1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216 |
- /*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
- #ifdef CONFIG_SMP
- static inline int rt_overloaded(struct rq *rq)
- {
- return atomic_read(&rq->rd->rto_count);
- }
- static inline void rt_set_overload(struct rq *rq)
- {
- cpu_set(rq->cpu, rq->rd->rto_mask);
- /*
- * Make sure the mask is visible before we set
- * the overload count. That is checked to determine
- * if we should look at the mask. It would be a shame
- * if we looked at the mask, but the mask was not
- * updated yet.
- */
- wmb();
- atomic_inc(&rq->rd->rto_count);
- }
- static inline void rt_clear_overload(struct rq *rq)
- {
- /* the order here really doesn't matter */
- atomic_dec(&rq->rd->rto_count);
- cpu_clear(rq->cpu, rq->rd->rto_mask);
- }
- static void update_rt_migration(struct rq *rq)
- {
- if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
- if (!rq->rt.overloaded) {
- rt_set_overload(rq);
- rq->rt.overloaded = 1;
- }
- } else if (rq->rt.overloaded) {
- rt_clear_overload(rq);
- rq->rt.overloaded = 0;
- }
- }
- #endif /* CONFIG_SMP */
- static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
- {
- return container_of(rt_se, struct task_struct, rt);
- }
- static inline int on_rt_rq(struct sched_rt_entity *rt_se)
- {
- return !list_empty(&rt_se->run_list);
- }
- #ifdef CONFIG_RT_GROUP_SCHED
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- if (!rt_rq->tg)
- return RUNTIME_INF;
- return rt_rq->tg->rt_runtime;
- }
- #define for_each_leaf_rt_rq(rt_rq, rq) \
- list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return rt_rq->rq;
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- return rt_se->rt_rq;
- }
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = rt_se->parent)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return rt_se->my_q;
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
- static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- struct sched_rt_entity *rt_se = rt_rq->rt_se;
- if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
- struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
- enqueue_rt_entity(rt_se);
- if (rt_rq->highest_prio < curr->prio)
- resched_task(curr);
- }
- }
- static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- struct sched_rt_entity *rt_se = rt_rq->rt_se;
- if (rt_se && on_rt_rq(rt_se))
- dequeue_rt_entity(rt_se);
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
- }
- static int rt_se_boosted(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- struct task_struct *p;
- if (rt_rq)
- return !!rt_rq->rt_nr_boosted;
- p = rt_task_of(rt_se);
- return p->prio != p->normal_prio;
- }
- #else
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- if (sysctl_sched_rt_runtime == -1)
- return RUNTIME_INF;
- return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
- }
- #define for_each_leaf_rt_rq(rt_rq, rq) \
- for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return container_of(rt_rq, struct rq, rt);
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- struct task_struct *p = rt_task_of(rt_se);
- struct rq *rq = task_rq(p);
- return &rq->rt;
- }
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = NULL)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return NULL;
- }
- static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- }
- static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled;
- }
- #endif
- static inline int rt_se_prio(struct sched_rt_entity *rt_se)
- {
- #ifdef CONFIG_RT_GROUP_SCHED
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- if (rt_rq)
- return rt_rq->highest_prio;
- #endif
- return rt_task_of(rt_se)->prio;
- }
- static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
- {
- u64 runtime = sched_rt_runtime(rt_rq);
- if (runtime == RUNTIME_INF)
- return 0;
- if (rt_rq->rt_throttled)
- return rt_rq_throttled(rt_rq);
- if (rt_rq->rt_time > runtime) {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- rq->rt_throttled = 1;
- rt_rq->rt_throttled = 1;
- if (rt_rq_throttled(rt_rq)) {
- sched_rt_rq_dequeue(rt_rq);
- return 1;
- }
- }
- return 0;
- }
- static void update_sched_rt_period(struct rq *rq)
- {
- struct rt_rq *rt_rq;
- u64 period;
- while (rq->clock > rq->rt_period_expire) {
- period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
- rq->rt_period_expire += period;
- for_each_leaf_rt_rq(rt_rq, rq) {
- u64 runtime = sched_rt_runtime(rt_rq);
- rt_rq->rt_time -= min(rt_rq->rt_time, runtime);
- if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
- rt_rq->rt_throttled = 0;
- sched_rt_rq_enqueue(rt_rq);
- }
- }
- rq->rt_throttled = 0;
- }
- }
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static void update_curr_rt(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- struct sched_rt_entity *rt_se = &curr->rt;
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- u64 delta_exec;
- if (!task_has_rt_policy(curr))
- return;
- delta_exec = rq->clock - curr->se.exec_start;
- if (unlikely((s64)delta_exec < 0))
- delta_exec = 0;
- schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
- curr->se.sum_exec_runtime += delta_exec;
- curr->se.exec_start = rq->clock;
- cpuacct_charge(curr, delta_exec);
- rt_rq->rt_time += delta_exec;
- if (sched_rt_runtime_exceeded(rt_rq))
- resched_task(curr);
- }
- static inline
- void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
- rt_rq->rt_nr_running++;
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- if (rt_se_prio(rt_se) < rt_rq->highest_prio)
- rt_rq->highest_prio = rt_se_prio(rt_se);
- #endif
- #ifdef CONFIG_SMP
- if (rt_se->nr_cpus_allowed > 1) {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- rq->rt.rt_nr_migratory++;
- }
- update_rt_migration(rq_of_rt_rq(rt_rq));
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted++;
- #endif
- }
- static inline
- void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
- WARN_ON(!rt_rq->rt_nr_running);
- rt_rq->rt_nr_running--;
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- if (rt_rq->rt_nr_running) {
- struct rt_prio_array *array;
- WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
- if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
- /* recalculate */
- array = &rt_rq->active;
- rt_rq->highest_prio =
- sched_find_first_bit(array->bitmap);
- } /* otherwise leave rq->highest prio alone */
- } else
- rt_rq->highest_prio = MAX_RT_PRIO;
- #endif
- #ifdef CONFIG_SMP
- if (rt_se->nr_cpus_allowed > 1) {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- rq->rt.rt_nr_migratory--;
- }
- update_rt_migration(rq_of_rt_rq(rt_rq));
- #endif /* CONFIG_SMP */
- #ifdef CONFIG_RT_GROUP_SCHED
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted--;
- WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
- #endif
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- struct rt_rq *group_rq = group_rt_rq(rt_se);
- if (group_rq && rt_rq_throttled(group_rq))
- return;
- list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
- __set_bit(rt_se_prio(rt_se), array->bitmap);
- inc_rt_tasks(rt_se, rt_rq);
- }
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- list_del_init(&rt_se->run_list);
- if (list_empty(array->queue + rt_se_prio(rt_se)))
- __clear_bit(rt_se_prio(rt_se), array->bitmap);
- dec_rt_tasks(rt_se, rt_rq);
- }
- /*
- * Because the prio of an upper entry depends on the lower
- * entries, we must remove entries top - down.
- *
- * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
- * doesn't matter much for now, as h=2 for GROUP_SCHED.
- */
- static void dequeue_rt_stack(struct task_struct *p)
- {
- struct sched_rt_entity *rt_se, *top_se;
- /*
- * dequeue all, top - down.
- */
- do {
- rt_se = &p->rt;
- top_se = NULL;
- for_each_sched_rt_entity(rt_se) {
- if (on_rt_rq(rt_se))
- top_se = rt_se;
- }
- if (top_se)
- dequeue_rt_entity(top_se);
- } while (top_se);
- }
- /*
- * Adding/removing a task to/from a priority array:
- */
- static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- if (wakeup)
- rt_se->timeout = 0;
- dequeue_rt_stack(p);
- /*
- * enqueue everybody, bottom - up.
- */
- for_each_sched_rt_entity(rt_se)
- enqueue_rt_entity(rt_se);
- }
- static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- struct rt_rq *rt_rq;
- update_curr_rt(rq);
- dequeue_rt_stack(p);
- /*
- * re-enqueue all non-empty rt_rq entities.
- */
- for_each_sched_rt_entity(rt_se) {
- rt_rq = group_rt_rq(rt_se);
- if (rt_rq && rt_rq->rt_nr_running)
- enqueue_rt_entity(rt_se);
- }
- }
- /*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
- static
- void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
- {
- struct rt_prio_array *array = &rt_rq->active;
- list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
- }
- static void requeue_task_rt(struct rq *rq, struct task_struct *p)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- struct rt_rq *rt_rq;
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- requeue_rt_entity(rt_rq, rt_se);
- }
- }
- static void yield_task_rt(struct rq *rq)
- {
- requeue_task_rt(rq, rq->curr);
- }
- #ifdef CONFIG_SMP
- static int find_lowest_rq(struct task_struct *task);
- static int select_task_rq_rt(struct task_struct *p, int sync)
- {
- struct rq *rq = task_rq(p);
- /*
- * If the current task is an RT task, then
- * try to see if we can wake this RT task up on another
- * runqueue. Otherwise simply start this RT task
- * on its current runqueue.
- *
- * We want to avoid overloading runqueues. Even if
- * the RT task is of higher priority than the current RT task.
- * RT tasks behave differently than other tasks. If
- * one gets preempted, we try to push it off to another queue.
- * So trying to keep a preempting RT task on the same
- * cache hot CPU will force the running RT task to
- * a cold CPU. So we waste all the cache for the lower
- * RT task in hopes of saving some of a RT task
- * that is just being woken and probably will have
- * cold cache anyway.
- */
- if (unlikely(rt_task(rq->curr)) &&
- (p->rt.nr_cpus_allowed > 1)) {
- int cpu = find_lowest_rq(p);
- return (cpu == -1) ? task_cpu(p) : cpu;
- }
- /*
- * Otherwise, just let it ride on the affined RQ and the
- * post-schedule router will push the preempted task away
- */
- return task_cpu(p);
- }
- #endif /* CONFIG_SMP */
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
- {
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
- struct rt_rq *rt_rq)
- {
- struct rt_prio_array *array = &rt_rq->active;
- struct sched_rt_entity *next = NULL;
- struct list_head *queue;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- BUG_ON(idx >= MAX_RT_PRIO);
- queue = array->queue + idx;
- next = list_entry(queue->next, struct sched_rt_entity, run_list);
- return next;
- }
- static struct task_struct *pick_next_task_rt(struct rq *rq)
- {
- struct sched_rt_entity *rt_se;
- struct task_struct *p;
- struct rt_rq *rt_rq;
- rt_rq = &rq->rt;
- if (unlikely(!rt_rq->rt_nr_running))
- return NULL;
- if (rt_rq_throttled(rt_rq))
- return NULL;
- do {
- rt_se = pick_next_rt_entity(rq, rt_rq);
- BUG_ON(!rt_se);
- rt_rq = group_rt_rq(rt_se);
- } while (rt_rq);
- p = rt_task_of(rt_se);
- p->se.exec_start = rq->clock;
- return p;
- }
- static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
- {
- update_curr_rt(rq);
- p->se.exec_start = 0;
- }
- #ifdef CONFIG_SMP
- /* Only try algorithms three times */
- #define RT_MAX_TRIES 3
- static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
- static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
- static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
- {
- if (!task_running(rq, p) &&
- (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
- (p->rt.nr_cpus_allowed > 1))
- return 1;
- return 0;
- }
- /* Return the second highest RT task, NULL otherwise */
- static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
- {
- struct task_struct *next = NULL;
- struct sched_rt_entity *rt_se;
- struct rt_prio_array *array;
- struct rt_rq *rt_rq;
- int idx;
- for_each_leaf_rt_rq(rt_rq, rq) {
- array = &rt_rq->active;
- idx = sched_find_first_bit(array->bitmap);
- next_idx:
- if (idx >= MAX_RT_PRIO)
- continue;
- if (next && next->prio < idx)
- continue;
- list_for_each_entry(rt_se, array->queue + idx, run_list) {
- struct task_struct *p = rt_task_of(rt_se);
- if (pick_rt_task(rq, p, cpu)) {
- next = p;
- break;
- }
- }
- if (!next) {
- idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
- goto next_idx;
- }
- }
- return next;
- }
- static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
- static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
- {
- int lowest_prio = -1;
- int lowest_cpu = -1;
- int count = 0;
- int cpu;
- cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
- /*
- * Scan each rq for the lowest prio.
- */
- for_each_cpu_mask(cpu, *lowest_mask) {
- struct rq *rq = cpu_rq(cpu);
- /* We look for lowest RT prio or non-rt CPU */
- if (rq->rt.highest_prio >= MAX_RT_PRIO) {
- /*
- * if we already found a low RT queue
- * and now we found this non-rt queue
- * clear the mask and set our bit.
- * Otherwise just return the queue as is
- * and the count==1 will cause the algorithm
- * to use the first bit found.
- */
- if (lowest_cpu != -1) {
- cpus_clear(*lowest_mask);
- cpu_set(rq->cpu, *lowest_mask);
- }
- return 1;
- }
- /* no locking for now */
- if ((rq->rt.highest_prio > task->prio)
- && (rq->rt.highest_prio >= lowest_prio)) {
- if (rq->rt.highest_prio > lowest_prio) {
- /* new low - clear old data */
- lowest_prio = rq->rt.highest_prio;
- lowest_cpu = cpu;
- count = 0;
- }
- count++;
- } else
- cpu_clear(cpu, *lowest_mask);
- }
- /*
- * Clear out all the set bits that represent
- * runqueues that were of higher prio than
- * the lowest_prio.
- */
- if (lowest_cpu > 0) {
- /*
- * Perhaps we could add another cpumask op to
- * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
- * Then that could be optimized to use memset and such.
- */
- for_each_cpu_mask(cpu, *lowest_mask) {
- if (cpu >= lowest_cpu)
- break;
- cpu_clear(cpu, *lowest_mask);
- }
- }
- return count;
- }
- static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
- {
- int first;
- /* "this_cpu" is cheaper to preempt than a remote processor */
- if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
- return this_cpu;
- first = first_cpu(*mask);
- if (first != NR_CPUS)
- return first;
- return -1;
- }
- static int find_lowest_rq(struct task_struct *task)
- {
- struct sched_domain *sd;
- cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
- int this_cpu = smp_processor_id();
- int cpu = task_cpu(task);
- int count = find_lowest_cpus(task, lowest_mask);
- if (!count)
- return -1; /* No targets found */
- /*
- * There is no sense in performing an optimal search if only one
- * target is found.
- */
- if (count == 1)
- return first_cpu(*lowest_mask);
- /*
- * At this point we have built a mask of cpus representing the
- * lowest priority tasks in the system. Now we want to elect
- * the best one based on our affinity and topology.
- *
- * We prioritize the last cpu that the task executed on since
- * it is most likely cache-hot in that location.
- */
- if (cpu_isset(cpu, *lowest_mask))
- return cpu;
- /*
- * Otherwise, we consult the sched_domains span maps to figure
- * out which cpu is logically closest to our hot cache data.
- */
- if (this_cpu == cpu)
- this_cpu = -1; /* Skip this_cpu opt if the same */
- for_each_domain(cpu, sd) {
- if (sd->flags & SD_WAKE_AFFINE) {
- cpumask_t domain_mask;
- int best_cpu;
- cpus_and(domain_mask, sd->span, *lowest_mask);
- best_cpu = pick_optimal_cpu(this_cpu,
- &domain_mask);
- if (best_cpu != -1)
- return best_cpu;
- }
- }
- /*
- * And finally, if there were no matches within the domains
- * just give the caller *something* to work with from the compatible
- * locations.
- */
- return pick_optimal_cpu(this_cpu, lowest_mask);
- }
- /* Will lock the rq it finds */
- static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
- {
- struct rq *lowest_rq = NULL;
- int tries;
- int cpu;
- for (tries = 0; tries < RT_MAX_TRIES; tries++) {
- cpu = find_lowest_rq(task);
- if ((cpu == -1) || (cpu == rq->cpu))
- break;
- lowest_rq = cpu_rq(cpu);
- /* if the prio of this runqueue changed, try again */
- if (double_lock_balance(rq, lowest_rq)) {
- /*
- * We had to unlock the run queue. In
- * the mean time, task could have
- * migrated already or had its affinity changed.
- * Also make sure that it wasn't scheduled on its rq.
- */
- if (unlikely(task_rq(task) != rq ||
- !cpu_isset(lowest_rq->cpu,
- task->cpus_allowed) ||
- task_running(rq, task) ||
- !task->se.on_rq)) {
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- break;
- }
- }
- /* If this rq is still suitable use it. */
- if (lowest_rq->rt.highest_prio > task->prio)
- break;
- /* try again */
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- }
- return lowest_rq;
- }
- /*
- * If the current CPU has more than one RT task, see if the non
- * running task can migrate over to a CPU that is running a task
- * of lesser priority.
- */
- static int push_rt_task(struct rq *rq)
- {
- struct task_struct *next_task;
- struct rq *lowest_rq;
- int ret = 0;
- int paranoid = RT_MAX_TRIES;
- if (!rq->rt.overloaded)
- return 0;
- next_task = pick_next_highest_task_rt(rq, -1);
- if (!next_task)
- return 0;
- retry:
- if (unlikely(next_task == rq->curr)) {
- WARN_ON(1);
- return 0;
- }
- /*
- * It's possible that the next_task slipped in of
- * higher priority than current. If that's the case
- * just reschedule current.
- */
- if (unlikely(next_task->prio < rq->curr->prio)) {
- resched_task(rq->curr);
- return 0;
- }
- /* We might release rq lock */
- get_task_struct(next_task);
- /* find_lock_lowest_rq locks the rq if found */
- lowest_rq = find_lock_lowest_rq(next_task, rq);
- if (!lowest_rq) {
- struct task_struct *task;
- /*
- * find lock_lowest_rq releases rq->lock
- * so it is possible that next_task has changed.
- * If it has, then try again.
- */
- task = pick_next_highest_task_rt(rq, -1);
- if (unlikely(task != next_task) && task && paranoid--) {
- put_task_struct(next_task);
- next_task = task;
- goto retry;
- }
- goto out;
- }
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
- resched_task(lowest_rq->curr);
- spin_unlock(&lowest_rq->lock);
- ret = 1;
- out:
- put_task_struct(next_task);
- return ret;
- }
- /*
- * TODO: Currently we just use the second highest prio task on
- * the queue, and stop when it can't migrate (or there's
- * no more RT tasks). There may be a case where a lower
- * priority RT task has a different affinity than the
- * higher RT task. In this case the lower RT task could
- * possibly be able to migrate where as the higher priority
- * RT task could not. We currently ignore this issue.
- * Enhancements are welcome!
- */
- static void push_rt_tasks(struct rq *rq)
- {
- /* push_rt_task will return true if it moved an RT */
- while (push_rt_task(rq))
- ;
- }
- static int pull_rt_task(struct rq *this_rq)
- {
- int this_cpu = this_rq->cpu, ret = 0, cpu;
- struct task_struct *p, *next;
- struct rq *src_rq;
- if (likely(!rt_overloaded(this_rq)))
- return 0;
- next = pick_next_task_rt(this_rq);
- for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
- if (this_cpu == cpu)
- continue;
- src_rq = cpu_rq(cpu);
- /*
- * We can potentially drop this_rq's lock in
- * double_lock_balance, and another CPU could
- * steal our next task - hence we must cause
- * the caller to recalculate the next task
- * in that case:
- */
- if (double_lock_balance(this_rq, src_rq)) {
- struct task_struct *old_next = next;
- next = pick_next_task_rt(this_rq);
- if (next != old_next)
- ret = 1;
- }
- /*
- * Are there still pullable RT tasks?
- */
- if (src_rq->rt.rt_nr_running <= 1)
- goto skip;
- p = pick_next_highest_task_rt(src_rq, this_cpu);
- /*
- * Do we have an RT task that preempts
- * the to-be-scheduled task?
- */
- if (p && (!next || (p->prio < next->prio))) {
- WARN_ON(p == src_rq->curr);
- WARN_ON(!p->se.on_rq);
- /*
- * There's a chance that p is higher in priority
- * than what's currently running on its cpu.
- * This is just that p is wakeing up and hasn't
- * had a chance to schedule. We only pull
- * p if it is lower in priority than the
- * current task on the run queue or
- * this_rq next task is lower in prio than
- * the current task on that rq.
- */
- if (p->prio < src_rq->curr->prio ||
- (next && next->prio < src_rq->curr->prio))
- goto skip;
- ret = 1;
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- /*
- * We continue with the search, just in
- * case there's an even higher prio task
- * in another runqueue. (low likelyhood
- * but possible)
- *
- * Update next so that we won't pick a task
- * on another cpu with a priority lower (or equal)
- * than the one we just picked.
- */
- next = p;
- }
- skip:
- spin_unlock(&src_rq->lock);
- }
- return ret;
- }
- static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
- {
- /* Try to pull RT tasks here if we lower this rq's prio */
- if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
- pull_rt_task(rq);
- }
- static void post_schedule_rt(struct rq *rq)
- {
- /*
- * If we have more than one rt_task queued, then
- * see if we can push the other rt_tasks off to other CPUS.
- * Note we may release the rq lock, and since
- * the lock was owned by prev, we need to release it
- * first via finish_lock_switch and then reaquire it here.
- */
- if (unlikely(rq->rt.overloaded)) {
- spin_lock_irq(&rq->lock);
- push_rt_tasks(rq);
- spin_unlock_irq(&rq->lock);
- }
- }
- static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
- {
- if (!task_running(rq, p) &&
- (p->prio >= rq->rt.highest_prio) &&
- rq->rt.overloaded)
- push_rt_tasks(rq);
- }
- static unsigned long
- load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, int *this_best_prio)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static int
- move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
- {
- int weight = cpus_weight(*new_mask);
- BUG_ON(!rt_task(p));
- /*
- * Update the migration status of the RQ if we have an RT task
- * which is running AND changing its weight value.
- */
- if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
- struct rq *rq = task_rq(p);
- if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
- rq->rt.rt_nr_migratory++;
- } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
- BUG_ON(!rq->rt.rt_nr_migratory);
- rq->rt.rt_nr_migratory--;
- }
- update_rt_migration(rq);
- }
- p->cpus_allowed = *new_mask;
- p->rt.nr_cpus_allowed = weight;
- }
- /* Assumes rq->lock is held */
- static void join_domain_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_set_overload(rq);
- }
- /* Assumes rq->lock is held */
- static void leave_domain_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_clear_overload(rq);
- }
- /*
- * When switch from the rt queue, we bring ourselves to a position
- * that we might want to pull RT tasks from other runqueues.
- */
- static void switched_from_rt(struct rq *rq, struct task_struct *p,
- int running)
- {
- /*
- * If there are other RT tasks then we will reschedule
- * and the scheduling of the other RT tasks will handle
- * the balancing. But if we are the last RT task
- * we may need to handle the pulling of RT tasks
- * now.
- */
- if (!rq->rt.rt_nr_running)
- pull_rt_task(rq);
- }
- #endif /* CONFIG_SMP */
- /*
- * When switching a task to RT, we may overload the runqueue
- * with RT tasks. In this case we try to push them off to
- * other runqueues.
- */
- static void switched_to_rt(struct rq *rq, struct task_struct *p,
- int running)
- {
- int check_resched = 1;
- /*
- * If we are already running, then there's nothing
- * that needs to be done. But if we are not running
- * we may need to preempt the current running task.
- * If that current running task is also an RT task
- * then see if we can move to another run queue.
- */
- if (!running) {
- #ifdef CONFIG_SMP
- if (rq->rt.overloaded && push_rt_task(rq) &&
- /* Don't resched if we changed runqueues */
- rq != task_rq(p))
- check_resched = 0;
- #endif /* CONFIG_SMP */
- if (check_resched && p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- }
- /*
- * Priority of the task has changed. This may cause
- * us to initiate a push or pull.
- */
- static void prio_changed_rt(struct rq *rq, struct task_struct *p,
- int oldprio, int running)
- {
- if (running) {
- #ifdef CONFIG_SMP
- /*
- * If our priority decreases while running, we
- * may need to pull tasks to this runqueue.
- */
- if (oldprio < p->prio)
- pull_rt_task(rq);
- /*
- * If there's a higher priority task waiting to run
- * then reschedule.
- */
- if (p->prio > rq->rt.highest_prio)
- resched_task(p);
- #else
- /* For UP simply resched on drop of prio */
- if (oldprio < p->prio)
- resched_task(p);
- #endif /* CONFIG_SMP */
- } else {
- /*
- * This task is not running, but if it is
- * greater than the current running task
- * then reschedule.
- */
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- }
- static void watchdog(struct rq *rq, struct task_struct *p)
- {
- unsigned long soft, hard;
- if (!p->signal)
- return;
- soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
- hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
- if (soft != RLIM_INFINITY) {
- unsigned long next;
- p->rt.timeout++;
- next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
- if (p->rt.timeout > next)
- p->it_sched_expires = p->se.sum_exec_runtime;
- }
- }
- static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
- {
- update_curr_rt(rq);
- watchdog(rq, p);
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if (p->policy != SCHED_RR)
- return;
- if (--p->rt.time_slice)
- return;
- p->rt.time_slice = DEF_TIMESLICE;
- /*
- * Requeue to the end of queue if we are not the only element
- * on the queue:
- */
- if (p->rt.run_list.prev != p->rt.run_list.next) {
- requeue_task_rt(rq, p);
- set_tsk_need_resched(p);
- }
- }
- static void set_curr_task_rt(struct rq *rq)
- {
- struct task_struct *p = rq->curr;
- p->se.exec_start = rq->clock;
- }
- const struct sched_class rt_sched_class = {
- .next = &fair_sched_class,
- .enqueue_task = enqueue_task_rt,
- .dequeue_task = dequeue_task_rt,
- .yield_task = yield_task_rt,
- #ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_rt,
- #endif /* CONFIG_SMP */
- .check_preempt_curr = check_preempt_curr_rt,
- .pick_next_task = pick_next_task_rt,
- .put_prev_task = put_prev_task_rt,
- #ifdef CONFIG_SMP
- .load_balance = load_balance_rt,
- .move_one_task = move_one_task_rt,
- .set_cpus_allowed = set_cpus_allowed_rt,
- .join_domain = join_domain_rt,
- .leave_domain = leave_domain_rt,
- .pre_schedule = pre_schedule_rt,
- .post_schedule = post_schedule_rt,
- .task_wake_up = task_wake_up_rt,
- .switched_from = switched_from_rt,
- #endif
- .set_curr_task = set_curr_task_rt,
- .task_tick = task_tick_rt,
- .prio_changed = prio_changed_rt,
- .switched_to = switched_to_rt,
- };
|