123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- #ifndef _ASM_X86_BITOPS_H
- #define _ASM_X86_BITOPS_H
- /*
- * Copyright 1992, Linus Torvalds.
- */
- #ifndef _LINUX_BITOPS_H
- #error only <linux/bitops.h> can be included directly
- #endif
- #include <linux/compiler.h>
- #include <asm/alternative.h>
- /*
- * These have to be done with inline assembly: that way the bit-setting
- * is guaranteed to be atomic. All bit operations return 0 if the bit
- * was cleared before the operation and != 0 if it was not.
- *
- * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
- */
- #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
- /* Technically wrong, but this avoids compilation errors on some gcc
- versions. */
- #define ADDR "=m" (*(volatile long *) addr)
- #else
- #define ADDR "+m" (*(volatile long *) addr)
- #endif
- /**
- * set_bit - Atomically set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * This function is atomic and may not be reordered. See __set_bit()
- * if you do not require the atomic guarantees.
- *
- * Note: there are no guarantees that this function will not be reordered
- * on non x86 architectures, so if you are writing portable code,
- * make sure not to rely on its reordering guarantees.
- *
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
- static inline void set_bit(int nr, volatile void *addr)
- {
- asm volatile(LOCK_PREFIX "bts %1,%0"
- : ADDR
- : "Ir" (nr) : "memory");
- }
- /**
- * __set_bit - Set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike set_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
- static inline void __set_bit(int nr, volatile void *addr)
- {
- asm volatile("bts %1,%0"
- : ADDR
- : "Ir" (nr) : "memory");
- }
- /**
- * clear_bit - Clears a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * clear_bit() is atomic and may not be reordered. However, it does
- * not contain a memory barrier, so if it is used for locking purposes,
- * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
- * in order to ensure changes are visible on other processors.
- */
- static inline void clear_bit(int nr, volatile void *addr)
- {
- asm volatile(LOCK_PREFIX "btr %1,%0"
- : ADDR
- : "Ir" (nr));
- }
- /*
- * clear_bit_unlock - Clears a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * clear_bit() is atomic and implies release semantics before the memory
- * operation. It can be used for an unlock.
- */
- static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
- {
- barrier();
- clear_bit(nr, addr);
- }
- static inline void __clear_bit(int nr, volatile void *addr)
- {
- asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
- }
- /*
- * __clear_bit_unlock - Clears a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * __clear_bit() is non-atomic and implies release semantics before the memory
- * operation. It can be used for an unlock if no other CPUs can concurrently
- * modify other bits in the word.
- *
- * No memory barrier is required here, because x86 cannot reorder stores past
- * older loads. Same principle as spin_unlock.
- */
- static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
- {
- barrier();
- __clear_bit(nr, addr);
- }
- #define smp_mb__before_clear_bit() barrier()
- #define smp_mb__after_clear_bit() barrier()
- /**
- * __change_bit - Toggle a bit in memory
- * @nr: the bit to change
- * @addr: the address to start counting from
- *
- * Unlike change_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
- static inline void __change_bit(int nr, volatile void *addr)
- {
- asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
- }
- /**
- * change_bit - Toggle a bit in memory
- * @nr: Bit to change
- * @addr: Address to start counting from
- *
- * change_bit() is atomic and may not be reordered.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
- static inline void change_bit(int nr, volatile void *addr)
- {
- asm volatile(LOCK_PREFIX "btc %1,%0"
- : ADDR : "Ir" (nr));
- }
- /**
- * test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
- static inline int test_and_set_bit(int nr, volatile void *addr)
- {
- int oldbit;
- asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
- "sbb %0,%0"
- : "=r" (oldbit), ADDR
- : "Ir" (nr) : "memory");
- return oldbit;
- }
- /**
- * test_and_set_bit_lock - Set a bit and return its old value for lock
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This is the same as test_and_set_bit on x86.
- */
- static inline int test_and_set_bit_lock(int nr, volatile void *addr)
- {
- return test_and_set_bit(nr, addr);
- }
- /**
- * __test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
- static inline int __test_and_set_bit(int nr, volatile void *addr)
- {
- int oldbit;
- asm("bts %2,%1\n\t"
- "sbb %0,%0"
- : "=r" (oldbit), ADDR
- : "Ir" (nr));
- return oldbit;
- }
- /**
- * test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to clear
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
- static inline int test_and_clear_bit(int nr, volatile void *addr)
- {
- int oldbit;
- asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
- "sbb %0,%0"
- : "=r" (oldbit), ADDR
- : "Ir" (nr) : "memory");
- return oldbit;
- }
- /**
- * __test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to clear
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
- static inline int __test_and_clear_bit(int nr, volatile void *addr)
- {
- int oldbit;
- asm volatile("btr %2,%1\n\t"
- "sbb %0,%0"
- : "=r" (oldbit), ADDR
- : "Ir" (nr));
- return oldbit;
- }
- /* WARNING: non atomic and it can be reordered! */
- static inline int __test_and_change_bit(int nr, volatile void *addr)
- {
- int oldbit;
- asm volatile("btc %2,%1\n\t"
- "sbb %0,%0"
- : "=r" (oldbit), ADDR
- : "Ir" (nr) : "memory");
- return oldbit;
- }
- /**
- * test_and_change_bit - Change a bit and return its old value
- * @nr: Bit to change
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
- static inline int test_and_change_bit(int nr, volatile void *addr)
- {
- int oldbit;
- asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
- "sbb %0,%0"
- : "=r" (oldbit), ADDR
- : "Ir" (nr) : "memory");
- return oldbit;
- }
- static inline int constant_test_bit(int nr, const volatile void *addr)
- {
- return ((1UL << (nr % BITS_PER_LONG)) &
- (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
- }
- static inline int variable_test_bit(int nr, volatile const void *addr)
- {
- int oldbit;
- asm volatile("bt %2,%1\n\t"
- "sbb %0,%0"
- : "=r" (oldbit)
- : "m" (*(unsigned long *)addr), "Ir" (nr));
- return oldbit;
- }
- #if 0 /* Fool kernel-doc since it doesn't do macros yet */
- /**
- * test_bit - Determine whether a bit is set
- * @nr: bit number to test
- * @addr: Address to start counting from
- */
- static int test_bit(int nr, const volatile unsigned long *addr);
- #endif
- #define test_bit(nr,addr) \
- (__builtin_constant_p(nr) ? \
- constant_test_bit((nr),(addr)) : \
- variable_test_bit((nr),(addr)))
- #undef ADDR
- #ifdef CONFIG_X86_32
- # include "bitops_32.h"
- #else
- # include "bitops_64.h"
- #endif
- #endif /* _ASM_X86_BITOPS_H */
|