  3431. static int __init cfq_slab_setup(void)
  3432. {
  3433. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3434. if (!cfq_pool)
  3435. goto fail;
  3436. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3437. if (!cfq_ioc_pool)
  3438. goto fail;
  3439. return 0;
  3440. fail:
  3441. cfq_slab_kill();
  3442. return -ENOMEM;
  3443. }
  3444. /*
  3445. * sysfs parts below -->
  3446. */
  3447. static ssize_t
  3448. cfq_var_show(unsigned int var, char *page)
  3449. {
  3450. return sprintf(page, "%d\n", var);
  3451. }
  3452. static ssize_t
  3453. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3454. {
  3455. char *p = (char *) page;
  3456. *var = simple_strtoul(p, &p, 10);
  3457. return count;
  3458. }
  3459. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3460. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3461. { \
  3462. struct cfq_data *cfqd = e->elevator_data; \
  3463. unsigned int __data = __VAR; \
  3464. if (__CONV) \
  3465. __data = jiffies_to_msecs(__data); \
  3466. return cfq_var_show(__data, (page)); \
  3467. }
  3468. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3469. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3470. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3471. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3472. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3473. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3474. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3475. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3476. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3477. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3478. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3479. #undef SHOW_FUNCTION
  3480. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3481. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3482. { \
  3483. struct cfq_data *cfqd = e->elevator_data; \
  3484. unsigned int __data; \
  3485. int ret = cfq_var_store(&__data, (page), count); \
  3486. if (__data < (MIN)) \
  3487. __data = (MIN); \
  3488. else if (__data > (MAX)) \
  3489. __data = (MAX); \
  3490. if (__CONV) \
  3491. *(__PTR) = msecs_to_jiffies(__data); \
  3492. else \
  3493. *(__PTR) = __data; \
  3494. return ret; \
  3495. }
  3496. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3497. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3498. UINT_MAX, 1);
  3499. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3500. UINT_MAX, 1);
  3501. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3502. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3503. UINT_MAX, 0);
  3504. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3505. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3506. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3507. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3508. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3509. UINT_MAX, 0);
  3510. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3511. #undef STORE_FUNCTION
  3512. #define CFQ_ATTR(name) \
  3513. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3514. static struct elv_fs_entry cfq_attrs[] = {
  3515. CFQ_ATTR(quantum),
  3516. CFQ_ATTR(fifo_expire_sync),
  3517. CFQ_ATTR(fifo_expire_async),
  3518. CFQ_ATTR(back_seek_max),
  3519. CFQ_ATTR(back_seek_penalty),
  3520. CFQ_ATTR(slice_sync),
  3521. CFQ_ATTR(slice_async),
  3522. CFQ_ATTR(slice_async_rq),
  3523. CFQ_ATTR(slice_idle),
  3524. CFQ_ATTR(group_idle),
  3525. CFQ_ATTR(low_latency),
  3526. __ATTR_NULL
  3527. };
  3528. static struct elevator_type iosched_cfq = {
  3529. .ops = {
  3530. .elevator_merge_fn = cfq_merge,
  3531. .elevator_merged_fn = cfq_merged_request,
  3532. .elevator_merge_req_fn = cfq_merged_requests,
  3533. .elevator_allow_merge_fn = cfq_allow_merge,
  3534. .elevator_bio_merged_fn = cfq_bio_merged,
  3535. .elevator_dispatch_fn = cfq_dispatch_requests,
  3536. .elevator_add_req_fn = cfq_insert_request,
  3537. .elevator_activate_req_fn = cfq_activate_request,
  3538. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3539. .elevator_completed_req_fn = cfq_completed_request,
  3540. .elevator_former_req_fn = elv_rb_former_request,
  3541. .elevator_latter_req_fn = elv_rb_latter_request,
  3542. .elevator_set_req_fn = cfq_set_request,
  3543. .elevator_put_req_fn = cfq_put_request,
  3544. .elevator_may_queue_fn = cfq_may_queue,
  3545. .elevator_init_fn = cfq_init_queue,
  3546. .elevator_exit_fn = cfq_exit_queue,
  3547. .trim = cfq_free_io_context,
  3548. },
  3549. .elevator_attrs = cfq_attrs,
  3550. .elevator_name = "cfq",
  3551. .elevator_owner = THIS_MODULE,
  3552. };
  3553. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3554. static struct blkio_policy_type blkio_policy_cfq = {
  3555. .ops = {
  3556. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3557. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3558. },
  3559. .plid = BLKIO_POLICY_PROP,
  3560. };
  3561. #else
  3562. static struct blkio_policy_type blkio_policy_cfq;
  3563. #endif
  3564. static int __init cfq_init(void)
  3565. {
  3566. /*
  3567. * could be 0 on HZ < 1000 setups
  3568. */
  3569. if (!cfq_slice_async)
  3570. cfq_slice_async = 1;
  3571. if (!cfq_slice_idle)
  3572. cfq_slice_idle = 1;
  3573. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3574. if (!cfq_group_idle)
  3575. cfq_group_idle = 1;
  3576. #else
  3577. cfq_group_idle = 0;
  3578. #endif
  3579. if (cfq_slab_setup())
  3580. return -ENOMEM;
  3581. elv_register(&iosched_cfq);
  3582. blkio_policy_register(&blkio_policy_cfq);
  3583. return 0;
  3584. }
  3585. static void __exit cfq_exit(void)
  3586. {
  3587. DECLARE_COMPLETION_ONSTACK(all_gone);
  3588. blkio_policy_unregister(&blkio_policy_cfq);
  3589. elv_unregister(&iosched_cfq);
  3590. ioc_gone = &all_gone;
  3591. /* ioc_gone's update must be visible before reading ioc_count */
  3592. smp_wmb();
  3593. /*
  3594. * this also protects us from entering cfq_slab_kill() with
  3595. * pending RCU callbacks
  3596. */
  3597. if (elv_ioc_count_read(cfq_ioc_count))
  3598. wait_for_completion(&all_gone);
  3599. ida_destroy(&cic_index_ida);
  3600. cfq_slab_kill();
  3601. }
  3602. module_init(cfq_init);
  3603. module_exit(cfq_exit);
  3604. MODULE_AUTHOR("Jens Axboe");
  3605. MODULE_LICENSE("GPL");
  3606. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");