page_alloc.c 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <asm/tlbflush.h>
  48. #include <asm/div64.h>
  49. #include "internal.h"
  50. /*
  51. * Array of node states.
  52. */
  53. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  54. [N_POSSIBLE] = NODE_MASK_ALL,
  55. [N_ONLINE] = { { [0] = 1UL } },
  56. #ifndef CONFIG_NUMA
  57. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  58. #ifdef CONFIG_HIGHMEM
  59. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  60. #endif
  61. [N_CPU] = { { [0] = 1UL } },
  62. #endif /* NUMA */
  63. };
  64. EXPORT_SYMBOL(node_states);
  65. unsigned long totalram_pages __read_mostly;
  66. unsigned long totalreserve_pages __read_mostly;
  67. long nr_swap_pages;
  68. int percpu_pagelist_fraction;
  69. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  70. int pageblock_order __read_mostly;
  71. #endif
  72. static void __free_pages_ok(struct page *page, unsigned int order);
  73. /*
  74. * results with 256, 32 in the lowmem_reserve sysctl:
  75. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  76. * 1G machine -> (16M dma, 784M normal, 224M high)
  77. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  78. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  79. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  80. *
  81. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  82. * don't need any ZONE_NORMAL reservation
  83. */
  84. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  85. #ifdef CONFIG_ZONE_DMA
  86. 256,
  87. #endif
  88. #ifdef CONFIG_ZONE_DMA32
  89. 256,
  90. #endif
  91. #ifdef CONFIG_HIGHMEM
  92. 32,
  93. #endif
  94. 32,
  95. };
  96. EXPORT_SYMBOL(totalram_pages);
  97. static char * const zone_names[MAX_NR_ZONES] = {
  98. #ifdef CONFIG_ZONE_DMA
  99. "DMA",
  100. #endif
  101. #ifdef CONFIG_ZONE_DMA32
  102. "DMA32",
  103. #endif
  104. "Normal",
  105. #ifdef CONFIG_HIGHMEM
  106. "HighMem",
  107. #endif
  108. "Movable",
  109. };
  110. int min_free_kbytes = 1024;
  111. unsigned long __meminitdata nr_kernel_pages;
  112. unsigned long __meminitdata nr_all_pages;
  113. static unsigned long __meminitdata dma_reserve;
  114. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  115. /*
  116. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  117. * ranges of memory (RAM) that may be registered with add_active_range().
  118. * Ranges passed to add_active_range() will be merged if possible
  119. * so the number of times add_active_range() can be called is
  120. * related to the number of nodes and the number of holes
  121. */
  122. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  123. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  124. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  125. #else
  126. #if MAX_NUMNODES >= 32
  127. /* If there can be many nodes, allow up to 50 holes per node */
  128. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  129. #else
  130. /* By default, allow up to 256 distinct regions */
  131. #define MAX_ACTIVE_REGIONS 256
  132. #endif
  133. #endif
  134. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  135. static int __meminitdata nr_nodemap_entries;
  136. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  137. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  138. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  139. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  140. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  141. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  142. unsigned long __initdata required_kernelcore;
  143. static unsigned long __initdata required_movablecore;
  144. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  145. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  146. int movable_zone;
  147. EXPORT_SYMBOL(movable_zone);
  148. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  149. #if MAX_NUMNODES > 1
  150. int nr_node_ids __read_mostly = MAX_NUMNODES;
  151. EXPORT_SYMBOL(nr_node_ids);
  152. #endif
  153. int page_group_by_mobility_disabled __read_mostly;
  154. static void set_pageblock_migratetype(struct page *page, int migratetype)
  155. {
  156. set_pageblock_flags_group(page, (unsigned long)migratetype,
  157. PB_migrate, PB_migrate_end);
  158. }
  159. #ifdef CONFIG_DEBUG_VM
  160. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  161. {
  162. int ret = 0;
  163. unsigned seq;
  164. unsigned long pfn = page_to_pfn(page);
  165. do {
  166. seq = zone_span_seqbegin(zone);
  167. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  168. ret = 1;
  169. else if (pfn < zone->zone_start_pfn)
  170. ret = 1;
  171. } while (zone_span_seqretry(zone, seq));
  172. return ret;
  173. }
  174. static int page_is_consistent(struct zone *zone, struct page *page)
  175. {
  176. if (!pfn_valid_within(page_to_pfn(page)))
  177. return 0;
  178. if (zone != page_zone(page))
  179. return 0;
  180. return 1;
  181. }
  182. /*
  183. * Temporary debugging check for pages not lying within a given zone.
  184. */
  185. static int bad_range(struct zone *zone, struct page *page)
  186. {
  187. if (page_outside_zone_boundaries(zone, page))
  188. return 1;
  189. if (!page_is_consistent(zone, page))
  190. return 1;
  191. return 0;
  192. }
  193. #else
  194. static inline int bad_range(struct zone *zone, struct page *page)
  195. {
  196. return 0;
  197. }
  198. #endif
  199. static void bad_page(struct page *page)
  200. {
  201. printk(KERN_EMERG "Bad page state in process '%s'\n"
  202. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  203. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  204. KERN_EMERG "Backtrace:\n",
  205. current->comm, page, (int)(2*sizeof(unsigned long)),
  206. (unsigned long)page->flags, page->mapping,
  207. page_mapcount(page), page_count(page));
  208. dump_stack();
  209. page->flags &= ~(1 << PG_lru |
  210. 1 << PG_private |
  211. 1 << PG_locked |
  212. 1 << PG_active |
  213. 1 << PG_dirty |
  214. 1 << PG_reclaim |
  215. 1 << PG_slab |
  216. 1 << PG_swapcache |
  217. 1 << PG_writeback |
  218. 1 << PG_buddy );
  219. set_page_count(page, 0);
  220. reset_page_mapcount(page);
  221. page->mapping = NULL;
  222. add_taint(TAINT_BAD_PAGE);
  223. }
  224. /*
  225. * Higher-order pages are called "compound pages". They are structured thusly:
  226. *
  227. * The first PAGE_SIZE page is called the "head page".
  228. *
  229. * The remaining PAGE_SIZE pages are called "tail pages".
  230. *
  231. * All pages have PG_compound set. All pages have their ->private pointing at
  232. * the head page (even the head page has this).
  233. *
  234. * The first tail page's ->lru.next holds the address of the compound page's
  235. * put_page() function. Its ->lru.prev holds the order of allocation.
  236. * This usage means that zero-order pages may not be compound.
  237. */
  238. static void free_compound_page(struct page *page)
  239. {
  240. __free_pages_ok(page, compound_order(page));
  241. }
  242. static void prep_compound_page(struct page *page, unsigned long order)
  243. {
  244. int i;
  245. int nr_pages = 1 << order;
  246. set_compound_page_dtor(page, free_compound_page);
  247. set_compound_order(page, order);
  248. __SetPageHead(page);
  249. for (i = 1; i < nr_pages; i++) {
  250. struct page *p = page + i;
  251. __SetPageTail(p);
  252. p->first_page = page;
  253. }
  254. }
  255. static void destroy_compound_page(struct page *page, unsigned long order)
  256. {
  257. int i;
  258. int nr_pages = 1 << order;
  259. if (unlikely(compound_order(page) != order))
  260. bad_page(page);
  261. if (unlikely(!PageHead(page)))
  262. bad_page(page);
  263. __ClearPageHead(page);
  264. for (i = 1; i < nr_pages; i++) {
  265. struct page *p = page + i;
  266. if (unlikely(!PageTail(p) |
  267. (p->first_page != page)))
  268. bad_page(page);
  269. __ClearPageTail(p);
  270. }
  271. }
  272. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  273. {
  274. int i;
  275. /*
  276. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  277. * and __GFP_HIGHMEM from hard or soft interrupt context.
  278. */
  279. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  280. for (i = 0; i < (1 << order); i++)
  281. clear_highpage(page + i);
  282. }
  283. static inline void set_page_order(struct page *page, int order)
  284. {
  285. set_page_private(page, order);
  286. __SetPageBuddy(page);
  287. }
  288. static inline void rmv_page_order(struct page *page)
  289. {
  290. __ClearPageBuddy(page);
  291. set_page_private(page, 0);
  292. }
  293. /*
  294. * Locate the struct page for both the matching buddy in our
  295. * pair (buddy1) and the combined O(n+1) page they form (page).
  296. *
  297. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  298. * the following equation:
  299. * B2 = B1 ^ (1 << O)
  300. * For example, if the starting buddy (buddy2) is #8 its order
  301. * 1 buddy is #10:
  302. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  303. *
  304. * 2) Any buddy B will have an order O+1 parent P which
  305. * satisfies the following equation:
  306. * P = B & ~(1 << O)
  307. *
  308. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  309. */
  310. static inline struct page *
  311. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  312. {
  313. unsigned long buddy_idx = page_idx ^ (1 << order);
  314. return page + (buddy_idx - page_idx);
  315. }
  316. static inline unsigned long
  317. __find_combined_index(unsigned long page_idx, unsigned int order)
  318. {
  319. return (page_idx & ~(1 << order));
  320. }
  321. /*
  322. * This function checks whether a page is free && is the buddy
  323. * we can do coalesce a page and its buddy if
  324. * (a) the buddy is not in a hole &&
  325. * (b) the buddy is in the buddy system &&
  326. * (c) a page and its buddy have the same order &&
  327. * (d) a page and its buddy are in the same zone.
  328. *
  329. * For recording whether a page is in the buddy system, we use PG_buddy.
  330. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  331. *
  332. * For recording page's order, we use page_private(page).
  333. */
  334. static inline int page_is_buddy(struct page *page, struct page *buddy,
  335. int order)
  336. {
  337. if (!pfn_valid_within(page_to_pfn(buddy)))
  338. return 0;
  339. if (page_zone_id(page) != page_zone_id(buddy))
  340. return 0;
  341. if (PageBuddy(buddy) && page_order(buddy) == order) {
  342. BUG_ON(page_count(buddy) != 0);
  343. return 1;
  344. }
  345. return 0;
  346. }
  347. /*
  348. * Freeing function for a buddy system allocator.
  349. *
  350. * The concept of a buddy system is to maintain direct-mapped table
  351. * (containing bit values) for memory blocks of various "orders".
  352. * The bottom level table contains the map for the smallest allocatable
  353. * units of memory (here, pages), and each level above it describes
  354. * pairs of units from the levels below, hence, "buddies".
  355. * At a high level, all that happens here is marking the table entry
  356. * at the bottom level available, and propagating the changes upward
  357. * as necessary, plus some accounting needed to play nicely with other
  358. * parts of the VM system.
  359. * At each level, we keep a list of pages, which are heads of continuous
  360. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  361. * order is recorded in page_private(page) field.
  362. * So when we are allocating or freeing one, we can derive the state of the
  363. * other. That is, if we allocate a small block, and both were
  364. * free, the remainder of the region must be split into blocks.
  365. * If a block is freed, and its buddy is also free, then this
  366. * triggers coalescing into a block of larger size.
  367. *
  368. * -- wli
  369. */
  370. static inline void __free_one_page(struct page *page,
  371. struct zone *zone, unsigned int order)
  372. {
  373. unsigned long page_idx;
  374. int order_size = 1 << order;
  375. int migratetype = get_pageblock_migratetype(page);
  376. if (unlikely(PageCompound(page)))
  377. destroy_compound_page(page, order);
  378. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  379. VM_BUG_ON(page_idx & (order_size - 1));
  380. VM_BUG_ON(bad_range(zone, page));
  381. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  382. while (order < MAX_ORDER-1) {
  383. unsigned long combined_idx;
  384. struct page *buddy;
  385. buddy = __page_find_buddy(page, page_idx, order);
  386. if (!page_is_buddy(page, buddy, order))
  387. break; /* Move the buddy up one level. */
  388. list_del(&buddy->lru);
  389. zone->free_area[order].nr_free--;
  390. rmv_page_order(buddy);
  391. combined_idx = __find_combined_index(page_idx, order);
  392. page = page + (combined_idx - page_idx);
  393. page_idx = combined_idx;
  394. order++;
  395. }
  396. set_page_order(page, order);
  397. list_add(&page->lru,
  398. &zone->free_area[order].free_list[migratetype]);
  399. zone->free_area[order].nr_free++;
  400. }
  401. static inline int free_pages_check(struct page *page)
  402. {
  403. if (unlikely(page_mapcount(page) |
  404. (page->mapping != NULL) |
  405. (page_count(page) != 0) |
  406. (page->flags & (
  407. 1 << PG_lru |
  408. 1 << PG_private |
  409. 1 << PG_locked |
  410. 1 << PG_active |
  411. 1 << PG_slab |
  412. 1 << PG_swapcache |
  413. 1 << PG_writeback |
  414. 1 << PG_reserved |
  415. 1 << PG_buddy ))))
  416. bad_page(page);
  417. if (PageDirty(page))
  418. __ClearPageDirty(page);
  419. /*
  420. * For now, we report if PG_reserved was found set, but do not
  421. * clear it, and do not free the page. But we shall soon need
  422. * to do more, for when the ZERO_PAGE count wraps negative.
  423. */
  424. return PageReserved(page);
  425. }
  426. /*
  427. * Frees a list of pages.
  428. * Assumes all pages on list are in same zone, and of same order.
  429. * count is the number of pages to free.
  430. *
  431. * If the zone was previously in an "all pages pinned" state then look to
  432. * see if this freeing clears that state.
  433. *
  434. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  435. * pinned" detection logic.
  436. */
  437. static void free_pages_bulk(struct zone *zone, int count,
  438. struct list_head *list, int order)
  439. {
  440. spin_lock(&zone->lock);
  441. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  442. zone->pages_scanned = 0;
  443. while (count--) {
  444. struct page *page;
  445. VM_BUG_ON(list_empty(list));
  446. page = list_entry(list->prev, struct page, lru);
  447. /* have to delete it as __free_one_page list manipulates */
  448. list_del(&page->lru);
  449. __free_one_page(page, zone, order);
  450. }
  451. spin_unlock(&zone->lock);
  452. }
  453. static void free_one_page(struct zone *zone, struct page *page, int order)
  454. {
  455. spin_lock(&zone->lock);
  456. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  457. zone->pages_scanned = 0;
  458. __free_one_page(page, zone, order);
  459. spin_unlock(&zone->lock);
  460. }
  461. static void __free_pages_ok(struct page *page, unsigned int order)
  462. {
  463. unsigned long flags;
  464. int i;
  465. int reserved = 0;
  466. for (i = 0 ; i < (1 << order) ; ++i)
  467. reserved += free_pages_check(page + i);
  468. if (reserved)
  469. return;
  470. if (!PageHighMem(page))
  471. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  472. arch_free_page(page, order);
  473. kernel_map_pages(page, 1 << order, 0);
  474. local_irq_save(flags);
  475. __count_vm_events(PGFREE, 1 << order);
  476. free_one_page(page_zone(page), page, order);
  477. local_irq_restore(flags);
  478. }
  479. /*
  480. * permit the bootmem allocator to evade page validation on high-order frees
  481. */
  482. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  483. {
  484. if (order == 0) {
  485. __ClearPageReserved(page);
  486. set_page_count(page, 0);
  487. set_page_refcounted(page);
  488. __free_page(page);
  489. } else {
  490. int loop;
  491. prefetchw(page);
  492. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  493. struct page *p = &page[loop];
  494. if (loop + 1 < BITS_PER_LONG)
  495. prefetchw(p + 1);
  496. __ClearPageReserved(p);
  497. set_page_count(p, 0);
  498. }
  499. set_page_refcounted(page);
  500. __free_pages(page, order);
  501. }
  502. }
  503. /*
  504. * The order of subdivision here is critical for the IO subsystem.
  505. * Please do not alter this order without good reasons and regression
  506. * testing. Specifically, as large blocks of memory are subdivided,
  507. * the order in which smaller blocks are delivered depends on the order
  508. * they're subdivided in this function. This is the primary factor
  509. * influencing the order in which pages are delivered to the IO
  510. * subsystem according to empirical testing, and this is also justified
  511. * by considering the behavior of a buddy system containing a single
  512. * large block of memory acted on by a series of small allocations.
  513. * This behavior is a critical factor in sglist merging's success.
  514. *
  515. * -- wli
  516. */
  517. static inline void expand(struct zone *zone, struct page *page,
  518. int low, int high, struct free_area *area,
  519. int migratetype)
  520. {
  521. unsigned long size = 1 << high;
  522. while (high > low) {
  523. area--;
  524. high--;
  525. size >>= 1;
  526. VM_BUG_ON(bad_range(zone, &page[size]));
  527. list_add(&page[size].lru, &area->free_list[migratetype]);
  528. area->nr_free++;
  529. set_page_order(&page[size], high);
  530. }
  531. }
  532. /*
  533. * This page is about to be returned from the page allocator
  534. */
  535. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  536. {
  537. if (unlikely(page_mapcount(page) |
  538. (page->mapping != NULL) |
  539. (page_count(page) != 0) |
  540. (page->flags & (
  541. 1 << PG_lru |
  542. 1 << PG_private |
  543. 1 << PG_locked |
  544. 1 << PG_active |
  545. 1 << PG_dirty |
  546. 1 << PG_slab |
  547. 1 << PG_swapcache |
  548. 1 << PG_writeback |
  549. 1 << PG_reserved |
  550. 1 << PG_buddy ))))
  551. bad_page(page);
  552. /*
  553. * For now, we report if PG_reserved was found set, but do not
  554. * clear it, and do not allocate the page: as a safety net.
  555. */
  556. if (PageReserved(page))
  557. return 1;
  558. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  559. 1 << PG_referenced | 1 << PG_arch_1 |
  560. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  561. set_page_private(page, 0);
  562. set_page_refcounted(page);
  563. arch_alloc_page(page, order);
  564. kernel_map_pages(page, 1 << order, 1);
  565. if (gfp_flags & __GFP_ZERO)
  566. prep_zero_page(page, order, gfp_flags);
  567. if (order && (gfp_flags & __GFP_COMP))
  568. prep_compound_page(page, order);
  569. return 0;
  570. }
  571. /*
  572. * Go through the free lists for the given migratetype and remove
  573. * the smallest available page from the freelists
  574. */
  575. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  576. int migratetype)
  577. {
  578. unsigned int current_order;
  579. struct free_area * area;
  580. struct page *page;
  581. /* Find a page of the appropriate size in the preferred list */
  582. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  583. area = &(zone->free_area[current_order]);
  584. if (list_empty(&area->free_list[migratetype]))
  585. continue;
  586. page = list_entry(area->free_list[migratetype].next,
  587. struct page, lru);
  588. list_del(&page->lru);
  589. rmv_page_order(page);
  590. area->nr_free--;
  591. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  592. expand(zone, page, order, current_order, area, migratetype);
  593. return page;
  594. }
  595. return NULL;
  596. }
  597. /*
  598. * This array describes the order lists are fallen back to when
  599. * the free lists for the desirable migrate type are depleted
  600. */
  601. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  602. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  603. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  604. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  605. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  606. };
  607. /*
  608. * Move the free pages in a range to the free lists of the requested type.
  609. * Note that start_page and end_pages are not aligned on a pageblock
  610. * boundary. If alignment is required, use move_freepages_block()
  611. */
  612. int move_freepages(struct zone *zone,
  613. struct page *start_page, struct page *end_page,
  614. int migratetype)
  615. {
  616. struct page *page;
  617. unsigned long order;
  618. int pages_moved = 0;
  619. #ifndef CONFIG_HOLES_IN_ZONE
  620. /*
  621. * page_zone is not safe to call in this context when
  622. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  623. * anyway as we check zone boundaries in move_freepages_block().
  624. * Remove at a later date when no bug reports exist related to
  625. * grouping pages by mobility
  626. */
  627. BUG_ON(page_zone(start_page) != page_zone(end_page));
  628. #endif
  629. for (page = start_page; page <= end_page;) {
  630. if (!pfn_valid_within(page_to_pfn(page))) {
  631. page++;
  632. continue;
  633. }
  634. if (!PageBuddy(page)) {
  635. page++;
  636. continue;
  637. }
  638. order = page_order(page);
  639. list_del(&page->lru);
  640. list_add(&page->lru,
  641. &zone->free_area[order].free_list[migratetype]);
  642. page += 1 << order;
  643. pages_moved += 1 << order;
  644. }
  645. return pages_moved;
  646. }
  647. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  648. {
  649. unsigned long start_pfn, end_pfn;
  650. struct page *start_page, *end_page;
  651. start_pfn = page_to_pfn(page);
  652. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  653. start_page = pfn_to_page(start_pfn);
  654. end_page = start_page + pageblock_nr_pages - 1;
  655. end_pfn = start_pfn + pageblock_nr_pages - 1;
  656. /* Do not cross zone boundaries */
  657. if (start_pfn < zone->zone_start_pfn)
  658. start_page = page;
  659. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  660. return 0;
  661. return move_freepages(zone, start_page, end_page, migratetype);
  662. }
  663. /* Remove an element from the buddy allocator from the fallback list */
  664. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  665. int start_migratetype)
  666. {
  667. struct free_area * area;
  668. int current_order;
  669. struct page *page;
  670. int migratetype, i;
  671. /* Find the largest possible block of pages in the other list */
  672. for (current_order = MAX_ORDER-1; current_order >= order;
  673. --current_order) {
  674. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  675. migratetype = fallbacks[start_migratetype][i];
  676. /* MIGRATE_RESERVE handled later if necessary */
  677. if (migratetype == MIGRATE_RESERVE)
  678. continue;
  679. area = &(zone->free_area[current_order]);
  680. if (list_empty(&area->free_list[migratetype]))
  681. continue;
  682. page = list_entry(area->free_list[migratetype].next,
  683. struct page, lru);
  684. area->nr_free--;
  685. /*
  686. * If breaking a large block of pages, move all free
  687. * pages to the preferred allocation list. If falling
  688. * back for a reclaimable kernel allocation, be more
  689. * agressive about taking ownership of free pages
  690. */
  691. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  692. start_migratetype == MIGRATE_RECLAIMABLE) {
  693. unsigned long pages;
  694. pages = move_freepages_block(zone, page,
  695. start_migratetype);
  696. /* Claim the whole block if over half of it is free */
  697. if (pages >= (1 << (pageblock_order-1)))
  698. set_pageblock_migratetype(page,
  699. start_migratetype);
  700. migratetype = start_migratetype;
  701. }
  702. /* Remove the page from the freelists */
  703. list_del(&page->lru);
  704. rmv_page_order(page);
  705. __mod_zone_page_state(zone, NR_FREE_PAGES,
  706. -(1UL << order));
  707. if (current_order == pageblock_order)
  708. set_pageblock_migratetype(page,
  709. start_migratetype);
  710. expand(zone, page, order, current_order, area, migratetype);
  711. return page;
  712. }
  713. }
  714. /* Use MIGRATE_RESERVE rather than fail an allocation */
  715. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  716. }
  717. /*
  718. * Do the hard work of removing an element from the buddy allocator.
  719. * Call me with the zone->lock already held.
  720. */
  721. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  722. int migratetype)
  723. {
  724. struct page *page;
  725. page = __rmqueue_smallest(zone, order, migratetype);
  726. if (unlikely(!page))
  727. page = __rmqueue_fallback(zone, order, migratetype);
  728. return page;
  729. }
  730. /*
  731. * Obtain a specified number of elements from the buddy allocator, all under
  732. * a single hold of the lock, for efficiency. Add them to the supplied list.
  733. * Returns the number of new pages which were placed at *list.
  734. */
  735. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  736. unsigned long count, struct list_head *list,
  737. int migratetype)
  738. {
  739. int i;
  740. spin_lock(&zone->lock);
  741. for (i = 0; i < count; ++i) {
  742. struct page *page = __rmqueue(zone, order, migratetype);
  743. if (unlikely(page == NULL))
  744. break;
  745. /*
  746. * Split buddy pages returned by expand() are received here
  747. * in physical page order. The page is added to the callers and
  748. * list and the list head then moves forward. From the callers
  749. * perspective, the linked list is ordered by page number in
  750. * some conditions. This is useful for IO devices that can
  751. * merge IO requests if the physical pages are ordered
  752. * properly.
  753. */
  754. list_add(&page->lru, list);
  755. set_page_private(page, migratetype);
  756. list = &page->lru;
  757. }
  758. spin_unlock(&zone->lock);
  759. return i;
  760. }
  761. #ifdef CONFIG_NUMA
  762. /*
  763. * Called from the vmstat counter updater to drain pagesets of this
  764. * currently executing processor on remote nodes after they have
  765. * expired.
  766. *
  767. * Note that this function must be called with the thread pinned to
  768. * a single processor.
  769. */
  770. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  771. {
  772. unsigned long flags;
  773. int to_drain;
  774. local_irq_save(flags);
  775. if (pcp->count >= pcp->batch)
  776. to_drain = pcp->batch;
  777. else
  778. to_drain = pcp->count;
  779. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  780. pcp->count -= to_drain;
  781. local_irq_restore(flags);
  782. }
  783. #endif
  784. /*
  785. * Drain pages of the indicated processor.
  786. *
  787. * The processor must either be the current processor and the
  788. * thread pinned to the current processor or a processor that
  789. * is not online.
  790. */
  791. static void drain_pages(unsigned int cpu)
  792. {
  793. unsigned long flags;
  794. struct zone *zone;
  795. for_each_zone(zone) {
  796. struct per_cpu_pageset *pset;
  797. struct per_cpu_pages *pcp;
  798. if (!populated_zone(zone))
  799. continue;
  800. pset = zone_pcp(zone, cpu);
  801. pcp = &pset->pcp;
  802. local_irq_save(flags);
  803. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  804. pcp->count = 0;
  805. local_irq_restore(flags);
  806. }
  807. }
  808. /*
  809. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  810. */
  811. void drain_local_pages(void *arg)
  812. {
  813. drain_pages(smp_processor_id());
  814. }
  815. /*
  816. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  817. */
  818. void drain_all_pages(void)
  819. {
  820. on_each_cpu(drain_local_pages, NULL, 0, 1);
  821. }
  822. #ifdef CONFIG_HIBERNATION
  823. void mark_free_pages(struct zone *zone)
  824. {
  825. unsigned long pfn, max_zone_pfn;
  826. unsigned long flags;
  827. int order, t;
  828. struct list_head *curr;
  829. if (!zone->spanned_pages)
  830. return;
  831. spin_lock_irqsave(&zone->lock, flags);
  832. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  833. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  834. if (pfn_valid(pfn)) {
  835. struct page *page = pfn_to_page(pfn);
  836. if (!swsusp_page_is_forbidden(page))
  837. swsusp_unset_page_free(page);
  838. }
  839. for_each_migratetype_order(order, t) {
  840. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  841. unsigned long i;
  842. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  843. for (i = 0; i < (1UL << order); i++)
  844. swsusp_set_page_free(pfn_to_page(pfn + i));
  845. }
  846. }
  847. spin_unlock_irqrestore(&zone->lock, flags);
  848. }
  849. #endif /* CONFIG_PM */
  850. /*
  851. * Free a 0-order page
  852. */
  853. static void free_hot_cold_page(struct page *page, int cold)
  854. {
  855. struct zone *zone = page_zone(page);
  856. struct per_cpu_pages *pcp;
  857. unsigned long flags;
  858. if (PageAnon(page))
  859. page->mapping = NULL;
  860. if (free_pages_check(page))
  861. return;
  862. if (!PageHighMem(page))
  863. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  864. VM_BUG_ON(page_get_page_cgroup(page));
  865. arch_free_page(page, 0);
  866. kernel_map_pages(page, 1, 0);
  867. pcp = &zone_pcp(zone, get_cpu())->pcp;
  868. local_irq_save(flags);
  869. __count_vm_event(PGFREE);
  870. if (cold)
  871. list_add_tail(&page->lru, &pcp->list);
  872. else
  873. list_add(&page->lru, &pcp->list);
  874. set_page_private(page, get_pageblock_migratetype(page));
  875. pcp->count++;
  876. if (pcp->count >= pcp->high) {
  877. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  878. pcp->count -= pcp->batch;
  879. }
  880. local_irq_restore(flags);
  881. put_cpu();
  882. }
  883. void free_hot_page(struct page *page)
  884. {
  885. free_hot_cold_page(page, 0);
  886. }
  887. void free_cold_page(struct page *page)
  888. {
  889. free_hot_cold_page(page, 1);
  890. }
  891. /*
  892. * split_page takes a non-compound higher-order page, and splits it into
  893. * n (1<<order) sub-pages: page[0..n]
  894. * Each sub-page must be freed individually.
  895. *
  896. * Note: this is probably too low level an operation for use in drivers.
  897. * Please consult with lkml before using this in your driver.
  898. */
  899. void split_page(struct page *page, unsigned int order)
  900. {
  901. int i;
  902. VM_BUG_ON(PageCompound(page));
  903. VM_BUG_ON(!page_count(page));
  904. for (i = 1; i < (1 << order); i++)
  905. set_page_refcounted(page + i);
  906. }
  907. /*
  908. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  909. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  910. * or two.
  911. */
  912. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  913. struct zone *zone, int order, gfp_t gfp_flags)
  914. {
  915. unsigned long flags;
  916. struct page *page;
  917. int cold = !!(gfp_flags & __GFP_COLD);
  918. int cpu;
  919. int migratetype = allocflags_to_migratetype(gfp_flags);
  920. again:
  921. cpu = get_cpu();
  922. if (likely(order == 0)) {
  923. struct per_cpu_pages *pcp;
  924. pcp = &zone_pcp(zone, cpu)->pcp;
  925. local_irq_save(flags);
  926. if (!pcp->count) {
  927. pcp->count = rmqueue_bulk(zone, 0,
  928. pcp->batch, &pcp->list, migratetype);
  929. if (unlikely(!pcp->count))
  930. goto failed;
  931. }
  932. /* Find a page of the appropriate migrate type */
  933. if (cold) {
  934. list_for_each_entry_reverse(page, &pcp->list, lru)
  935. if (page_private(page) == migratetype)
  936. break;
  937. } else {
  938. list_for_each_entry(page, &pcp->list, lru)
  939. if (page_private(page) == migratetype)
  940. break;
  941. }
  942. /* Allocate more to the pcp list if necessary */
  943. if (unlikely(&page->lru == &pcp->list)) {
  944. pcp->count += rmqueue_bulk(zone, 0,
  945. pcp->batch, &pcp->list, migratetype);
  946. page = list_entry(pcp->list.next, struct page, lru);
  947. }
  948. list_del(&page->lru);
  949. pcp->count--;
  950. } else {
  951. spin_lock_irqsave(&zone->lock, flags);
  952. page = __rmqueue(zone, order, migratetype);
  953. spin_unlock(&zone->lock);
  954. if (!page)
  955. goto failed;
  956. }
  957. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  958. zone_statistics(zonelist, zone);
  959. local_irq_restore(flags);
  960. put_cpu();
  961. VM_BUG_ON(bad_range(zone, page));
  962. if (prep_new_page(page, order, gfp_flags))
  963. goto again;
  964. return page;
  965. failed:
  966. local_irq_restore(flags);
  967. put_cpu();
  968. return NULL;
  969. }
  970. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  971. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  972. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  973. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  974. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  975. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  976. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  977. #ifdef CONFIG_FAIL_PAGE_ALLOC
  978. static struct fail_page_alloc_attr {
  979. struct fault_attr attr;
  980. u32 ignore_gfp_highmem;
  981. u32 ignore_gfp_wait;
  982. u32 min_order;
  983. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  984. struct dentry *ignore_gfp_highmem_file;
  985. struct dentry *ignore_gfp_wait_file;
  986. struct dentry *min_order_file;
  987. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  988. } fail_page_alloc = {
  989. .attr = FAULT_ATTR_INITIALIZER,
  990. .ignore_gfp_wait = 1,
  991. .ignore_gfp_highmem = 1,
  992. .min_order = 1,
  993. };
  994. static int __init setup_fail_page_alloc(char *str)
  995. {
  996. return setup_fault_attr(&fail_page_alloc.attr, str);
  997. }
  998. __setup("fail_page_alloc=", setup_fail_page_alloc);
  999. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1000. {
  1001. if (order < fail_page_alloc.min_order)
  1002. return 0;
  1003. if (gfp_mask & __GFP_NOFAIL)
  1004. return 0;
  1005. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1006. return 0;
  1007. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1008. return 0;
  1009. return should_fail(&fail_page_alloc.attr, 1 << order);
  1010. }
  1011. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1012. static int __init fail_page_alloc_debugfs(void)
  1013. {
  1014. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1015. struct dentry *dir;
  1016. int err;
  1017. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1018. "fail_page_alloc");
  1019. if (err)
  1020. return err;
  1021. dir = fail_page_alloc.attr.dentries.dir;
  1022. fail_page_alloc.ignore_gfp_wait_file =
  1023. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1024. &fail_page_alloc.ignore_gfp_wait);
  1025. fail_page_alloc.ignore_gfp_highmem_file =
  1026. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1027. &fail_page_alloc.ignore_gfp_highmem);
  1028. fail_page_alloc.min_order_file =
  1029. debugfs_create_u32("min-order", mode, dir,
  1030. &fail_page_alloc.min_order);
  1031. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1032. !fail_page_alloc.ignore_gfp_highmem_file ||
  1033. !fail_page_alloc.min_order_file) {
  1034. err = -ENOMEM;
  1035. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1036. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1037. debugfs_remove(fail_page_alloc.min_order_file);
  1038. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1039. }
  1040. return err;
  1041. }
  1042. late_initcall(fail_page_alloc_debugfs);
  1043. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1044. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1045. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1046. {
  1047. return 0;
  1048. }
  1049. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1050. /*
  1051. * Return 1 if free pages are above 'mark'. This takes into account the order
  1052. * of the allocation.
  1053. */
  1054. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1055. int classzone_idx, int alloc_flags)
  1056. {
  1057. /* free_pages my go negative - that's OK */
  1058. long min = mark;
  1059. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1060. int o;
  1061. if (alloc_flags & ALLOC_HIGH)
  1062. min -= min / 2;
  1063. if (alloc_flags & ALLOC_HARDER)
  1064. min -= min / 4;
  1065. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1066. return 0;
  1067. for (o = 0; o < order; o++) {
  1068. /* At the next order, this order's pages become unavailable */
  1069. free_pages -= z->free_area[o].nr_free << o;
  1070. /* Require fewer higher order pages to be free */
  1071. min >>= 1;
  1072. if (free_pages <= min)
  1073. return 0;
  1074. }
  1075. return 1;
  1076. }
  1077. #ifdef CONFIG_NUMA
  1078. /*
  1079. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1080. * skip over zones that are not allowed by the cpuset, or that have
  1081. * been recently (in last second) found to be nearly full. See further
  1082. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1083. * that have to skip over a lot of full or unallowed zones.
  1084. *
  1085. * If the zonelist cache is present in the passed in zonelist, then
  1086. * returns a pointer to the allowed node mask (either the current
  1087. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1088. *
  1089. * If the zonelist cache is not available for this zonelist, does
  1090. * nothing and returns NULL.
  1091. *
  1092. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1093. * a second since last zap'd) then we zap it out (clear its bits.)
  1094. *
  1095. * We hold off even calling zlc_setup, until after we've checked the
  1096. * first zone in the zonelist, on the theory that most allocations will
  1097. * be satisfied from that first zone, so best to examine that zone as
  1098. * quickly as we can.
  1099. */
  1100. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1101. {
  1102. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1103. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1104. zlc = zonelist->zlcache_ptr;
  1105. if (!zlc)
  1106. return NULL;
  1107. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1108. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1109. zlc->last_full_zap = jiffies;
  1110. }
  1111. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1112. &cpuset_current_mems_allowed :
  1113. &node_states[N_HIGH_MEMORY];
  1114. return allowednodes;
  1115. }
  1116. /*
  1117. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1118. * if it is worth looking at further for free memory:
  1119. * 1) Check that the zone isn't thought to be full (doesn't have its
  1120. * bit set in the zonelist_cache fullzones BITMAP).
  1121. * 2) Check that the zones node (obtained from the zonelist_cache
  1122. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1123. * Return true (non-zero) if zone is worth looking at further, or
  1124. * else return false (zero) if it is not.
  1125. *
  1126. * This check -ignores- the distinction between various watermarks,
  1127. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1128. * found to be full for any variation of these watermarks, it will
  1129. * be considered full for up to one second by all requests, unless
  1130. * we are so low on memory on all allowed nodes that we are forced
  1131. * into the second scan of the zonelist.
  1132. *
  1133. * In the second scan we ignore this zonelist cache and exactly
  1134. * apply the watermarks to all zones, even it is slower to do so.
  1135. * We are low on memory in the second scan, and should leave no stone
  1136. * unturned looking for a free page.
  1137. */
  1138. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1139. nodemask_t *allowednodes)
  1140. {
  1141. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1142. int i; /* index of *z in zonelist zones */
  1143. int n; /* node that zone *z is on */
  1144. zlc = zonelist->zlcache_ptr;
  1145. if (!zlc)
  1146. return 1;
  1147. i = z - zonelist->zones;
  1148. n = zlc->z_to_n[i];
  1149. /* This zone is worth trying if it is allowed but not full */
  1150. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1151. }
  1152. /*
  1153. * Given 'z' scanning a zonelist, set the corresponding bit in
  1154. * zlc->fullzones, so that subsequent attempts to allocate a page
  1155. * from that zone don't waste time re-examining it.
  1156. */
  1157. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1158. {
  1159. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1160. int i; /* index of *z in zonelist zones */
  1161. zlc = zonelist->zlcache_ptr;
  1162. if (!zlc)
  1163. return;
  1164. i = z - zonelist->zones;
  1165. set_bit(i, zlc->fullzones);
  1166. }
  1167. #else /* CONFIG_NUMA */
  1168. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1169. {
  1170. return NULL;
  1171. }
  1172. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1173. nodemask_t *allowednodes)
  1174. {
  1175. return 1;
  1176. }
  1177. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1178. {
  1179. }
  1180. #endif /* CONFIG_NUMA */
  1181. /*
  1182. * get_page_from_freelist goes through the zonelist trying to allocate
  1183. * a page.
  1184. */
  1185. static struct page *
  1186. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1187. struct zonelist *zonelist, int alloc_flags)
  1188. {
  1189. struct zone **z;
  1190. struct page *page = NULL;
  1191. int classzone_idx = zone_idx(zonelist->zones[0]);
  1192. struct zone *zone;
  1193. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1194. int zlc_active = 0; /* set if using zonelist_cache */
  1195. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1196. enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
  1197. zonelist_scan:
  1198. /*
  1199. * Scan zonelist, looking for a zone with enough free.
  1200. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1201. */
  1202. z = zonelist->zones;
  1203. do {
  1204. /*
  1205. * In NUMA, this could be a policy zonelist which contains
  1206. * zones that may not be allowed by the current gfp_mask.
  1207. * Check the zone is allowed by the current flags
  1208. */
  1209. if (unlikely(alloc_should_filter_zonelist(zonelist))) {
  1210. if (highest_zoneidx == -1)
  1211. highest_zoneidx = gfp_zone(gfp_mask);
  1212. if (zone_idx(*z) > highest_zoneidx)
  1213. continue;
  1214. }
  1215. if (NUMA_BUILD && zlc_active &&
  1216. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1217. continue;
  1218. zone = *z;
  1219. if ((alloc_flags & ALLOC_CPUSET) &&
  1220. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1221. goto try_next_zone;
  1222. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1223. unsigned long mark;
  1224. if (alloc_flags & ALLOC_WMARK_MIN)
  1225. mark = zone->pages_min;
  1226. else if (alloc_flags & ALLOC_WMARK_LOW)
  1227. mark = zone->pages_low;
  1228. else
  1229. mark = zone->pages_high;
  1230. if (!zone_watermark_ok(zone, order, mark,
  1231. classzone_idx, alloc_flags)) {
  1232. if (!zone_reclaim_mode ||
  1233. !zone_reclaim(zone, gfp_mask, order))
  1234. goto this_zone_full;
  1235. }
  1236. }
  1237. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1238. if (page)
  1239. break;
  1240. this_zone_full:
  1241. if (NUMA_BUILD)
  1242. zlc_mark_zone_full(zonelist, z);
  1243. try_next_zone:
  1244. if (NUMA_BUILD && !did_zlc_setup) {
  1245. /* we do zlc_setup after the first zone is tried */
  1246. allowednodes = zlc_setup(zonelist, alloc_flags);
  1247. zlc_active = 1;
  1248. did_zlc_setup = 1;
  1249. }
  1250. } while (*(++z) != NULL);
  1251. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1252. /* Disable zlc cache for second zonelist scan */
  1253. zlc_active = 0;
  1254. goto zonelist_scan;
  1255. }
  1256. return page;
  1257. }
  1258. /*
  1259. * This is the 'heart' of the zoned buddy allocator.
  1260. */
  1261. struct page *
  1262. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1263. struct zonelist *zonelist)
  1264. {
  1265. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1266. struct zone **z;
  1267. struct page *page;
  1268. struct reclaim_state reclaim_state;
  1269. struct task_struct *p = current;
  1270. int do_retry;
  1271. int alloc_flags;
  1272. int did_some_progress;
  1273. might_sleep_if(wait);
  1274. if (should_fail_alloc_page(gfp_mask, order))
  1275. return NULL;
  1276. restart:
  1277. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1278. if (unlikely(*z == NULL)) {
  1279. /*
  1280. * Happens if we have an empty zonelist as a result of
  1281. * GFP_THISNODE being used on a memoryless node
  1282. */
  1283. return NULL;
  1284. }
  1285. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1286. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1287. if (page)
  1288. goto got_pg;
  1289. /*
  1290. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1291. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1292. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1293. * using a larger set of nodes after it has established that the
  1294. * allowed per node queues are empty and that nodes are
  1295. * over allocated.
  1296. */
  1297. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1298. goto nopage;
  1299. for (z = zonelist->zones; *z; z++)
  1300. wakeup_kswapd(*z, order);
  1301. /*
  1302. * OK, we're below the kswapd watermark and have kicked background
  1303. * reclaim. Now things get more complex, so set up alloc_flags according
  1304. * to how we want to proceed.
  1305. *
  1306. * The caller may dip into page reserves a bit more if the caller
  1307. * cannot run direct reclaim, or if the caller has realtime scheduling
  1308. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1309. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1310. */
  1311. alloc_flags = ALLOC_WMARK_MIN;
  1312. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1313. alloc_flags |= ALLOC_HARDER;
  1314. if (gfp_mask & __GFP_HIGH)
  1315. alloc_flags |= ALLOC_HIGH;
  1316. if (wait)
  1317. alloc_flags |= ALLOC_CPUSET;
  1318. /*
  1319. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1320. * coming from realtime tasks go deeper into reserves.
  1321. *
  1322. * This is the last chance, in general, before the goto nopage.
  1323. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1324. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1325. */
  1326. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1327. if (page)
  1328. goto got_pg;
  1329. /* This allocation should allow future memory freeing. */
  1330. rebalance:
  1331. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1332. && !in_interrupt()) {
  1333. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1334. nofail_alloc:
  1335. /* go through the zonelist yet again, ignoring mins */
  1336. page = get_page_from_freelist(gfp_mask, order,
  1337. zonelist, ALLOC_NO_WATERMARKS);
  1338. if (page)
  1339. goto got_pg;
  1340. if (gfp_mask & __GFP_NOFAIL) {
  1341. congestion_wait(WRITE, HZ/50);
  1342. goto nofail_alloc;
  1343. }
  1344. }
  1345. goto nopage;
  1346. }
  1347. /* Atomic allocations - we can't balance anything */
  1348. if (!wait)
  1349. goto nopage;
  1350. cond_resched();
  1351. /* We now go into synchronous reclaim */
  1352. cpuset_memory_pressure_bump();
  1353. p->flags |= PF_MEMALLOC;
  1354. reclaim_state.reclaimed_slab = 0;
  1355. p->reclaim_state = &reclaim_state;
  1356. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1357. p->reclaim_state = NULL;
  1358. p->flags &= ~PF_MEMALLOC;
  1359. cond_resched();
  1360. if (order != 0)
  1361. drain_all_pages();
  1362. if (likely(did_some_progress)) {
  1363. page = get_page_from_freelist(gfp_mask, order,
  1364. zonelist, alloc_flags);
  1365. if (page)
  1366. goto got_pg;
  1367. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1368. if (!try_set_zone_oom(zonelist)) {
  1369. schedule_timeout_uninterruptible(1);
  1370. goto restart;
  1371. }
  1372. /*
  1373. * Go through the zonelist yet one more time, keep
  1374. * very high watermark here, this is only to catch
  1375. * a parallel oom killing, we must fail if we're still
  1376. * under heavy pressure.
  1377. */
  1378. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1379. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1380. if (page) {
  1381. clear_zonelist_oom(zonelist);
  1382. goto got_pg;
  1383. }
  1384. /* The OOM killer will not help higher order allocs so fail */
  1385. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1386. clear_zonelist_oom(zonelist);
  1387. goto nopage;
  1388. }
  1389. out_of_memory(zonelist, gfp_mask, order);
  1390. clear_zonelist_oom(zonelist);
  1391. goto restart;
  1392. }
  1393. /*
  1394. * Don't let big-order allocations loop unless the caller explicitly
  1395. * requests that. Wait for some write requests to complete then retry.
  1396. *
  1397. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1398. * <= 3, but that may not be true in other implementations.
  1399. */
  1400. do_retry = 0;
  1401. if (!(gfp_mask & __GFP_NORETRY)) {
  1402. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1403. (gfp_mask & __GFP_REPEAT))
  1404. do_retry = 1;
  1405. if (gfp_mask & __GFP_NOFAIL)
  1406. do_retry = 1;
  1407. }
  1408. if (do_retry) {
  1409. congestion_wait(WRITE, HZ/50);
  1410. goto rebalance;
  1411. }
  1412. nopage:
  1413. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1414. printk(KERN_WARNING "%s: page allocation failure."
  1415. " order:%d, mode:0x%x\n",
  1416. p->comm, order, gfp_mask);
  1417. dump_stack();
  1418. show_mem();
  1419. }
  1420. got_pg:
  1421. return page;
  1422. }
  1423. EXPORT_SYMBOL(__alloc_pages);
  1424. /*
  1425. * Common helper functions.
  1426. */
  1427. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1428. {
  1429. struct page * page;
  1430. page = alloc_pages(gfp_mask, order);
  1431. if (!page)
  1432. return 0;
  1433. return (unsigned long) page_address(page);
  1434. }
  1435. EXPORT_SYMBOL(__get_free_pages);
  1436. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1437. {
  1438. struct page * page;
  1439. /*
  1440. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1441. * a highmem page
  1442. */
  1443. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1444. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1445. if (page)
  1446. return (unsigned long) page_address(page);
  1447. return 0;
  1448. }
  1449. EXPORT_SYMBOL(get_zeroed_page);
  1450. void __pagevec_free(struct pagevec *pvec)
  1451. {
  1452. int i = pagevec_count(pvec);
  1453. while (--i >= 0)
  1454. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1455. }
  1456. void __free_pages(struct page *page, unsigned int order)
  1457. {
  1458. if (put_page_testzero(page)) {
  1459. if (order == 0)
  1460. free_hot_page(page);
  1461. else
  1462. __free_pages_ok(page, order);
  1463. }
  1464. }
  1465. EXPORT_SYMBOL(__free_pages);
  1466. void free_pages(unsigned long addr, unsigned int order)
  1467. {
  1468. if (addr != 0) {
  1469. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1470. __free_pages(virt_to_page((void *)addr), order);
  1471. }
  1472. }
  1473. EXPORT_SYMBOL(free_pages);
  1474. static unsigned int nr_free_zone_pages(int offset)
  1475. {
  1476. /* Just pick one node, since fallback list is circular */
  1477. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1478. unsigned int sum = 0;
  1479. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1480. struct zone **zonep = zonelist->zones;
  1481. struct zone *zone;
  1482. for (zone = *zonep++; zone; zone = *zonep++) {
  1483. unsigned long size = zone->present_pages;
  1484. unsigned long high = zone->pages_high;
  1485. if (size > high)
  1486. sum += size - high;
  1487. }
  1488. return sum;
  1489. }
  1490. /*
  1491. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1492. */
  1493. unsigned int nr_free_buffer_pages(void)
  1494. {
  1495. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1496. }
  1497. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1498. /*
  1499. * Amount of free RAM allocatable within all zones
  1500. */
  1501. unsigned int nr_free_pagecache_pages(void)
  1502. {
  1503. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1504. }
  1505. static inline void show_node(struct zone *zone)
  1506. {
  1507. if (NUMA_BUILD)
  1508. printk("Node %d ", zone_to_nid(zone));
  1509. }
  1510. void si_meminfo(struct sysinfo *val)
  1511. {
  1512. val->totalram = totalram_pages;
  1513. val->sharedram = 0;
  1514. val->freeram = global_page_state(NR_FREE_PAGES);
  1515. val->bufferram = nr_blockdev_pages();
  1516. val->totalhigh = totalhigh_pages;
  1517. val->freehigh = nr_free_highpages();
  1518. val->mem_unit = PAGE_SIZE;
  1519. }
  1520. EXPORT_SYMBOL(si_meminfo);
  1521. #ifdef CONFIG_NUMA
  1522. void si_meminfo_node(struct sysinfo *val, int nid)
  1523. {
  1524. pg_data_t *pgdat = NODE_DATA(nid);
  1525. val->totalram = pgdat->node_present_pages;
  1526. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1527. #ifdef CONFIG_HIGHMEM
  1528. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1529. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1530. NR_FREE_PAGES);
  1531. #else
  1532. val->totalhigh = 0;
  1533. val->freehigh = 0;
  1534. #endif
  1535. val->mem_unit = PAGE_SIZE;
  1536. }
  1537. #endif
  1538. #define K(x) ((x) << (PAGE_SHIFT-10))
  1539. /*
  1540. * Show free area list (used inside shift_scroll-lock stuff)
  1541. * We also calculate the percentage fragmentation. We do this by counting the
  1542. * memory on each free list with the exception of the first item on the list.
  1543. */
  1544. void show_free_areas(void)
  1545. {
  1546. int cpu;
  1547. struct zone *zone;
  1548. for_each_zone(zone) {
  1549. if (!populated_zone(zone))
  1550. continue;
  1551. show_node(zone);
  1552. printk("%s per-cpu:\n", zone->name);
  1553. for_each_online_cpu(cpu) {
  1554. struct per_cpu_pageset *pageset;
  1555. pageset = zone_pcp(zone, cpu);
  1556. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1557. cpu, pageset->pcp.high,
  1558. pageset->pcp.batch, pageset->pcp.count);
  1559. }
  1560. }
  1561. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1562. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1563. global_page_state(NR_ACTIVE),
  1564. global_page_state(NR_INACTIVE),
  1565. global_page_state(NR_FILE_DIRTY),
  1566. global_page_state(NR_WRITEBACK),
  1567. global_page_state(NR_UNSTABLE_NFS),
  1568. global_page_state(NR_FREE_PAGES),
  1569. global_page_state(NR_SLAB_RECLAIMABLE) +
  1570. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1571. global_page_state(NR_FILE_MAPPED),
  1572. global_page_state(NR_PAGETABLE),
  1573. global_page_state(NR_BOUNCE));
  1574. for_each_zone(zone) {
  1575. int i;
  1576. if (!populated_zone(zone))
  1577. continue;
  1578. show_node(zone);
  1579. printk("%s"
  1580. " free:%lukB"
  1581. " min:%lukB"
  1582. " low:%lukB"
  1583. " high:%lukB"
  1584. " active:%lukB"
  1585. " inactive:%lukB"
  1586. " present:%lukB"
  1587. " pages_scanned:%lu"
  1588. " all_unreclaimable? %s"
  1589. "\n",
  1590. zone->name,
  1591. K(zone_page_state(zone, NR_FREE_PAGES)),
  1592. K(zone->pages_min),
  1593. K(zone->pages_low),
  1594. K(zone->pages_high),
  1595. K(zone_page_state(zone, NR_ACTIVE)),
  1596. K(zone_page_state(zone, NR_INACTIVE)),
  1597. K(zone->present_pages),
  1598. zone->pages_scanned,
  1599. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1600. );
  1601. printk("lowmem_reserve[]:");
  1602. for (i = 0; i < MAX_NR_ZONES; i++)
  1603. printk(" %lu", zone->lowmem_reserve[i]);
  1604. printk("\n");
  1605. }
  1606. for_each_zone(zone) {
  1607. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1608. if (!populated_zone(zone))
  1609. continue;
  1610. show_node(zone);
  1611. printk("%s: ", zone->name);
  1612. spin_lock_irqsave(&zone->lock, flags);
  1613. for (order = 0; order < MAX_ORDER; order++) {
  1614. nr[order] = zone->free_area[order].nr_free;
  1615. total += nr[order] << order;
  1616. }
  1617. spin_unlock_irqrestore(&zone->lock, flags);
  1618. for (order = 0; order < MAX_ORDER; order++)
  1619. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1620. printk("= %lukB\n", K(total));
  1621. }
  1622. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1623. show_swap_cache_info();
  1624. }
  1625. /*
  1626. * Builds allocation fallback zone lists.
  1627. *
  1628. * Add all populated zones of a node to the zonelist.
  1629. */
  1630. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1631. int nr_zones, enum zone_type zone_type)
  1632. {
  1633. struct zone *zone;
  1634. BUG_ON(zone_type >= MAX_NR_ZONES);
  1635. zone_type++;
  1636. do {
  1637. zone_type--;
  1638. zone = pgdat->node_zones + zone_type;
  1639. if (populated_zone(zone)) {
  1640. zonelist->zones[nr_zones++] = zone;
  1641. check_highest_zone(zone_type);
  1642. }
  1643. } while (zone_type);
  1644. return nr_zones;
  1645. }
  1646. /*
  1647. * zonelist_order:
  1648. * 0 = automatic detection of better ordering.
  1649. * 1 = order by ([node] distance, -zonetype)
  1650. * 2 = order by (-zonetype, [node] distance)
  1651. *
  1652. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1653. * the same zonelist. So only NUMA can configure this param.
  1654. */
  1655. #define ZONELIST_ORDER_DEFAULT 0
  1656. #define ZONELIST_ORDER_NODE 1
  1657. #define ZONELIST_ORDER_ZONE 2
  1658. /* zonelist order in the kernel.
  1659. * set_zonelist_order() will set this to NODE or ZONE.
  1660. */
  1661. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1662. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1663. #ifdef CONFIG_NUMA
  1664. /* The value user specified ....changed by config */
  1665. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1666. /* string for sysctl */
  1667. #define NUMA_ZONELIST_ORDER_LEN 16
  1668. char numa_zonelist_order[16] = "default";
  1669. /*
  1670. * interface for configure zonelist ordering.
  1671. * command line option "numa_zonelist_order"
  1672. * = "[dD]efault - default, automatic configuration.
  1673. * = "[nN]ode - order by node locality, then by zone within node
  1674. * = "[zZ]one - order by zone, then by locality within zone
  1675. */
  1676. static int __parse_numa_zonelist_order(char *s)
  1677. {
  1678. if (*s == 'd' || *s == 'D') {
  1679. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1680. } else if (*s == 'n' || *s == 'N') {
  1681. user_zonelist_order = ZONELIST_ORDER_NODE;
  1682. } else if (*s == 'z' || *s == 'Z') {
  1683. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1684. } else {
  1685. printk(KERN_WARNING
  1686. "Ignoring invalid numa_zonelist_order value: "
  1687. "%s\n", s);
  1688. return -EINVAL;
  1689. }
  1690. return 0;
  1691. }
  1692. static __init int setup_numa_zonelist_order(char *s)
  1693. {
  1694. if (s)
  1695. return __parse_numa_zonelist_order(s);
  1696. return 0;
  1697. }
  1698. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1699. /*
  1700. * sysctl handler for numa_zonelist_order
  1701. */
  1702. int numa_zonelist_order_handler(ctl_table *table, int write,
  1703. struct file *file, void __user *buffer, size_t *length,
  1704. loff_t *ppos)
  1705. {
  1706. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1707. int ret;
  1708. if (write)
  1709. strncpy(saved_string, (char*)table->data,
  1710. NUMA_ZONELIST_ORDER_LEN);
  1711. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1712. if (ret)
  1713. return ret;
  1714. if (write) {
  1715. int oldval = user_zonelist_order;
  1716. if (__parse_numa_zonelist_order((char*)table->data)) {
  1717. /*
  1718. * bogus value. restore saved string
  1719. */
  1720. strncpy((char*)table->data, saved_string,
  1721. NUMA_ZONELIST_ORDER_LEN);
  1722. user_zonelist_order = oldval;
  1723. } else if (oldval != user_zonelist_order)
  1724. build_all_zonelists();
  1725. }
  1726. return 0;
  1727. }
  1728. #define MAX_NODE_LOAD (num_online_nodes())
  1729. static int node_load[MAX_NUMNODES];
  1730. /**
  1731. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1732. * @node: node whose fallback list we're appending
  1733. * @used_node_mask: nodemask_t of already used nodes
  1734. *
  1735. * We use a number of factors to determine which is the next node that should
  1736. * appear on a given node's fallback list. The node should not have appeared
  1737. * already in @node's fallback list, and it should be the next closest node
  1738. * according to the distance array (which contains arbitrary distance values
  1739. * from each node to each node in the system), and should also prefer nodes
  1740. * with no CPUs, since presumably they'll have very little allocation pressure
  1741. * on them otherwise.
  1742. * It returns -1 if no node is found.
  1743. */
  1744. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1745. {
  1746. int n, val;
  1747. int min_val = INT_MAX;
  1748. int best_node = -1;
  1749. /* Use the local node if we haven't already */
  1750. if (!node_isset(node, *used_node_mask)) {
  1751. node_set(node, *used_node_mask);
  1752. return node;
  1753. }
  1754. for_each_node_state(n, N_HIGH_MEMORY) {
  1755. cpumask_t tmp;
  1756. /* Don't want a node to appear more than once */
  1757. if (node_isset(n, *used_node_mask))
  1758. continue;
  1759. /* Use the distance array to find the distance */
  1760. val = node_distance(node, n);
  1761. /* Penalize nodes under us ("prefer the next node") */
  1762. val += (n < node);
  1763. /* Give preference to headless and unused nodes */
  1764. tmp = node_to_cpumask(n);
  1765. if (!cpus_empty(tmp))
  1766. val += PENALTY_FOR_NODE_WITH_CPUS;
  1767. /* Slight preference for less loaded node */
  1768. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1769. val += node_load[n];
  1770. if (val < min_val) {
  1771. min_val = val;
  1772. best_node = n;
  1773. }
  1774. }
  1775. if (best_node >= 0)
  1776. node_set(best_node, *used_node_mask);
  1777. return best_node;
  1778. }
  1779. /*
  1780. * Build zonelists ordered by node and zones within node.
  1781. * This results in maximum locality--normal zone overflows into local
  1782. * DMA zone, if any--but risks exhausting DMA zone.
  1783. */
  1784. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1785. {
  1786. enum zone_type i;
  1787. int j;
  1788. struct zonelist *zonelist;
  1789. for (i = 0; i < MAX_NR_ZONES; i++) {
  1790. zonelist = pgdat->node_zonelists + i;
  1791. for (j = 0; zonelist->zones[j] != NULL; j++)
  1792. ;
  1793. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1794. zonelist->zones[j] = NULL;
  1795. }
  1796. }
  1797. /*
  1798. * Build gfp_thisnode zonelists
  1799. */
  1800. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1801. {
  1802. enum zone_type i;
  1803. int j;
  1804. struct zonelist *zonelist;
  1805. for (i = 0; i < MAX_NR_ZONES; i++) {
  1806. zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
  1807. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1808. zonelist->zones[j] = NULL;
  1809. }
  1810. }
  1811. /*
  1812. * Build zonelists ordered by zone and nodes within zones.
  1813. * This results in conserving DMA zone[s] until all Normal memory is
  1814. * exhausted, but results in overflowing to remote node while memory
  1815. * may still exist in local DMA zone.
  1816. */
  1817. static int node_order[MAX_NUMNODES];
  1818. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1819. {
  1820. enum zone_type i;
  1821. int pos, j, node;
  1822. int zone_type; /* needs to be signed */
  1823. struct zone *z;
  1824. struct zonelist *zonelist;
  1825. for (i = 0; i < MAX_NR_ZONES; i++) {
  1826. zonelist = pgdat->node_zonelists + i;
  1827. pos = 0;
  1828. for (zone_type = i; zone_type >= 0; zone_type--) {
  1829. for (j = 0; j < nr_nodes; j++) {
  1830. node = node_order[j];
  1831. z = &NODE_DATA(node)->node_zones[zone_type];
  1832. if (populated_zone(z)) {
  1833. zonelist->zones[pos++] = z;
  1834. check_highest_zone(zone_type);
  1835. }
  1836. }
  1837. }
  1838. zonelist->zones[pos] = NULL;
  1839. }
  1840. }
  1841. static int default_zonelist_order(void)
  1842. {
  1843. int nid, zone_type;
  1844. unsigned long low_kmem_size,total_size;
  1845. struct zone *z;
  1846. int average_size;
  1847. /*
  1848. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1849. * If they are really small and used heavily, the system can fall
  1850. * into OOM very easily.
  1851. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1852. */
  1853. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1854. low_kmem_size = 0;
  1855. total_size = 0;
  1856. for_each_online_node(nid) {
  1857. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1858. z = &NODE_DATA(nid)->node_zones[zone_type];
  1859. if (populated_zone(z)) {
  1860. if (zone_type < ZONE_NORMAL)
  1861. low_kmem_size += z->present_pages;
  1862. total_size += z->present_pages;
  1863. }
  1864. }
  1865. }
  1866. if (!low_kmem_size || /* there are no DMA area. */
  1867. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1868. return ZONELIST_ORDER_NODE;
  1869. /*
  1870. * look into each node's config.
  1871. * If there is a node whose DMA/DMA32 memory is very big area on
  1872. * local memory, NODE_ORDER may be suitable.
  1873. */
  1874. average_size = total_size /
  1875. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1876. for_each_online_node(nid) {
  1877. low_kmem_size = 0;
  1878. total_size = 0;
  1879. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1880. z = &NODE_DATA(nid)->node_zones[zone_type];
  1881. if (populated_zone(z)) {
  1882. if (zone_type < ZONE_NORMAL)
  1883. low_kmem_size += z->present_pages;
  1884. total_size += z->present_pages;
  1885. }
  1886. }
  1887. if (low_kmem_size &&
  1888. total_size > average_size && /* ignore small node */
  1889. low_kmem_size > total_size * 70/100)
  1890. return ZONELIST_ORDER_NODE;
  1891. }
  1892. return ZONELIST_ORDER_ZONE;
  1893. }
  1894. static void set_zonelist_order(void)
  1895. {
  1896. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1897. current_zonelist_order = default_zonelist_order();
  1898. else
  1899. current_zonelist_order = user_zonelist_order;
  1900. }
  1901. static void build_zonelists(pg_data_t *pgdat)
  1902. {
  1903. int j, node, load;
  1904. enum zone_type i;
  1905. nodemask_t used_mask;
  1906. int local_node, prev_node;
  1907. struct zonelist *zonelist;
  1908. int order = current_zonelist_order;
  1909. /* initialize zonelists */
  1910. for (i = 0; i < MAX_ZONELISTS; i++) {
  1911. zonelist = pgdat->node_zonelists + i;
  1912. zonelist->zones[0] = NULL;
  1913. }
  1914. /* NUMA-aware ordering of nodes */
  1915. local_node = pgdat->node_id;
  1916. load = num_online_nodes();
  1917. prev_node = local_node;
  1918. nodes_clear(used_mask);
  1919. memset(node_load, 0, sizeof(node_load));
  1920. memset(node_order, 0, sizeof(node_order));
  1921. j = 0;
  1922. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1923. int distance = node_distance(local_node, node);
  1924. /*
  1925. * If another node is sufficiently far away then it is better
  1926. * to reclaim pages in a zone before going off node.
  1927. */
  1928. if (distance > RECLAIM_DISTANCE)
  1929. zone_reclaim_mode = 1;
  1930. /*
  1931. * We don't want to pressure a particular node.
  1932. * So adding penalty to the first node in same
  1933. * distance group to make it round-robin.
  1934. */
  1935. if (distance != node_distance(local_node, prev_node))
  1936. node_load[node] = load;
  1937. prev_node = node;
  1938. load--;
  1939. if (order == ZONELIST_ORDER_NODE)
  1940. build_zonelists_in_node_order(pgdat, node);
  1941. else
  1942. node_order[j++] = node; /* remember order */
  1943. }
  1944. if (order == ZONELIST_ORDER_ZONE) {
  1945. /* calculate node order -- i.e., DMA last! */
  1946. build_zonelists_in_zone_order(pgdat, j);
  1947. }
  1948. build_thisnode_zonelists(pgdat);
  1949. }
  1950. /* Construct the zonelist performance cache - see further mmzone.h */
  1951. static void build_zonelist_cache(pg_data_t *pgdat)
  1952. {
  1953. int i;
  1954. for (i = 0; i < MAX_NR_ZONES; i++) {
  1955. struct zonelist *zonelist;
  1956. struct zonelist_cache *zlc;
  1957. struct zone **z;
  1958. zonelist = pgdat->node_zonelists + i;
  1959. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1960. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1961. for (z = zonelist->zones; *z; z++)
  1962. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1963. }
  1964. }
  1965. #else /* CONFIG_NUMA */
  1966. static void set_zonelist_order(void)
  1967. {
  1968. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1969. }
  1970. static void build_zonelists(pg_data_t *pgdat)
  1971. {
  1972. int node, local_node;
  1973. enum zone_type i,j;
  1974. local_node = pgdat->node_id;
  1975. for (i = 0; i < MAX_NR_ZONES; i++) {
  1976. struct zonelist *zonelist;
  1977. zonelist = pgdat->node_zonelists + i;
  1978. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1979. /*
  1980. * Now we build the zonelist so that it contains the zones
  1981. * of all the other nodes.
  1982. * We don't want to pressure a particular node, so when
  1983. * building the zones for node N, we make sure that the
  1984. * zones coming right after the local ones are those from
  1985. * node N+1 (modulo N)
  1986. */
  1987. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1988. if (!node_online(node))
  1989. continue;
  1990. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1991. }
  1992. for (node = 0; node < local_node; node++) {
  1993. if (!node_online(node))
  1994. continue;
  1995. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1996. }
  1997. zonelist->zones[j] = NULL;
  1998. }
  1999. }
  2000. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2001. static void build_zonelist_cache(pg_data_t *pgdat)
  2002. {
  2003. int i;
  2004. for (i = 0; i < MAX_NR_ZONES; i++)
  2005. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  2006. }
  2007. #endif /* CONFIG_NUMA */
  2008. /* return values int ....just for stop_machine_run() */
  2009. static int __build_all_zonelists(void *dummy)
  2010. {
  2011. int nid;
  2012. for_each_online_node(nid) {
  2013. pg_data_t *pgdat = NODE_DATA(nid);
  2014. build_zonelists(pgdat);
  2015. build_zonelist_cache(pgdat);
  2016. }
  2017. return 0;
  2018. }
  2019. void build_all_zonelists(void)
  2020. {
  2021. set_zonelist_order();
  2022. if (system_state == SYSTEM_BOOTING) {
  2023. __build_all_zonelists(NULL);
  2024. cpuset_init_current_mems_allowed();
  2025. } else {
  2026. /* we have to stop all cpus to guarantee there is no user
  2027. of zonelist */
  2028. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2029. /* cpuset refresh routine should be here */
  2030. }
  2031. vm_total_pages = nr_free_pagecache_pages();
  2032. /*
  2033. * Disable grouping by mobility if the number of pages in the
  2034. * system is too low to allow the mechanism to work. It would be
  2035. * more accurate, but expensive to check per-zone. This check is
  2036. * made on memory-hotadd so a system can start with mobility
  2037. * disabled and enable it later
  2038. */
  2039. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2040. page_group_by_mobility_disabled = 1;
  2041. else
  2042. page_group_by_mobility_disabled = 0;
  2043. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2044. "Total pages: %ld\n",
  2045. num_online_nodes(),
  2046. zonelist_order_name[current_zonelist_order],
  2047. page_group_by_mobility_disabled ? "off" : "on",
  2048. vm_total_pages);
  2049. #ifdef CONFIG_NUMA
  2050. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2051. #endif
  2052. }
  2053. /*
  2054. * Helper functions to size the waitqueue hash table.
  2055. * Essentially these want to choose hash table sizes sufficiently
  2056. * large so that collisions trying to wait on pages are rare.
  2057. * But in fact, the number of active page waitqueues on typical
  2058. * systems is ridiculously low, less than 200. So this is even
  2059. * conservative, even though it seems large.
  2060. *
  2061. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2062. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2063. */
  2064. #define PAGES_PER_WAITQUEUE 256
  2065. #ifndef CONFIG_MEMORY_HOTPLUG
  2066. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2067. {
  2068. unsigned long size = 1;
  2069. pages /= PAGES_PER_WAITQUEUE;
  2070. while (size < pages)
  2071. size <<= 1;
  2072. /*
  2073. * Once we have dozens or even hundreds of threads sleeping
  2074. * on IO we've got bigger problems than wait queue collision.
  2075. * Limit the size of the wait table to a reasonable size.
  2076. */
  2077. size = min(size, 4096UL);
  2078. return max(size, 4UL);
  2079. }
  2080. #else
  2081. /*
  2082. * A zone's size might be changed by hot-add, so it is not possible to determine
  2083. * a suitable size for its wait_table. So we use the maximum size now.
  2084. *
  2085. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2086. *
  2087. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2088. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2089. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2090. *
  2091. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2092. * or more by the traditional way. (See above). It equals:
  2093. *
  2094. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2095. * ia64(16K page size) : = ( 8G + 4M)byte.
  2096. * powerpc (64K page size) : = (32G +16M)byte.
  2097. */
  2098. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2099. {
  2100. return 4096UL;
  2101. }
  2102. #endif
  2103. /*
  2104. * This is an integer logarithm so that shifts can be used later
  2105. * to extract the more random high bits from the multiplicative
  2106. * hash function before the remainder is taken.
  2107. */
  2108. static inline unsigned long wait_table_bits(unsigned long size)
  2109. {
  2110. return ffz(~size);
  2111. }
  2112. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2113. /*
  2114. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2115. * of blocks reserved is based on zone->pages_min. The memory within the
  2116. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2117. * higher will lead to a bigger reserve which will get freed as contiguous
  2118. * blocks as reclaim kicks in
  2119. */
  2120. static void setup_zone_migrate_reserve(struct zone *zone)
  2121. {
  2122. unsigned long start_pfn, pfn, end_pfn;
  2123. struct page *page;
  2124. unsigned long reserve, block_migratetype;
  2125. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2126. start_pfn = zone->zone_start_pfn;
  2127. end_pfn = start_pfn + zone->spanned_pages;
  2128. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2129. pageblock_order;
  2130. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2131. if (!pfn_valid(pfn))
  2132. continue;
  2133. page = pfn_to_page(pfn);
  2134. /* Blocks with reserved pages will never free, skip them. */
  2135. if (PageReserved(page))
  2136. continue;
  2137. block_migratetype = get_pageblock_migratetype(page);
  2138. /* If this block is reserved, account for it */
  2139. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2140. reserve--;
  2141. continue;
  2142. }
  2143. /* Suitable for reserving if this block is movable */
  2144. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2145. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2146. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2147. reserve--;
  2148. continue;
  2149. }
  2150. /*
  2151. * If the reserve is met and this is a previous reserved block,
  2152. * take it back
  2153. */
  2154. if (block_migratetype == MIGRATE_RESERVE) {
  2155. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2156. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2157. }
  2158. }
  2159. }
  2160. /*
  2161. * Initially all pages are reserved - free ones are freed
  2162. * up by free_all_bootmem() once the early boot process is
  2163. * done. Non-atomic initialization, single-pass.
  2164. */
  2165. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2166. unsigned long start_pfn, enum memmap_context context)
  2167. {
  2168. struct page *page;
  2169. unsigned long end_pfn = start_pfn + size;
  2170. unsigned long pfn;
  2171. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2172. /*
  2173. * There can be holes in boot-time mem_map[]s
  2174. * handed to this function. They do not
  2175. * exist on hotplugged memory.
  2176. */
  2177. if (context == MEMMAP_EARLY) {
  2178. if (!early_pfn_valid(pfn))
  2179. continue;
  2180. if (!early_pfn_in_nid(pfn, nid))
  2181. continue;
  2182. }
  2183. page = pfn_to_page(pfn);
  2184. set_page_links(page, zone, nid, pfn);
  2185. init_page_count(page);
  2186. reset_page_mapcount(page);
  2187. page_assign_page_cgroup(page, NULL);
  2188. SetPageReserved(page);
  2189. /*
  2190. * Mark the block movable so that blocks are reserved for
  2191. * movable at startup. This will force kernel allocations
  2192. * to reserve their blocks rather than leaking throughout
  2193. * the address space during boot when many long-lived
  2194. * kernel allocations are made. Later some blocks near
  2195. * the start are marked MIGRATE_RESERVE by
  2196. * setup_zone_migrate_reserve()
  2197. */
  2198. if ((pfn & (pageblock_nr_pages-1)))
  2199. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2200. INIT_LIST_HEAD(&page->lru);
  2201. #ifdef WANT_PAGE_VIRTUAL
  2202. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2203. if (!is_highmem_idx(zone))
  2204. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2205. #endif
  2206. }
  2207. }
  2208. static void __meminit zone_init_free_lists(struct zone *zone)
  2209. {
  2210. int order, t;
  2211. for_each_migratetype_order(order, t) {
  2212. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2213. zone->free_area[order].nr_free = 0;
  2214. }
  2215. }
  2216. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2217. #define memmap_init(size, nid, zone, start_pfn) \
  2218. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2219. #endif
  2220. static int zone_batchsize(struct zone *zone)
  2221. {
  2222. int batch;
  2223. /*
  2224. * The per-cpu-pages pools are set to around 1000th of the
  2225. * size of the zone. But no more than 1/2 of a meg.
  2226. *
  2227. * OK, so we don't know how big the cache is. So guess.
  2228. */
  2229. batch = zone->present_pages / 1024;
  2230. if (batch * PAGE_SIZE > 512 * 1024)
  2231. batch = (512 * 1024) / PAGE_SIZE;
  2232. batch /= 4; /* We effectively *= 4 below */
  2233. if (batch < 1)
  2234. batch = 1;
  2235. /*
  2236. * Clamp the batch to a 2^n - 1 value. Having a power
  2237. * of 2 value was found to be more likely to have
  2238. * suboptimal cache aliasing properties in some cases.
  2239. *
  2240. * For example if 2 tasks are alternately allocating
  2241. * batches of pages, one task can end up with a lot
  2242. * of pages of one half of the possible page colors
  2243. * and the other with pages of the other colors.
  2244. */
  2245. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2246. return batch;
  2247. }
  2248. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2249. {
  2250. struct per_cpu_pages *pcp;
  2251. memset(p, 0, sizeof(*p));
  2252. pcp = &p->pcp;
  2253. pcp->count = 0;
  2254. pcp->high = 6 * batch;
  2255. pcp->batch = max(1UL, 1 * batch);
  2256. INIT_LIST_HEAD(&pcp->list);
  2257. }
  2258. /*
  2259. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2260. * to the value high for the pageset p.
  2261. */
  2262. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2263. unsigned long high)
  2264. {
  2265. struct per_cpu_pages *pcp;
  2266. pcp = &p->pcp;
  2267. pcp->high = high;
  2268. pcp->batch = max(1UL, high/4);
  2269. if ((high/4) > (PAGE_SHIFT * 8))
  2270. pcp->batch = PAGE_SHIFT * 8;
  2271. }
  2272. #ifdef CONFIG_NUMA
  2273. /*
  2274. * Boot pageset table. One per cpu which is going to be used for all
  2275. * zones and all nodes. The parameters will be set in such a way
  2276. * that an item put on a list will immediately be handed over to
  2277. * the buddy list. This is safe since pageset manipulation is done
  2278. * with interrupts disabled.
  2279. *
  2280. * Some NUMA counter updates may also be caught by the boot pagesets.
  2281. *
  2282. * The boot_pagesets must be kept even after bootup is complete for
  2283. * unused processors and/or zones. They do play a role for bootstrapping
  2284. * hotplugged processors.
  2285. *
  2286. * zoneinfo_show() and maybe other functions do
  2287. * not check if the processor is online before following the pageset pointer.
  2288. * Other parts of the kernel may not check if the zone is available.
  2289. */
  2290. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2291. /*
  2292. * Dynamically allocate memory for the
  2293. * per cpu pageset array in struct zone.
  2294. */
  2295. static int __cpuinit process_zones(int cpu)
  2296. {
  2297. struct zone *zone, *dzone;
  2298. int node = cpu_to_node(cpu);
  2299. node_set_state(node, N_CPU); /* this node has a cpu */
  2300. for_each_zone(zone) {
  2301. if (!populated_zone(zone))
  2302. continue;
  2303. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2304. GFP_KERNEL, node);
  2305. if (!zone_pcp(zone, cpu))
  2306. goto bad;
  2307. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2308. if (percpu_pagelist_fraction)
  2309. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2310. (zone->present_pages / percpu_pagelist_fraction));
  2311. }
  2312. return 0;
  2313. bad:
  2314. for_each_zone(dzone) {
  2315. if (!populated_zone(dzone))
  2316. continue;
  2317. if (dzone == zone)
  2318. break;
  2319. kfree(zone_pcp(dzone, cpu));
  2320. zone_pcp(dzone, cpu) = NULL;
  2321. }
  2322. return -ENOMEM;
  2323. }
  2324. static inline void free_zone_pagesets(int cpu)
  2325. {
  2326. struct zone *zone;
  2327. for_each_zone(zone) {
  2328. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2329. /* Free per_cpu_pageset if it is slab allocated */
  2330. if (pset != &boot_pageset[cpu])
  2331. kfree(pset);
  2332. zone_pcp(zone, cpu) = NULL;
  2333. }
  2334. }
  2335. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2336. unsigned long action,
  2337. void *hcpu)
  2338. {
  2339. int cpu = (long)hcpu;
  2340. int ret = NOTIFY_OK;
  2341. switch (action) {
  2342. case CPU_UP_PREPARE:
  2343. case CPU_UP_PREPARE_FROZEN:
  2344. if (process_zones(cpu))
  2345. ret = NOTIFY_BAD;
  2346. break;
  2347. case CPU_UP_CANCELED:
  2348. case CPU_UP_CANCELED_FROZEN:
  2349. case CPU_DEAD:
  2350. case CPU_DEAD_FROZEN:
  2351. free_zone_pagesets(cpu);
  2352. break;
  2353. default:
  2354. break;
  2355. }
  2356. return ret;
  2357. }
  2358. static struct notifier_block __cpuinitdata pageset_notifier =
  2359. { &pageset_cpuup_callback, NULL, 0 };
  2360. void __init setup_per_cpu_pageset(void)
  2361. {
  2362. int err;
  2363. /* Initialize per_cpu_pageset for cpu 0.
  2364. * A cpuup callback will do this for every cpu
  2365. * as it comes online
  2366. */
  2367. err = process_zones(smp_processor_id());
  2368. BUG_ON(err);
  2369. register_cpu_notifier(&pageset_notifier);
  2370. }
  2371. #endif
  2372. static noinline __init_refok
  2373. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2374. {
  2375. int i;
  2376. struct pglist_data *pgdat = zone->zone_pgdat;
  2377. size_t alloc_size;
  2378. /*
  2379. * The per-page waitqueue mechanism uses hashed waitqueues
  2380. * per zone.
  2381. */
  2382. zone->wait_table_hash_nr_entries =
  2383. wait_table_hash_nr_entries(zone_size_pages);
  2384. zone->wait_table_bits =
  2385. wait_table_bits(zone->wait_table_hash_nr_entries);
  2386. alloc_size = zone->wait_table_hash_nr_entries
  2387. * sizeof(wait_queue_head_t);
  2388. if (system_state == SYSTEM_BOOTING) {
  2389. zone->wait_table = (wait_queue_head_t *)
  2390. alloc_bootmem_node(pgdat, alloc_size);
  2391. } else {
  2392. /*
  2393. * This case means that a zone whose size was 0 gets new memory
  2394. * via memory hot-add.
  2395. * But it may be the case that a new node was hot-added. In
  2396. * this case vmalloc() will not be able to use this new node's
  2397. * memory - this wait_table must be initialized to use this new
  2398. * node itself as well.
  2399. * To use this new node's memory, further consideration will be
  2400. * necessary.
  2401. */
  2402. zone->wait_table = vmalloc(alloc_size);
  2403. }
  2404. if (!zone->wait_table)
  2405. return -ENOMEM;
  2406. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2407. init_waitqueue_head(zone->wait_table + i);
  2408. return 0;
  2409. }
  2410. static __meminit void zone_pcp_init(struct zone *zone)
  2411. {
  2412. int cpu;
  2413. unsigned long batch = zone_batchsize(zone);
  2414. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2415. #ifdef CONFIG_NUMA
  2416. /* Early boot. Slab allocator not functional yet */
  2417. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2418. setup_pageset(&boot_pageset[cpu],0);
  2419. #else
  2420. setup_pageset(zone_pcp(zone,cpu), batch);
  2421. #endif
  2422. }
  2423. if (zone->present_pages)
  2424. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2425. zone->name, zone->present_pages, batch);
  2426. }
  2427. __meminit int init_currently_empty_zone(struct zone *zone,
  2428. unsigned long zone_start_pfn,
  2429. unsigned long size,
  2430. enum memmap_context context)
  2431. {
  2432. struct pglist_data *pgdat = zone->zone_pgdat;
  2433. int ret;
  2434. ret = zone_wait_table_init(zone, size);
  2435. if (ret)
  2436. return ret;
  2437. pgdat->nr_zones = zone_idx(zone) + 1;
  2438. zone->zone_start_pfn = zone_start_pfn;
  2439. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2440. zone_init_free_lists(zone);
  2441. return 0;
  2442. }
  2443. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2444. /*
  2445. * Basic iterator support. Return the first range of PFNs for a node
  2446. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2447. */
  2448. static int __meminit first_active_region_index_in_nid(int nid)
  2449. {
  2450. int i;
  2451. for (i = 0; i < nr_nodemap_entries; i++)
  2452. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2453. return i;
  2454. return -1;
  2455. }
  2456. /*
  2457. * Basic iterator support. Return the next active range of PFNs for a node
  2458. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2459. */
  2460. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2461. {
  2462. for (index = index + 1; index < nr_nodemap_entries; index++)
  2463. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2464. return index;
  2465. return -1;
  2466. }
  2467. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2468. /*
  2469. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2470. * Architectures may implement their own version but if add_active_range()
  2471. * was used and there are no special requirements, this is a convenient
  2472. * alternative
  2473. */
  2474. int __meminit early_pfn_to_nid(unsigned long pfn)
  2475. {
  2476. int i;
  2477. for (i = 0; i < nr_nodemap_entries; i++) {
  2478. unsigned long start_pfn = early_node_map[i].start_pfn;
  2479. unsigned long end_pfn = early_node_map[i].end_pfn;
  2480. if (start_pfn <= pfn && pfn < end_pfn)
  2481. return early_node_map[i].nid;
  2482. }
  2483. return 0;
  2484. }
  2485. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2486. /* Basic iterator support to walk early_node_map[] */
  2487. #define for_each_active_range_index_in_nid(i, nid) \
  2488. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2489. i = next_active_region_index_in_nid(i, nid))
  2490. /**
  2491. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2492. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2493. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2494. *
  2495. * If an architecture guarantees that all ranges registered with
  2496. * add_active_ranges() contain no holes and may be freed, this
  2497. * this function may be used instead of calling free_bootmem() manually.
  2498. */
  2499. void __init free_bootmem_with_active_regions(int nid,
  2500. unsigned long max_low_pfn)
  2501. {
  2502. int i;
  2503. for_each_active_range_index_in_nid(i, nid) {
  2504. unsigned long size_pages = 0;
  2505. unsigned long end_pfn = early_node_map[i].end_pfn;
  2506. if (early_node_map[i].start_pfn >= max_low_pfn)
  2507. continue;
  2508. if (end_pfn > max_low_pfn)
  2509. end_pfn = max_low_pfn;
  2510. size_pages = end_pfn - early_node_map[i].start_pfn;
  2511. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2512. PFN_PHYS(early_node_map[i].start_pfn),
  2513. size_pages << PAGE_SHIFT);
  2514. }
  2515. }
  2516. /**
  2517. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2518. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2519. *
  2520. * If an architecture guarantees that all ranges registered with
  2521. * add_active_ranges() contain no holes and may be freed, this
  2522. * function may be used instead of calling memory_present() manually.
  2523. */
  2524. void __init sparse_memory_present_with_active_regions(int nid)
  2525. {
  2526. int i;
  2527. for_each_active_range_index_in_nid(i, nid)
  2528. memory_present(early_node_map[i].nid,
  2529. early_node_map[i].start_pfn,
  2530. early_node_map[i].end_pfn);
  2531. }
  2532. /**
  2533. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2534. * @nid: The nid of the node to push the boundary for
  2535. * @start_pfn: The start pfn of the node
  2536. * @end_pfn: The end pfn of the node
  2537. *
  2538. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2539. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2540. * be hotplugged even though no physical memory exists. This function allows
  2541. * an arch to push out the node boundaries so mem_map is allocated that can
  2542. * be used later.
  2543. */
  2544. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2545. void __init push_node_boundaries(unsigned int nid,
  2546. unsigned long start_pfn, unsigned long end_pfn)
  2547. {
  2548. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2549. nid, start_pfn, end_pfn);
  2550. /* Initialise the boundary for this node if necessary */
  2551. if (node_boundary_end_pfn[nid] == 0)
  2552. node_boundary_start_pfn[nid] = -1UL;
  2553. /* Update the boundaries */
  2554. if (node_boundary_start_pfn[nid] > start_pfn)
  2555. node_boundary_start_pfn[nid] = start_pfn;
  2556. if (node_boundary_end_pfn[nid] < end_pfn)
  2557. node_boundary_end_pfn[nid] = end_pfn;
  2558. }
  2559. /* If necessary, push the node boundary out for reserve hotadd */
  2560. static void __meminit account_node_boundary(unsigned int nid,
  2561. unsigned long *start_pfn, unsigned long *end_pfn)
  2562. {
  2563. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2564. nid, *start_pfn, *end_pfn);
  2565. /* Return if boundary information has not been provided */
  2566. if (node_boundary_end_pfn[nid] == 0)
  2567. return;
  2568. /* Check the boundaries and update if necessary */
  2569. if (node_boundary_start_pfn[nid] < *start_pfn)
  2570. *start_pfn = node_boundary_start_pfn[nid];
  2571. if (node_boundary_end_pfn[nid] > *end_pfn)
  2572. *end_pfn = node_boundary_end_pfn[nid];
  2573. }
  2574. #else
  2575. void __init push_node_boundaries(unsigned int nid,
  2576. unsigned long start_pfn, unsigned long end_pfn) {}
  2577. static void __meminit account_node_boundary(unsigned int nid,
  2578. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2579. #endif
  2580. /**
  2581. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2582. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2583. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2584. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2585. *
  2586. * It returns the start and end page frame of a node based on information
  2587. * provided by an arch calling add_active_range(). If called for a node
  2588. * with no available memory, a warning is printed and the start and end
  2589. * PFNs will be 0.
  2590. */
  2591. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2592. unsigned long *start_pfn, unsigned long *end_pfn)
  2593. {
  2594. int i;
  2595. *start_pfn = -1UL;
  2596. *end_pfn = 0;
  2597. for_each_active_range_index_in_nid(i, nid) {
  2598. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2599. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2600. }
  2601. if (*start_pfn == -1UL)
  2602. *start_pfn = 0;
  2603. /* Push the node boundaries out if requested */
  2604. account_node_boundary(nid, start_pfn, end_pfn);
  2605. }
  2606. /*
  2607. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2608. * assumption is made that zones within a node are ordered in monotonic
  2609. * increasing memory addresses so that the "highest" populated zone is used
  2610. */
  2611. void __init find_usable_zone_for_movable(void)
  2612. {
  2613. int zone_index;
  2614. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2615. if (zone_index == ZONE_MOVABLE)
  2616. continue;
  2617. if (arch_zone_highest_possible_pfn[zone_index] >
  2618. arch_zone_lowest_possible_pfn[zone_index])
  2619. break;
  2620. }
  2621. VM_BUG_ON(zone_index == -1);
  2622. movable_zone = zone_index;
  2623. }
  2624. /*
  2625. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2626. * because it is sized independant of architecture. Unlike the other zones,
  2627. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2628. * in each node depending on the size of each node and how evenly kernelcore
  2629. * is distributed. This helper function adjusts the zone ranges
  2630. * provided by the architecture for a given node by using the end of the
  2631. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2632. * zones within a node are in order of monotonic increases memory addresses
  2633. */
  2634. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2635. unsigned long zone_type,
  2636. unsigned long node_start_pfn,
  2637. unsigned long node_end_pfn,
  2638. unsigned long *zone_start_pfn,
  2639. unsigned long *zone_end_pfn)
  2640. {
  2641. /* Only adjust if ZONE_MOVABLE is on this node */
  2642. if (zone_movable_pfn[nid]) {
  2643. /* Size ZONE_MOVABLE */
  2644. if (zone_type == ZONE_MOVABLE) {
  2645. *zone_start_pfn = zone_movable_pfn[nid];
  2646. *zone_end_pfn = min(node_end_pfn,
  2647. arch_zone_highest_possible_pfn[movable_zone]);
  2648. /* Adjust for ZONE_MOVABLE starting within this range */
  2649. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2650. *zone_end_pfn > zone_movable_pfn[nid]) {
  2651. *zone_end_pfn = zone_movable_pfn[nid];
  2652. /* Check if this whole range is within ZONE_MOVABLE */
  2653. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2654. *zone_start_pfn = *zone_end_pfn;
  2655. }
  2656. }
  2657. /*
  2658. * Return the number of pages a zone spans in a node, including holes
  2659. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2660. */
  2661. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2662. unsigned long zone_type,
  2663. unsigned long *ignored)
  2664. {
  2665. unsigned long node_start_pfn, node_end_pfn;
  2666. unsigned long zone_start_pfn, zone_end_pfn;
  2667. /* Get the start and end of the node and zone */
  2668. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2669. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2670. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2671. adjust_zone_range_for_zone_movable(nid, zone_type,
  2672. node_start_pfn, node_end_pfn,
  2673. &zone_start_pfn, &zone_end_pfn);
  2674. /* Check that this node has pages within the zone's required range */
  2675. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2676. return 0;
  2677. /* Move the zone boundaries inside the node if necessary */
  2678. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2679. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2680. /* Return the spanned pages */
  2681. return zone_end_pfn - zone_start_pfn;
  2682. }
  2683. /*
  2684. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2685. * then all holes in the requested range will be accounted for.
  2686. */
  2687. unsigned long __meminit __absent_pages_in_range(int nid,
  2688. unsigned long range_start_pfn,
  2689. unsigned long range_end_pfn)
  2690. {
  2691. int i = 0;
  2692. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2693. unsigned long start_pfn;
  2694. /* Find the end_pfn of the first active range of pfns in the node */
  2695. i = first_active_region_index_in_nid(nid);
  2696. if (i == -1)
  2697. return 0;
  2698. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2699. /* Account for ranges before physical memory on this node */
  2700. if (early_node_map[i].start_pfn > range_start_pfn)
  2701. hole_pages = prev_end_pfn - range_start_pfn;
  2702. /* Find all holes for the zone within the node */
  2703. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2704. /* No need to continue if prev_end_pfn is outside the zone */
  2705. if (prev_end_pfn >= range_end_pfn)
  2706. break;
  2707. /* Make sure the end of the zone is not within the hole */
  2708. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2709. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2710. /* Update the hole size cound and move on */
  2711. if (start_pfn > range_start_pfn) {
  2712. BUG_ON(prev_end_pfn > start_pfn);
  2713. hole_pages += start_pfn - prev_end_pfn;
  2714. }
  2715. prev_end_pfn = early_node_map[i].end_pfn;
  2716. }
  2717. /* Account for ranges past physical memory on this node */
  2718. if (range_end_pfn > prev_end_pfn)
  2719. hole_pages += range_end_pfn -
  2720. max(range_start_pfn, prev_end_pfn);
  2721. return hole_pages;
  2722. }
  2723. /**
  2724. * absent_pages_in_range - Return number of page frames in holes within a range
  2725. * @start_pfn: The start PFN to start searching for holes
  2726. * @end_pfn: The end PFN to stop searching for holes
  2727. *
  2728. * It returns the number of pages frames in memory holes within a range.
  2729. */
  2730. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2731. unsigned long end_pfn)
  2732. {
  2733. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2734. }
  2735. /* Return the number of page frames in holes in a zone on a node */
  2736. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2737. unsigned long zone_type,
  2738. unsigned long *ignored)
  2739. {
  2740. unsigned long node_start_pfn, node_end_pfn;
  2741. unsigned long zone_start_pfn, zone_end_pfn;
  2742. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2743. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2744. node_start_pfn);
  2745. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2746. node_end_pfn);
  2747. adjust_zone_range_for_zone_movable(nid, zone_type,
  2748. node_start_pfn, node_end_pfn,
  2749. &zone_start_pfn, &zone_end_pfn);
  2750. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2751. }
  2752. #else
  2753. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2754. unsigned long zone_type,
  2755. unsigned long *zones_size)
  2756. {
  2757. return zones_size[zone_type];
  2758. }
  2759. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2760. unsigned long zone_type,
  2761. unsigned long *zholes_size)
  2762. {
  2763. if (!zholes_size)
  2764. return 0;
  2765. return zholes_size[zone_type];
  2766. }
  2767. #endif
  2768. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2769. unsigned long *zones_size, unsigned long *zholes_size)
  2770. {
  2771. unsigned long realtotalpages, totalpages = 0;
  2772. enum zone_type i;
  2773. for (i = 0; i < MAX_NR_ZONES; i++)
  2774. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2775. zones_size);
  2776. pgdat->node_spanned_pages = totalpages;
  2777. realtotalpages = totalpages;
  2778. for (i = 0; i < MAX_NR_ZONES; i++)
  2779. realtotalpages -=
  2780. zone_absent_pages_in_node(pgdat->node_id, i,
  2781. zholes_size);
  2782. pgdat->node_present_pages = realtotalpages;
  2783. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2784. realtotalpages);
  2785. }
  2786. #ifndef CONFIG_SPARSEMEM
  2787. /*
  2788. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2789. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2790. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2791. * round what is now in bits to nearest long in bits, then return it in
  2792. * bytes.
  2793. */
  2794. static unsigned long __init usemap_size(unsigned long zonesize)
  2795. {
  2796. unsigned long usemapsize;
  2797. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2798. usemapsize = usemapsize >> pageblock_order;
  2799. usemapsize *= NR_PAGEBLOCK_BITS;
  2800. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2801. return usemapsize / 8;
  2802. }
  2803. static void __init setup_usemap(struct pglist_data *pgdat,
  2804. struct zone *zone, unsigned long zonesize)
  2805. {
  2806. unsigned long usemapsize = usemap_size(zonesize);
  2807. zone->pageblock_flags = NULL;
  2808. if (usemapsize) {
  2809. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2810. memset(zone->pageblock_flags, 0, usemapsize);
  2811. }
  2812. }
  2813. #else
  2814. static void inline setup_usemap(struct pglist_data *pgdat,
  2815. struct zone *zone, unsigned long zonesize) {}
  2816. #endif /* CONFIG_SPARSEMEM */
  2817. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2818. /* Return a sensible default order for the pageblock size. */
  2819. static inline int pageblock_default_order(void)
  2820. {
  2821. if (HPAGE_SHIFT > PAGE_SHIFT)
  2822. return HUGETLB_PAGE_ORDER;
  2823. return MAX_ORDER-1;
  2824. }
  2825. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2826. static inline void __init set_pageblock_order(unsigned int order)
  2827. {
  2828. /* Check that pageblock_nr_pages has not already been setup */
  2829. if (pageblock_order)
  2830. return;
  2831. /*
  2832. * Assume the largest contiguous order of interest is a huge page.
  2833. * This value may be variable depending on boot parameters on IA64
  2834. */
  2835. pageblock_order = order;
  2836. }
  2837. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2838. /*
  2839. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2840. * and pageblock_default_order() are unused as pageblock_order is set
  2841. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2842. * pageblock_order based on the kernel config
  2843. */
  2844. static inline int pageblock_default_order(unsigned int order)
  2845. {
  2846. return MAX_ORDER-1;
  2847. }
  2848. #define set_pageblock_order(x) do {} while (0)
  2849. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2850. /*
  2851. * Set up the zone data structures:
  2852. * - mark all pages reserved
  2853. * - mark all memory queues empty
  2854. * - clear the memory bitmaps
  2855. */
  2856. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2857. unsigned long *zones_size, unsigned long *zholes_size)
  2858. {
  2859. enum zone_type j;
  2860. int nid = pgdat->node_id;
  2861. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2862. int ret;
  2863. pgdat_resize_init(pgdat);
  2864. pgdat->nr_zones = 0;
  2865. init_waitqueue_head(&pgdat->kswapd_wait);
  2866. pgdat->kswapd_max_order = 0;
  2867. for (j = 0; j < MAX_NR_ZONES; j++) {
  2868. struct zone *zone = pgdat->node_zones + j;
  2869. unsigned long size, realsize, memmap_pages;
  2870. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2871. realsize = size - zone_absent_pages_in_node(nid, j,
  2872. zholes_size);
  2873. /*
  2874. * Adjust realsize so that it accounts for how much memory
  2875. * is used by this zone for memmap. This affects the watermark
  2876. * and per-cpu initialisations
  2877. */
  2878. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2879. if (realsize >= memmap_pages) {
  2880. realsize -= memmap_pages;
  2881. printk(KERN_DEBUG
  2882. " %s zone: %lu pages used for memmap\n",
  2883. zone_names[j], memmap_pages);
  2884. } else
  2885. printk(KERN_WARNING
  2886. " %s zone: %lu pages exceeds realsize %lu\n",
  2887. zone_names[j], memmap_pages, realsize);
  2888. /* Account for reserved pages */
  2889. if (j == 0 && realsize > dma_reserve) {
  2890. realsize -= dma_reserve;
  2891. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2892. zone_names[0], dma_reserve);
  2893. }
  2894. if (!is_highmem_idx(j))
  2895. nr_kernel_pages += realsize;
  2896. nr_all_pages += realsize;
  2897. zone->spanned_pages = size;
  2898. zone->present_pages = realsize;
  2899. #ifdef CONFIG_NUMA
  2900. zone->node = nid;
  2901. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2902. / 100;
  2903. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2904. #endif
  2905. zone->name = zone_names[j];
  2906. spin_lock_init(&zone->lock);
  2907. spin_lock_init(&zone->lru_lock);
  2908. zone_seqlock_init(zone);
  2909. zone->zone_pgdat = pgdat;
  2910. zone->prev_priority = DEF_PRIORITY;
  2911. zone_pcp_init(zone);
  2912. INIT_LIST_HEAD(&zone->active_list);
  2913. INIT_LIST_HEAD(&zone->inactive_list);
  2914. zone->nr_scan_active = 0;
  2915. zone->nr_scan_inactive = 0;
  2916. zap_zone_vm_stats(zone);
  2917. zone->flags = 0;
  2918. if (!size)
  2919. continue;
  2920. set_pageblock_order(pageblock_default_order());
  2921. setup_usemap(pgdat, zone, size);
  2922. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2923. size, MEMMAP_EARLY);
  2924. BUG_ON(ret);
  2925. zone_start_pfn += size;
  2926. }
  2927. }
  2928. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2929. {
  2930. /* Skip empty nodes */
  2931. if (!pgdat->node_spanned_pages)
  2932. return;
  2933. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2934. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2935. if (!pgdat->node_mem_map) {
  2936. unsigned long size, start, end;
  2937. struct page *map;
  2938. /*
  2939. * The zone's endpoints aren't required to be MAX_ORDER
  2940. * aligned but the node_mem_map endpoints must be in order
  2941. * for the buddy allocator to function correctly.
  2942. */
  2943. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2944. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2945. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2946. size = (end - start) * sizeof(struct page);
  2947. map = alloc_remap(pgdat->node_id, size);
  2948. if (!map)
  2949. map = alloc_bootmem_node(pgdat, size);
  2950. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2951. }
  2952. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2953. /*
  2954. * With no DISCONTIG, the global mem_map is just set as node 0's
  2955. */
  2956. if (pgdat == NODE_DATA(0)) {
  2957. mem_map = NODE_DATA(0)->node_mem_map;
  2958. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2959. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2960. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  2961. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2962. }
  2963. #endif
  2964. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2965. }
  2966. void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
  2967. unsigned long *zones_size, unsigned long node_start_pfn,
  2968. unsigned long *zholes_size)
  2969. {
  2970. pgdat->node_id = nid;
  2971. pgdat->node_start_pfn = node_start_pfn;
  2972. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2973. alloc_node_mem_map(pgdat);
  2974. free_area_init_core(pgdat, zones_size, zholes_size);
  2975. }
  2976. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2977. #if MAX_NUMNODES > 1
  2978. /*
  2979. * Figure out the number of possible node ids.
  2980. */
  2981. static void __init setup_nr_node_ids(void)
  2982. {
  2983. unsigned int node;
  2984. unsigned int highest = 0;
  2985. for_each_node_mask(node, node_possible_map)
  2986. highest = node;
  2987. nr_node_ids = highest + 1;
  2988. }
  2989. #else
  2990. static inline void setup_nr_node_ids(void)
  2991. {
  2992. }
  2993. #endif
  2994. /**
  2995. * add_active_range - Register a range of PFNs backed by physical memory
  2996. * @nid: The node ID the range resides on
  2997. * @start_pfn: The start PFN of the available physical memory
  2998. * @end_pfn: The end PFN of the available physical memory
  2999. *
  3000. * These ranges are stored in an early_node_map[] and later used by
  3001. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3002. * range spans a memory hole, it is up to the architecture to ensure
  3003. * the memory is not freed by the bootmem allocator. If possible
  3004. * the range being registered will be merged with existing ranges.
  3005. */
  3006. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3007. unsigned long end_pfn)
  3008. {
  3009. int i;
  3010. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  3011. "%d entries of %d used\n",
  3012. nid, start_pfn, end_pfn,
  3013. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3014. /* Merge with existing active regions if possible */
  3015. for (i = 0; i < nr_nodemap_entries; i++) {
  3016. if (early_node_map[i].nid != nid)
  3017. continue;
  3018. /* Skip if an existing region covers this new one */
  3019. if (start_pfn >= early_node_map[i].start_pfn &&
  3020. end_pfn <= early_node_map[i].end_pfn)
  3021. return;
  3022. /* Merge forward if suitable */
  3023. if (start_pfn <= early_node_map[i].end_pfn &&
  3024. end_pfn > early_node_map[i].end_pfn) {
  3025. early_node_map[i].end_pfn = end_pfn;
  3026. return;
  3027. }
  3028. /* Merge backward if suitable */
  3029. if (start_pfn < early_node_map[i].end_pfn &&
  3030. end_pfn >= early_node_map[i].start_pfn) {
  3031. early_node_map[i].start_pfn = start_pfn;
  3032. return;
  3033. }
  3034. }
  3035. /* Check that early_node_map is large enough */
  3036. if (i >= MAX_ACTIVE_REGIONS) {
  3037. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3038. MAX_ACTIVE_REGIONS);
  3039. return;
  3040. }
  3041. early_node_map[i].nid = nid;
  3042. early_node_map[i].start_pfn = start_pfn;
  3043. early_node_map[i].end_pfn = end_pfn;
  3044. nr_nodemap_entries = i + 1;
  3045. }
  3046. /**
  3047. * shrink_active_range - Shrink an existing registered range of PFNs
  3048. * @nid: The node id the range is on that should be shrunk
  3049. * @old_end_pfn: The old end PFN of the range
  3050. * @new_end_pfn: The new PFN of the range
  3051. *
  3052. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3053. * The map is kept at the end physical page range that has already been
  3054. * registered with add_active_range(). This function allows an arch to shrink
  3055. * an existing registered range.
  3056. */
  3057. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  3058. unsigned long new_end_pfn)
  3059. {
  3060. int i;
  3061. /* Find the old active region end and shrink */
  3062. for_each_active_range_index_in_nid(i, nid)
  3063. if (early_node_map[i].end_pfn == old_end_pfn) {
  3064. early_node_map[i].end_pfn = new_end_pfn;
  3065. break;
  3066. }
  3067. }
  3068. /**
  3069. * remove_all_active_ranges - Remove all currently registered regions
  3070. *
  3071. * During discovery, it may be found that a table like SRAT is invalid
  3072. * and an alternative discovery method must be used. This function removes
  3073. * all currently registered regions.
  3074. */
  3075. void __init remove_all_active_ranges(void)
  3076. {
  3077. memset(early_node_map, 0, sizeof(early_node_map));
  3078. nr_nodemap_entries = 0;
  3079. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3080. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3081. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3082. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3083. }
  3084. /* Compare two active node_active_regions */
  3085. static int __init cmp_node_active_region(const void *a, const void *b)
  3086. {
  3087. struct node_active_region *arange = (struct node_active_region *)a;
  3088. struct node_active_region *brange = (struct node_active_region *)b;
  3089. /* Done this way to avoid overflows */
  3090. if (arange->start_pfn > brange->start_pfn)
  3091. return 1;
  3092. if (arange->start_pfn < brange->start_pfn)
  3093. return -1;
  3094. return 0;
  3095. }
  3096. /* sort the node_map by start_pfn */
  3097. static void __init sort_node_map(void)
  3098. {
  3099. sort(early_node_map, (size_t)nr_nodemap_entries,
  3100. sizeof(struct node_active_region),
  3101. cmp_node_active_region, NULL);
  3102. }
  3103. /* Find the lowest pfn for a node */
  3104. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  3105. {
  3106. int i;
  3107. unsigned long min_pfn = ULONG_MAX;
  3108. /* Assuming a sorted map, the first range found has the starting pfn */
  3109. for_each_active_range_index_in_nid(i, nid)
  3110. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3111. if (min_pfn == ULONG_MAX) {
  3112. printk(KERN_WARNING
  3113. "Could not find start_pfn for node %lu\n", nid);
  3114. return 0;
  3115. }
  3116. return min_pfn;
  3117. }
  3118. /**
  3119. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3120. *
  3121. * It returns the minimum PFN based on information provided via
  3122. * add_active_range().
  3123. */
  3124. unsigned long __init find_min_pfn_with_active_regions(void)
  3125. {
  3126. return find_min_pfn_for_node(MAX_NUMNODES);
  3127. }
  3128. /**
  3129. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3130. *
  3131. * It returns the maximum PFN based on information provided via
  3132. * add_active_range().
  3133. */
  3134. unsigned long __init find_max_pfn_with_active_regions(void)
  3135. {
  3136. int i;
  3137. unsigned long max_pfn = 0;
  3138. for (i = 0; i < nr_nodemap_entries; i++)
  3139. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3140. return max_pfn;
  3141. }
  3142. /*
  3143. * early_calculate_totalpages()
  3144. * Sum pages in active regions for movable zone.
  3145. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3146. */
  3147. static unsigned long __init early_calculate_totalpages(void)
  3148. {
  3149. int i;
  3150. unsigned long totalpages = 0;
  3151. for (i = 0; i < nr_nodemap_entries; i++) {
  3152. unsigned long pages = early_node_map[i].end_pfn -
  3153. early_node_map[i].start_pfn;
  3154. totalpages += pages;
  3155. if (pages)
  3156. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3157. }
  3158. return totalpages;
  3159. }
  3160. /*
  3161. * Find the PFN the Movable zone begins in each node. Kernel memory
  3162. * is spread evenly between nodes as long as the nodes have enough
  3163. * memory. When they don't, some nodes will have more kernelcore than
  3164. * others
  3165. */
  3166. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3167. {
  3168. int i, nid;
  3169. unsigned long usable_startpfn;
  3170. unsigned long kernelcore_node, kernelcore_remaining;
  3171. unsigned long totalpages = early_calculate_totalpages();
  3172. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3173. /*
  3174. * If movablecore was specified, calculate what size of
  3175. * kernelcore that corresponds so that memory usable for
  3176. * any allocation type is evenly spread. If both kernelcore
  3177. * and movablecore are specified, then the value of kernelcore
  3178. * will be used for required_kernelcore if it's greater than
  3179. * what movablecore would have allowed.
  3180. */
  3181. if (required_movablecore) {
  3182. unsigned long corepages;
  3183. /*
  3184. * Round-up so that ZONE_MOVABLE is at least as large as what
  3185. * was requested by the user
  3186. */
  3187. required_movablecore =
  3188. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3189. corepages = totalpages - required_movablecore;
  3190. required_kernelcore = max(required_kernelcore, corepages);
  3191. }
  3192. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3193. if (!required_kernelcore)
  3194. return;
  3195. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3196. find_usable_zone_for_movable();
  3197. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3198. restart:
  3199. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3200. kernelcore_node = required_kernelcore / usable_nodes;
  3201. for_each_node_state(nid, N_HIGH_MEMORY) {
  3202. /*
  3203. * Recalculate kernelcore_node if the division per node
  3204. * now exceeds what is necessary to satisfy the requested
  3205. * amount of memory for the kernel
  3206. */
  3207. if (required_kernelcore < kernelcore_node)
  3208. kernelcore_node = required_kernelcore / usable_nodes;
  3209. /*
  3210. * As the map is walked, we track how much memory is usable
  3211. * by the kernel using kernelcore_remaining. When it is
  3212. * 0, the rest of the node is usable by ZONE_MOVABLE
  3213. */
  3214. kernelcore_remaining = kernelcore_node;
  3215. /* Go through each range of PFNs within this node */
  3216. for_each_active_range_index_in_nid(i, nid) {
  3217. unsigned long start_pfn, end_pfn;
  3218. unsigned long size_pages;
  3219. start_pfn = max(early_node_map[i].start_pfn,
  3220. zone_movable_pfn[nid]);
  3221. end_pfn = early_node_map[i].end_pfn;
  3222. if (start_pfn >= end_pfn)
  3223. continue;
  3224. /* Account for what is only usable for kernelcore */
  3225. if (start_pfn < usable_startpfn) {
  3226. unsigned long kernel_pages;
  3227. kernel_pages = min(end_pfn, usable_startpfn)
  3228. - start_pfn;
  3229. kernelcore_remaining -= min(kernel_pages,
  3230. kernelcore_remaining);
  3231. required_kernelcore -= min(kernel_pages,
  3232. required_kernelcore);
  3233. /* Continue if range is now fully accounted */
  3234. if (end_pfn <= usable_startpfn) {
  3235. /*
  3236. * Push zone_movable_pfn to the end so
  3237. * that if we have to rebalance
  3238. * kernelcore across nodes, we will
  3239. * not double account here
  3240. */
  3241. zone_movable_pfn[nid] = end_pfn;
  3242. continue;
  3243. }
  3244. start_pfn = usable_startpfn;
  3245. }
  3246. /*
  3247. * The usable PFN range for ZONE_MOVABLE is from
  3248. * start_pfn->end_pfn. Calculate size_pages as the
  3249. * number of pages used as kernelcore
  3250. */
  3251. size_pages = end_pfn - start_pfn;
  3252. if (size_pages > kernelcore_remaining)
  3253. size_pages = kernelcore_remaining;
  3254. zone_movable_pfn[nid] = start_pfn + size_pages;
  3255. /*
  3256. * Some kernelcore has been met, update counts and
  3257. * break if the kernelcore for this node has been
  3258. * satisified
  3259. */
  3260. required_kernelcore -= min(required_kernelcore,
  3261. size_pages);
  3262. kernelcore_remaining -= size_pages;
  3263. if (!kernelcore_remaining)
  3264. break;
  3265. }
  3266. }
  3267. /*
  3268. * If there is still required_kernelcore, we do another pass with one
  3269. * less node in the count. This will push zone_movable_pfn[nid] further
  3270. * along on the nodes that still have memory until kernelcore is
  3271. * satisified
  3272. */
  3273. usable_nodes--;
  3274. if (usable_nodes && required_kernelcore > usable_nodes)
  3275. goto restart;
  3276. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3277. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3278. zone_movable_pfn[nid] =
  3279. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3280. }
  3281. /* Any regular memory on that node ? */
  3282. static void check_for_regular_memory(pg_data_t *pgdat)
  3283. {
  3284. #ifdef CONFIG_HIGHMEM
  3285. enum zone_type zone_type;
  3286. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3287. struct zone *zone = &pgdat->node_zones[zone_type];
  3288. if (zone->present_pages)
  3289. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3290. }
  3291. #endif
  3292. }
  3293. /**
  3294. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3295. * @max_zone_pfn: an array of max PFNs for each zone
  3296. *
  3297. * This will call free_area_init_node() for each active node in the system.
  3298. * Using the page ranges provided by add_active_range(), the size of each
  3299. * zone in each node and their holes is calculated. If the maximum PFN
  3300. * between two adjacent zones match, it is assumed that the zone is empty.
  3301. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3302. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3303. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3304. * at arch_max_dma_pfn.
  3305. */
  3306. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3307. {
  3308. unsigned long nid;
  3309. enum zone_type i;
  3310. /* Sort early_node_map as initialisation assumes it is sorted */
  3311. sort_node_map();
  3312. /* Record where the zone boundaries are */
  3313. memset(arch_zone_lowest_possible_pfn, 0,
  3314. sizeof(arch_zone_lowest_possible_pfn));
  3315. memset(arch_zone_highest_possible_pfn, 0,
  3316. sizeof(arch_zone_highest_possible_pfn));
  3317. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3318. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3319. for (i = 1; i < MAX_NR_ZONES; i++) {
  3320. if (i == ZONE_MOVABLE)
  3321. continue;
  3322. arch_zone_lowest_possible_pfn[i] =
  3323. arch_zone_highest_possible_pfn[i-1];
  3324. arch_zone_highest_possible_pfn[i] =
  3325. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3326. }
  3327. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3328. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3329. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3330. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3331. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3332. /* Print out the zone ranges */
  3333. printk("Zone PFN ranges:\n");
  3334. for (i = 0; i < MAX_NR_ZONES; i++) {
  3335. if (i == ZONE_MOVABLE)
  3336. continue;
  3337. printk(" %-8s %8lu -> %8lu\n",
  3338. zone_names[i],
  3339. arch_zone_lowest_possible_pfn[i],
  3340. arch_zone_highest_possible_pfn[i]);
  3341. }
  3342. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3343. printk("Movable zone start PFN for each node\n");
  3344. for (i = 0; i < MAX_NUMNODES; i++) {
  3345. if (zone_movable_pfn[i])
  3346. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3347. }
  3348. /* Print out the early_node_map[] */
  3349. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3350. for (i = 0; i < nr_nodemap_entries; i++)
  3351. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3352. early_node_map[i].start_pfn,
  3353. early_node_map[i].end_pfn);
  3354. /* Initialise every node */
  3355. setup_nr_node_ids();
  3356. for_each_online_node(nid) {
  3357. pg_data_t *pgdat = NODE_DATA(nid);
  3358. free_area_init_node(nid, pgdat, NULL,
  3359. find_min_pfn_for_node(nid), NULL);
  3360. /* Any memory on that node */
  3361. if (pgdat->node_present_pages)
  3362. node_set_state(nid, N_HIGH_MEMORY);
  3363. check_for_regular_memory(pgdat);
  3364. }
  3365. }
  3366. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3367. {
  3368. unsigned long long coremem;
  3369. if (!p)
  3370. return -EINVAL;
  3371. coremem = memparse(p, &p);
  3372. *core = coremem >> PAGE_SHIFT;
  3373. /* Paranoid check that UL is enough for the coremem value */
  3374. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3375. return 0;
  3376. }
  3377. /*
  3378. * kernelcore=size sets the amount of memory for use for allocations that
  3379. * cannot be reclaimed or migrated.
  3380. */
  3381. static int __init cmdline_parse_kernelcore(char *p)
  3382. {
  3383. return cmdline_parse_core(p, &required_kernelcore);
  3384. }
  3385. /*
  3386. * movablecore=size sets the amount of memory for use for allocations that
  3387. * can be reclaimed or migrated.
  3388. */
  3389. static int __init cmdline_parse_movablecore(char *p)
  3390. {
  3391. return cmdline_parse_core(p, &required_movablecore);
  3392. }
  3393. early_param("kernelcore", cmdline_parse_kernelcore);
  3394. early_param("movablecore", cmdline_parse_movablecore);
  3395. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3396. /**
  3397. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3398. * @new_dma_reserve: The number of pages to mark reserved
  3399. *
  3400. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3401. * In the DMA zone, a significant percentage may be consumed by kernel image
  3402. * and other unfreeable allocations which can skew the watermarks badly. This
  3403. * function may optionally be used to account for unfreeable pages in the
  3404. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3405. * smaller per-cpu batchsize.
  3406. */
  3407. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3408. {
  3409. dma_reserve = new_dma_reserve;
  3410. }
  3411. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3412. static bootmem_data_t contig_bootmem_data;
  3413. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3414. EXPORT_SYMBOL(contig_page_data);
  3415. #endif
  3416. void __init free_area_init(unsigned long *zones_size)
  3417. {
  3418. free_area_init_node(0, NODE_DATA(0), zones_size,
  3419. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3420. }
  3421. static int page_alloc_cpu_notify(struct notifier_block *self,
  3422. unsigned long action, void *hcpu)
  3423. {
  3424. int cpu = (unsigned long)hcpu;
  3425. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3426. drain_pages(cpu);
  3427. /*
  3428. * Spill the event counters of the dead processor
  3429. * into the current processors event counters.
  3430. * This artificially elevates the count of the current
  3431. * processor.
  3432. */
  3433. vm_events_fold_cpu(cpu);
  3434. /*
  3435. * Zero the differential counters of the dead processor
  3436. * so that the vm statistics are consistent.
  3437. *
  3438. * This is only okay since the processor is dead and cannot
  3439. * race with what we are doing.
  3440. */
  3441. refresh_cpu_vm_stats(cpu);
  3442. }
  3443. return NOTIFY_OK;
  3444. }
  3445. void __init page_alloc_init(void)
  3446. {
  3447. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3448. }
  3449. /*
  3450. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3451. * or min_free_kbytes changes.
  3452. */
  3453. static void calculate_totalreserve_pages(void)
  3454. {
  3455. struct pglist_data *pgdat;
  3456. unsigned long reserve_pages = 0;
  3457. enum zone_type i, j;
  3458. for_each_online_pgdat(pgdat) {
  3459. for (i = 0; i < MAX_NR_ZONES; i++) {
  3460. struct zone *zone = pgdat->node_zones + i;
  3461. unsigned long max = 0;
  3462. /* Find valid and maximum lowmem_reserve in the zone */
  3463. for (j = i; j < MAX_NR_ZONES; j++) {
  3464. if (zone->lowmem_reserve[j] > max)
  3465. max = zone->lowmem_reserve[j];
  3466. }
  3467. /* we treat pages_high as reserved pages. */
  3468. max += zone->pages_high;
  3469. if (max > zone->present_pages)
  3470. max = zone->present_pages;
  3471. reserve_pages += max;
  3472. }
  3473. }
  3474. totalreserve_pages = reserve_pages;
  3475. }
  3476. /*
  3477. * setup_per_zone_lowmem_reserve - called whenever
  3478. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3479. * has a correct pages reserved value, so an adequate number of
  3480. * pages are left in the zone after a successful __alloc_pages().
  3481. */
  3482. static void setup_per_zone_lowmem_reserve(void)
  3483. {
  3484. struct pglist_data *pgdat;
  3485. enum zone_type j, idx;
  3486. for_each_online_pgdat(pgdat) {
  3487. for (j = 0; j < MAX_NR_ZONES; j++) {
  3488. struct zone *zone = pgdat->node_zones + j;
  3489. unsigned long present_pages = zone->present_pages;
  3490. zone->lowmem_reserve[j] = 0;
  3491. idx = j;
  3492. while (idx) {
  3493. struct zone *lower_zone;
  3494. idx--;
  3495. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3496. sysctl_lowmem_reserve_ratio[idx] = 1;
  3497. lower_zone = pgdat->node_zones + idx;
  3498. lower_zone->lowmem_reserve[j] = present_pages /
  3499. sysctl_lowmem_reserve_ratio[idx];
  3500. present_pages += lower_zone->present_pages;
  3501. }
  3502. }
  3503. }
  3504. /* update totalreserve_pages */
  3505. calculate_totalreserve_pages();
  3506. }
  3507. /**
  3508. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3509. *
  3510. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3511. * with respect to min_free_kbytes.
  3512. */
  3513. void setup_per_zone_pages_min(void)
  3514. {
  3515. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3516. unsigned long lowmem_pages = 0;
  3517. struct zone *zone;
  3518. unsigned long flags;
  3519. /* Calculate total number of !ZONE_HIGHMEM pages */
  3520. for_each_zone(zone) {
  3521. if (!is_highmem(zone))
  3522. lowmem_pages += zone->present_pages;
  3523. }
  3524. for_each_zone(zone) {
  3525. u64 tmp;
  3526. spin_lock_irqsave(&zone->lru_lock, flags);
  3527. tmp = (u64)pages_min * zone->present_pages;
  3528. do_div(tmp, lowmem_pages);
  3529. if (is_highmem(zone)) {
  3530. /*
  3531. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3532. * need highmem pages, so cap pages_min to a small
  3533. * value here.
  3534. *
  3535. * The (pages_high-pages_low) and (pages_low-pages_min)
  3536. * deltas controls asynch page reclaim, and so should
  3537. * not be capped for highmem.
  3538. */
  3539. int min_pages;
  3540. min_pages = zone->present_pages / 1024;
  3541. if (min_pages < SWAP_CLUSTER_MAX)
  3542. min_pages = SWAP_CLUSTER_MAX;
  3543. if (min_pages > 128)
  3544. min_pages = 128;
  3545. zone->pages_min = min_pages;
  3546. } else {
  3547. /*
  3548. * If it's a lowmem zone, reserve a number of pages
  3549. * proportionate to the zone's size.
  3550. */
  3551. zone->pages_min = tmp;
  3552. }
  3553. zone->pages_low = zone->pages_min + (tmp >> 2);
  3554. zone->pages_high = zone->pages_min + (tmp >> 1);
  3555. setup_zone_migrate_reserve(zone);
  3556. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3557. }
  3558. /* update totalreserve_pages */
  3559. calculate_totalreserve_pages();
  3560. }
  3561. /*
  3562. * Initialise min_free_kbytes.
  3563. *
  3564. * For small machines we want it small (128k min). For large machines
  3565. * we want it large (64MB max). But it is not linear, because network
  3566. * bandwidth does not increase linearly with machine size. We use
  3567. *
  3568. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3569. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3570. *
  3571. * which yields
  3572. *
  3573. * 16MB: 512k
  3574. * 32MB: 724k
  3575. * 64MB: 1024k
  3576. * 128MB: 1448k
  3577. * 256MB: 2048k
  3578. * 512MB: 2896k
  3579. * 1024MB: 4096k
  3580. * 2048MB: 5792k
  3581. * 4096MB: 8192k
  3582. * 8192MB: 11584k
  3583. * 16384MB: 16384k
  3584. */
  3585. static int __init init_per_zone_pages_min(void)
  3586. {
  3587. unsigned long lowmem_kbytes;
  3588. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3589. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3590. if (min_free_kbytes < 128)
  3591. min_free_kbytes = 128;
  3592. if (min_free_kbytes > 65536)
  3593. min_free_kbytes = 65536;
  3594. setup_per_zone_pages_min();
  3595. setup_per_zone_lowmem_reserve();
  3596. return 0;
  3597. }
  3598. module_init(init_per_zone_pages_min)
  3599. /*
  3600. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3601. * that we can call two helper functions whenever min_free_kbytes
  3602. * changes.
  3603. */
  3604. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3605. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3606. {
  3607. proc_dointvec(table, write, file, buffer, length, ppos);
  3608. if (write)
  3609. setup_per_zone_pages_min();
  3610. return 0;
  3611. }
  3612. #ifdef CONFIG_NUMA
  3613. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3614. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3615. {
  3616. struct zone *zone;
  3617. int rc;
  3618. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3619. if (rc)
  3620. return rc;
  3621. for_each_zone(zone)
  3622. zone->min_unmapped_pages = (zone->present_pages *
  3623. sysctl_min_unmapped_ratio) / 100;
  3624. return 0;
  3625. }
  3626. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3627. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3628. {
  3629. struct zone *zone;
  3630. int rc;
  3631. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3632. if (rc)
  3633. return rc;
  3634. for_each_zone(zone)
  3635. zone->min_slab_pages = (zone->present_pages *
  3636. sysctl_min_slab_ratio) / 100;
  3637. return 0;
  3638. }
  3639. #endif
  3640. /*
  3641. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3642. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3643. * whenever sysctl_lowmem_reserve_ratio changes.
  3644. *
  3645. * The reserve ratio obviously has absolutely no relation with the
  3646. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3647. * if in function of the boot time zone sizes.
  3648. */
  3649. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3650. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3651. {
  3652. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3653. setup_per_zone_lowmem_reserve();
  3654. return 0;
  3655. }
  3656. /*
  3657. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3658. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3659. * can have before it gets flushed back to buddy allocator.
  3660. */
  3661. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3662. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3663. {
  3664. struct zone *zone;
  3665. unsigned int cpu;
  3666. int ret;
  3667. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3668. if (!write || (ret == -EINVAL))
  3669. return ret;
  3670. for_each_zone(zone) {
  3671. for_each_online_cpu(cpu) {
  3672. unsigned long high;
  3673. high = zone->present_pages / percpu_pagelist_fraction;
  3674. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3675. }
  3676. }
  3677. return 0;
  3678. }
  3679. int hashdist = HASHDIST_DEFAULT;
  3680. #ifdef CONFIG_NUMA
  3681. static int __init set_hashdist(char *str)
  3682. {
  3683. if (!str)
  3684. return 0;
  3685. hashdist = simple_strtoul(str, &str, 0);
  3686. return 1;
  3687. }
  3688. __setup("hashdist=", set_hashdist);
  3689. #endif
  3690. /*
  3691. * allocate a large system hash table from bootmem
  3692. * - it is assumed that the hash table must contain an exact power-of-2
  3693. * quantity of entries
  3694. * - limit is the number of hash buckets, not the total allocation size
  3695. */
  3696. void *__init alloc_large_system_hash(const char *tablename,
  3697. unsigned long bucketsize,
  3698. unsigned long numentries,
  3699. int scale,
  3700. int flags,
  3701. unsigned int *_hash_shift,
  3702. unsigned int *_hash_mask,
  3703. unsigned long limit)
  3704. {
  3705. unsigned long long max = limit;
  3706. unsigned long log2qty, size;
  3707. void *table = NULL;
  3708. /* allow the kernel cmdline to have a say */
  3709. if (!numentries) {
  3710. /* round applicable memory size up to nearest megabyte */
  3711. numentries = nr_kernel_pages;
  3712. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3713. numentries >>= 20 - PAGE_SHIFT;
  3714. numentries <<= 20 - PAGE_SHIFT;
  3715. /* limit to 1 bucket per 2^scale bytes of low memory */
  3716. if (scale > PAGE_SHIFT)
  3717. numentries >>= (scale - PAGE_SHIFT);
  3718. else
  3719. numentries <<= (PAGE_SHIFT - scale);
  3720. /* Make sure we've got at least a 0-order allocation.. */
  3721. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3722. numentries = PAGE_SIZE / bucketsize;
  3723. }
  3724. numentries = roundup_pow_of_two(numentries);
  3725. /* limit allocation size to 1/16 total memory by default */
  3726. if (max == 0) {
  3727. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3728. do_div(max, bucketsize);
  3729. }
  3730. if (numentries > max)
  3731. numentries = max;
  3732. log2qty = ilog2(numentries);
  3733. do {
  3734. size = bucketsize << log2qty;
  3735. if (flags & HASH_EARLY)
  3736. table = alloc_bootmem(size);
  3737. else if (hashdist)
  3738. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3739. else {
  3740. unsigned long order;
  3741. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3742. ;
  3743. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3744. /*
  3745. * If bucketsize is not a power-of-two, we may free
  3746. * some pages at the end of hash table.
  3747. */
  3748. if (table) {
  3749. unsigned long alloc_end = (unsigned long)table +
  3750. (PAGE_SIZE << order);
  3751. unsigned long used = (unsigned long)table +
  3752. PAGE_ALIGN(size);
  3753. split_page(virt_to_page(table), order);
  3754. while (used < alloc_end) {
  3755. free_page(used);
  3756. used += PAGE_SIZE;
  3757. }
  3758. }
  3759. }
  3760. } while (!table && size > PAGE_SIZE && --log2qty);
  3761. if (!table)
  3762. panic("Failed to allocate %s hash table\n", tablename);
  3763. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3764. tablename,
  3765. (1U << log2qty),
  3766. ilog2(size) - PAGE_SHIFT,
  3767. size);
  3768. if (_hash_shift)
  3769. *_hash_shift = log2qty;
  3770. if (_hash_mask)
  3771. *_hash_mask = (1 << log2qty) - 1;
  3772. return table;
  3773. }
  3774. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3775. struct page *pfn_to_page(unsigned long pfn)
  3776. {
  3777. return __pfn_to_page(pfn);
  3778. }
  3779. unsigned long page_to_pfn(struct page *page)
  3780. {
  3781. return __page_to_pfn(page);
  3782. }
  3783. EXPORT_SYMBOL(pfn_to_page);
  3784. EXPORT_SYMBOL(page_to_pfn);
  3785. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3786. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3787. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3788. unsigned long pfn)
  3789. {
  3790. #ifdef CONFIG_SPARSEMEM
  3791. return __pfn_to_section(pfn)->pageblock_flags;
  3792. #else
  3793. return zone->pageblock_flags;
  3794. #endif /* CONFIG_SPARSEMEM */
  3795. }
  3796. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3797. {
  3798. #ifdef CONFIG_SPARSEMEM
  3799. pfn &= (PAGES_PER_SECTION-1);
  3800. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3801. #else
  3802. pfn = pfn - zone->zone_start_pfn;
  3803. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3804. #endif /* CONFIG_SPARSEMEM */
  3805. }
  3806. /**
  3807. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3808. * @page: The page within the block of interest
  3809. * @start_bitidx: The first bit of interest to retrieve
  3810. * @end_bitidx: The last bit of interest
  3811. * returns pageblock_bits flags
  3812. */
  3813. unsigned long get_pageblock_flags_group(struct page *page,
  3814. int start_bitidx, int end_bitidx)
  3815. {
  3816. struct zone *zone;
  3817. unsigned long *bitmap;
  3818. unsigned long pfn, bitidx;
  3819. unsigned long flags = 0;
  3820. unsigned long value = 1;
  3821. zone = page_zone(page);
  3822. pfn = page_to_pfn(page);
  3823. bitmap = get_pageblock_bitmap(zone, pfn);
  3824. bitidx = pfn_to_bitidx(zone, pfn);
  3825. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3826. if (test_bit(bitidx + start_bitidx, bitmap))
  3827. flags |= value;
  3828. return flags;
  3829. }
  3830. /**
  3831. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3832. * @page: The page within the block of interest
  3833. * @start_bitidx: The first bit of interest
  3834. * @end_bitidx: The last bit of interest
  3835. * @flags: The flags to set
  3836. */
  3837. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3838. int start_bitidx, int end_bitidx)
  3839. {
  3840. struct zone *zone;
  3841. unsigned long *bitmap;
  3842. unsigned long pfn, bitidx;
  3843. unsigned long value = 1;
  3844. zone = page_zone(page);
  3845. pfn = page_to_pfn(page);
  3846. bitmap = get_pageblock_bitmap(zone, pfn);
  3847. bitidx = pfn_to_bitidx(zone, pfn);
  3848. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3849. if (flags & value)
  3850. __set_bit(bitidx + start_bitidx, bitmap);
  3851. else
  3852. __clear_bit(bitidx + start_bitidx, bitmap);
  3853. }
  3854. /*
  3855. * This is designed as sub function...plz see page_isolation.c also.
  3856. * set/clear page block's type to be ISOLATE.
  3857. * page allocater never alloc memory from ISOLATE block.
  3858. */
  3859. int set_migratetype_isolate(struct page *page)
  3860. {
  3861. struct zone *zone;
  3862. unsigned long flags;
  3863. int ret = -EBUSY;
  3864. zone = page_zone(page);
  3865. spin_lock_irqsave(&zone->lock, flags);
  3866. /*
  3867. * In future, more migrate types will be able to be isolation target.
  3868. */
  3869. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3870. goto out;
  3871. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3872. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3873. ret = 0;
  3874. out:
  3875. spin_unlock_irqrestore(&zone->lock, flags);
  3876. if (!ret)
  3877. drain_all_pages();
  3878. return ret;
  3879. }
  3880. void unset_migratetype_isolate(struct page *page)
  3881. {
  3882. struct zone *zone;
  3883. unsigned long flags;
  3884. zone = page_zone(page);
  3885. spin_lock_irqsave(&zone->lock, flags);
  3886. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3887. goto out;
  3888. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3889. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3890. out:
  3891. spin_unlock_irqrestore(&zone->lock, flags);
  3892. }
  3893. #ifdef CONFIG_MEMORY_HOTREMOVE
  3894. /*
  3895. * All pages in the range must be isolated before calling this.
  3896. */
  3897. void
  3898. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3899. {
  3900. struct page *page;
  3901. struct zone *zone;
  3902. int order, i;
  3903. unsigned long pfn;
  3904. unsigned long flags;
  3905. /* find the first valid pfn */
  3906. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3907. if (pfn_valid(pfn))
  3908. break;
  3909. if (pfn == end_pfn)
  3910. return;
  3911. zone = page_zone(pfn_to_page(pfn));
  3912. spin_lock_irqsave(&zone->lock, flags);
  3913. pfn = start_pfn;
  3914. while (pfn < end_pfn) {
  3915. if (!pfn_valid(pfn)) {
  3916. pfn++;
  3917. continue;
  3918. }
  3919. page = pfn_to_page(pfn);
  3920. BUG_ON(page_count(page));
  3921. BUG_ON(!PageBuddy(page));
  3922. order = page_order(page);
  3923. #ifdef CONFIG_DEBUG_VM
  3924. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3925. pfn, 1 << order, end_pfn);
  3926. #endif
  3927. list_del(&page->lru);
  3928. rmv_page_order(page);
  3929. zone->free_area[order].nr_free--;
  3930. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3931. - (1UL << order));
  3932. for (i = 0; i < (1 << order); i++)
  3933. SetPageReserved((page+i));
  3934. pfn += (1 << order);
  3935. }
  3936. spin_unlock_irqrestore(&zone->lock, flags);
  3937. }
  3938. #endif