security.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* things that live in dummy.c */
  19. extern struct security_operations dummy_security_ops;
  20. extern void security_fixup_ops(struct security_operations *ops);
  21. struct security_operations *security_ops; /* Initialized to NULL */
  22. /* amount of vm to protect from userspace access */
  23. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  24. static inline int verify(struct security_operations *ops)
  25. {
  26. /* verify the security_operations structure exists */
  27. if (!ops)
  28. return -EINVAL;
  29. security_fixup_ops(ops);
  30. return 0;
  31. }
  32. static void __init do_security_initcalls(void)
  33. {
  34. initcall_t *call;
  35. call = __security_initcall_start;
  36. while (call < __security_initcall_end) {
  37. (*call) ();
  38. call++;
  39. }
  40. }
  41. /**
  42. * security_init - initializes the security framework
  43. *
  44. * This should be called early in the kernel initialization sequence.
  45. */
  46. int __init security_init(void)
  47. {
  48. printk(KERN_INFO "Security Framework initialized\n");
  49. if (verify(&dummy_security_ops)) {
  50. printk(KERN_ERR "%s could not verify "
  51. "dummy_security_ops structure.\n", __FUNCTION__);
  52. return -EIO;
  53. }
  54. security_ops = &dummy_security_ops;
  55. do_security_initcalls();
  56. return 0;
  57. }
  58. /**
  59. * register_security - registers a security framework with the kernel
  60. * @ops: a pointer to the struct security_options that is to be registered
  61. *
  62. * This function is to allow a security module to register itself with the
  63. * kernel security subsystem. Some rudimentary checking is done on the @ops
  64. * value passed to this function.
  65. *
  66. * If there is already a security module registered with the kernel,
  67. * an error will be returned. Otherwise 0 is returned on success.
  68. */
  69. int register_security(struct security_operations *ops)
  70. {
  71. if (verify(ops)) {
  72. printk(KERN_DEBUG "%s could not verify "
  73. "security_operations structure.\n", __FUNCTION__);
  74. return -EINVAL;
  75. }
  76. if (security_ops != &dummy_security_ops)
  77. return -EAGAIN;
  78. security_ops = ops;
  79. return 0;
  80. }
  81. /**
  82. * mod_reg_security - allows security modules to be "stacked"
  83. * @name: a pointer to a string with the name of the security_options to be registered
  84. * @ops: a pointer to the struct security_options that is to be registered
  85. *
  86. * This function allows security modules to be stacked if the currently loaded
  87. * security module allows this to happen. It passes the @name and @ops to the
  88. * register_security function of the currently loaded security module.
  89. *
  90. * The return value depends on the currently loaded security module, with 0 as
  91. * success.
  92. */
  93. int mod_reg_security(const char *name, struct security_operations *ops)
  94. {
  95. if (verify(ops)) {
  96. printk(KERN_INFO "%s could not verify "
  97. "security operations.\n", __FUNCTION__);
  98. return -EINVAL;
  99. }
  100. if (ops == security_ops) {
  101. printk(KERN_INFO "%s security operations "
  102. "already registered.\n", __FUNCTION__);
  103. return -EINVAL;
  104. }
  105. return security_ops->register_security(name, ops);
  106. }
  107. /* Security operations */
  108. int security_ptrace(struct task_struct *parent, struct task_struct *child)
  109. {
  110. return security_ops->ptrace(parent, child);
  111. }
  112. int security_capget(struct task_struct *target,
  113. kernel_cap_t *effective,
  114. kernel_cap_t *inheritable,
  115. kernel_cap_t *permitted)
  116. {
  117. return security_ops->capget(target, effective, inheritable, permitted);
  118. }
  119. int security_capset_check(struct task_struct *target,
  120. kernel_cap_t *effective,
  121. kernel_cap_t *inheritable,
  122. kernel_cap_t *permitted)
  123. {
  124. return security_ops->capset_check(target, effective, inheritable, permitted);
  125. }
  126. void security_capset_set(struct task_struct *target,
  127. kernel_cap_t *effective,
  128. kernel_cap_t *inheritable,
  129. kernel_cap_t *permitted)
  130. {
  131. security_ops->capset_set(target, effective, inheritable, permitted);
  132. }
  133. int security_capable(struct task_struct *tsk, int cap)
  134. {
  135. return security_ops->capable(tsk, cap);
  136. }
  137. int security_acct(struct file *file)
  138. {
  139. return security_ops->acct(file);
  140. }
  141. int security_sysctl(struct ctl_table *table, int op)
  142. {
  143. return security_ops->sysctl(table, op);
  144. }
  145. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  146. {
  147. return security_ops->quotactl(cmds, type, id, sb);
  148. }
  149. int security_quota_on(struct dentry *dentry)
  150. {
  151. return security_ops->quota_on(dentry);
  152. }
  153. int security_syslog(int type)
  154. {
  155. return security_ops->syslog(type);
  156. }
  157. int security_settime(struct timespec *ts, struct timezone *tz)
  158. {
  159. return security_ops->settime(ts, tz);
  160. }
  161. int security_vm_enough_memory(long pages)
  162. {
  163. return security_ops->vm_enough_memory(current->mm, pages);
  164. }
  165. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  166. {
  167. return security_ops->vm_enough_memory(mm, pages);
  168. }
  169. int security_bprm_alloc(struct linux_binprm *bprm)
  170. {
  171. return security_ops->bprm_alloc_security(bprm);
  172. }
  173. void security_bprm_free(struct linux_binprm *bprm)
  174. {
  175. security_ops->bprm_free_security(bprm);
  176. }
  177. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  178. {
  179. security_ops->bprm_apply_creds(bprm, unsafe);
  180. }
  181. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  182. {
  183. security_ops->bprm_post_apply_creds(bprm);
  184. }
  185. int security_bprm_set(struct linux_binprm *bprm)
  186. {
  187. return security_ops->bprm_set_security(bprm);
  188. }
  189. int security_bprm_check(struct linux_binprm *bprm)
  190. {
  191. return security_ops->bprm_check_security(bprm);
  192. }
  193. int security_bprm_secureexec(struct linux_binprm *bprm)
  194. {
  195. return security_ops->bprm_secureexec(bprm);
  196. }
  197. int security_sb_alloc(struct super_block *sb)
  198. {
  199. return security_ops->sb_alloc_security(sb);
  200. }
  201. void security_sb_free(struct super_block *sb)
  202. {
  203. security_ops->sb_free_security(sb);
  204. }
  205. int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
  206. {
  207. return security_ops->sb_copy_data(type, orig, copy);
  208. }
  209. int security_sb_kern_mount(struct super_block *sb, void *data)
  210. {
  211. return security_ops->sb_kern_mount(sb, data);
  212. }
  213. int security_sb_statfs(struct dentry *dentry)
  214. {
  215. return security_ops->sb_statfs(dentry);
  216. }
  217. int security_sb_mount(char *dev_name, struct nameidata *nd,
  218. char *type, unsigned long flags, void *data)
  219. {
  220. return security_ops->sb_mount(dev_name, nd, type, flags, data);
  221. }
  222. int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
  223. {
  224. return security_ops->sb_check_sb(mnt, nd);
  225. }
  226. int security_sb_umount(struct vfsmount *mnt, int flags)
  227. {
  228. return security_ops->sb_umount(mnt, flags);
  229. }
  230. void security_sb_umount_close(struct vfsmount *mnt)
  231. {
  232. security_ops->sb_umount_close(mnt);
  233. }
  234. void security_sb_umount_busy(struct vfsmount *mnt)
  235. {
  236. security_ops->sb_umount_busy(mnt);
  237. }
  238. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  239. {
  240. security_ops->sb_post_remount(mnt, flags, data);
  241. }
  242. void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
  243. {
  244. security_ops->sb_post_addmount(mnt, mountpoint_nd);
  245. }
  246. int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  247. {
  248. return security_ops->sb_pivotroot(old_nd, new_nd);
  249. }
  250. void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  251. {
  252. security_ops->sb_post_pivotroot(old_nd, new_nd);
  253. }
  254. int security_sb_get_mnt_opts(const struct super_block *sb,
  255. char ***mount_options,
  256. int **flags, int *num_opts)
  257. {
  258. return security_ops->sb_get_mnt_opts(sb, mount_options, flags, num_opts);
  259. }
  260. int security_sb_set_mnt_opts(struct super_block *sb,
  261. char **mount_options,
  262. int *flags, int num_opts)
  263. {
  264. return security_ops->sb_set_mnt_opts(sb, mount_options, flags, num_opts);
  265. }
  266. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  267. struct super_block *newsb)
  268. {
  269. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  270. }
  271. int security_inode_alloc(struct inode *inode)
  272. {
  273. inode->i_security = NULL;
  274. return security_ops->inode_alloc_security(inode);
  275. }
  276. void security_inode_free(struct inode *inode)
  277. {
  278. security_ops->inode_free_security(inode);
  279. }
  280. int security_inode_init_security(struct inode *inode, struct inode *dir,
  281. char **name, void **value, size_t *len)
  282. {
  283. if (unlikely(IS_PRIVATE(inode)))
  284. return -EOPNOTSUPP;
  285. return security_ops->inode_init_security(inode, dir, name, value, len);
  286. }
  287. EXPORT_SYMBOL(security_inode_init_security);
  288. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  289. {
  290. if (unlikely(IS_PRIVATE(dir)))
  291. return 0;
  292. return security_ops->inode_create(dir, dentry, mode);
  293. }
  294. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  295. struct dentry *new_dentry)
  296. {
  297. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  298. return 0;
  299. return security_ops->inode_link(old_dentry, dir, new_dentry);
  300. }
  301. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  302. {
  303. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  304. return 0;
  305. return security_ops->inode_unlink(dir, dentry);
  306. }
  307. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  308. const char *old_name)
  309. {
  310. if (unlikely(IS_PRIVATE(dir)))
  311. return 0;
  312. return security_ops->inode_symlink(dir, dentry, old_name);
  313. }
  314. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  315. {
  316. if (unlikely(IS_PRIVATE(dir)))
  317. return 0;
  318. return security_ops->inode_mkdir(dir, dentry, mode);
  319. }
  320. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  321. {
  322. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  323. return 0;
  324. return security_ops->inode_rmdir(dir, dentry);
  325. }
  326. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  327. {
  328. if (unlikely(IS_PRIVATE(dir)))
  329. return 0;
  330. return security_ops->inode_mknod(dir, dentry, mode, dev);
  331. }
  332. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  333. struct inode *new_dir, struct dentry *new_dentry)
  334. {
  335. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  336. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  337. return 0;
  338. return security_ops->inode_rename(old_dir, old_dentry,
  339. new_dir, new_dentry);
  340. }
  341. int security_inode_readlink(struct dentry *dentry)
  342. {
  343. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  344. return 0;
  345. return security_ops->inode_readlink(dentry);
  346. }
  347. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  348. {
  349. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  350. return 0;
  351. return security_ops->inode_follow_link(dentry, nd);
  352. }
  353. int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
  354. {
  355. if (unlikely(IS_PRIVATE(inode)))
  356. return 0;
  357. return security_ops->inode_permission(inode, mask, nd);
  358. }
  359. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  360. {
  361. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  362. return 0;
  363. return security_ops->inode_setattr(dentry, attr);
  364. }
  365. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  366. {
  367. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  368. return 0;
  369. return security_ops->inode_getattr(mnt, dentry);
  370. }
  371. void security_inode_delete(struct inode *inode)
  372. {
  373. if (unlikely(IS_PRIVATE(inode)))
  374. return;
  375. security_ops->inode_delete(inode);
  376. }
  377. int security_inode_setxattr(struct dentry *dentry, char *name,
  378. void *value, size_t size, int flags)
  379. {
  380. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  381. return 0;
  382. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  383. }
  384. void security_inode_post_setxattr(struct dentry *dentry, char *name,
  385. void *value, size_t size, int flags)
  386. {
  387. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  388. return;
  389. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  390. }
  391. int security_inode_getxattr(struct dentry *dentry, char *name)
  392. {
  393. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  394. return 0;
  395. return security_ops->inode_getxattr(dentry, name);
  396. }
  397. int security_inode_listxattr(struct dentry *dentry)
  398. {
  399. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  400. return 0;
  401. return security_ops->inode_listxattr(dentry);
  402. }
  403. int security_inode_removexattr(struct dentry *dentry, char *name)
  404. {
  405. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  406. return 0;
  407. return security_ops->inode_removexattr(dentry, name);
  408. }
  409. int security_inode_need_killpriv(struct dentry *dentry)
  410. {
  411. return security_ops->inode_need_killpriv(dentry);
  412. }
  413. int security_inode_killpriv(struct dentry *dentry)
  414. {
  415. return security_ops->inode_killpriv(dentry);
  416. }
  417. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  418. {
  419. if (unlikely(IS_PRIVATE(inode)))
  420. return 0;
  421. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  422. }
  423. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  424. {
  425. if (unlikely(IS_PRIVATE(inode)))
  426. return 0;
  427. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  428. }
  429. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  430. {
  431. if (unlikely(IS_PRIVATE(inode)))
  432. return 0;
  433. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  434. }
  435. int security_file_permission(struct file *file, int mask)
  436. {
  437. return security_ops->file_permission(file, mask);
  438. }
  439. int security_file_alloc(struct file *file)
  440. {
  441. return security_ops->file_alloc_security(file);
  442. }
  443. void security_file_free(struct file *file)
  444. {
  445. security_ops->file_free_security(file);
  446. }
  447. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  448. {
  449. return security_ops->file_ioctl(file, cmd, arg);
  450. }
  451. int security_file_mmap(struct file *file, unsigned long reqprot,
  452. unsigned long prot, unsigned long flags,
  453. unsigned long addr, unsigned long addr_only)
  454. {
  455. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  456. }
  457. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  458. unsigned long prot)
  459. {
  460. return security_ops->file_mprotect(vma, reqprot, prot);
  461. }
  462. int security_file_lock(struct file *file, unsigned int cmd)
  463. {
  464. return security_ops->file_lock(file, cmd);
  465. }
  466. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  467. {
  468. return security_ops->file_fcntl(file, cmd, arg);
  469. }
  470. int security_file_set_fowner(struct file *file)
  471. {
  472. return security_ops->file_set_fowner(file);
  473. }
  474. int security_file_send_sigiotask(struct task_struct *tsk,
  475. struct fown_struct *fown, int sig)
  476. {
  477. return security_ops->file_send_sigiotask(tsk, fown, sig);
  478. }
  479. int security_file_receive(struct file *file)
  480. {
  481. return security_ops->file_receive(file);
  482. }
  483. int security_dentry_open(struct file *file)
  484. {
  485. return security_ops->dentry_open(file);
  486. }
  487. int security_task_create(unsigned long clone_flags)
  488. {
  489. return security_ops->task_create(clone_flags);
  490. }
  491. int security_task_alloc(struct task_struct *p)
  492. {
  493. return security_ops->task_alloc_security(p);
  494. }
  495. void security_task_free(struct task_struct *p)
  496. {
  497. security_ops->task_free_security(p);
  498. }
  499. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  500. {
  501. return security_ops->task_setuid(id0, id1, id2, flags);
  502. }
  503. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  504. uid_t old_suid, int flags)
  505. {
  506. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  507. }
  508. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  509. {
  510. return security_ops->task_setgid(id0, id1, id2, flags);
  511. }
  512. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  513. {
  514. return security_ops->task_setpgid(p, pgid);
  515. }
  516. int security_task_getpgid(struct task_struct *p)
  517. {
  518. return security_ops->task_getpgid(p);
  519. }
  520. int security_task_getsid(struct task_struct *p)
  521. {
  522. return security_ops->task_getsid(p);
  523. }
  524. void security_task_getsecid(struct task_struct *p, u32 *secid)
  525. {
  526. security_ops->task_getsecid(p, secid);
  527. }
  528. EXPORT_SYMBOL(security_task_getsecid);
  529. int security_task_setgroups(struct group_info *group_info)
  530. {
  531. return security_ops->task_setgroups(group_info);
  532. }
  533. int security_task_setnice(struct task_struct *p, int nice)
  534. {
  535. return security_ops->task_setnice(p, nice);
  536. }
  537. int security_task_setioprio(struct task_struct *p, int ioprio)
  538. {
  539. return security_ops->task_setioprio(p, ioprio);
  540. }
  541. int security_task_getioprio(struct task_struct *p)
  542. {
  543. return security_ops->task_getioprio(p);
  544. }
  545. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  546. {
  547. return security_ops->task_setrlimit(resource, new_rlim);
  548. }
  549. int security_task_setscheduler(struct task_struct *p,
  550. int policy, struct sched_param *lp)
  551. {
  552. return security_ops->task_setscheduler(p, policy, lp);
  553. }
  554. int security_task_getscheduler(struct task_struct *p)
  555. {
  556. return security_ops->task_getscheduler(p);
  557. }
  558. int security_task_movememory(struct task_struct *p)
  559. {
  560. return security_ops->task_movememory(p);
  561. }
  562. int security_task_kill(struct task_struct *p, struct siginfo *info,
  563. int sig, u32 secid)
  564. {
  565. return security_ops->task_kill(p, info, sig, secid);
  566. }
  567. int security_task_wait(struct task_struct *p)
  568. {
  569. return security_ops->task_wait(p);
  570. }
  571. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  572. unsigned long arg4, unsigned long arg5)
  573. {
  574. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  575. }
  576. void security_task_reparent_to_init(struct task_struct *p)
  577. {
  578. security_ops->task_reparent_to_init(p);
  579. }
  580. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  581. {
  582. security_ops->task_to_inode(p, inode);
  583. }
  584. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  585. {
  586. return security_ops->ipc_permission(ipcp, flag);
  587. }
  588. int security_msg_msg_alloc(struct msg_msg *msg)
  589. {
  590. return security_ops->msg_msg_alloc_security(msg);
  591. }
  592. void security_msg_msg_free(struct msg_msg *msg)
  593. {
  594. security_ops->msg_msg_free_security(msg);
  595. }
  596. int security_msg_queue_alloc(struct msg_queue *msq)
  597. {
  598. return security_ops->msg_queue_alloc_security(msq);
  599. }
  600. void security_msg_queue_free(struct msg_queue *msq)
  601. {
  602. security_ops->msg_queue_free_security(msq);
  603. }
  604. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  605. {
  606. return security_ops->msg_queue_associate(msq, msqflg);
  607. }
  608. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  609. {
  610. return security_ops->msg_queue_msgctl(msq, cmd);
  611. }
  612. int security_msg_queue_msgsnd(struct msg_queue *msq,
  613. struct msg_msg *msg, int msqflg)
  614. {
  615. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  616. }
  617. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  618. struct task_struct *target, long type, int mode)
  619. {
  620. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  621. }
  622. int security_shm_alloc(struct shmid_kernel *shp)
  623. {
  624. return security_ops->shm_alloc_security(shp);
  625. }
  626. void security_shm_free(struct shmid_kernel *shp)
  627. {
  628. security_ops->shm_free_security(shp);
  629. }
  630. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  631. {
  632. return security_ops->shm_associate(shp, shmflg);
  633. }
  634. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  635. {
  636. return security_ops->shm_shmctl(shp, cmd);
  637. }
  638. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  639. {
  640. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  641. }
  642. int security_sem_alloc(struct sem_array *sma)
  643. {
  644. return security_ops->sem_alloc_security(sma);
  645. }
  646. void security_sem_free(struct sem_array *sma)
  647. {
  648. security_ops->sem_free_security(sma);
  649. }
  650. int security_sem_associate(struct sem_array *sma, int semflg)
  651. {
  652. return security_ops->sem_associate(sma, semflg);
  653. }
  654. int security_sem_semctl(struct sem_array *sma, int cmd)
  655. {
  656. return security_ops->sem_semctl(sma, cmd);
  657. }
  658. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  659. unsigned nsops, int alter)
  660. {
  661. return security_ops->sem_semop(sma, sops, nsops, alter);
  662. }
  663. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  664. {
  665. if (unlikely(inode && IS_PRIVATE(inode)))
  666. return;
  667. security_ops->d_instantiate(dentry, inode);
  668. }
  669. EXPORT_SYMBOL(security_d_instantiate);
  670. int security_getprocattr(struct task_struct *p, char *name, char **value)
  671. {
  672. return security_ops->getprocattr(p, name, value);
  673. }
  674. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  675. {
  676. return security_ops->setprocattr(p, name, value, size);
  677. }
  678. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  679. {
  680. return security_ops->netlink_send(sk, skb);
  681. }
  682. int security_netlink_recv(struct sk_buff *skb, int cap)
  683. {
  684. return security_ops->netlink_recv(skb, cap);
  685. }
  686. EXPORT_SYMBOL(security_netlink_recv);
  687. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  688. {
  689. return security_ops->secid_to_secctx(secid, secdata, seclen);
  690. }
  691. EXPORT_SYMBOL(security_secid_to_secctx);
  692. int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
  693. {
  694. return security_ops->secctx_to_secid(secdata, seclen, secid);
  695. }
  696. EXPORT_SYMBOL(security_secctx_to_secid);
  697. void security_release_secctx(char *secdata, u32 seclen)
  698. {
  699. return security_ops->release_secctx(secdata, seclen);
  700. }
  701. EXPORT_SYMBOL(security_release_secctx);
  702. #ifdef CONFIG_SECURITY_NETWORK
  703. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  704. struct sock *newsk)
  705. {
  706. return security_ops->unix_stream_connect(sock, other, newsk);
  707. }
  708. EXPORT_SYMBOL(security_unix_stream_connect);
  709. int security_unix_may_send(struct socket *sock, struct socket *other)
  710. {
  711. return security_ops->unix_may_send(sock, other);
  712. }
  713. EXPORT_SYMBOL(security_unix_may_send);
  714. int security_socket_create(int family, int type, int protocol, int kern)
  715. {
  716. return security_ops->socket_create(family, type, protocol, kern);
  717. }
  718. int security_socket_post_create(struct socket *sock, int family,
  719. int type, int protocol, int kern)
  720. {
  721. return security_ops->socket_post_create(sock, family, type,
  722. protocol, kern);
  723. }
  724. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  725. {
  726. return security_ops->socket_bind(sock, address, addrlen);
  727. }
  728. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  729. {
  730. return security_ops->socket_connect(sock, address, addrlen);
  731. }
  732. int security_socket_listen(struct socket *sock, int backlog)
  733. {
  734. return security_ops->socket_listen(sock, backlog);
  735. }
  736. int security_socket_accept(struct socket *sock, struct socket *newsock)
  737. {
  738. return security_ops->socket_accept(sock, newsock);
  739. }
  740. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  741. {
  742. security_ops->socket_post_accept(sock, newsock);
  743. }
  744. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  745. {
  746. return security_ops->socket_sendmsg(sock, msg, size);
  747. }
  748. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  749. int size, int flags)
  750. {
  751. return security_ops->socket_recvmsg(sock, msg, size, flags);
  752. }
  753. int security_socket_getsockname(struct socket *sock)
  754. {
  755. return security_ops->socket_getsockname(sock);
  756. }
  757. int security_socket_getpeername(struct socket *sock)
  758. {
  759. return security_ops->socket_getpeername(sock);
  760. }
  761. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  762. {
  763. return security_ops->socket_getsockopt(sock, level, optname);
  764. }
  765. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  766. {
  767. return security_ops->socket_setsockopt(sock, level, optname);
  768. }
  769. int security_socket_shutdown(struct socket *sock, int how)
  770. {
  771. return security_ops->socket_shutdown(sock, how);
  772. }
  773. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  774. {
  775. return security_ops->socket_sock_rcv_skb(sk, skb);
  776. }
  777. EXPORT_SYMBOL(security_sock_rcv_skb);
  778. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  779. int __user *optlen, unsigned len)
  780. {
  781. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  782. }
  783. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  784. {
  785. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  786. }
  787. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  788. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  789. {
  790. return security_ops->sk_alloc_security(sk, family, priority);
  791. }
  792. void security_sk_free(struct sock *sk)
  793. {
  794. return security_ops->sk_free_security(sk);
  795. }
  796. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  797. {
  798. return security_ops->sk_clone_security(sk, newsk);
  799. }
  800. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  801. {
  802. security_ops->sk_getsecid(sk, &fl->secid);
  803. }
  804. EXPORT_SYMBOL(security_sk_classify_flow);
  805. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  806. {
  807. security_ops->req_classify_flow(req, fl);
  808. }
  809. EXPORT_SYMBOL(security_req_classify_flow);
  810. void security_sock_graft(struct sock *sk, struct socket *parent)
  811. {
  812. security_ops->sock_graft(sk, parent);
  813. }
  814. EXPORT_SYMBOL(security_sock_graft);
  815. int security_inet_conn_request(struct sock *sk,
  816. struct sk_buff *skb, struct request_sock *req)
  817. {
  818. return security_ops->inet_conn_request(sk, skb, req);
  819. }
  820. EXPORT_SYMBOL(security_inet_conn_request);
  821. void security_inet_csk_clone(struct sock *newsk,
  822. const struct request_sock *req)
  823. {
  824. security_ops->inet_csk_clone(newsk, req);
  825. }
  826. void security_inet_conn_established(struct sock *sk,
  827. struct sk_buff *skb)
  828. {
  829. security_ops->inet_conn_established(sk, skb);
  830. }
  831. #endif /* CONFIG_SECURITY_NETWORK */
  832. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  833. int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
  834. {
  835. return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
  836. }
  837. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  838. int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
  839. {
  840. return security_ops->xfrm_policy_clone_security(old, new);
  841. }
  842. void security_xfrm_policy_free(struct xfrm_policy *xp)
  843. {
  844. security_ops->xfrm_policy_free_security(xp);
  845. }
  846. EXPORT_SYMBOL(security_xfrm_policy_free);
  847. int security_xfrm_policy_delete(struct xfrm_policy *xp)
  848. {
  849. return security_ops->xfrm_policy_delete_security(xp);
  850. }
  851. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  852. {
  853. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  854. }
  855. EXPORT_SYMBOL(security_xfrm_state_alloc);
  856. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  857. struct xfrm_sec_ctx *polsec, u32 secid)
  858. {
  859. if (!polsec)
  860. return 0;
  861. /*
  862. * We want the context to be taken from secid which is usually
  863. * from the sock.
  864. */
  865. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  866. }
  867. int security_xfrm_state_delete(struct xfrm_state *x)
  868. {
  869. return security_ops->xfrm_state_delete_security(x);
  870. }
  871. EXPORT_SYMBOL(security_xfrm_state_delete);
  872. void security_xfrm_state_free(struct xfrm_state *x)
  873. {
  874. security_ops->xfrm_state_free_security(x);
  875. }
  876. int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
  877. {
  878. return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
  879. }
  880. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  881. struct xfrm_policy *xp, struct flowi *fl)
  882. {
  883. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  884. }
  885. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  886. {
  887. return security_ops->xfrm_decode_session(skb, secid, 1);
  888. }
  889. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  890. {
  891. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  892. BUG_ON(rc);
  893. }
  894. EXPORT_SYMBOL(security_skb_classify_flow);
  895. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  896. #ifdef CONFIG_KEYS
  897. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  898. {
  899. return security_ops->key_alloc(key, tsk, flags);
  900. }
  901. void security_key_free(struct key *key)
  902. {
  903. security_ops->key_free(key);
  904. }
  905. int security_key_permission(key_ref_t key_ref,
  906. struct task_struct *context, key_perm_t perm)
  907. {
  908. return security_ops->key_permission(key_ref, context, perm);
  909. }
  910. #endif /* CONFIG_KEYS */