snapshot.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993
  1. /*
  2. * linux/kernel/power/snapshot.c
  3. *
  4. * This file provides system snapshot/restore functionality for swsusp.
  5. *
  6. * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
  7. * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  8. *
  9. * This file is released under the GPLv2.
  10. *
  11. */
  12. #include <linux/version.h>
  13. #include <linux/module.h>
  14. #include <linux/mm.h>
  15. #include <linux/suspend.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kernel.h>
  20. #include <linux/pm.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/syscalls.h>
  25. #include <linux/console.h>
  26. #include <linux/highmem.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/mmu_context.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/io.h>
  32. #include "power.h"
  33. static int swsusp_page_is_free(struct page *);
  34. static void swsusp_set_page_forbidden(struct page *);
  35. static void swsusp_unset_page_forbidden(struct page *);
  36. /* List of PBEs needed for restoring the pages that were allocated before
  37. * the suspend and included in the suspend image, but have also been
  38. * allocated by the "resume" kernel, so their contents cannot be written
  39. * directly to their "original" page frames.
  40. */
  41. struct pbe *restore_pblist;
  42. /* Pointer to an auxiliary buffer (1 page) */
  43. static void *buffer;
  44. /**
  45. * @safe_needed - on resume, for storing the PBE list and the image,
  46. * we can only use memory pages that do not conflict with the pages
  47. * used before suspend. The unsafe pages have PageNosaveFree set
  48. * and we count them using unsafe_pages.
  49. *
  50. * Each allocated image page is marked as PageNosave and PageNosaveFree
  51. * so that swsusp_free() can release it.
  52. */
  53. #define PG_ANY 0
  54. #define PG_SAFE 1
  55. #define PG_UNSAFE_CLEAR 1
  56. #define PG_UNSAFE_KEEP 0
  57. static unsigned int allocated_unsafe_pages;
  58. static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  59. {
  60. void *res;
  61. res = (void *)get_zeroed_page(gfp_mask);
  62. if (safe_needed)
  63. while (res && swsusp_page_is_free(virt_to_page(res))) {
  64. /* The page is unsafe, mark it for swsusp_free() */
  65. swsusp_set_page_forbidden(virt_to_page(res));
  66. allocated_unsafe_pages++;
  67. res = (void *)get_zeroed_page(gfp_mask);
  68. }
  69. if (res) {
  70. swsusp_set_page_forbidden(virt_to_page(res));
  71. swsusp_set_page_free(virt_to_page(res));
  72. }
  73. return res;
  74. }
  75. unsigned long get_safe_page(gfp_t gfp_mask)
  76. {
  77. return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
  78. }
  79. static struct page *alloc_image_page(gfp_t gfp_mask)
  80. {
  81. struct page *page;
  82. page = alloc_page(gfp_mask);
  83. if (page) {
  84. swsusp_set_page_forbidden(page);
  85. swsusp_set_page_free(page);
  86. }
  87. return page;
  88. }
  89. /**
  90. * free_image_page - free page represented by @addr, allocated with
  91. * get_image_page (page flags set by it must be cleared)
  92. */
  93. static inline void free_image_page(void *addr, int clear_nosave_free)
  94. {
  95. struct page *page;
  96. BUG_ON(!virt_addr_valid(addr));
  97. page = virt_to_page(addr);
  98. swsusp_unset_page_forbidden(page);
  99. if (clear_nosave_free)
  100. swsusp_unset_page_free(page);
  101. __free_page(page);
  102. }
  103. /* struct linked_page is used to build chains of pages */
  104. #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
  105. struct linked_page {
  106. struct linked_page *next;
  107. char data[LINKED_PAGE_DATA_SIZE];
  108. } __attribute__((packed));
  109. static inline void
  110. free_list_of_pages(struct linked_page *list, int clear_page_nosave)
  111. {
  112. while (list) {
  113. struct linked_page *lp = list->next;
  114. free_image_page(list, clear_page_nosave);
  115. list = lp;
  116. }
  117. }
  118. /**
  119. * struct chain_allocator is used for allocating small objects out of
  120. * a linked list of pages called 'the chain'.
  121. *
  122. * The chain grows each time when there is no room for a new object in
  123. * the current page. The allocated objects cannot be freed individually.
  124. * It is only possible to free them all at once, by freeing the entire
  125. * chain.
  126. *
  127. * NOTE: The chain allocator may be inefficient if the allocated objects
  128. * are not much smaller than PAGE_SIZE.
  129. */
  130. struct chain_allocator {
  131. struct linked_page *chain; /* the chain */
  132. unsigned int used_space; /* total size of objects allocated out
  133. * of the current page
  134. */
  135. gfp_t gfp_mask; /* mask for allocating pages */
  136. int safe_needed; /* if set, only "safe" pages are allocated */
  137. };
  138. static void
  139. chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
  140. {
  141. ca->chain = NULL;
  142. ca->used_space = LINKED_PAGE_DATA_SIZE;
  143. ca->gfp_mask = gfp_mask;
  144. ca->safe_needed = safe_needed;
  145. }
  146. static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
  147. {
  148. void *ret;
  149. if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
  150. struct linked_page *lp;
  151. lp = get_image_page(ca->gfp_mask, ca->safe_needed);
  152. if (!lp)
  153. return NULL;
  154. lp->next = ca->chain;
  155. ca->chain = lp;
  156. ca->used_space = 0;
  157. }
  158. ret = ca->chain->data + ca->used_space;
  159. ca->used_space += size;
  160. return ret;
  161. }
  162. static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
  163. {
  164. free_list_of_pages(ca->chain, clear_page_nosave);
  165. memset(ca, 0, sizeof(struct chain_allocator));
  166. }
  167. /**
  168. * Data types related to memory bitmaps.
  169. *
  170. * Memory bitmap is a structure consiting of many linked lists of
  171. * objects. The main list's elements are of type struct zone_bitmap
  172. * and each of them corresonds to one zone. For each zone bitmap
  173. * object there is a list of objects of type struct bm_block that
  174. * represent each blocks of bit chunks in which information is
  175. * stored.
  176. *
  177. * struct memory_bitmap contains a pointer to the main list of zone
  178. * bitmap objects, a struct bm_position used for browsing the bitmap,
  179. * and a pointer to the list of pages used for allocating all of the
  180. * zone bitmap objects and bitmap block objects.
  181. *
  182. * NOTE: It has to be possible to lay out the bitmap in memory
  183. * using only allocations of order 0. Additionally, the bitmap is
  184. * designed to work with arbitrary number of zones (this is over the
  185. * top for now, but let's avoid making unnecessary assumptions ;-).
  186. *
  187. * struct zone_bitmap contains a pointer to a list of bitmap block
  188. * objects and a pointer to the bitmap block object that has been
  189. * most recently used for setting bits. Additionally, it contains the
  190. * pfns that correspond to the start and end of the represented zone.
  191. *
  192. * struct bm_block contains a pointer to the memory page in which
  193. * information is stored (in the form of a block of bit chunks
  194. * of type unsigned long each). It also contains the pfns that
  195. * correspond to the start and end of the represented memory area and
  196. * the number of bit chunks in the block.
  197. */
  198. #define BM_END_OF_MAP (~0UL)
  199. #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
  200. #define BM_BITS_PER_CHUNK (sizeof(long) << 3)
  201. #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
  202. struct bm_block {
  203. struct bm_block *next; /* next element of the list */
  204. unsigned long start_pfn; /* pfn represented by the first bit */
  205. unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
  206. unsigned int size; /* number of bit chunks */
  207. unsigned long *data; /* chunks of bits representing pages */
  208. };
  209. struct zone_bitmap {
  210. struct zone_bitmap *next; /* next element of the list */
  211. unsigned long start_pfn; /* minimal pfn in this zone */
  212. unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
  213. struct bm_block *bm_blocks; /* list of bitmap blocks */
  214. struct bm_block *cur_block; /* recently used bitmap block */
  215. };
  216. /* strcut bm_position is used for browsing memory bitmaps */
  217. struct bm_position {
  218. struct zone_bitmap *zone_bm;
  219. struct bm_block *block;
  220. int chunk;
  221. int bit;
  222. };
  223. struct memory_bitmap {
  224. struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
  225. struct linked_page *p_list; /* list of pages used to store zone
  226. * bitmap objects and bitmap block
  227. * objects
  228. */
  229. struct bm_position cur; /* most recently used bit position */
  230. };
  231. /* Functions that operate on memory bitmaps */
  232. static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
  233. {
  234. bm->cur.chunk = 0;
  235. bm->cur.bit = -1;
  236. }
  237. static void memory_bm_position_reset(struct memory_bitmap *bm)
  238. {
  239. struct zone_bitmap *zone_bm;
  240. zone_bm = bm->zone_bm_list;
  241. bm->cur.zone_bm = zone_bm;
  242. bm->cur.block = zone_bm->bm_blocks;
  243. memory_bm_reset_chunk(bm);
  244. }
  245. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
  246. /**
  247. * create_bm_block_list - create a list of block bitmap objects
  248. */
  249. static inline struct bm_block *
  250. create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
  251. {
  252. struct bm_block *bblist = NULL;
  253. while (nr_blocks-- > 0) {
  254. struct bm_block *bb;
  255. bb = chain_alloc(ca, sizeof(struct bm_block));
  256. if (!bb)
  257. return NULL;
  258. bb->next = bblist;
  259. bblist = bb;
  260. }
  261. return bblist;
  262. }
  263. /**
  264. * create_zone_bm_list - create a list of zone bitmap objects
  265. */
  266. static inline struct zone_bitmap *
  267. create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
  268. {
  269. struct zone_bitmap *zbmlist = NULL;
  270. while (nr_zones-- > 0) {
  271. struct zone_bitmap *zbm;
  272. zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
  273. if (!zbm)
  274. return NULL;
  275. zbm->next = zbmlist;
  276. zbmlist = zbm;
  277. }
  278. return zbmlist;
  279. }
  280. /**
  281. * memory_bm_create - allocate memory for a memory bitmap
  282. */
  283. static int
  284. memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
  285. {
  286. struct chain_allocator ca;
  287. struct zone *zone;
  288. struct zone_bitmap *zone_bm;
  289. struct bm_block *bb;
  290. unsigned int nr;
  291. chain_init(&ca, gfp_mask, safe_needed);
  292. /* Compute the number of zones */
  293. nr = 0;
  294. for_each_zone(zone)
  295. if (populated_zone(zone))
  296. nr++;
  297. /* Allocate the list of zones bitmap objects */
  298. zone_bm = create_zone_bm_list(nr, &ca);
  299. bm->zone_bm_list = zone_bm;
  300. if (!zone_bm) {
  301. chain_free(&ca, PG_UNSAFE_CLEAR);
  302. return -ENOMEM;
  303. }
  304. /* Initialize the zone bitmap objects */
  305. for_each_zone(zone) {
  306. unsigned long pfn;
  307. if (!populated_zone(zone))
  308. continue;
  309. zone_bm->start_pfn = zone->zone_start_pfn;
  310. zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  311. /* Allocate the list of bitmap block objects */
  312. nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  313. bb = create_bm_block_list(nr, &ca);
  314. zone_bm->bm_blocks = bb;
  315. zone_bm->cur_block = bb;
  316. if (!bb)
  317. goto Free;
  318. nr = zone->spanned_pages;
  319. pfn = zone->zone_start_pfn;
  320. /* Initialize the bitmap block objects */
  321. while (bb) {
  322. unsigned long *ptr;
  323. ptr = get_image_page(gfp_mask, safe_needed);
  324. bb->data = ptr;
  325. if (!ptr)
  326. goto Free;
  327. bb->start_pfn = pfn;
  328. if (nr >= BM_BITS_PER_BLOCK) {
  329. pfn += BM_BITS_PER_BLOCK;
  330. bb->size = BM_CHUNKS_PER_BLOCK;
  331. nr -= BM_BITS_PER_BLOCK;
  332. } else {
  333. /* This is executed only once in the loop */
  334. pfn += nr;
  335. bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
  336. }
  337. bb->end_pfn = pfn;
  338. bb = bb->next;
  339. }
  340. zone_bm = zone_bm->next;
  341. }
  342. bm->p_list = ca.chain;
  343. memory_bm_position_reset(bm);
  344. return 0;
  345. Free:
  346. bm->p_list = ca.chain;
  347. memory_bm_free(bm, PG_UNSAFE_CLEAR);
  348. return -ENOMEM;
  349. }
  350. /**
  351. * memory_bm_free - free memory occupied by the memory bitmap @bm
  352. */
  353. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
  354. {
  355. struct zone_bitmap *zone_bm;
  356. /* Free the list of bit blocks for each zone_bitmap object */
  357. zone_bm = bm->zone_bm_list;
  358. while (zone_bm) {
  359. struct bm_block *bb;
  360. bb = zone_bm->bm_blocks;
  361. while (bb) {
  362. if (bb->data)
  363. free_image_page(bb->data, clear_nosave_free);
  364. bb = bb->next;
  365. }
  366. zone_bm = zone_bm->next;
  367. }
  368. free_list_of_pages(bm->p_list, clear_nosave_free);
  369. bm->zone_bm_list = NULL;
  370. }
  371. /**
  372. * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
  373. * to given pfn. The cur_zone_bm member of @bm and the cur_block member
  374. * of @bm->cur_zone_bm are updated.
  375. */
  376. static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
  377. void **addr, unsigned int *bit_nr)
  378. {
  379. struct zone_bitmap *zone_bm;
  380. struct bm_block *bb;
  381. /* Check if the pfn is from the current zone */
  382. zone_bm = bm->cur.zone_bm;
  383. if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
  384. zone_bm = bm->zone_bm_list;
  385. /* We don't assume that the zones are sorted by pfns */
  386. while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
  387. zone_bm = zone_bm->next;
  388. BUG_ON(!zone_bm);
  389. }
  390. bm->cur.zone_bm = zone_bm;
  391. }
  392. /* Check if the pfn corresponds to the current bitmap block */
  393. bb = zone_bm->cur_block;
  394. if (pfn < bb->start_pfn)
  395. bb = zone_bm->bm_blocks;
  396. while (pfn >= bb->end_pfn) {
  397. bb = bb->next;
  398. BUG_ON(!bb);
  399. }
  400. zone_bm->cur_block = bb;
  401. pfn -= bb->start_pfn;
  402. *bit_nr = pfn % BM_BITS_PER_CHUNK;
  403. *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
  404. }
  405. static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
  406. {
  407. void *addr;
  408. unsigned int bit;
  409. memory_bm_find_bit(bm, pfn, &addr, &bit);
  410. set_bit(bit, addr);
  411. }
  412. static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
  413. {
  414. void *addr;
  415. unsigned int bit;
  416. memory_bm_find_bit(bm, pfn, &addr, &bit);
  417. clear_bit(bit, addr);
  418. }
  419. static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
  420. {
  421. void *addr;
  422. unsigned int bit;
  423. memory_bm_find_bit(bm, pfn, &addr, &bit);
  424. return test_bit(bit, addr);
  425. }
  426. /* Two auxiliary functions for memory_bm_next_pfn */
  427. /* Find the first set bit in the given chunk, if there is one */
  428. static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
  429. {
  430. bit++;
  431. while (bit < BM_BITS_PER_CHUNK) {
  432. if (test_bit(bit, chunk_p))
  433. return bit;
  434. bit++;
  435. }
  436. return -1;
  437. }
  438. /* Find a chunk containing some bits set in given block of bits */
  439. static inline int next_chunk_in_block(int n, struct bm_block *bb)
  440. {
  441. n++;
  442. while (n < bb->size) {
  443. if (bb->data[n])
  444. return n;
  445. n++;
  446. }
  447. return -1;
  448. }
  449. /**
  450. * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
  451. * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
  452. * returned.
  453. *
  454. * It is required to run memory_bm_position_reset() before the first call to
  455. * this function.
  456. */
  457. static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
  458. {
  459. struct zone_bitmap *zone_bm;
  460. struct bm_block *bb;
  461. int chunk;
  462. int bit;
  463. do {
  464. bb = bm->cur.block;
  465. do {
  466. chunk = bm->cur.chunk;
  467. bit = bm->cur.bit;
  468. do {
  469. bit = next_bit_in_chunk(bit, bb->data + chunk);
  470. if (bit >= 0)
  471. goto Return_pfn;
  472. chunk = next_chunk_in_block(chunk, bb);
  473. bit = -1;
  474. } while (chunk >= 0);
  475. bb = bb->next;
  476. bm->cur.block = bb;
  477. memory_bm_reset_chunk(bm);
  478. } while (bb);
  479. zone_bm = bm->cur.zone_bm->next;
  480. if (zone_bm) {
  481. bm->cur.zone_bm = zone_bm;
  482. bm->cur.block = zone_bm->bm_blocks;
  483. memory_bm_reset_chunk(bm);
  484. }
  485. } while (zone_bm);
  486. memory_bm_position_reset(bm);
  487. return BM_END_OF_MAP;
  488. Return_pfn:
  489. bm->cur.chunk = chunk;
  490. bm->cur.bit = bit;
  491. return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
  492. }
  493. /**
  494. * This structure represents a range of page frames the contents of which
  495. * should not be saved during the suspend.
  496. */
  497. struct nosave_region {
  498. struct list_head list;
  499. unsigned long start_pfn;
  500. unsigned long end_pfn;
  501. };
  502. static LIST_HEAD(nosave_regions);
  503. /**
  504. * register_nosave_region - register a range of page frames the contents
  505. * of which should not be saved during the suspend (to be used in the early
  506. * initialization code)
  507. */
  508. void __init
  509. __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
  510. int use_kmalloc)
  511. {
  512. struct nosave_region *region;
  513. if (start_pfn >= end_pfn)
  514. return;
  515. if (!list_empty(&nosave_regions)) {
  516. /* Try to extend the previous region (they should be sorted) */
  517. region = list_entry(nosave_regions.prev,
  518. struct nosave_region, list);
  519. if (region->end_pfn == start_pfn) {
  520. region->end_pfn = end_pfn;
  521. goto Report;
  522. }
  523. }
  524. if (use_kmalloc) {
  525. /* during init, this shouldn't fail */
  526. region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
  527. BUG_ON(!region);
  528. } else
  529. /* This allocation cannot fail */
  530. region = alloc_bootmem_low(sizeof(struct nosave_region));
  531. region->start_pfn = start_pfn;
  532. region->end_pfn = end_pfn;
  533. list_add_tail(&region->list, &nosave_regions);
  534. Report:
  535. printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
  536. start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  537. }
  538. /*
  539. * Set bits in this map correspond to the page frames the contents of which
  540. * should not be saved during the suspend.
  541. */
  542. static struct memory_bitmap *forbidden_pages_map;
  543. /* Set bits in this map correspond to free page frames. */
  544. static struct memory_bitmap *free_pages_map;
  545. /*
  546. * Each page frame allocated for creating the image is marked by setting the
  547. * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
  548. */
  549. void swsusp_set_page_free(struct page *page)
  550. {
  551. if (free_pages_map)
  552. memory_bm_set_bit(free_pages_map, page_to_pfn(page));
  553. }
  554. static int swsusp_page_is_free(struct page *page)
  555. {
  556. return free_pages_map ?
  557. memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
  558. }
  559. void swsusp_unset_page_free(struct page *page)
  560. {
  561. if (free_pages_map)
  562. memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
  563. }
  564. static void swsusp_set_page_forbidden(struct page *page)
  565. {
  566. if (forbidden_pages_map)
  567. memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
  568. }
  569. int swsusp_page_is_forbidden(struct page *page)
  570. {
  571. return forbidden_pages_map ?
  572. memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
  573. }
  574. static void swsusp_unset_page_forbidden(struct page *page)
  575. {
  576. if (forbidden_pages_map)
  577. memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
  578. }
  579. /**
  580. * mark_nosave_pages - set bits corresponding to the page frames the
  581. * contents of which should not be saved in a given bitmap.
  582. */
  583. static void mark_nosave_pages(struct memory_bitmap *bm)
  584. {
  585. struct nosave_region *region;
  586. if (list_empty(&nosave_regions))
  587. return;
  588. list_for_each_entry(region, &nosave_regions, list) {
  589. unsigned long pfn;
  590. pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
  591. region->start_pfn << PAGE_SHIFT,
  592. region->end_pfn << PAGE_SHIFT);
  593. for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
  594. if (pfn_valid(pfn))
  595. memory_bm_set_bit(bm, pfn);
  596. }
  597. }
  598. /**
  599. * create_basic_memory_bitmaps - create bitmaps needed for marking page
  600. * frames that should not be saved and free page frames. The pointers
  601. * forbidden_pages_map and free_pages_map are only modified if everything
  602. * goes well, because we don't want the bits to be used before both bitmaps
  603. * are set up.
  604. */
  605. int create_basic_memory_bitmaps(void)
  606. {
  607. struct memory_bitmap *bm1, *bm2;
  608. int error = 0;
  609. BUG_ON(forbidden_pages_map || free_pages_map);
  610. bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  611. if (!bm1)
  612. return -ENOMEM;
  613. error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
  614. if (error)
  615. goto Free_first_object;
  616. bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  617. if (!bm2)
  618. goto Free_first_bitmap;
  619. error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
  620. if (error)
  621. goto Free_second_object;
  622. forbidden_pages_map = bm1;
  623. free_pages_map = bm2;
  624. mark_nosave_pages(forbidden_pages_map);
  625. pr_debug("PM: Basic memory bitmaps created\n");
  626. return 0;
  627. Free_second_object:
  628. kfree(bm2);
  629. Free_first_bitmap:
  630. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  631. Free_first_object:
  632. kfree(bm1);
  633. return -ENOMEM;
  634. }
  635. /**
  636. * free_basic_memory_bitmaps - free memory bitmaps allocated by
  637. * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
  638. * so that the bitmaps themselves are not referred to while they are being
  639. * freed.
  640. */
  641. void free_basic_memory_bitmaps(void)
  642. {
  643. struct memory_bitmap *bm1, *bm2;
  644. BUG_ON(!(forbidden_pages_map && free_pages_map));
  645. bm1 = forbidden_pages_map;
  646. bm2 = free_pages_map;
  647. forbidden_pages_map = NULL;
  648. free_pages_map = NULL;
  649. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  650. kfree(bm1);
  651. memory_bm_free(bm2, PG_UNSAFE_CLEAR);
  652. kfree(bm2);
  653. pr_debug("PM: Basic memory bitmaps freed\n");
  654. }
  655. /**
  656. * snapshot_additional_pages - estimate the number of additional pages
  657. * be needed for setting up the suspend image data structures for given
  658. * zone (usually the returned value is greater than the exact number)
  659. */
  660. unsigned int snapshot_additional_pages(struct zone *zone)
  661. {
  662. unsigned int res;
  663. res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  664. res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
  665. return 2 * res;
  666. }
  667. #ifdef CONFIG_HIGHMEM
  668. /**
  669. * count_free_highmem_pages - compute the total number of free highmem
  670. * pages, system-wide.
  671. */
  672. static unsigned int count_free_highmem_pages(void)
  673. {
  674. struct zone *zone;
  675. unsigned int cnt = 0;
  676. for_each_zone(zone)
  677. if (populated_zone(zone) && is_highmem(zone))
  678. cnt += zone_page_state(zone, NR_FREE_PAGES);
  679. return cnt;
  680. }
  681. /**
  682. * saveable_highmem_page - Determine whether a highmem page should be
  683. * included in the suspend image.
  684. *
  685. * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
  686. * and it isn't a part of a free chunk of pages.
  687. */
  688. static struct page *saveable_highmem_page(unsigned long pfn)
  689. {
  690. struct page *page;
  691. if (!pfn_valid(pfn))
  692. return NULL;
  693. page = pfn_to_page(pfn);
  694. BUG_ON(!PageHighMem(page));
  695. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
  696. PageReserved(page))
  697. return NULL;
  698. return page;
  699. }
  700. /**
  701. * count_highmem_pages - compute the total number of saveable highmem
  702. * pages.
  703. */
  704. unsigned int count_highmem_pages(void)
  705. {
  706. struct zone *zone;
  707. unsigned int n = 0;
  708. for_each_zone(zone) {
  709. unsigned long pfn, max_zone_pfn;
  710. if (!is_highmem(zone))
  711. continue;
  712. mark_free_pages(zone);
  713. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  714. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  715. if (saveable_highmem_page(pfn))
  716. n++;
  717. }
  718. return n;
  719. }
  720. #else
  721. static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
  722. #endif /* CONFIG_HIGHMEM */
  723. /**
  724. * saveable_page - Determine whether a non-highmem page should be included
  725. * in the suspend image.
  726. *
  727. * We should save the page if it isn't Nosave, and is not in the range
  728. * of pages statically defined as 'unsaveable', and it isn't a part of
  729. * a free chunk of pages.
  730. */
  731. static struct page *saveable_page(unsigned long pfn)
  732. {
  733. struct page *page;
  734. if (!pfn_valid(pfn))
  735. return NULL;
  736. page = pfn_to_page(pfn);
  737. BUG_ON(PageHighMem(page));
  738. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
  739. return NULL;
  740. if (PageReserved(page)
  741. && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
  742. return NULL;
  743. return page;
  744. }
  745. /**
  746. * count_data_pages - compute the total number of saveable non-highmem
  747. * pages.
  748. */
  749. unsigned int count_data_pages(void)
  750. {
  751. struct zone *zone;
  752. unsigned long pfn, max_zone_pfn;
  753. unsigned int n = 0;
  754. for_each_zone(zone) {
  755. if (is_highmem(zone))
  756. continue;
  757. mark_free_pages(zone);
  758. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  759. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  760. if(saveable_page(pfn))
  761. n++;
  762. }
  763. return n;
  764. }
  765. /* This is needed, because copy_page and memcpy are not usable for copying
  766. * task structs.
  767. */
  768. static inline void do_copy_page(long *dst, long *src)
  769. {
  770. int n;
  771. for (n = PAGE_SIZE / sizeof(long); n; n--)
  772. *dst++ = *src++;
  773. }
  774. /**
  775. * safe_copy_page - check if the page we are going to copy is marked as
  776. * present in the kernel page tables (this always is the case if
  777. * CONFIG_DEBUG_PAGEALLOC is not set and in that case
  778. * kernel_page_present() always returns 'true').
  779. */
  780. static void safe_copy_page(void *dst, struct page *s_page)
  781. {
  782. if (kernel_page_present(s_page)) {
  783. do_copy_page(dst, page_address(s_page));
  784. } else {
  785. kernel_map_pages(s_page, 1, 1);
  786. do_copy_page(dst, page_address(s_page));
  787. kernel_map_pages(s_page, 1, 0);
  788. }
  789. }
  790. #ifdef CONFIG_HIGHMEM
  791. static inline struct page *
  792. page_is_saveable(struct zone *zone, unsigned long pfn)
  793. {
  794. return is_highmem(zone) ?
  795. saveable_highmem_page(pfn) : saveable_page(pfn);
  796. }
  797. static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  798. {
  799. struct page *s_page, *d_page;
  800. void *src, *dst;
  801. s_page = pfn_to_page(src_pfn);
  802. d_page = pfn_to_page(dst_pfn);
  803. if (PageHighMem(s_page)) {
  804. src = kmap_atomic(s_page, KM_USER0);
  805. dst = kmap_atomic(d_page, KM_USER1);
  806. do_copy_page(dst, src);
  807. kunmap_atomic(src, KM_USER0);
  808. kunmap_atomic(dst, KM_USER1);
  809. } else {
  810. if (PageHighMem(d_page)) {
  811. /* Page pointed to by src may contain some kernel
  812. * data modified by kmap_atomic()
  813. */
  814. safe_copy_page(buffer, s_page);
  815. dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
  816. memcpy(dst, buffer, PAGE_SIZE);
  817. kunmap_atomic(dst, KM_USER0);
  818. } else {
  819. safe_copy_page(page_address(d_page), s_page);
  820. }
  821. }
  822. }
  823. #else
  824. #define page_is_saveable(zone, pfn) saveable_page(pfn)
  825. static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  826. {
  827. safe_copy_page(page_address(pfn_to_page(dst_pfn)),
  828. pfn_to_page(src_pfn));
  829. }
  830. #endif /* CONFIG_HIGHMEM */
  831. static void
  832. copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
  833. {
  834. struct zone *zone;
  835. unsigned long pfn;
  836. for_each_zone(zone) {
  837. unsigned long max_zone_pfn;
  838. mark_free_pages(zone);
  839. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  840. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  841. if (page_is_saveable(zone, pfn))
  842. memory_bm_set_bit(orig_bm, pfn);
  843. }
  844. memory_bm_position_reset(orig_bm);
  845. memory_bm_position_reset(copy_bm);
  846. for(;;) {
  847. pfn = memory_bm_next_pfn(orig_bm);
  848. if (unlikely(pfn == BM_END_OF_MAP))
  849. break;
  850. copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
  851. }
  852. }
  853. /* Total number of image pages */
  854. static unsigned int nr_copy_pages;
  855. /* Number of pages needed for saving the original pfns of the image pages */
  856. static unsigned int nr_meta_pages;
  857. /**
  858. * swsusp_free - free pages allocated for the suspend.
  859. *
  860. * Suspend pages are alocated before the atomic copy is made, so we
  861. * need to release them after the resume.
  862. */
  863. void swsusp_free(void)
  864. {
  865. struct zone *zone;
  866. unsigned long pfn, max_zone_pfn;
  867. for_each_zone(zone) {
  868. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  869. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  870. if (pfn_valid(pfn)) {
  871. struct page *page = pfn_to_page(pfn);
  872. if (swsusp_page_is_forbidden(page) &&
  873. swsusp_page_is_free(page)) {
  874. swsusp_unset_page_forbidden(page);
  875. swsusp_unset_page_free(page);
  876. __free_page(page);
  877. }
  878. }
  879. }
  880. nr_copy_pages = 0;
  881. nr_meta_pages = 0;
  882. restore_pblist = NULL;
  883. buffer = NULL;
  884. }
  885. #ifdef CONFIG_HIGHMEM
  886. /**
  887. * count_pages_for_highmem - compute the number of non-highmem pages
  888. * that will be necessary for creating copies of highmem pages.
  889. */
  890. static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
  891. {
  892. unsigned int free_highmem = count_free_highmem_pages();
  893. if (free_highmem >= nr_highmem)
  894. nr_highmem = 0;
  895. else
  896. nr_highmem -= free_highmem;
  897. return nr_highmem;
  898. }
  899. #else
  900. static unsigned int
  901. count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
  902. #endif /* CONFIG_HIGHMEM */
  903. /**
  904. * enough_free_mem - Make sure we have enough free memory for the
  905. * snapshot image.
  906. */
  907. static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
  908. {
  909. struct zone *zone;
  910. unsigned int free = 0, meta = 0;
  911. for_each_zone(zone) {
  912. meta += snapshot_additional_pages(zone);
  913. if (!is_highmem(zone))
  914. free += zone_page_state(zone, NR_FREE_PAGES);
  915. }
  916. nr_pages += count_pages_for_highmem(nr_highmem);
  917. pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
  918. nr_pages, PAGES_FOR_IO, meta, free);
  919. return free > nr_pages + PAGES_FOR_IO + meta;
  920. }
  921. #ifdef CONFIG_HIGHMEM
  922. /**
  923. * get_highmem_buffer - if there are some highmem pages in the suspend
  924. * image, we may need the buffer to copy them and/or load their data.
  925. */
  926. static inline int get_highmem_buffer(int safe_needed)
  927. {
  928. buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
  929. return buffer ? 0 : -ENOMEM;
  930. }
  931. /**
  932. * alloc_highmem_image_pages - allocate some highmem pages for the image.
  933. * Try to allocate as many pages as needed, but if the number of free
  934. * highmem pages is lesser than that, allocate them all.
  935. */
  936. static inline unsigned int
  937. alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
  938. {
  939. unsigned int to_alloc = count_free_highmem_pages();
  940. if (to_alloc > nr_highmem)
  941. to_alloc = nr_highmem;
  942. nr_highmem -= to_alloc;
  943. while (to_alloc-- > 0) {
  944. struct page *page;
  945. page = alloc_image_page(__GFP_HIGHMEM);
  946. memory_bm_set_bit(bm, page_to_pfn(page));
  947. }
  948. return nr_highmem;
  949. }
  950. #else
  951. static inline int get_highmem_buffer(int safe_needed) { return 0; }
  952. static inline unsigned int
  953. alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
  954. #endif /* CONFIG_HIGHMEM */
  955. /**
  956. * swsusp_alloc - allocate memory for the suspend image
  957. *
  958. * We first try to allocate as many highmem pages as there are
  959. * saveable highmem pages in the system. If that fails, we allocate
  960. * non-highmem pages for the copies of the remaining highmem ones.
  961. *
  962. * In this approach it is likely that the copies of highmem pages will
  963. * also be located in the high memory, because of the way in which
  964. * copy_data_pages() works.
  965. */
  966. static int
  967. swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
  968. unsigned int nr_pages, unsigned int nr_highmem)
  969. {
  970. int error;
  971. error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
  972. if (error)
  973. goto Free;
  974. error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
  975. if (error)
  976. goto Free;
  977. if (nr_highmem > 0) {
  978. error = get_highmem_buffer(PG_ANY);
  979. if (error)
  980. goto Free;
  981. nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
  982. }
  983. while (nr_pages-- > 0) {
  984. struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
  985. if (!page)
  986. goto Free;
  987. memory_bm_set_bit(copy_bm, page_to_pfn(page));
  988. }
  989. return 0;
  990. Free:
  991. swsusp_free();
  992. return -ENOMEM;
  993. }
  994. /* Memory bitmap used for marking saveable pages (during suspend) or the
  995. * suspend image pages (during resume)
  996. */
  997. static struct memory_bitmap orig_bm;
  998. /* Memory bitmap used on suspend for marking allocated pages that will contain
  999. * the copies of saveable pages. During resume it is initially used for
  1000. * marking the suspend image pages, but then its set bits are duplicated in
  1001. * @orig_bm and it is released. Next, on systems with high memory, it may be
  1002. * used for marking "safe" highmem pages, but it has to be reinitialized for
  1003. * this purpose.
  1004. */
  1005. static struct memory_bitmap copy_bm;
  1006. asmlinkage int swsusp_save(void)
  1007. {
  1008. unsigned int nr_pages, nr_highmem;
  1009. printk(KERN_INFO "PM: Creating hibernation image: \n");
  1010. drain_local_pages(NULL);
  1011. nr_pages = count_data_pages();
  1012. nr_highmem = count_highmem_pages();
  1013. printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
  1014. if (!enough_free_mem(nr_pages, nr_highmem)) {
  1015. printk(KERN_ERR "PM: Not enough free memory\n");
  1016. return -ENOMEM;
  1017. }
  1018. if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
  1019. printk(KERN_ERR "PM: Memory allocation failed\n");
  1020. return -ENOMEM;
  1021. }
  1022. /* During allocating of suspend pagedir, new cold pages may appear.
  1023. * Kill them.
  1024. */
  1025. drain_local_pages(NULL);
  1026. copy_data_pages(&copy_bm, &orig_bm);
  1027. /*
  1028. * End of critical section. From now on, we can write to memory,
  1029. * but we should not touch disk. This specially means we must _not_
  1030. * touch swap space! Except we must write out our image of course.
  1031. */
  1032. nr_pages += nr_highmem;
  1033. nr_copy_pages = nr_pages;
  1034. nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
  1035. printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
  1036. nr_pages);
  1037. return 0;
  1038. }
  1039. #ifndef CONFIG_ARCH_HIBERNATION_HEADER
  1040. static int init_header_complete(struct swsusp_info *info)
  1041. {
  1042. memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
  1043. info->version_code = LINUX_VERSION_CODE;
  1044. return 0;
  1045. }
  1046. static char *check_image_kernel(struct swsusp_info *info)
  1047. {
  1048. if (info->version_code != LINUX_VERSION_CODE)
  1049. return "kernel version";
  1050. if (strcmp(info->uts.sysname,init_utsname()->sysname))
  1051. return "system type";
  1052. if (strcmp(info->uts.release,init_utsname()->release))
  1053. return "kernel release";
  1054. if (strcmp(info->uts.version,init_utsname()->version))
  1055. return "version";
  1056. if (strcmp(info->uts.machine,init_utsname()->machine))
  1057. return "machine";
  1058. return NULL;
  1059. }
  1060. #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
  1061. unsigned long snapshot_get_image_size(void)
  1062. {
  1063. return nr_copy_pages + nr_meta_pages + 1;
  1064. }
  1065. static int init_header(struct swsusp_info *info)
  1066. {
  1067. memset(info, 0, sizeof(struct swsusp_info));
  1068. info->num_physpages = num_physpages;
  1069. info->image_pages = nr_copy_pages;
  1070. info->pages = snapshot_get_image_size();
  1071. info->size = info->pages;
  1072. info->size <<= PAGE_SHIFT;
  1073. return init_header_complete(info);
  1074. }
  1075. /**
  1076. * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
  1077. * are stored in the array @buf[] (1 page at a time)
  1078. */
  1079. static inline void
  1080. pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1081. {
  1082. int j;
  1083. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1084. buf[j] = memory_bm_next_pfn(bm);
  1085. if (unlikely(buf[j] == BM_END_OF_MAP))
  1086. break;
  1087. }
  1088. }
  1089. /**
  1090. * snapshot_read_next - used for reading the system memory snapshot.
  1091. *
  1092. * On the first call to it @handle should point to a zeroed
  1093. * snapshot_handle structure. The structure gets updated and a pointer
  1094. * to it should be passed to this function every next time.
  1095. *
  1096. * The @count parameter should contain the number of bytes the caller
  1097. * wants to read from the snapshot. It must not be zero.
  1098. *
  1099. * On success the function returns a positive number. Then, the caller
  1100. * is allowed to read up to the returned number of bytes from the memory
  1101. * location computed by the data_of() macro. The number returned
  1102. * may be smaller than @count, but this only happens if the read would
  1103. * cross a page boundary otherwise.
  1104. *
  1105. * The function returns 0 to indicate the end of data stream condition,
  1106. * and a negative number is returned on error. In such cases the
  1107. * structure pointed to by @handle is not updated and should not be used
  1108. * any more.
  1109. */
  1110. int snapshot_read_next(struct snapshot_handle *handle, size_t count)
  1111. {
  1112. if (handle->cur > nr_meta_pages + nr_copy_pages)
  1113. return 0;
  1114. if (!buffer) {
  1115. /* This makes the buffer be freed by swsusp_free() */
  1116. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1117. if (!buffer)
  1118. return -ENOMEM;
  1119. }
  1120. if (!handle->offset) {
  1121. int error;
  1122. error = init_header((struct swsusp_info *)buffer);
  1123. if (error)
  1124. return error;
  1125. handle->buffer = buffer;
  1126. memory_bm_position_reset(&orig_bm);
  1127. memory_bm_position_reset(&copy_bm);
  1128. }
  1129. if (handle->prev < handle->cur) {
  1130. if (handle->cur <= nr_meta_pages) {
  1131. memset(buffer, 0, PAGE_SIZE);
  1132. pack_pfns(buffer, &orig_bm);
  1133. } else {
  1134. struct page *page;
  1135. page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
  1136. if (PageHighMem(page)) {
  1137. /* Highmem pages are copied to the buffer,
  1138. * because we can't return with a kmapped
  1139. * highmem page (we may not be called again).
  1140. */
  1141. void *kaddr;
  1142. kaddr = kmap_atomic(page, KM_USER0);
  1143. memcpy(buffer, kaddr, PAGE_SIZE);
  1144. kunmap_atomic(kaddr, KM_USER0);
  1145. handle->buffer = buffer;
  1146. } else {
  1147. handle->buffer = page_address(page);
  1148. }
  1149. }
  1150. handle->prev = handle->cur;
  1151. }
  1152. handle->buf_offset = handle->cur_offset;
  1153. if (handle->cur_offset + count >= PAGE_SIZE) {
  1154. count = PAGE_SIZE - handle->cur_offset;
  1155. handle->cur_offset = 0;
  1156. handle->cur++;
  1157. } else {
  1158. handle->cur_offset += count;
  1159. }
  1160. handle->offset += count;
  1161. return count;
  1162. }
  1163. /**
  1164. * mark_unsafe_pages - mark the pages that cannot be used for storing
  1165. * the image during resume, because they conflict with the pages that
  1166. * had been used before suspend
  1167. */
  1168. static int mark_unsafe_pages(struct memory_bitmap *bm)
  1169. {
  1170. struct zone *zone;
  1171. unsigned long pfn, max_zone_pfn;
  1172. /* Clear page flags */
  1173. for_each_zone(zone) {
  1174. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1175. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1176. if (pfn_valid(pfn))
  1177. swsusp_unset_page_free(pfn_to_page(pfn));
  1178. }
  1179. /* Mark pages that correspond to the "original" pfns as "unsafe" */
  1180. memory_bm_position_reset(bm);
  1181. do {
  1182. pfn = memory_bm_next_pfn(bm);
  1183. if (likely(pfn != BM_END_OF_MAP)) {
  1184. if (likely(pfn_valid(pfn)))
  1185. swsusp_set_page_free(pfn_to_page(pfn));
  1186. else
  1187. return -EFAULT;
  1188. }
  1189. } while (pfn != BM_END_OF_MAP);
  1190. allocated_unsafe_pages = 0;
  1191. return 0;
  1192. }
  1193. static void
  1194. duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
  1195. {
  1196. unsigned long pfn;
  1197. memory_bm_position_reset(src);
  1198. pfn = memory_bm_next_pfn(src);
  1199. while (pfn != BM_END_OF_MAP) {
  1200. memory_bm_set_bit(dst, pfn);
  1201. pfn = memory_bm_next_pfn(src);
  1202. }
  1203. }
  1204. static int check_header(struct swsusp_info *info)
  1205. {
  1206. char *reason;
  1207. reason = check_image_kernel(info);
  1208. if (!reason && info->num_physpages != num_physpages)
  1209. reason = "memory size";
  1210. if (reason) {
  1211. printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
  1212. return -EPERM;
  1213. }
  1214. return 0;
  1215. }
  1216. /**
  1217. * load header - check the image header and copy data from it
  1218. */
  1219. static int
  1220. load_header(struct swsusp_info *info)
  1221. {
  1222. int error;
  1223. restore_pblist = NULL;
  1224. error = check_header(info);
  1225. if (!error) {
  1226. nr_copy_pages = info->image_pages;
  1227. nr_meta_pages = info->pages - info->image_pages - 1;
  1228. }
  1229. return error;
  1230. }
  1231. /**
  1232. * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
  1233. * the corresponding bit in the memory bitmap @bm
  1234. */
  1235. static inline void
  1236. unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1237. {
  1238. int j;
  1239. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1240. if (unlikely(buf[j] == BM_END_OF_MAP))
  1241. break;
  1242. memory_bm_set_bit(bm, buf[j]);
  1243. }
  1244. }
  1245. /* List of "safe" pages that may be used to store data loaded from the suspend
  1246. * image
  1247. */
  1248. static struct linked_page *safe_pages_list;
  1249. #ifdef CONFIG_HIGHMEM
  1250. /* struct highmem_pbe is used for creating the list of highmem pages that
  1251. * should be restored atomically during the resume from disk, because the page
  1252. * frames they have occupied before the suspend are in use.
  1253. */
  1254. struct highmem_pbe {
  1255. struct page *copy_page; /* data is here now */
  1256. struct page *orig_page; /* data was here before the suspend */
  1257. struct highmem_pbe *next;
  1258. };
  1259. /* List of highmem PBEs needed for restoring the highmem pages that were
  1260. * allocated before the suspend and included in the suspend image, but have
  1261. * also been allocated by the "resume" kernel, so their contents cannot be
  1262. * written directly to their "original" page frames.
  1263. */
  1264. static struct highmem_pbe *highmem_pblist;
  1265. /**
  1266. * count_highmem_image_pages - compute the number of highmem pages in the
  1267. * suspend image. The bits in the memory bitmap @bm that correspond to the
  1268. * image pages are assumed to be set.
  1269. */
  1270. static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
  1271. {
  1272. unsigned long pfn;
  1273. unsigned int cnt = 0;
  1274. memory_bm_position_reset(bm);
  1275. pfn = memory_bm_next_pfn(bm);
  1276. while (pfn != BM_END_OF_MAP) {
  1277. if (PageHighMem(pfn_to_page(pfn)))
  1278. cnt++;
  1279. pfn = memory_bm_next_pfn(bm);
  1280. }
  1281. return cnt;
  1282. }
  1283. /**
  1284. * prepare_highmem_image - try to allocate as many highmem pages as
  1285. * there are highmem image pages (@nr_highmem_p points to the variable
  1286. * containing the number of highmem image pages). The pages that are
  1287. * "safe" (ie. will not be overwritten when the suspend image is
  1288. * restored) have the corresponding bits set in @bm (it must be
  1289. * unitialized).
  1290. *
  1291. * NOTE: This function should not be called if there are no highmem
  1292. * image pages.
  1293. */
  1294. static unsigned int safe_highmem_pages;
  1295. static struct memory_bitmap *safe_highmem_bm;
  1296. static int
  1297. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1298. {
  1299. unsigned int to_alloc;
  1300. if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
  1301. return -ENOMEM;
  1302. if (get_highmem_buffer(PG_SAFE))
  1303. return -ENOMEM;
  1304. to_alloc = count_free_highmem_pages();
  1305. if (to_alloc > *nr_highmem_p)
  1306. to_alloc = *nr_highmem_p;
  1307. else
  1308. *nr_highmem_p = to_alloc;
  1309. safe_highmem_pages = 0;
  1310. while (to_alloc-- > 0) {
  1311. struct page *page;
  1312. page = alloc_page(__GFP_HIGHMEM);
  1313. if (!swsusp_page_is_free(page)) {
  1314. /* The page is "safe", set its bit the bitmap */
  1315. memory_bm_set_bit(bm, page_to_pfn(page));
  1316. safe_highmem_pages++;
  1317. }
  1318. /* Mark the page as allocated */
  1319. swsusp_set_page_forbidden(page);
  1320. swsusp_set_page_free(page);
  1321. }
  1322. memory_bm_position_reset(bm);
  1323. safe_highmem_bm = bm;
  1324. return 0;
  1325. }
  1326. /**
  1327. * get_highmem_page_buffer - for given highmem image page find the buffer
  1328. * that suspend_write_next() should set for its caller to write to.
  1329. *
  1330. * If the page is to be saved to its "original" page frame or a copy of
  1331. * the page is to be made in the highmem, @buffer is returned. Otherwise,
  1332. * the copy of the page is to be made in normal memory, so the address of
  1333. * the copy is returned.
  1334. *
  1335. * If @buffer is returned, the caller of suspend_write_next() will write
  1336. * the page's contents to @buffer, so they will have to be copied to the
  1337. * right location on the next call to suspend_write_next() and it is done
  1338. * with the help of copy_last_highmem_page(). For this purpose, if
  1339. * @buffer is returned, @last_highmem page is set to the page to which
  1340. * the data will have to be copied from @buffer.
  1341. */
  1342. static struct page *last_highmem_page;
  1343. static void *
  1344. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1345. {
  1346. struct highmem_pbe *pbe;
  1347. void *kaddr;
  1348. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
  1349. /* We have allocated the "original" page frame and we can
  1350. * use it directly to store the loaded page.
  1351. */
  1352. last_highmem_page = page;
  1353. return buffer;
  1354. }
  1355. /* The "original" page frame has not been allocated and we have to
  1356. * use a "safe" page frame to store the loaded page.
  1357. */
  1358. pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
  1359. if (!pbe) {
  1360. swsusp_free();
  1361. return NULL;
  1362. }
  1363. pbe->orig_page = page;
  1364. if (safe_highmem_pages > 0) {
  1365. struct page *tmp;
  1366. /* Copy of the page will be stored in high memory */
  1367. kaddr = buffer;
  1368. tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
  1369. safe_highmem_pages--;
  1370. last_highmem_page = tmp;
  1371. pbe->copy_page = tmp;
  1372. } else {
  1373. /* Copy of the page will be stored in normal memory */
  1374. kaddr = safe_pages_list;
  1375. safe_pages_list = safe_pages_list->next;
  1376. pbe->copy_page = virt_to_page(kaddr);
  1377. }
  1378. pbe->next = highmem_pblist;
  1379. highmem_pblist = pbe;
  1380. return kaddr;
  1381. }
  1382. /**
  1383. * copy_last_highmem_page - copy the contents of a highmem image from
  1384. * @buffer, where the caller of snapshot_write_next() has place them,
  1385. * to the right location represented by @last_highmem_page .
  1386. */
  1387. static void copy_last_highmem_page(void)
  1388. {
  1389. if (last_highmem_page) {
  1390. void *dst;
  1391. dst = kmap_atomic(last_highmem_page, KM_USER0);
  1392. memcpy(dst, buffer, PAGE_SIZE);
  1393. kunmap_atomic(dst, KM_USER0);
  1394. last_highmem_page = NULL;
  1395. }
  1396. }
  1397. static inline int last_highmem_page_copied(void)
  1398. {
  1399. return !last_highmem_page;
  1400. }
  1401. static inline void free_highmem_data(void)
  1402. {
  1403. if (safe_highmem_bm)
  1404. memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
  1405. if (buffer)
  1406. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1407. }
  1408. #else
  1409. static inline int get_safe_write_buffer(void) { return 0; }
  1410. static unsigned int
  1411. count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
  1412. static inline int
  1413. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1414. {
  1415. return 0;
  1416. }
  1417. static inline void *
  1418. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1419. {
  1420. return NULL;
  1421. }
  1422. static inline void copy_last_highmem_page(void) {}
  1423. static inline int last_highmem_page_copied(void) { return 1; }
  1424. static inline void free_highmem_data(void) {}
  1425. #endif /* CONFIG_HIGHMEM */
  1426. /**
  1427. * prepare_image - use the memory bitmap @bm to mark the pages that will
  1428. * be overwritten in the process of restoring the system memory state
  1429. * from the suspend image ("unsafe" pages) and allocate memory for the
  1430. * image.
  1431. *
  1432. * The idea is to allocate a new memory bitmap first and then allocate
  1433. * as many pages as needed for the image data, but not to assign these
  1434. * pages to specific tasks initially. Instead, we just mark them as
  1435. * allocated and create a lists of "safe" pages that will be used
  1436. * later. On systems with high memory a list of "safe" highmem pages is
  1437. * also created.
  1438. */
  1439. #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
  1440. static int
  1441. prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
  1442. {
  1443. unsigned int nr_pages, nr_highmem;
  1444. struct linked_page *sp_list, *lp;
  1445. int error;
  1446. /* If there is no highmem, the buffer will not be necessary */
  1447. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1448. buffer = NULL;
  1449. nr_highmem = count_highmem_image_pages(bm);
  1450. error = mark_unsafe_pages(bm);
  1451. if (error)
  1452. goto Free;
  1453. error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
  1454. if (error)
  1455. goto Free;
  1456. duplicate_memory_bitmap(new_bm, bm);
  1457. memory_bm_free(bm, PG_UNSAFE_KEEP);
  1458. if (nr_highmem > 0) {
  1459. error = prepare_highmem_image(bm, &nr_highmem);
  1460. if (error)
  1461. goto Free;
  1462. }
  1463. /* Reserve some safe pages for potential later use.
  1464. *
  1465. * NOTE: This way we make sure there will be enough safe pages for the
  1466. * chain_alloc() in get_buffer(). It is a bit wasteful, but
  1467. * nr_copy_pages cannot be greater than 50% of the memory anyway.
  1468. */
  1469. sp_list = NULL;
  1470. /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
  1471. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1472. nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
  1473. while (nr_pages > 0) {
  1474. lp = get_image_page(GFP_ATOMIC, PG_SAFE);
  1475. if (!lp) {
  1476. error = -ENOMEM;
  1477. goto Free;
  1478. }
  1479. lp->next = sp_list;
  1480. sp_list = lp;
  1481. nr_pages--;
  1482. }
  1483. /* Preallocate memory for the image */
  1484. safe_pages_list = NULL;
  1485. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1486. while (nr_pages > 0) {
  1487. lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
  1488. if (!lp) {
  1489. error = -ENOMEM;
  1490. goto Free;
  1491. }
  1492. if (!swsusp_page_is_free(virt_to_page(lp))) {
  1493. /* The page is "safe", add it to the list */
  1494. lp->next = safe_pages_list;
  1495. safe_pages_list = lp;
  1496. }
  1497. /* Mark the page as allocated */
  1498. swsusp_set_page_forbidden(virt_to_page(lp));
  1499. swsusp_set_page_free(virt_to_page(lp));
  1500. nr_pages--;
  1501. }
  1502. /* Free the reserved safe pages so that chain_alloc() can use them */
  1503. while (sp_list) {
  1504. lp = sp_list->next;
  1505. free_image_page(sp_list, PG_UNSAFE_CLEAR);
  1506. sp_list = lp;
  1507. }
  1508. return 0;
  1509. Free:
  1510. swsusp_free();
  1511. return error;
  1512. }
  1513. /**
  1514. * get_buffer - compute the address that snapshot_write_next() should
  1515. * set for its caller to write to.
  1516. */
  1517. static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
  1518. {
  1519. struct pbe *pbe;
  1520. struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
  1521. if (PageHighMem(page))
  1522. return get_highmem_page_buffer(page, ca);
  1523. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
  1524. /* We have allocated the "original" page frame and we can
  1525. * use it directly to store the loaded page.
  1526. */
  1527. return page_address(page);
  1528. /* The "original" page frame has not been allocated and we have to
  1529. * use a "safe" page frame to store the loaded page.
  1530. */
  1531. pbe = chain_alloc(ca, sizeof(struct pbe));
  1532. if (!pbe) {
  1533. swsusp_free();
  1534. return NULL;
  1535. }
  1536. pbe->orig_address = page_address(page);
  1537. pbe->address = safe_pages_list;
  1538. safe_pages_list = safe_pages_list->next;
  1539. pbe->next = restore_pblist;
  1540. restore_pblist = pbe;
  1541. return pbe->address;
  1542. }
  1543. /**
  1544. * snapshot_write_next - used for writing the system memory snapshot.
  1545. *
  1546. * On the first call to it @handle should point to a zeroed
  1547. * snapshot_handle structure. The structure gets updated and a pointer
  1548. * to it should be passed to this function every next time.
  1549. *
  1550. * The @count parameter should contain the number of bytes the caller
  1551. * wants to write to the image. It must not be zero.
  1552. *
  1553. * On success the function returns a positive number. Then, the caller
  1554. * is allowed to write up to the returned number of bytes to the memory
  1555. * location computed by the data_of() macro. The number returned
  1556. * may be smaller than @count, but this only happens if the write would
  1557. * cross a page boundary otherwise.
  1558. *
  1559. * The function returns 0 to indicate the "end of file" condition,
  1560. * and a negative number is returned on error. In such cases the
  1561. * structure pointed to by @handle is not updated and should not be used
  1562. * any more.
  1563. */
  1564. int snapshot_write_next(struct snapshot_handle *handle, size_t count)
  1565. {
  1566. static struct chain_allocator ca;
  1567. int error = 0;
  1568. /* Check if we have already loaded the entire image */
  1569. if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
  1570. return 0;
  1571. if (handle->offset == 0) {
  1572. if (!buffer)
  1573. /* This makes the buffer be freed by swsusp_free() */
  1574. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1575. if (!buffer)
  1576. return -ENOMEM;
  1577. handle->buffer = buffer;
  1578. }
  1579. handle->sync_read = 1;
  1580. if (handle->prev < handle->cur) {
  1581. if (handle->prev == 0) {
  1582. error = load_header(buffer);
  1583. if (error)
  1584. return error;
  1585. error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
  1586. if (error)
  1587. return error;
  1588. } else if (handle->prev <= nr_meta_pages) {
  1589. unpack_orig_pfns(buffer, &copy_bm);
  1590. if (handle->prev == nr_meta_pages) {
  1591. error = prepare_image(&orig_bm, &copy_bm);
  1592. if (error)
  1593. return error;
  1594. chain_init(&ca, GFP_ATOMIC, PG_SAFE);
  1595. memory_bm_position_reset(&orig_bm);
  1596. restore_pblist = NULL;
  1597. handle->buffer = get_buffer(&orig_bm, &ca);
  1598. handle->sync_read = 0;
  1599. if (!handle->buffer)
  1600. return -ENOMEM;
  1601. }
  1602. } else {
  1603. copy_last_highmem_page();
  1604. handle->buffer = get_buffer(&orig_bm, &ca);
  1605. if (handle->buffer != buffer)
  1606. handle->sync_read = 0;
  1607. }
  1608. handle->prev = handle->cur;
  1609. }
  1610. handle->buf_offset = handle->cur_offset;
  1611. if (handle->cur_offset + count >= PAGE_SIZE) {
  1612. count = PAGE_SIZE - handle->cur_offset;
  1613. handle->cur_offset = 0;
  1614. handle->cur++;
  1615. } else {
  1616. handle->cur_offset += count;
  1617. }
  1618. handle->offset += count;
  1619. return count;
  1620. }
  1621. /**
  1622. * snapshot_write_finalize - must be called after the last call to
  1623. * snapshot_write_next() in case the last page in the image happens
  1624. * to be a highmem page and its contents should be stored in the
  1625. * highmem. Additionally, it releases the memory that will not be
  1626. * used any more.
  1627. */
  1628. void snapshot_write_finalize(struct snapshot_handle *handle)
  1629. {
  1630. copy_last_highmem_page();
  1631. /* Free only if we have loaded the image entirely */
  1632. if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
  1633. memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
  1634. free_highmem_data();
  1635. }
  1636. }
  1637. int snapshot_image_loaded(struct snapshot_handle *handle)
  1638. {
  1639. return !(!nr_copy_pages || !last_highmem_page_copied() ||
  1640. handle->cur <= nr_meta_pages + nr_copy_pages);
  1641. }
  1642. #ifdef CONFIG_HIGHMEM
  1643. /* Assumes that @buf is ready and points to a "safe" page */
  1644. static inline void
  1645. swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
  1646. {
  1647. void *kaddr1, *kaddr2;
  1648. kaddr1 = kmap_atomic(p1, KM_USER0);
  1649. kaddr2 = kmap_atomic(p2, KM_USER1);
  1650. memcpy(buf, kaddr1, PAGE_SIZE);
  1651. memcpy(kaddr1, kaddr2, PAGE_SIZE);
  1652. memcpy(kaddr2, buf, PAGE_SIZE);
  1653. kunmap_atomic(kaddr1, KM_USER0);
  1654. kunmap_atomic(kaddr2, KM_USER1);
  1655. }
  1656. /**
  1657. * restore_highmem - for each highmem page that was allocated before
  1658. * the suspend and included in the suspend image, and also has been
  1659. * allocated by the "resume" kernel swap its current (ie. "before
  1660. * resume") contents with the previous (ie. "before suspend") one.
  1661. *
  1662. * If the resume eventually fails, we can call this function once
  1663. * again and restore the "before resume" highmem state.
  1664. */
  1665. int restore_highmem(void)
  1666. {
  1667. struct highmem_pbe *pbe = highmem_pblist;
  1668. void *buf;
  1669. if (!pbe)
  1670. return 0;
  1671. buf = get_image_page(GFP_ATOMIC, PG_SAFE);
  1672. if (!buf)
  1673. return -ENOMEM;
  1674. while (pbe) {
  1675. swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
  1676. pbe = pbe->next;
  1677. }
  1678. free_image_page(buf, PG_UNSAFE_CLEAR);
  1679. return 0;
  1680. }
  1681. #endif /* CONFIG_HIGHMEM */