xfs_inode.c 136 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_imap.h"
  26. #include "xfs_trans.h"
  27. #include "xfs_trans_priv.h"
  28. #include "xfs_sb.h"
  29. #include "xfs_ag.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_buf_item.h"
  41. #include "xfs_inode_item.h"
  42. #include "xfs_btree.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_dir2_trace.h"
  50. #include "xfs_quota.h"
  51. #include "xfs_acl.h"
  52. #include "xfs_filestream.h"
  53. #include "xfs_vnodeops.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. kmem_zone_t *xfs_icluster_zone;
  57. /*
  58. * Used in xfs_itruncate(). This is the maximum number of extents
  59. * freed from a file in a single transaction.
  60. */
  61. #define XFS_ITRUNC_MAX_EXTENTS 2
  62. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  63. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  64. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  65. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  66. #ifdef DEBUG
  67. /*
  68. * Make sure that the extents in the given memory buffer
  69. * are valid.
  70. */
  71. STATIC void
  72. xfs_validate_extents(
  73. xfs_ifork_t *ifp,
  74. int nrecs,
  75. xfs_exntfmt_t fmt)
  76. {
  77. xfs_bmbt_irec_t irec;
  78. xfs_bmbt_rec_host_t rec;
  79. int i;
  80. for (i = 0; i < nrecs; i++) {
  81. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  82. rec.l0 = get_unaligned(&ep->l0);
  83. rec.l1 = get_unaligned(&ep->l1);
  84. xfs_bmbt_get_all(&rec, &irec);
  85. if (fmt == XFS_EXTFMT_NOSTATE)
  86. ASSERT(irec.br_state == XFS_EXT_NORM);
  87. }
  88. }
  89. #else /* DEBUG */
  90. #define xfs_validate_extents(ifp, nrecs, fmt)
  91. #endif /* DEBUG */
  92. /*
  93. * Check that none of the inode's in the buffer have a next
  94. * unlinked field of 0.
  95. */
  96. #if defined(DEBUG)
  97. void
  98. xfs_inobp_check(
  99. xfs_mount_t *mp,
  100. xfs_buf_t *bp)
  101. {
  102. int i;
  103. int j;
  104. xfs_dinode_t *dip;
  105. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  106. for (i = 0; i < j; i++) {
  107. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  108. i * mp->m_sb.sb_inodesize);
  109. if (!dip->di_next_unlinked) {
  110. xfs_fs_cmn_err(CE_ALERT, mp,
  111. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  112. bp);
  113. ASSERT(dip->di_next_unlinked);
  114. }
  115. }
  116. }
  117. #endif
  118. /*
  119. * This routine is called to map an inode number within a file
  120. * system to the buffer containing the on-disk version of the
  121. * inode. It returns a pointer to the buffer containing the
  122. * on-disk inode in the bpp parameter, and in the dip parameter
  123. * it returns a pointer to the on-disk inode within that buffer.
  124. *
  125. * If a non-zero error is returned, then the contents of bpp and
  126. * dipp are undefined.
  127. *
  128. * Use xfs_imap() to determine the size and location of the
  129. * buffer to read from disk.
  130. */
  131. STATIC int
  132. xfs_inotobp(
  133. xfs_mount_t *mp,
  134. xfs_trans_t *tp,
  135. xfs_ino_t ino,
  136. xfs_dinode_t **dipp,
  137. xfs_buf_t **bpp,
  138. int *offset)
  139. {
  140. int di_ok;
  141. xfs_imap_t imap;
  142. xfs_buf_t *bp;
  143. int error;
  144. xfs_dinode_t *dip;
  145. /*
  146. * Call the space management code to find the location of the
  147. * inode on disk.
  148. */
  149. imap.im_blkno = 0;
  150. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  151. if (error != 0) {
  152. cmn_err(CE_WARN,
  153. "xfs_inotobp: xfs_imap() returned an "
  154. "error %d on %s. Returning error.", error, mp->m_fsname);
  155. return error;
  156. }
  157. /*
  158. * If the inode number maps to a block outside the bounds of the
  159. * file system then return NULL rather than calling read_buf
  160. * and panicing when we get an error from the driver.
  161. */
  162. if ((imap.im_blkno + imap.im_len) >
  163. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  164. cmn_err(CE_WARN,
  165. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  166. "of the file system %s. Returning EINVAL.",
  167. (unsigned long long)imap.im_blkno,
  168. imap.im_len, mp->m_fsname);
  169. return XFS_ERROR(EINVAL);
  170. }
  171. /*
  172. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  173. * default to just a read_buf() call.
  174. */
  175. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  176. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  177. if (error) {
  178. cmn_err(CE_WARN,
  179. "xfs_inotobp: xfs_trans_read_buf() returned an "
  180. "error %d on %s. Returning error.", error, mp->m_fsname);
  181. return error;
  182. }
  183. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  184. di_ok =
  185. be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  186. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  187. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  188. XFS_RANDOM_ITOBP_INOTOBP))) {
  189. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  190. xfs_trans_brelse(tp, bp);
  191. cmn_err(CE_WARN,
  192. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  193. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  194. return XFS_ERROR(EFSCORRUPTED);
  195. }
  196. xfs_inobp_check(mp, bp);
  197. /*
  198. * Set *dipp to point to the on-disk inode in the buffer.
  199. */
  200. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  201. *bpp = bp;
  202. *offset = imap.im_boffset;
  203. return 0;
  204. }
  205. /*
  206. * This routine is called to map an inode to the buffer containing
  207. * the on-disk version of the inode. It returns a pointer to the
  208. * buffer containing the on-disk inode in the bpp parameter, and in
  209. * the dip parameter it returns a pointer to the on-disk inode within
  210. * that buffer.
  211. *
  212. * If a non-zero error is returned, then the contents of bpp and
  213. * dipp are undefined.
  214. *
  215. * If the inode is new and has not yet been initialized, use xfs_imap()
  216. * to determine the size and location of the buffer to read from disk.
  217. * If the inode has already been mapped to its buffer and read in once,
  218. * then use the mapping information stored in the inode rather than
  219. * calling xfs_imap(). This allows us to avoid the overhead of looking
  220. * at the inode btree for small block file systems (see xfs_dilocate()).
  221. * We can tell whether the inode has been mapped in before by comparing
  222. * its disk block address to 0. Only uninitialized inodes will have
  223. * 0 for the disk block address.
  224. */
  225. int
  226. xfs_itobp(
  227. xfs_mount_t *mp,
  228. xfs_trans_t *tp,
  229. xfs_inode_t *ip,
  230. xfs_dinode_t **dipp,
  231. xfs_buf_t **bpp,
  232. xfs_daddr_t bno,
  233. uint imap_flags)
  234. {
  235. xfs_imap_t imap;
  236. xfs_buf_t *bp;
  237. int error;
  238. int i;
  239. int ni;
  240. if (ip->i_blkno == (xfs_daddr_t)0) {
  241. /*
  242. * Call the space management code to find the location of the
  243. * inode on disk.
  244. */
  245. imap.im_blkno = bno;
  246. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  247. XFS_IMAP_LOOKUP | imap_flags)))
  248. return error;
  249. /*
  250. * If the inode number maps to a block outside the bounds
  251. * of the file system then return NULL rather than calling
  252. * read_buf and panicing when we get an error from the
  253. * driver.
  254. */
  255. if ((imap.im_blkno + imap.im_len) >
  256. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  257. #ifdef DEBUG
  258. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  259. "(imap.im_blkno (0x%llx) "
  260. "+ imap.im_len (0x%llx)) > "
  261. " XFS_FSB_TO_BB(mp, "
  262. "mp->m_sb.sb_dblocks) (0x%llx)",
  263. (unsigned long long) imap.im_blkno,
  264. (unsigned long long) imap.im_len,
  265. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  266. #endif /* DEBUG */
  267. return XFS_ERROR(EINVAL);
  268. }
  269. /*
  270. * Fill in the fields in the inode that will be used to
  271. * map the inode to its buffer from now on.
  272. */
  273. ip->i_blkno = imap.im_blkno;
  274. ip->i_len = imap.im_len;
  275. ip->i_boffset = imap.im_boffset;
  276. } else {
  277. /*
  278. * We've already mapped the inode once, so just use the
  279. * mapping that we saved the first time.
  280. */
  281. imap.im_blkno = ip->i_blkno;
  282. imap.im_len = ip->i_len;
  283. imap.im_boffset = ip->i_boffset;
  284. }
  285. ASSERT(bno == 0 || bno == imap.im_blkno);
  286. /*
  287. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  288. * default to just a read_buf() call.
  289. */
  290. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  291. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  292. if (error) {
  293. #ifdef DEBUG
  294. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  295. "xfs_trans_read_buf() returned error %d, "
  296. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  297. error, (unsigned long long) imap.im_blkno,
  298. (unsigned long long) imap.im_len);
  299. #endif /* DEBUG */
  300. return error;
  301. }
  302. /*
  303. * Validate the magic number and version of every inode in the buffer
  304. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  305. * No validation is done here in userspace (xfs_repair).
  306. */
  307. #if !defined(__KERNEL__)
  308. ni = 0;
  309. #elif defined(DEBUG)
  310. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  311. #else /* usual case */
  312. ni = 1;
  313. #endif
  314. for (i = 0; i < ni; i++) {
  315. int di_ok;
  316. xfs_dinode_t *dip;
  317. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  318. (i << mp->m_sb.sb_inodelog));
  319. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  320. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  321. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  322. XFS_ERRTAG_ITOBP_INOTOBP,
  323. XFS_RANDOM_ITOBP_INOTOBP))) {
  324. if (imap_flags & XFS_IMAP_BULKSTAT) {
  325. xfs_trans_brelse(tp, bp);
  326. return XFS_ERROR(EINVAL);
  327. }
  328. #ifdef DEBUG
  329. cmn_err(CE_ALERT,
  330. "Device %s - bad inode magic/vsn "
  331. "daddr %lld #%d (magic=%x)",
  332. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  333. (unsigned long long)imap.im_blkno, i,
  334. be16_to_cpu(dip->di_core.di_magic));
  335. #endif
  336. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  337. mp, dip);
  338. xfs_trans_brelse(tp, bp);
  339. return XFS_ERROR(EFSCORRUPTED);
  340. }
  341. }
  342. xfs_inobp_check(mp, bp);
  343. /*
  344. * Mark the buffer as an inode buffer now that it looks good
  345. */
  346. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  347. /*
  348. * Set *dipp to point to the on-disk inode in the buffer.
  349. */
  350. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  351. *bpp = bp;
  352. return 0;
  353. }
  354. /*
  355. * Move inode type and inode format specific information from the
  356. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  357. * this means set if_rdev to the proper value. For files, directories,
  358. * and symlinks this means to bring in the in-line data or extent
  359. * pointers. For a file in B-tree format, only the root is immediately
  360. * brought in-core. The rest will be in-lined in if_extents when it
  361. * is first referenced (see xfs_iread_extents()).
  362. */
  363. STATIC int
  364. xfs_iformat(
  365. xfs_inode_t *ip,
  366. xfs_dinode_t *dip)
  367. {
  368. xfs_attr_shortform_t *atp;
  369. int size;
  370. int error;
  371. xfs_fsize_t di_size;
  372. ip->i_df.if_ext_max =
  373. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  374. error = 0;
  375. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  376. be16_to_cpu(dip->di_core.di_anextents) >
  377. be64_to_cpu(dip->di_core.di_nblocks))) {
  378. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  379. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  380. (unsigned long long)ip->i_ino,
  381. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  382. be16_to_cpu(dip->di_core.di_anextents)),
  383. (unsigned long long)
  384. be64_to_cpu(dip->di_core.di_nblocks));
  385. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  386. ip->i_mount, dip);
  387. return XFS_ERROR(EFSCORRUPTED);
  388. }
  389. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  390. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  391. "corrupt dinode %Lu, forkoff = 0x%x.",
  392. (unsigned long long)ip->i_ino,
  393. dip->di_core.di_forkoff);
  394. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  395. ip->i_mount, dip);
  396. return XFS_ERROR(EFSCORRUPTED);
  397. }
  398. switch (ip->i_d.di_mode & S_IFMT) {
  399. case S_IFIFO:
  400. case S_IFCHR:
  401. case S_IFBLK:
  402. case S_IFSOCK:
  403. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  404. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  405. ip->i_mount, dip);
  406. return XFS_ERROR(EFSCORRUPTED);
  407. }
  408. ip->i_d.di_size = 0;
  409. ip->i_size = 0;
  410. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  411. break;
  412. case S_IFREG:
  413. case S_IFLNK:
  414. case S_IFDIR:
  415. switch (dip->di_core.di_format) {
  416. case XFS_DINODE_FMT_LOCAL:
  417. /*
  418. * no local regular files yet
  419. */
  420. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  421. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  422. "corrupt inode %Lu "
  423. "(local format for regular file).",
  424. (unsigned long long) ip->i_ino);
  425. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  426. XFS_ERRLEVEL_LOW,
  427. ip->i_mount, dip);
  428. return XFS_ERROR(EFSCORRUPTED);
  429. }
  430. di_size = be64_to_cpu(dip->di_core.di_size);
  431. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  432. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  433. "corrupt inode %Lu "
  434. "(bad size %Ld for local inode).",
  435. (unsigned long long) ip->i_ino,
  436. (long long) di_size);
  437. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  438. XFS_ERRLEVEL_LOW,
  439. ip->i_mount, dip);
  440. return XFS_ERROR(EFSCORRUPTED);
  441. }
  442. size = (int)di_size;
  443. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  444. break;
  445. case XFS_DINODE_FMT_EXTENTS:
  446. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  447. break;
  448. case XFS_DINODE_FMT_BTREE:
  449. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  450. break;
  451. default:
  452. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  453. ip->i_mount);
  454. return XFS_ERROR(EFSCORRUPTED);
  455. }
  456. break;
  457. default:
  458. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. if (error) {
  462. return error;
  463. }
  464. if (!XFS_DFORK_Q(dip))
  465. return 0;
  466. ASSERT(ip->i_afp == NULL);
  467. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  468. ip->i_afp->if_ext_max =
  469. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  470. switch (dip->di_core.di_aformat) {
  471. case XFS_DINODE_FMT_LOCAL:
  472. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  473. size = be16_to_cpu(atp->hdr.totsize);
  474. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  475. break;
  476. case XFS_DINODE_FMT_EXTENTS:
  477. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  478. break;
  479. case XFS_DINODE_FMT_BTREE:
  480. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. default:
  483. error = XFS_ERROR(EFSCORRUPTED);
  484. break;
  485. }
  486. if (error) {
  487. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  488. ip->i_afp = NULL;
  489. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  490. }
  491. return error;
  492. }
  493. /*
  494. * The file is in-lined in the on-disk inode.
  495. * If it fits into if_inline_data, then copy
  496. * it there, otherwise allocate a buffer for it
  497. * and copy the data there. Either way, set
  498. * if_data to point at the data.
  499. * If we allocate a buffer for the data, make
  500. * sure that its size is a multiple of 4 and
  501. * record the real size in i_real_bytes.
  502. */
  503. STATIC int
  504. xfs_iformat_local(
  505. xfs_inode_t *ip,
  506. xfs_dinode_t *dip,
  507. int whichfork,
  508. int size)
  509. {
  510. xfs_ifork_t *ifp;
  511. int real_size;
  512. /*
  513. * If the size is unreasonable, then something
  514. * is wrong and we just bail out rather than crash in
  515. * kmem_alloc() or memcpy() below.
  516. */
  517. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  518. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  519. "corrupt inode %Lu "
  520. "(bad size %d for local fork, size = %d).",
  521. (unsigned long long) ip->i_ino, size,
  522. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  523. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp = XFS_IFORK_PTR(ip, whichfork);
  528. real_size = 0;
  529. if (size == 0)
  530. ifp->if_u1.if_data = NULL;
  531. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  532. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  533. else {
  534. real_size = roundup(size, 4);
  535. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  536. }
  537. ifp->if_bytes = size;
  538. ifp->if_real_bytes = real_size;
  539. if (size)
  540. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  541. ifp->if_flags &= ~XFS_IFEXTENTS;
  542. ifp->if_flags |= XFS_IFINLINE;
  543. return 0;
  544. }
  545. /*
  546. * The file consists of a set of extents all
  547. * of which fit into the on-disk inode.
  548. * If there are few enough extents to fit into
  549. * the if_inline_ext, then copy them there.
  550. * Otherwise allocate a buffer for them and copy
  551. * them into it. Either way, set if_extents
  552. * to point at the extents.
  553. */
  554. STATIC int
  555. xfs_iformat_extents(
  556. xfs_inode_t *ip,
  557. xfs_dinode_t *dip,
  558. int whichfork)
  559. {
  560. xfs_bmbt_rec_t *dp;
  561. xfs_ifork_t *ifp;
  562. int nex;
  563. int size;
  564. int i;
  565. ifp = XFS_IFORK_PTR(ip, whichfork);
  566. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  567. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  568. /*
  569. * If the number of extents is unreasonable, then something
  570. * is wrong and we just bail out rather than crash in
  571. * kmem_alloc() or memcpy() below.
  572. */
  573. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  574. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  575. "corrupt inode %Lu ((a)extents = %d).",
  576. (unsigned long long) ip->i_ino, nex);
  577. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  578. ip->i_mount, dip);
  579. return XFS_ERROR(EFSCORRUPTED);
  580. }
  581. ifp->if_real_bytes = 0;
  582. if (nex == 0)
  583. ifp->if_u1.if_extents = NULL;
  584. else if (nex <= XFS_INLINE_EXTS)
  585. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  586. else
  587. xfs_iext_add(ifp, 0, nex);
  588. ifp->if_bytes = size;
  589. if (size) {
  590. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  591. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  592. for (i = 0; i < nex; i++, dp++) {
  593. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  594. ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
  595. ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
  596. }
  597. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  598. if (whichfork != XFS_DATA_FORK ||
  599. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  600. if (unlikely(xfs_check_nostate_extents(
  601. ifp, 0, nex))) {
  602. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  603. XFS_ERRLEVEL_LOW,
  604. ip->i_mount);
  605. return XFS_ERROR(EFSCORRUPTED);
  606. }
  607. }
  608. ifp->if_flags |= XFS_IFEXTENTS;
  609. return 0;
  610. }
  611. /*
  612. * The file has too many extents to fit into
  613. * the inode, so they are in B-tree format.
  614. * Allocate a buffer for the root of the B-tree
  615. * and copy the root into it. The i_extents
  616. * field will remain NULL until all of the
  617. * extents are read in (when they are needed).
  618. */
  619. STATIC int
  620. xfs_iformat_btree(
  621. xfs_inode_t *ip,
  622. xfs_dinode_t *dip,
  623. int whichfork)
  624. {
  625. xfs_bmdr_block_t *dfp;
  626. xfs_ifork_t *ifp;
  627. /* REFERENCED */
  628. int nrecs;
  629. int size;
  630. ifp = XFS_IFORK_PTR(ip, whichfork);
  631. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  632. size = XFS_BMAP_BROOT_SPACE(dfp);
  633. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  634. /*
  635. * blow out if -- fork has less extents than can fit in
  636. * fork (fork shouldn't be a btree format), root btree
  637. * block has more records than can fit into the fork,
  638. * or the number of extents is greater than the number of
  639. * blocks.
  640. */
  641. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  642. || XFS_BMDR_SPACE_CALC(nrecs) >
  643. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  644. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  645. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  646. "corrupt inode %Lu (btree).",
  647. (unsigned long long) ip->i_ino);
  648. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  649. ip->i_mount);
  650. return XFS_ERROR(EFSCORRUPTED);
  651. }
  652. ifp->if_broot_bytes = size;
  653. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  654. ASSERT(ifp->if_broot != NULL);
  655. /*
  656. * Copy and convert from the on-disk structure
  657. * to the in-memory structure.
  658. */
  659. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  660. ifp->if_broot, size);
  661. ifp->if_flags &= ~XFS_IFEXTENTS;
  662. ifp->if_flags |= XFS_IFBROOT;
  663. return 0;
  664. }
  665. void
  666. xfs_dinode_from_disk(
  667. xfs_icdinode_t *to,
  668. xfs_dinode_core_t *from)
  669. {
  670. to->di_magic = be16_to_cpu(from->di_magic);
  671. to->di_mode = be16_to_cpu(from->di_mode);
  672. to->di_version = from ->di_version;
  673. to->di_format = from->di_format;
  674. to->di_onlink = be16_to_cpu(from->di_onlink);
  675. to->di_uid = be32_to_cpu(from->di_uid);
  676. to->di_gid = be32_to_cpu(from->di_gid);
  677. to->di_nlink = be32_to_cpu(from->di_nlink);
  678. to->di_projid = be16_to_cpu(from->di_projid);
  679. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  680. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  681. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  682. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  683. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  684. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  685. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  686. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  687. to->di_size = be64_to_cpu(from->di_size);
  688. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  689. to->di_extsize = be32_to_cpu(from->di_extsize);
  690. to->di_nextents = be32_to_cpu(from->di_nextents);
  691. to->di_anextents = be16_to_cpu(from->di_anextents);
  692. to->di_forkoff = from->di_forkoff;
  693. to->di_aformat = from->di_aformat;
  694. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  695. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  696. to->di_flags = be16_to_cpu(from->di_flags);
  697. to->di_gen = be32_to_cpu(from->di_gen);
  698. }
  699. void
  700. xfs_dinode_to_disk(
  701. xfs_dinode_core_t *to,
  702. xfs_icdinode_t *from)
  703. {
  704. to->di_magic = cpu_to_be16(from->di_magic);
  705. to->di_mode = cpu_to_be16(from->di_mode);
  706. to->di_version = from ->di_version;
  707. to->di_format = from->di_format;
  708. to->di_onlink = cpu_to_be16(from->di_onlink);
  709. to->di_uid = cpu_to_be32(from->di_uid);
  710. to->di_gid = cpu_to_be32(from->di_gid);
  711. to->di_nlink = cpu_to_be32(from->di_nlink);
  712. to->di_projid = cpu_to_be16(from->di_projid);
  713. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  714. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  715. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  716. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  717. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  718. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  719. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  720. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  721. to->di_size = cpu_to_be64(from->di_size);
  722. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  723. to->di_extsize = cpu_to_be32(from->di_extsize);
  724. to->di_nextents = cpu_to_be32(from->di_nextents);
  725. to->di_anextents = cpu_to_be16(from->di_anextents);
  726. to->di_forkoff = from->di_forkoff;
  727. to->di_aformat = from->di_aformat;
  728. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  729. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  730. to->di_flags = cpu_to_be16(from->di_flags);
  731. to->di_gen = cpu_to_be32(from->di_gen);
  732. }
  733. STATIC uint
  734. _xfs_dic2xflags(
  735. __uint16_t di_flags)
  736. {
  737. uint flags = 0;
  738. if (di_flags & XFS_DIFLAG_ANY) {
  739. if (di_flags & XFS_DIFLAG_REALTIME)
  740. flags |= XFS_XFLAG_REALTIME;
  741. if (di_flags & XFS_DIFLAG_PREALLOC)
  742. flags |= XFS_XFLAG_PREALLOC;
  743. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  744. flags |= XFS_XFLAG_IMMUTABLE;
  745. if (di_flags & XFS_DIFLAG_APPEND)
  746. flags |= XFS_XFLAG_APPEND;
  747. if (di_flags & XFS_DIFLAG_SYNC)
  748. flags |= XFS_XFLAG_SYNC;
  749. if (di_flags & XFS_DIFLAG_NOATIME)
  750. flags |= XFS_XFLAG_NOATIME;
  751. if (di_flags & XFS_DIFLAG_NODUMP)
  752. flags |= XFS_XFLAG_NODUMP;
  753. if (di_flags & XFS_DIFLAG_RTINHERIT)
  754. flags |= XFS_XFLAG_RTINHERIT;
  755. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  756. flags |= XFS_XFLAG_PROJINHERIT;
  757. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  758. flags |= XFS_XFLAG_NOSYMLINKS;
  759. if (di_flags & XFS_DIFLAG_EXTSIZE)
  760. flags |= XFS_XFLAG_EXTSIZE;
  761. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  762. flags |= XFS_XFLAG_EXTSZINHERIT;
  763. if (di_flags & XFS_DIFLAG_NODEFRAG)
  764. flags |= XFS_XFLAG_NODEFRAG;
  765. if (di_flags & XFS_DIFLAG_FILESTREAM)
  766. flags |= XFS_XFLAG_FILESTREAM;
  767. }
  768. return flags;
  769. }
  770. uint
  771. xfs_ip2xflags(
  772. xfs_inode_t *ip)
  773. {
  774. xfs_icdinode_t *dic = &ip->i_d;
  775. return _xfs_dic2xflags(dic->di_flags) |
  776. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  777. }
  778. uint
  779. xfs_dic2xflags(
  780. xfs_dinode_t *dip)
  781. {
  782. xfs_dinode_core_t *dic = &dip->di_core;
  783. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  784. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  785. }
  786. /*
  787. * Given a mount structure and an inode number, return a pointer
  788. * to a newly allocated in-core inode corresponding to the given
  789. * inode number.
  790. *
  791. * Initialize the inode's attributes and extent pointers if it
  792. * already has them (it will not if the inode has no links).
  793. */
  794. int
  795. xfs_iread(
  796. xfs_mount_t *mp,
  797. xfs_trans_t *tp,
  798. xfs_ino_t ino,
  799. xfs_inode_t **ipp,
  800. xfs_daddr_t bno,
  801. uint imap_flags)
  802. {
  803. xfs_buf_t *bp;
  804. xfs_dinode_t *dip;
  805. xfs_inode_t *ip;
  806. int error;
  807. ASSERT(xfs_inode_zone != NULL);
  808. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  809. ip->i_ino = ino;
  810. ip->i_mount = mp;
  811. atomic_set(&ip->i_iocount, 0);
  812. spin_lock_init(&ip->i_flags_lock);
  813. /*
  814. * Get pointer's to the on-disk inode and the buffer containing it.
  815. * If the inode number refers to a block outside the file system
  816. * then xfs_itobp() will return NULL. In this case we should
  817. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  818. * know that this is a new incore inode.
  819. */
  820. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  821. if (error) {
  822. kmem_zone_free(xfs_inode_zone, ip);
  823. return error;
  824. }
  825. /*
  826. * Initialize inode's trace buffers.
  827. * Do this before xfs_iformat in case it adds entries.
  828. */
  829. #ifdef XFS_INODE_TRACE
  830. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
  831. #endif
  832. #ifdef XFS_BMAP_TRACE
  833. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  834. #endif
  835. #ifdef XFS_BMBT_TRACE
  836. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  837. #endif
  838. #ifdef XFS_RW_TRACE
  839. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  840. #endif
  841. #ifdef XFS_ILOCK_TRACE
  842. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  843. #endif
  844. #ifdef XFS_DIR2_TRACE
  845. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  846. #endif
  847. /*
  848. * If we got something that isn't an inode it means someone
  849. * (nfs or dmi) has a stale handle.
  850. */
  851. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  852. kmem_zone_free(xfs_inode_zone, ip);
  853. xfs_trans_brelse(tp, bp);
  854. #ifdef DEBUG
  855. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  856. "dip->di_core.di_magic (0x%x) != "
  857. "XFS_DINODE_MAGIC (0x%x)",
  858. be16_to_cpu(dip->di_core.di_magic),
  859. XFS_DINODE_MAGIC);
  860. #endif /* DEBUG */
  861. return XFS_ERROR(EINVAL);
  862. }
  863. /*
  864. * If the on-disk inode is already linked to a directory
  865. * entry, copy all of the inode into the in-core inode.
  866. * xfs_iformat() handles copying in the inode format
  867. * specific information.
  868. * Otherwise, just get the truly permanent information.
  869. */
  870. if (dip->di_core.di_mode) {
  871. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  872. error = xfs_iformat(ip, dip);
  873. if (error) {
  874. kmem_zone_free(xfs_inode_zone, ip);
  875. xfs_trans_brelse(tp, bp);
  876. #ifdef DEBUG
  877. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  878. "xfs_iformat() returned error %d",
  879. error);
  880. #endif /* DEBUG */
  881. return error;
  882. }
  883. } else {
  884. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  885. ip->i_d.di_version = dip->di_core.di_version;
  886. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  887. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  888. /*
  889. * Make sure to pull in the mode here as well in
  890. * case the inode is released without being used.
  891. * This ensures that xfs_inactive() will see that
  892. * the inode is already free and not try to mess
  893. * with the uninitialized part of it.
  894. */
  895. ip->i_d.di_mode = 0;
  896. /*
  897. * Initialize the per-fork minima and maxima for a new
  898. * inode here. xfs_iformat will do it for old inodes.
  899. */
  900. ip->i_df.if_ext_max =
  901. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  902. }
  903. INIT_LIST_HEAD(&ip->i_reclaim);
  904. /*
  905. * The inode format changed when we moved the link count and
  906. * made it 32 bits long. If this is an old format inode,
  907. * convert it in memory to look like a new one. If it gets
  908. * flushed to disk we will convert back before flushing or
  909. * logging it. We zero out the new projid field and the old link
  910. * count field. We'll handle clearing the pad field (the remains
  911. * of the old uuid field) when we actually convert the inode to
  912. * the new format. We don't change the version number so that we
  913. * can distinguish this from a real new format inode.
  914. */
  915. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  916. ip->i_d.di_nlink = ip->i_d.di_onlink;
  917. ip->i_d.di_onlink = 0;
  918. ip->i_d.di_projid = 0;
  919. }
  920. ip->i_delayed_blks = 0;
  921. ip->i_size = ip->i_d.di_size;
  922. /*
  923. * Mark the buffer containing the inode as something to keep
  924. * around for a while. This helps to keep recently accessed
  925. * meta-data in-core longer.
  926. */
  927. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  928. /*
  929. * Use xfs_trans_brelse() to release the buffer containing the
  930. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  931. * in xfs_itobp() above. If tp is NULL, this is just a normal
  932. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  933. * will only release the buffer if it is not dirty within the
  934. * transaction. It will be OK to release the buffer in this case,
  935. * because inodes on disk are never destroyed and we will be
  936. * locking the new in-core inode before putting it in the hash
  937. * table where other processes can find it. Thus we don't have
  938. * to worry about the inode being changed just because we released
  939. * the buffer.
  940. */
  941. xfs_trans_brelse(tp, bp);
  942. *ipp = ip;
  943. return 0;
  944. }
  945. /*
  946. * Read in extents from a btree-format inode.
  947. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  948. */
  949. int
  950. xfs_iread_extents(
  951. xfs_trans_t *tp,
  952. xfs_inode_t *ip,
  953. int whichfork)
  954. {
  955. int error;
  956. xfs_ifork_t *ifp;
  957. xfs_extnum_t nextents;
  958. size_t size;
  959. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  960. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  961. ip->i_mount);
  962. return XFS_ERROR(EFSCORRUPTED);
  963. }
  964. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  965. size = nextents * sizeof(xfs_bmbt_rec_t);
  966. ifp = XFS_IFORK_PTR(ip, whichfork);
  967. /*
  968. * We know that the size is valid (it's checked in iformat_btree)
  969. */
  970. ifp->if_lastex = NULLEXTNUM;
  971. ifp->if_bytes = ifp->if_real_bytes = 0;
  972. ifp->if_flags |= XFS_IFEXTENTS;
  973. xfs_iext_add(ifp, 0, nextents);
  974. error = xfs_bmap_read_extents(tp, ip, whichfork);
  975. if (error) {
  976. xfs_iext_destroy(ifp);
  977. ifp->if_flags &= ~XFS_IFEXTENTS;
  978. return error;
  979. }
  980. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  981. return 0;
  982. }
  983. /*
  984. * Allocate an inode on disk and return a copy of its in-core version.
  985. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  986. * appropriately within the inode. The uid and gid for the inode are
  987. * set according to the contents of the given cred structure.
  988. *
  989. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  990. * has a free inode available, call xfs_iget()
  991. * to obtain the in-core version of the allocated inode. Finally,
  992. * fill in the inode and log its initial contents. In this case,
  993. * ialloc_context would be set to NULL and call_again set to false.
  994. *
  995. * If xfs_dialloc() does not have an available inode,
  996. * it will replenish its supply by doing an allocation. Since we can
  997. * only do one allocation within a transaction without deadlocks, we
  998. * must commit the current transaction before returning the inode itself.
  999. * In this case, therefore, we will set call_again to true and return.
  1000. * The caller should then commit the current transaction, start a new
  1001. * transaction, and call xfs_ialloc() again to actually get the inode.
  1002. *
  1003. * To ensure that some other process does not grab the inode that
  1004. * was allocated during the first call to xfs_ialloc(), this routine
  1005. * also returns the [locked] bp pointing to the head of the freelist
  1006. * as ialloc_context. The caller should hold this buffer across
  1007. * the commit and pass it back into this routine on the second call.
  1008. *
  1009. * If we are allocating quota inodes, we do not have a parent inode
  1010. * to attach to or associate with (i.e. pip == NULL) because they
  1011. * are not linked into the directory structure - they are attached
  1012. * directly to the superblock - and so have no parent.
  1013. */
  1014. int
  1015. xfs_ialloc(
  1016. xfs_trans_t *tp,
  1017. xfs_inode_t *pip,
  1018. mode_t mode,
  1019. xfs_nlink_t nlink,
  1020. xfs_dev_t rdev,
  1021. cred_t *cr,
  1022. xfs_prid_t prid,
  1023. int okalloc,
  1024. xfs_buf_t **ialloc_context,
  1025. boolean_t *call_again,
  1026. xfs_inode_t **ipp)
  1027. {
  1028. xfs_ino_t ino;
  1029. xfs_inode_t *ip;
  1030. bhv_vnode_t *vp;
  1031. uint flags;
  1032. int error;
  1033. /*
  1034. * Call the space management code to pick
  1035. * the on-disk inode to be allocated.
  1036. */
  1037. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1038. ialloc_context, call_again, &ino);
  1039. if (error != 0) {
  1040. return error;
  1041. }
  1042. if (*call_again || ino == NULLFSINO) {
  1043. *ipp = NULL;
  1044. return 0;
  1045. }
  1046. ASSERT(*ialloc_context == NULL);
  1047. /*
  1048. * Get the in-core inode with the lock held exclusively.
  1049. * This is because we're setting fields here we need
  1050. * to prevent others from looking at until we're done.
  1051. */
  1052. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1053. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1054. if (error != 0) {
  1055. return error;
  1056. }
  1057. ASSERT(ip != NULL);
  1058. vp = XFS_ITOV(ip);
  1059. ip->i_d.di_mode = (__uint16_t)mode;
  1060. ip->i_d.di_onlink = 0;
  1061. ip->i_d.di_nlink = nlink;
  1062. ASSERT(ip->i_d.di_nlink == nlink);
  1063. ip->i_d.di_uid = current_fsuid(cr);
  1064. ip->i_d.di_gid = current_fsgid(cr);
  1065. ip->i_d.di_projid = prid;
  1066. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1067. /*
  1068. * If the superblock version is up to where we support new format
  1069. * inodes and this is currently an old format inode, then change
  1070. * the inode version number now. This way we only do the conversion
  1071. * here rather than here and in the flush/logging code.
  1072. */
  1073. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1074. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1075. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1076. /*
  1077. * We've already zeroed the old link count, the projid field,
  1078. * and the pad field.
  1079. */
  1080. }
  1081. /*
  1082. * Project ids won't be stored on disk if we are using a version 1 inode.
  1083. */
  1084. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1085. xfs_bump_ino_vers2(tp, ip);
  1086. if (pip && XFS_INHERIT_GID(pip)) {
  1087. ip->i_d.di_gid = pip->i_d.di_gid;
  1088. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1089. ip->i_d.di_mode |= S_ISGID;
  1090. }
  1091. }
  1092. /*
  1093. * If the group ID of the new file does not match the effective group
  1094. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1095. * (and only if the irix_sgid_inherit compatibility variable is set).
  1096. */
  1097. if ((irix_sgid_inherit) &&
  1098. (ip->i_d.di_mode & S_ISGID) &&
  1099. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1100. ip->i_d.di_mode &= ~S_ISGID;
  1101. }
  1102. ip->i_d.di_size = 0;
  1103. ip->i_size = 0;
  1104. ip->i_d.di_nextents = 0;
  1105. ASSERT(ip->i_d.di_nblocks == 0);
  1106. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1107. /*
  1108. * di_gen will have been taken care of in xfs_iread.
  1109. */
  1110. ip->i_d.di_extsize = 0;
  1111. ip->i_d.di_dmevmask = 0;
  1112. ip->i_d.di_dmstate = 0;
  1113. ip->i_d.di_flags = 0;
  1114. flags = XFS_ILOG_CORE;
  1115. switch (mode & S_IFMT) {
  1116. case S_IFIFO:
  1117. case S_IFCHR:
  1118. case S_IFBLK:
  1119. case S_IFSOCK:
  1120. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1121. ip->i_df.if_u2.if_rdev = rdev;
  1122. ip->i_df.if_flags = 0;
  1123. flags |= XFS_ILOG_DEV;
  1124. break;
  1125. case S_IFREG:
  1126. if (pip && xfs_inode_is_filestream(pip)) {
  1127. error = xfs_filestream_associate(pip, ip);
  1128. if (error < 0)
  1129. return -error;
  1130. if (!error)
  1131. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1132. }
  1133. /* fall through */
  1134. case S_IFDIR:
  1135. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1136. uint di_flags = 0;
  1137. if ((mode & S_IFMT) == S_IFDIR) {
  1138. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1139. di_flags |= XFS_DIFLAG_RTINHERIT;
  1140. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1141. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1142. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1143. }
  1144. } else if ((mode & S_IFMT) == S_IFREG) {
  1145. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1146. di_flags |= XFS_DIFLAG_REALTIME;
  1147. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1148. di_flags |= XFS_DIFLAG_EXTSIZE;
  1149. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1150. }
  1151. }
  1152. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1153. xfs_inherit_noatime)
  1154. di_flags |= XFS_DIFLAG_NOATIME;
  1155. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1156. xfs_inherit_nodump)
  1157. di_flags |= XFS_DIFLAG_NODUMP;
  1158. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1159. xfs_inherit_sync)
  1160. di_flags |= XFS_DIFLAG_SYNC;
  1161. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1162. xfs_inherit_nosymlinks)
  1163. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1164. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1165. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1166. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1167. xfs_inherit_nodefrag)
  1168. di_flags |= XFS_DIFLAG_NODEFRAG;
  1169. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1170. di_flags |= XFS_DIFLAG_FILESTREAM;
  1171. ip->i_d.di_flags |= di_flags;
  1172. }
  1173. /* FALLTHROUGH */
  1174. case S_IFLNK:
  1175. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1176. ip->i_df.if_flags = XFS_IFEXTENTS;
  1177. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1178. ip->i_df.if_u1.if_extents = NULL;
  1179. break;
  1180. default:
  1181. ASSERT(0);
  1182. }
  1183. /*
  1184. * Attribute fork settings for new inode.
  1185. */
  1186. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1187. ip->i_d.di_anextents = 0;
  1188. /*
  1189. * Log the new values stuffed into the inode.
  1190. */
  1191. xfs_trans_log_inode(tp, ip, flags);
  1192. /* now that we have an i_mode we can setup inode ops and unlock */
  1193. xfs_initialize_vnode(tp->t_mountp, vp, ip);
  1194. *ipp = ip;
  1195. return 0;
  1196. }
  1197. /*
  1198. * Check to make sure that there are no blocks allocated to the
  1199. * file beyond the size of the file. We don't check this for
  1200. * files with fixed size extents or real time extents, but we
  1201. * at least do it for regular files.
  1202. */
  1203. #ifdef DEBUG
  1204. void
  1205. xfs_isize_check(
  1206. xfs_mount_t *mp,
  1207. xfs_inode_t *ip,
  1208. xfs_fsize_t isize)
  1209. {
  1210. xfs_fileoff_t map_first;
  1211. int nimaps;
  1212. xfs_bmbt_irec_t imaps[2];
  1213. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1214. return;
  1215. if (XFS_IS_REALTIME_INODE(ip))
  1216. return;
  1217. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1218. return;
  1219. nimaps = 2;
  1220. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1221. /*
  1222. * The filesystem could be shutting down, so bmapi may return
  1223. * an error.
  1224. */
  1225. if (xfs_bmapi(NULL, ip, map_first,
  1226. (XFS_B_TO_FSB(mp,
  1227. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1228. map_first),
  1229. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1230. NULL, NULL))
  1231. return;
  1232. ASSERT(nimaps == 1);
  1233. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1234. }
  1235. #endif /* DEBUG */
  1236. /*
  1237. * Calculate the last possible buffered byte in a file. This must
  1238. * include data that was buffered beyond the EOF by the write code.
  1239. * This also needs to deal with overflowing the xfs_fsize_t type
  1240. * which can happen for sizes near the limit.
  1241. *
  1242. * We also need to take into account any blocks beyond the EOF. It
  1243. * may be the case that they were buffered by a write which failed.
  1244. * In that case the pages will still be in memory, but the inode size
  1245. * will never have been updated.
  1246. */
  1247. xfs_fsize_t
  1248. xfs_file_last_byte(
  1249. xfs_inode_t *ip)
  1250. {
  1251. xfs_mount_t *mp;
  1252. xfs_fsize_t last_byte;
  1253. xfs_fileoff_t last_block;
  1254. xfs_fileoff_t size_last_block;
  1255. int error;
  1256. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1257. mp = ip->i_mount;
  1258. /*
  1259. * Only check for blocks beyond the EOF if the extents have
  1260. * been read in. This eliminates the need for the inode lock,
  1261. * and it also saves us from looking when it really isn't
  1262. * necessary.
  1263. */
  1264. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1265. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1266. XFS_DATA_FORK);
  1267. if (error) {
  1268. last_block = 0;
  1269. }
  1270. } else {
  1271. last_block = 0;
  1272. }
  1273. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1274. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1275. last_byte = XFS_FSB_TO_B(mp, last_block);
  1276. if (last_byte < 0) {
  1277. return XFS_MAXIOFFSET(mp);
  1278. }
  1279. last_byte += (1 << mp->m_writeio_log);
  1280. if (last_byte < 0) {
  1281. return XFS_MAXIOFFSET(mp);
  1282. }
  1283. return last_byte;
  1284. }
  1285. #if defined(XFS_RW_TRACE)
  1286. STATIC void
  1287. xfs_itrunc_trace(
  1288. int tag,
  1289. xfs_inode_t *ip,
  1290. int flag,
  1291. xfs_fsize_t new_size,
  1292. xfs_off_t toss_start,
  1293. xfs_off_t toss_finish)
  1294. {
  1295. if (ip->i_rwtrace == NULL) {
  1296. return;
  1297. }
  1298. ktrace_enter(ip->i_rwtrace,
  1299. (void*)((long)tag),
  1300. (void*)ip,
  1301. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1302. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1303. (void*)((long)flag),
  1304. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1305. (void*)(unsigned long)(new_size & 0xffffffff),
  1306. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1307. (void*)(unsigned long)(toss_start & 0xffffffff),
  1308. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1309. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1310. (void*)(unsigned long)current_cpu(),
  1311. (void*)(unsigned long)current_pid(),
  1312. (void*)NULL,
  1313. (void*)NULL,
  1314. (void*)NULL);
  1315. }
  1316. #else
  1317. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1318. #endif
  1319. /*
  1320. * Start the truncation of the file to new_size. The new size
  1321. * must be smaller than the current size. This routine will
  1322. * clear the buffer and page caches of file data in the removed
  1323. * range, and xfs_itruncate_finish() will remove the underlying
  1324. * disk blocks.
  1325. *
  1326. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1327. * must NOT have the inode lock held at all. This is because we're
  1328. * calling into the buffer/page cache code and we can't hold the
  1329. * inode lock when we do so.
  1330. *
  1331. * We need to wait for any direct I/Os in flight to complete before we
  1332. * proceed with the truncate. This is needed to prevent the extents
  1333. * being read or written by the direct I/Os from being removed while the
  1334. * I/O is in flight as there is no other method of synchronising
  1335. * direct I/O with the truncate operation. Also, because we hold
  1336. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1337. * started until the truncate completes and drops the lock. Essentially,
  1338. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1339. * between direct I/Os and the truncate operation.
  1340. *
  1341. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1342. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1343. * in the case that the caller is locking things out of order and
  1344. * may not be able to call xfs_itruncate_finish() with the inode lock
  1345. * held without dropping the I/O lock. If the caller must drop the
  1346. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1347. * must be called again with all the same restrictions as the initial
  1348. * call.
  1349. */
  1350. int
  1351. xfs_itruncate_start(
  1352. xfs_inode_t *ip,
  1353. uint flags,
  1354. xfs_fsize_t new_size)
  1355. {
  1356. xfs_fsize_t last_byte;
  1357. xfs_off_t toss_start;
  1358. xfs_mount_t *mp;
  1359. bhv_vnode_t *vp;
  1360. int error = 0;
  1361. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1362. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1363. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1364. (flags == XFS_ITRUNC_MAYBE));
  1365. mp = ip->i_mount;
  1366. vp = XFS_ITOV(ip);
  1367. /* wait for the completion of any pending DIOs */
  1368. if (new_size < ip->i_size)
  1369. vn_iowait(ip);
  1370. /*
  1371. * Call toss_pages or flushinval_pages to get rid of pages
  1372. * overlapping the region being removed. We have to use
  1373. * the less efficient flushinval_pages in the case that the
  1374. * caller may not be able to finish the truncate without
  1375. * dropping the inode's I/O lock. Make sure
  1376. * to catch any pages brought in by buffers overlapping
  1377. * the EOF by searching out beyond the isize by our
  1378. * block size. We round new_size up to a block boundary
  1379. * so that we don't toss things on the same block as
  1380. * new_size but before it.
  1381. *
  1382. * Before calling toss_page or flushinval_pages, make sure to
  1383. * call remapf() over the same region if the file is mapped.
  1384. * This frees up mapped file references to the pages in the
  1385. * given range and for the flushinval_pages case it ensures
  1386. * that we get the latest mapped changes flushed out.
  1387. */
  1388. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1389. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1390. if (toss_start < 0) {
  1391. /*
  1392. * The place to start tossing is beyond our maximum
  1393. * file size, so there is no way that the data extended
  1394. * out there.
  1395. */
  1396. return 0;
  1397. }
  1398. last_byte = xfs_file_last_byte(ip);
  1399. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1400. last_byte);
  1401. if (last_byte > toss_start) {
  1402. if (flags & XFS_ITRUNC_DEFINITE) {
  1403. xfs_tosspages(ip, toss_start,
  1404. -1, FI_REMAPF_LOCKED);
  1405. } else {
  1406. error = xfs_flushinval_pages(ip, toss_start,
  1407. -1, FI_REMAPF_LOCKED);
  1408. }
  1409. }
  1410. #ifdef DEBUG
  1411. if (new_size == 0) {
  1412. ASSERT(VN_CACHED(vp) == 0);
  1413. }
  1414. #endif
  1415. return error;
  1416. }
  1417. /*
  1418. * Shrink the file to the given new_size. The new
  1419. * size must be smaller than the current size.
  1420. * This will free up the underlying blocks
  1421. * in the removed range after a call to xfs_itruncate_start()
  1422. * or xfs_atruncate_start().
  1423. *
  1424. * The transaction passed to this routine must have made
  1425. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1426. * This routine may commit the given transaction and
  1427. * start new ones, so make sure everything involved in
  1428. * the transaction is tidy before calling here.
  1429. * Some transaction will be returned to the caller to be
  1430. * committed. The incoming transaction must already include
  1431. * the inode, and both inode locks must be held exclusively.
  1432. * The inode must also be "held" within the transaction. On
  1433. * return the inode will be "held" within the returned transaction.
  1434. * This routine does NOT require any disk space to be reserved
  1435. * for it within the transaction.
  1436. *
  1437. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1438. * and it indicates the fork which is to be truncated. For the
  1439. * attribute fork we only support truncation to size 0.
  1440. *
  1441. * We use the sync parameter to indicate whether or not the first
  1442. * transaction we perform might have to be synchronous. For the attr fork,
  1443. * it needs to be so if the unlink of the inode is not yet known to be
  1444. * permanent in the log. This keeps us from freeing and reusing the
  1445. * blocks of the attribute fork before the unlink of the inode becomes
  1446. * permanent.
  1447. *
  1448. * For the data fork, we normally have to run synchronously if we're
  1449. * being called out of the inactive path or we're being called
  1450. * out of the create path where we're truncating an existing file.
  1451. * Either way, the truncate needs to be sync so blocks don't reappear
  1452. * in the file with altered data in case of a crash. wsync filesystems
  1453. * can run the first case async because anything that shrinks the inode
  1454. * has to run sync so by the time we're called here from inactive, the
  1455. * inode size is permanently set to 0.
  1456. *
  1457. * Calls from the truncate path always need to be sync unless we're
  1458. * in a wsync filesystem and the file has already been unlinked.
  1459. *
  1460. * The caller is responsible for correctly setting the sync parameter.
  1461. * It gets too hard for us to guess here which path we're being called
  1462. * out of just based on inode state.
  1463. */
  1464. int
  1465. xfs_itruncate_finish(
  1466. xfs_trans_t **tp,
  1467. xfs_inode_t *ip,
  1468. xfs_fsize_t new_size,
  1469. int fork,
  1470. int sync)
  1471. {
  1472. xfs_fsblock_t first_block;
  1473. xfs_fileoff_t first_unmap_block;
  1474. xfs_fileoff_t last_block;
  1475. xfs_filblks_t unmap_len=0;
  1476. xfs_mount_t *mp;
  1477. xfs_trans_t *ntp;
  1478. int done;
  1479. int committed;
  1480. xfs_bmap_free_t free_list;
  1481. int error;
  1482. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1483. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1484. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1485. ASSERT(*tp != NULL);
  1486. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1487. ASSERT(ip->i_transp == *tp);
  1488. ASSERT(ip->i_itemp != NULL);
  1489. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1490. ntp = *tp;
  1491. mp = (ntp)->t_mountp;
  1492. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1493. /*
  1494. * We only support truncating the entire attribute fork.
  1495. */
  1496. if (fork == XFS_ATTR_FORK) {
  1497. new_size = 0LL;
  1498. }
  1499. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1500. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1501. /*
  1502. * The first thing we do is set the size to new_size permanently
  1503. * on disk. This way we don't have to worry about anyone ever
  1504. * being able to look at the data being freed even in the face
  1505. * of a crash. What we're getting around here is the case where
  1506. * we free a block, it is allocated to another file, it is written
  1507. * to, and then we crash. If the new data gets written to the
  1508. * file but the log buffers containing the free and reallocation
  1509. * don't, then we'd end up with garbage in the blocks being freed.
  1510. * As long as we make the new_size permanent before actually
  1511. * freeing any blocks it doesn't matter if they get writtten to.
  1512. *
  1513. * The callers must signal into us whether or not the size
  1514. * setting here must be synchronous. There are a few cases
  1515. * where it doesn't have to be synchronous. Those cases
  1516. * occur if the file is unlinked and we know the unlink is
  1517. * permanent or if the blocks being truncated are guaranteed
  1518. * to be beyond the inode eof (regardless of the link count)
  1519. * and the eof value is permanent. Both of these cases occur
  1520. * only on wsync-mounted filesystems. In those cases, we're
  1521. * guaranteed that no user will ever see the data in the blocks
  1522. * that are being truncated so the truncate can run async.
  1523. * In the free beyond eof case, the file may wind up with
  1524. * more blocks allocated to it than it needs if we crash
  1525. * and that won't get fixed until the next time the file
  1526. * is re-opened and closed but that's ok as that shouldn't
  1527. * be too many blocks.
  1528. *
  1529. * However, we can't just make all wsync xactions run async
  1530. * because there's one call out of the create path that needs
  1531. * to run sync where it's truncating an existing file to size
  1532. * 0 whose size is > 0.
  1533. *
  1534. * It's probably possible to come up with a test in this
  1535. * routine that would correctly distinguish all the above
  1536. * cases from the values of the function parameters and the
  1537. * inode state but for sanity's sake, I've decided to let the
  1538. * layers above just tell us. It's simpler to correctly figure
  1539. * out in the layer above exactly under what conditions we
  1540. * can run async and I think it's easier for others read and
  1541. * follow the logic in case something has to be changed.
  1542. * cscope is your friend -- rcc.
  1543. *
  1544. * The attribute fork is much simpler.
  1545. *
  1546. * For the attribute fork we allow the caller to tell us whether
  1547. * the unlink of the inode that led to this call is yet permanent
  1548. * in the on disk log. If it is not and we will be freeing extents
  1549. * in this inode then we make the first transaction synchronous
  1550. * to make sure that the unlink is permanent by the time we free
  1551. * the blocks.
  1552. */
  1553. if (fork == XFS_DATA_FORK) {
  1554. if (ip->i_d.di_nextents > 0) {
  1555. /*
  1556. * If we are not changing the file size then do
  1557. * not update the on-disk file size - we may be
  1558. * called from xfs_inactive_free_eofblocks(). If we
  1559. * update the on-disk file size and then the system
  1560. * crashes before the contents of the file are
  1561. * flushed to disk then the files may be full of
  1562. * holes (ie NULL files bug).
  1563. */
  1564. if (ip->i_size != new_size) {
  1565. ip->i_d.di_size = new_size;
  1566. ip->i_size = new_size;
  1567. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1568. }
  1569. }
  1570. } else if (sync) {
  1571. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1572. if (ip->i_d.di_anextents > 0)
  1573. xfs_trans_set_sync(ntp);
  1574. }
  1575. ASSERT(fork == XFS_DATA_FORK ||
  1576. (fork == XFS_ATTR_FORK &&
  1577. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1578. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1579. /*
  1580. * Since it is possible for space to become allocated beyond
  1581. * the end of the file (in a crash where the space is allocated
  1582. * but the inode size is not yet updated), simply remove any
  1583. * blocks which show up between the new EOF and the maximum
  1584. * possible file size. If the first block to be removed is
  1585. * beyond the maximum file size (ie it is the same as last_block),
  1586. * then there is nothing to do.
  1587. */
  1588. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1589. ASSERT(first_unmap_block <= last_block);
  1590. done = 0;
  1591. if (last_block == first_unmap_block) {
  1592. done = 1;
  1593. } else {
  1594. unmap_len = last_block - first_unmap_block + 1;
  1595. }
  1596. while (!done) {
  1597. /*
  1598. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1599. * will tell us whether it freed the entire range or
  1600. * not. If this is a synchronous mount (wsync),
  1601. * then we can tell bunmapi to keep all the
  1602. * transactions asynchronous since the unlink
  1603. * transaction that made this inode inactive has
  1604. * already hit the disk. There's no danger of
  1605. * the freed blocks being reused, there being a
  1606. * crash, and the reused blocks suddenly reappearing
  1607. * in this file with garbage in them once recovery
  1608. * runs.
  1609. */
  1610. XFS_BMAP_INIT(&free_list, &first_block);
  1611. error = xfs_bunmapi(ntp, ip,
  1612. first_unmap_block, unmap_len,
  1613. XFS_BMAPI_AFLAG(fork) |
  1614. (sync ? 0 : XFS_BMAPI_ASYNC),
  1615. XFS_ITRUNC_MAX_EXTENTS,
  1616. &first_block, &free_list,
  1617. NULL, &done);
  1618. if (error) {
  1619. /*
  1620. * If the bunmapi call encounters an error,
  1621. * return to the caller where the transaction
  1622. * can be properly aborted. We just need to
  1623. * make sure we're not holding any resources
  1624. * that we were not when we came in.
  1625. */
  1626. xfs_bmap_cancel(&free_list);
  1627. return error;
  1628. }
  1629. /*
  1630. * Duplicate the transaction that has the permanent
  1631. * reservation and commit the old transaction.
  1632. */
  1633. error = xfs_bmap_finish(tp, &free_list, &committed);
  1634. ntp = *tp;
  1635. if (error) {
  1636. /*
  1637. * If the bmap finish call encounters an error,
  1638. * return to the caller where the transaction
  1639. * can be properly aborted. We just need to
  1640. * make sure we're not holding any resources
  1641. * that we were not when we came in.
  1642. *
  1643. * Aborting from this point might lose some
  1644. * blocks in the file system, but oh well.
  1645. */
  1646. xfs_bmap_cancel(&free_list);
  1647. if (committed) {
  1648. /*
  1649. * If the passed in transaction committed
  1650. * in xfs_bmap_finish(), then we want to
  1651. * add the inode to this one before returning.
  1652. * This keeps things simple for the higher
  1653. * level code, because it always knows that
  1654. * the inode is locked and held in the
  1655. * transaction that returns to it whether
  1656. * errors occur or not. We don't mark the
  1657. * inode dirty so that this transaction can
  1658. * be easily aborted if possible.
  1659. */
  1660. xfs_trans_ijoin(ntp, ip,
  1661. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1662. xfs_trans_ihold(ntp, ip);
  1663. }
  1664. return error;
  1665. }
  1666. if (committed) {
  1667. /*
  1668. * The first xact was committed,
  1669. * so add the inode to the new one.
  1670. * Mark it dirty so it will be logged
  1671. * and moved forward in the log as
  1672. * part of every commit.
  1673. */
  1674. xfs_trans_ijoin(ntp, ip,
  1675. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1676. xfs_trans_ihold(ntp, ip);
  1677. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1678. }
  1679. ntp = xfs_trans_dup(ntp);
  1680. (void) xfs_trans_commit(*tp, 0);
  1681. *tp = ntp;
  1682. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1683. XFS_TRANS_PERM_LOG_RES,
  1684. XFS_ITRUNCATE_LOG_COUNT);
  1685. /*
  1686. * Add the inode being truncated to the next chained
  1687. * transaction.
  1688. */
  1689. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1690. xfs_trans_ihold(ntp, ip);
  1691. if (error)
  1692. return (error);
  1693. }
  1694. /*
  1695. * Only update the size in the case of the data fork, but
  1696. * always re-log the inode so that our permanent transaction
  1697. * can keep on rolling it forward in the log.
  1698. */
  1699. if (fork == XFS_DATA_FORK) {
  1700. xfs_isize_check(mp, ip, new_size);
  1701. /*
  1702. * If we are not changing the file size then do
  1703. * not update the on-disk file size - we may be
  1704. * called from xfs_inactive_free_eofblocks(). If we
  1705. * update the on-disk file size and then the system
  1706. * crashes before the contents of the file are
  1707. * flushed to disk then the files may be full of
  1708. * holes (ie NULL files bug).
  1709. */
  1710. if (ip->i_size != new_size) {
  1711. ip->i_d.di_size = new_size;
  1712. ip->i_size = new_size;
  1713. }
  1714. }
  1715. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1716. ASSERT((new_size != 0) ||
  1717. (fork == XFS_ATTR_FORK) ||
  1718. (ip->i_delayed_blks == 0));
  1719. ASSERT((new_size != 0) ||
  1720. (fork == XFS_ATTR_FORK) ||
  1721. (ip->i_d.di_nextents == 0));
  1722. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1723. return 0;
  1724. }
  1725. /*
  1726. * xfs_igrow_start
  1727. *
  1728. * Do the first part of growing a file: zero any data in the last
  1729. * block that is beyond the old EOF. We need to do this before
  1730. * the inode is joined to the transaction to modify the i_size.
  1731. * That way we can drop the inode lock and call into the buffer
  1732. * cache to get the buffer mapping the EOF.
  1733. */
  1734. int
  1735. xfs_igrow_start(
  1736. xfs_inode_t *ip,
  1737. xfs_fsize_t new_size,
  1738. cred_t *credp)
  1739. {
  1740. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1741. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1742. ASSERT(new_size > ip->i_size);
  1743. /*
  1744. * Zero any pages that may have been created by
  1745. * xfs_write_file() beyond the end of the file
  1746. * and any blocks between the old and new file sizes.
  1747. */
  1748. return xfs_zero_eof(ip, new_size, ip->i_size);
  1749. }
  1750. /*
  1751. * xfs_igrow_finish
  1752. *
  1753. * This routine is called to extend the size of a file.
  1754. * The inode must have both the iolock and the ilock locked
  1755. * for update and it must be a part of the current transaction.
  1756. * The xfs_igrow_start() function must have been called previously.
  1757. * If the change_flag is not zero, the inode change timestamp will
  1758. * be updated.
  1759. */
  1760. void
  1761. xfs_igrow_finish(
  1762. xfs_trans_t *tp,
  1763. xfs_inode_t *ip,
  1764. xfs_fsize_t new_size,
  1765. int change_flag)
  1766. {
  1767. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1768. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1769. ASSERT(ip->i_transp == tp);
  1770. ASSERT(new_size > ip->i_size);
  1771. /*
  1772. * Update the file size. Update the inode change timestamp
  1773. * if change_flag set.
  1774. */
  1775. ip->i_d.di_size = new_size;
  1776. ip->i_size = new_size;
  1777. if (change_flag)
  1778. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1779. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1780. }
  1781. /*
  1782. * This is called when the inode's link count goes to 0.
  1783. * We place the on-disk inode on a list in the AGI. It
  1784. * will be pulled from this list when the inode is freed.
  1785. */
  1786. int
  1787. xfs_iunlink(
  1788. xfs_trans_t *tp,
  1789. xfs_inode_t *ip)
  1790. {
  1791. xfs_mount_t *mp;
  1792. xfs_agi_t *agi;
  1793. xfs_dinode_t *dip;
  1794. xfs_buf_t *agibp;
  1795. xfs_buf_t *ibp;
  1796. xfs_agnumber_t agno;
  1797. xfs_daddr_t agdaddr;
  1798. xfs_agino_t agino;
  1799. short bucket_index;
  1800. int offset;
  1801. int error;
  1802. int agi_ok;
  1803. ASSERT(ip->i_d.di_nlink == 0);
  1804. ASSERT(ip->i_d.di_mode != 0);
  1805. ASSERT(ip->i_transp == tp);
  1806. mp = tp->t_mountp;
  1807. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1808. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1809. /*
  1810. * Get the agi buffer first. It ensures lock ordering
  1811. * on the list.
  1812. */
  1813. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1814. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1815. if (error)
  1816. return error;
  1817. /*
  1818. * Validate the magic number of the agi block.
  1819. */
  1820. agi = XFS_BUF_TO_AGI(agibp);
  1821. agi_ok =
  1822. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1823. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1824. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1825. XFS_RANDOM_IUNLINK))) {
  1826. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1827. xfs_trans_brelse(tp, agibp);
  1828. return XFS_ERROR(EFSCORRUPTED);
  1829. }
  1830. /*
  1831. * Get the index into the agi hash table for the
  1832. * list this inode will go on.
  1833. */
  1834. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1835. ASSERT(agino != 0);
  1836. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1837. ASSERT(agi->agi_unlinked[bucket_index]);
  1838. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1839. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1840. /*
  1841. * There is already another inode in the bucket we need
  1842. * to add ourselves to. Add us at the front of the list.
  1843. * Here we put the head pointer into our next pointer,
  1844. * and then we fall through to point the head at us.
  1845. */
  1846. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1847. if (error)
  1848. return error;
  1849. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1850. /* both on-disk, don't endian flip twice */
  1851. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1852. offset = ip->i_boffset +
  1853. offsetof(xfs_dinode_t, di_next_unlinked);
  1854. xfs_trans_inode_buf(tp, ibp);
  1855. xfs_trans_log_buf(tp, ibp, offset,
  1856. (offset + sizeof(xfs_agino_t) - 1));
  1857. xfs_inobp_check(mp, ibp);
  1858. }
  1859. /*
  1860. * Point the bucket head pointer at the inode being inserted.
  1861. */
  1862. ASSERT(agino != 0);
  1863. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1864. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1865. (sizeof(xfs_agino_t) * bucket_index);
  1866. xfs_trans_log_buf(tp, agibp, offset,
  1867. (offset + sizeof(xfs_agino_t) - 1));
  1868. return 0;
  1869. }
  1870. /*
  1871. * Pull the on-disk inode from the AGI unlinked list.
  1872. */
  1873. STATIC int
  1874. xfs_iunlink_remove(
  1875. xfs_trans_t *tp,
  1876. xfs_inode_t *ip)
  1877. {
  1878. xfs_ino_t next_ino;
  1879. xfs_mount_t *mp;
  1880. xfs_agi_t *agi;
  1881. xfs_dinode_t *dip;
  1882. xfs_buf_t *agibp;
  1883. xfs_buf_t *ibp;
  1884. xfs_agnumber_t agno;
  1885. xfs_daddr_t agdaddr;
  1886. xfs_agino_t agino;
  1887. xfs_agino_t next_agino;
  1888. xfs_buf_t *last_ibp;
  1889. xfs_dinode_t *last_dip = NULL;
  1890. short bucket_index;
  1891. int offset, last_offset = 0;
  1892. int error;
  1893. int agi_ok;
  1894. /*
  1895. * First pull the on-disk inode from the AGI unlinked list.
  1896. */
  1897. mp = tp->t_mountp;
  1898. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1899. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1900. /*
  1901. * Get the agi buffer first. It ensures lock ordering
  1902. * on the list.
  1903. */
  1904. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1905. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1906. if (error) {
  1907. cmn_err(CE_WARN,
  1908. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1909. error, mp->m_fsname);
  1910. return error;
  1911. }
  1912. /*
  1913. * Validate the magic number of the agi block.
  1914. */
  1915. agi = XFS_BUF_TO_AGI(agibp);
  1916. agi_ok =
  1917. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1918. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1919. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1920. XFS_RANDOM_IUNLINK_REMOVE))) {
  1921. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1922. mp, agi);
  1923. xfs_trans_brelse(tp, agibp);
  1924. cmn_err(CE_WARN,
  1925. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1926. mp->m_fsname);
  1927. return XFS_ERROR(EFSCORRUPTED);
  1928. }
  1929. /*
  1930. * Get the index into the agi hash table for the
  1931. * list this inode will go on.
  1932. */
  1933. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1934. ASSERT(agino != 0);
  1935. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1936. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1937. ASSERT(agi->agi_unlinked[bucket_index]);
  1938. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1939. /*
  1940. * We're at the head of the list. Get the inode's
  1941. * on-disk buffer to see if there is anyone after us
  1942. * on the list. Only modify our next pointer if it
  1943. * is not already NULLAGINO. This saves us the overhead
  1944. * of dealing with the buffer when there is no need to
  1945. * change it.
  1946. */
  1947. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1948. if (error) {
  1949. cmn_err(CE_WARN,
  1950. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1951. error, mp->m_fsname);
  1952. return error;
  1953. }
  1954. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1955. ASSERT(next_agino != 0);
  1956. if (next_agino != NULLAGINO) {
  1957. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1958. offset = ip->i_boffset +
  1959. offsetof(xfs_dinode_t, di_next_unlinked);
  1960. xfs_trans_inode_buf(tp, ibp);
  1961. xfs_trans_log_buf(tp, ibp, offset,
  1962. (offset + sizeof(xfs_agino_t) - 1));
  1963. xfs_inobp_check(mp, ibp);
  1964. } else {
  1965. xfs_trans_brelse(tp, ibp);
  1966. }
  1967. /*
  1968. * Point the bucket head pointer at the next inode.
  1969. */
  1970. ASSERT(next_agino != 0);
  1971. ASSERT(next_agino != agino);
  1972. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1973. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1974. (sizeof(xfs_agino_t) * bucket_index);
  1975. xfs_trans_log_buf(tp, agibp, offset,
  1976. (offset + sizeof(xfs_agino_t) - 1));
  1977. } else {
  1978. /*
  1979. * We need to search the list for the inode being freed.
  1980. */
  1981. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1982. last_ibp = NULL;
  1983. while (next_agino != agino) {
  1984. /*
  1985. * If the last inode wasn't the one pointing to
  1986. * us, then release its buffer since we're not
  1987. * going to do anything with it.
  1988. */
  1989. if (last_ibp != NULL) {
  1990. xfs_trans_brelse(tp, last_ibp);
  1991. }
  1992. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1993. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1994. &last_ibp, &last_offset);
  1995. if (error) {
  1996. cmn_err(CE_WARN,
  1997. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1998. error, mp->m_fsname);
  1999. return error;
  2000. }
  2001. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  2002. ASSERT(next_agino != NULLAGINO);
  2003. ASSERT(next_agino != 0);
  2004. }
  2005. /*
  2006. * Now last_ibp points to the buffer previous to us on
  2007. * the unlinked list. Pull us from the list.
  2008. */
  2009. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2010. if (error) {
  2011. cmn_err(CE_WARN,
  2012. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2013. error, mp->m_fsname);
  2014. return error;
  2015. }
  2016. next_agino = be32_to_cpu(dip->di_next_unlinked);
  2017. ASSERT(next_agino != 0);
  2018. ASSERT(next_agino != agino);
  2019. if (next_agino != NULLAGINO) {
  2020. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  2021. offset = ip->i_boffset +
  2022. offsetof(xfs_dinode_t, di_next_unlinked);
  2023. xfs_trans_inode_buf(tp, ibp);
  2024. xfs_trans_log_buf(tp, ibp, offset,
  2025. (offset + sizeof(xfs_agino_t) - 1));
  2026. xfs_inobp_check(mp, ibp);
  2027. } else {
  2028. xfs_trans_brelse(tp, ibp);
  2029. }
  2030. /*
  2031. * Point the previous inode on the list to the next inode.
  2032. */
  2033. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  2034. ASSERT(next_agino != 0);
  2035. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2036. xfs_trans_inode_buf(tp, last_ibp);
  2037. xfs_trans_log_buf(tp, last_ibp, offset,
  2038. (offset + sizeof(xfs_agino_t) - 1));
  2039. xfs_inobp_check(mp, last_ibp);
  2040. }
  2041. return 0;
  2042. }
  2043. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2044. {
  2045. return (((ip->i_itemp == NULL) ||
  2046. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2047. (ip->i_update_core == 0));
  2048. }
  2049. STATIC void
  2050. xfs_ifree_cluster(
  2051. xfs_inode_t *free_ip,
  2052. xfs_trans_t *tp,
  2053. xfs_ino_t inum)
  2054. {
  2055. xfs_mount_t *mp = free_ip->i_mount;
  2056. int blks_per_cluster;
  2057. int nbufs;
  2058. int ninodes;
  2059. int i, j, found, pre_flushed;
  2060. xfs_daddr_t blkno;
  2061. xfs_buf_t *bp;
  2062. xfs_inode_t *ip, **ip_found;
  2063. xfs_inode_log_item_t *iip;
  2064. xfs_log_item_t *lip;
  2065. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  2066. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2067. blks_per_cluster = 1;
  2068. ninodes = mp->m_sb.sb_inopblock;
  2069. nbufs = XFS_IALLOC_BLOCKS(mp);
  2070. } else {
  2071. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2072. mp->m_sb.sb_blocksize;
  2073. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2074. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2075. }
  2076. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2077. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2078. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2079. XFS_INO_TO_AGBNO(mp, inum));
  2080. /*
  2081. * Look for each inode in memory and attempt to lock it,
  2082. * we can be racing with flush and tail pushing here.
  2083. * any inode we get the locks on, add to an array of
  2084. * inode items to process later.
  2085. *
  2086. * The get the buffer lock, we could beat a flush
  2087. * or tail pushing thread to the lock here, in which
  2088. * case they will go looking for the inode buffer
  2089. * and fail, we need some other form of interlock
  2090. * here.
  2091. */
  2092. found = 0;
  2093. for (i = 0; i < ninodes; i++) {
  2094. read_lock(&pag->pag_ici_lock);
  2095. ip = radix_tree_lookup(&pag->pag_ici_root,
  2096. XFS_INO_TO_AGINO(mp, (inum + i)));
  2097. /* Inode not in memory or we found it already,
  2098. * nothing to do
  2099. */
  2100. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2101. read_unlock(&pag->pag_ici_lock);
  2102. continue;
  2103. }
  2104. if (xfs_inode_clean(ip)) {
  2105. read_unlock(&pag->pag_ici_lock);
  2106. continue;
  2107. }
  2108. /* If we can get the locks then add it to the
  2109. * list, otherwise by the time we get the bp lock
  2110. * below it will already be attached to the
  2111. * inode buffer.
  2112. */
  2113. /* This inode will already be locked - by us, lets
  2114. * keep it that way.
  2115. */
  2116. if (ip == free_ip) {
  2117. if (xfs_iflock_nowait(ip)) {
  2118. xfs_iflags_set(ip, XFS_ISTALE);
  2119. if (xfs_inode_clean(ip)) {
  2120. xfs_ifunlock(ip);
  2121. } else {
  2122. ip_found[found++] = ip;
  2123. }
  2124. }
  2125. read_unlock(&pag->pag_ici_lock);
  2126. continue;
  2127. }
  2128. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2129. if (xfs_iflock_nowait(ip)) {
  2130. xfs_iflags_set(ip, XFS_ISTALE);
  2131. if (xfs_inode_clean(ip)) {
  2132. xfs_ifunlock(ip);
  2133. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2134. } else {
  2135. ip_found[found++] = ip;
  2136. }
  2137. } else {
  2138. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2139. }
  2140. }
  2141. read_unlock(&pag->pag_ici_lock);
  2142. }
  2143. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2144. mp->m_bsize * blks_per_cluster,
  2145. XFS_BUF_LOCK);
  2146. pre_flushed = 0;
  2147. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2148. while (lip) {
  2149. if (lip->li_type == XFS_LI_INODE) {
  2150. iip = (xfs_inode_log_item_t *)lip;
  2151. ASSERT(iip->ili_logged == 1);
  2152. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2153. spin_lock(&mp->m_ail_lock);
  2154. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2155. spin_unlock(&mp->m_ail_lock);
  2156. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2157. pre_flushed++;
  2158. }
  2159. lip = lip->li_bio_list;
  2160. }
  2161. for (i = 0; i < found; i++) {
  2162. ip = ip_found[i];
  2163. iip = ip->i_itemp;
  2164. if (!iip) {
  2165. ip->i_update_core = 0;
  2166. xfs_ifunlock(ip);
  2167. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2168. continue;
  2169. }
  2170. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2171. iip->ili_format.ilf_fields = 0;
  2172. iip->ili_logged = 1;
  2173. spin_lock(&mp->m_ail_lock);
  2174. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2175. spin_unlock(&mp->m_ail_lock);
  2176. xfs_buf_attach_iodone(bp,
  2177. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2178. xfs_istale_done, (xfs_log_item_t *)iip);
  2179. if (ip != free_ip) {
  2180. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2181. }
  2182. }
  2183. if (found || pre_flushed)
  2184. xfs_trans_stale_inode_buf(tp, bp);
  2185. xfs_trans_binval(tp, bp);
  2186. }
  2187. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2188. xfs_put_perag(mp, pag);
  2189. }
  2190. /*
  2191. * This is called to return an inode to the inode free list.
  2192. * The inode should already be truncated to 0 length and have
  2193. * no pages associated with it. This routine also assumes that
  2194. * the inode is already a part of the transaction.
  2195. *
  2196. * The on-disk copy of the inode will have been added to the list
  2197. * of unlinked inodes in the AGI. We need to remove the inode from
  2198. * that list atomically with respect to freeing it here.
  2199. */
  2200. int
  2201. xfs_ifree(
  2202. xfs_trans_t *tp,
  2203. xfs_inode_t *ip,
  2204. xfs_bmap_free_t *flist)
  2205. {
  2206. int error;
  2207. int delete;
  2208. xfs_ino_t first_ino;
  2209. xfs_dinode_t *dip;
  2210. xfs_buf_t *ibp;
  2211. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2212. ASSERT(ip->i_transp == tp);
  2213. ASSERT(ip->i_d.di_nlink == 0);
  2214. ASSERT(ip->i_d.di_nextents == 0);
  2215. ASSERT(ip->i_d.di_anextents == 0);
  2216. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2217. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2218. ASSERT(ip->i_d.di_nblocks == 0);
  2219. /*
  2220. * Pull the on-disk inode from the AGI unlinked list.
  2221. */
  2222. error = xfs_iunlink_remove(tp, ip);
  2223. if (error != 0) {
  2224. return error;
  2225. }
  2226. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2227. if (error != 0) {
  2228. return error;
  2229. }
  2230. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2231. ip->i_d.di_flags = 0;
  2232. ip->i_d.di_dmevmask = 0;
  2233. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2234. ip->i_df.if_ext_max =
  2235. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2236. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2237. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2238. /*
  2239. * Bump the generation count so no one will be confused
  2240. * by reincarnations of this inode.
  2241. */
  2242. ip->i_d.di_gen++;
  2243. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2244. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0);
  2245. if (error)
  2246. return error;
  2247. /*
  2248. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2249. * from picking up this inode when it is reclaimed (its incore state
  2250. * initialzed but not flushed to disk yet). The in-core di_mode is
  2251. * already cleared and a corresponding transaction logged.
  2252. * The hack here just synchronizes the in-core to on-disk
  2253. * di_mode value in advance before the actual inode sync to disk.
  2254. * This is OK because the inode is already unlinked and would never
  2255. * change its di_mode again for this inode generation.
  2256. * This is a temporary hack that would require a proper fix
  2257. * in the future.
  2258. */
  2259. dip->di_core.di_mode = 0;
  2260. if (delete) {
  2261. xfs_ifree_cluster(ip, tp, first_ino);
  2262. }
  2263. return 0;
  2264. }
  2265. /*
  2266. * Reallocate the space for if_broot based on the number of records
  2267. * being added or deleted as indicated in rec_diff. Move the records
  2268. * and pointers in if_broot to fit the new size. When shrinking this
  2269. * will eliminate holes between the records and pointers created by
  2270. * the caller. When growing this will create holes to be filled in
  2271. * by the caller.
  2272. *
  2273. * The caller must not request to add more records than would fit in
  2274. * the on-disk inode root. If the if_broot is currently NULL, then
  2275. * if we adding records one will be allocated. The caller must also
  2276. * not request that the number of records go below zero, although
  2277. * it can go to zero.
  2278. *
  2279. * ip -- the inode whose if_broot area is changing
  2280. * ext_diff -- the change in the number of records, positive or negative,
  2281. * requested for the if_broot array.
  2282. */
  2283. void
  2284. xfs_iroot_realloc(
  2285. xfs_inode_t *ip,
  2286. int rec_diff,
  2287. int whichfork)
  2288. {
  2289. int cur_max;
  2290. xfs_ifork_t *ifp;
  2291. xfs_bmbt_block_t *new_broot;
  2292. int new_max;
  2293. size_t new_size;
  2294. char *np;
  2295. char *op;
  2296. /*
  2297. * Handle the degenerate case quietly.
  2298. */
  2299. if (rec_diff == 0) {
  2300. return;
  2301. }
  2302. ifp = XFS_IFORK_PTR(ip, whichfork);
  2303. if (rec_diff > 0) {
  2304. /*
  2305. * If there wasn't any memory allocated before, just
  2306. * allocate it now and get out.
  2307. */
  2308. if (ifp->if_broot_bytes == 0) {
  2309. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2310. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2311. KM_SLEEP);
  2312. ifp->if_broot_bytes = (int)new_size;
  2313. return;
  2314. }
  2315. /*
  2316. * If there is already an existing if_broot, then we need
  2317. * to realloc() it and shift the pointers to their new
  2318. * location. The records don't change location because
  2319. * they are kept butted up against the btree block header.
  2320. */
  2321. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2322. new_max = cur_max + rec_diff;
  2323. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2324. ifp->if_broot = (xfs_bmbt_block_t *)
  2325. kmem_realloc(ifp->if_broot,
  2326. new_size,
  2327. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2328. KM_SLEEP);
  2329. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2330. ifp->if_broot_bytes);
  2331. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2332. (int)new_size);
  2333. ifp->if_broot_bytes = (int)new_size;
  2334. ASSERT(ifp->if_broot_bytes <=
  2335. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2336. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2337. return;
  2338. }
  2339. /*
  2340. * rec_diff is less than 0. In this case, we are shrinking the
  2341. * if_broot buffer. It must already exist. If we go to zero
  2342. * records, just get rid of the root and clear the status bit.
  2343. */
  2344. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2345. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2346. new_max = cur_max + rec_diff;
  2347. ASSERT(new_max >= 0);
  2348. if (new_max > 0)
  2349. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2350. else
  2351. new_size = 0;
  2352. if (new_size > 0) {
  2353. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2354. /*
  2355. * First copy over the btree block header.
  2356. */
  2357. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2358. } else {
  2359. new_broot = NULL;
  2360. ifp->if_flags &= ~XFS_IFBROOT;
  2361. }
  2362. /*
  2363. * Only copy the records and pointers if there are any.
  2364. */
  2365. if (new_max > 0) {
  2366. /*
  2367. * First copy the records.
  2368. */
  2369. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2370. ifp->if_broot_bytes);
  2371. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2372. (int)new_size);
  2373. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2374. /*
  2375. * Then copy the pointers.
  2376. */
  2377. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2378. ifp->if_broot_bytes);
  2379. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2380. (int)new_size);
  2381. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2382. }
  2383. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2384. ifp->if_broot = new_broot;
  2385. ifp->if_broot_bytes = (int)new_size;
  2386. ASSERT(ifp->if_broot_bytes <=
  2387. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2388. return;
  2389. }
  2390. /*
  2391. * This is called when the amount of space needed for if_data
  2392. * is increased or decreased. The change in size is indicated by
  2393. * the number of bytes that need to be added or deleted in the
  2394. * byte_diff parameter.
  2395. *
  2396. * If the amount of space needed has decreased below the size of the
  2397. * inline buffer, then switch to using the inline buffer. Otherwise,
  2398. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2399. * to what is needed.
  2400. *
  2401. * ip -- the inode whose if_data area is changing
  2402. * byte_diff -- the change in the number of bytes, positive or negative,
  2403. * requested for the if_data array.
  2404. */
  2405. void
  2406. xfs_idata_realloc(
  2407. xfs_inode_t *ip,
  2408. int byte_diff,
  2409. int whichfork)
  2410. {
  2411. xfs_ifork_t *ifp;
  2412. int new_size;
  2413. int real_size;
  2414. if (byte_diff == 0) {
  2415. return;
  2416. }
  2417. ifp = XFS_IFORK_PTR(ip, whichfork);
  2418. new_size = (int)ifp->if_bytes + byte_diff;
  2419. ASSERT(new_size >= 0);
  2420. if (new_size == 0) {
  2421. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2422. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2423. }
  2424. ifp->if_u1.if_data = NULL;
  2425. real_size = 0;
  2426. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2427. /*
  2428. * If the valid extents/data can fit in if_inline_ext/data,
  2429. * copy them from the malloc'd vector and free it.
  2430. */
  2431. if (ifp->if_u1.if_data == NULL) {
  2432. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2433. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2434. ASSERT(ifp->if_real_bytes != 0);
  2435. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2436. new_size);
  2437. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2438. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2439. }
  2440. real_size = 0;
  2441. } else {
  2442. /*
  2443. * Stuck with malloc/realloc.
  2444. * For inline data, the underlying buffer must be
  2445. * a multiple of 4 bytes in size so that it can be
  2446. * logged and stay on word boundaries. We enforce
  2447. * that here.
  2448. */
  2449. real_size = roundup(new_size, 4);
  2450. if (ifp->if_u1.if_data == NULL) {
  2451. ASSERT(ifp->if_real_bytes == 0);
  2452. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2453. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2454. /*
  2455. * Only do the realloc if the underlying size
  2456. * is really changing.
  2457. */
  2458. if (ifp->if_real_bytes != real_size) {
  2459. ifp->if_u1.if_data =
  2460. kmem_realloc(ifp->if_u1.if_data,
  2461. real_size,
  2462. ifp->if_real_bytes,
  2463. KM_SLEEP);
  2464. }
  2465. } else {
  2466. ASSERT(ifp->if_real_bytes == 0);
  2467. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2468. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2469. ifp->if_bytes);
  2470. }
  2471. }
  2472. ifp->if_real_bytes = real_size;
  2473. ifp->if_bytes = new_size;
  2474. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2475. }
  2476. /*
  2477. * Map inode to disk block and offset.
  2478. *
  2479. * mp -- the mount point structure for the current file system
  2480. * tp -- the current transaction
  2481. * ino -- the inode number of the inode to be located
  2482. * imap -- this structure is filled in with the information necessary
  2483. * to retrieve the given inode from disk
  2484. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2485. * lookups in the inode btree were OK or not
  2486. */
  2487. int
  2488. xfs_imap(
  2489. xfs_mount_t *mp,
  2490. xfs_trans_t *tp,
  2491. xfs_ino_t ino,
  2492. xfs_imap_t *imap,
  2493. uint flags)
  2494. {
  2495. xfs_fsblock_t fsbno;
  2496. int len;
  2497. int off;
  2498. int error;
  2499. fsbno = imap->im_blkno ?
  2500. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2501. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2502. if (error != 0) {
  2503. return error;
  2504. }
  2505. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2506. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2507. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2508. imap->im_ioffset = (ushort)off;
  2509. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2510. return 0;
  2511. }
  2512. void
  2513. xfs_idestroy_fork(
  2514. xfs_inode_t *ip,
  2515. int whichfork)
  2516. {
  2517. xfs_ifork_t *ifp;
  2518. ifp = XFS_IFORK_PTR(ip, whichfork);
  2519. if (ifp->if_broot != NULL) {
  2520. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2521. ifp->if_broot = NULL;
  2522. }
  2523. /*
  2524. * If the format is local, then we can't have an extents
  2525. * array so just look for an inline data array. If we're
  2526. * not local then we may or may not have an extents list,
  2527. * so check and free it up if we do.
  2528. */
  2529. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2530. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2531. (ifp->if_u1.if_data != NULL)) {
  2532. ASSERT(ifp->if_real_bytes != 0);
  2533. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2534. ifp->if_u1.if_data = NULL;
  2535. ifp->if_real_bytes = 0;
  2536. }
  2537. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2538. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2539. ((ifp->if_u1.if_extents != NULL) &&
  2540. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2541. ASSERT(ifp->if_real_bytes != 0);
  2542. xfs_iext_destroy(ifp);
  2543. }
  2544. ASSERT(ifp->if_u1.if_extents == NULL ||
  2545. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2546. ASSERT(ifp->if_real_bytes == 0);
  2547. if (whichfork == XFS_ATTR_FORK) {
  2548. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2549. ip->i_afp = NULL;
  2550. }
  2551. }
  2552. /*
  2553. * This is called free all the memory associated with an inode.
  2554. * It must free the inode itself and any buffers allocated for
  2555. * if_extents/if_data and if_broot. It must also free the lock
  2556. * associated with the inode.
  2557. */
  2558. void
  2559. xfs_idestroy(
  2560. xfs_inode_t *ip)
  2561. {
  2562. switch (ip->i_d.di_mode & S_IFMT) {
  2563. case S_IFREG:
  2564. case S_IFDIR:
  2565. case S_IFLNK:
  2566. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2567. break;
  2568. }
  2569. if (ip->i_afp)
  2570. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2571. mrfree(&ip->i_lock);
  2572. mrfree(&ip->i_iolock);
  2573. freesema(&ip->i_flock);
  2574. #ifdef XFS_INODE_TRACE
  2575. ktrace_free(ip->i_trace);
  2576. #endif
  2577. #ifdef XFS_BMAP_TRACE
  2578. ktrace_free(ip->i_xtrace);
  2579. #endif
  2580. #ifdef XFS_BMBT_TRACE
  2581. ktrace_free(ip->i_btrace);
  2582. #endif
  2583. #ifdef XFS_RW_TRACE
  2584. ktrace_free(ip->i_rwtrace);
  2585. #endif
  2586. #ifdef XFS_ILOCK_TRACE
  2587. ktrace_free(ip->i_lock_trace);
  2588. #endif
  2589. #ifdef XFS_DIR2_TRACE
  2590. ktrace_free(ip->i_dir_trace);
  2591. #endif
  2592. if (ip->i_itemp) {
  2593. /*
  2594. * Only if we are shutting down the fs will we see an
  2595. * inode still in the AIL. If it is there, we should remove
  2596. * it to prevent a use-after-free from occurring.
  2597. */
  2598. xfs_mount_t *mp = ip->i_mount;
  2599. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2600. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2601. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2602. if (lip->li_flags & XFS_LI_IN_AIL) {
  2603. spin_lock(&mp->m_ail_lock);
  2604. if (lip->li_flags & XFS_LI_IN_AIL)
  2605. xfs_trans_delete_ail(mp, lip);
  2606. else
  2607. spin_unlock(&mp->m_ail_lock);
  2608. }
  2609. xfs_inode_item_destroy(ip);
  2610. }
  2611. kmem_zone_free(xfs_inode_zone, ip);
  2612. }
  2613. /*
  2614. * Increment the pin count of the given buffer.
  2615. * This value is protected by ipinlock spinlock in the mount structure.
  2616. */
  2617. void
  2618. xfs_ipin(
  2619. xfs_inode_t *ip)
  2620. {
  2621. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2622. atomic_inc(&ip->i_pincount);
  2623. }
  2624. /*
  2625. * Decrement the pin count of the given inode, and wake up
  2626. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2627. * inode must have been previously pinned with a call to xfs_ipin().
  2628. */
  2629. void
  2630. xfs_iunpin(
  2631. xfs_inode_t *ip)
  2632. {
  2633. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2634. if (atomic_dec_and_test(&ip->i_pincount))
  2635. wake_up(&ip->i_ipin_wait);
  2636. }
  2637. /*
  2638. * This is called to wait for the given inode to be unpinned.
  2639. * It will sleep until this happens. The caller must have the
  2640. * inode locked in at least shared mode so that the buffer cannot
  2641. * be subsequently pinned once someone is waiting for it to be
  2642. * unpinned.
  2643. */
  2644. STATIC void
  2645. xfs_iunpin_wait(
  2646. xfs_inode_t *ip)
  2647. {
  2648. xfs_inode_log_item_t *iip;
  2649. xfs_lsn_t lsn;
  2650. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2651. if (atomic_read(&ip->i_pincount) == 0) {
  2652. return;
  2653. }
  2654. iip = ip->i_itemp;
  2655. if (iip && iip->ili_last_lsn) {
  2656. lsn = iip->ili_last_lsn;
  2657. } else {
  2658. lsn = (xfs_lsn_t)0;
  2659. }
  2660. /*
  2661. * Give the log a push so we don't wait here too long.
  2662. */
  2663. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2664. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2665. }
  2666. /*
  2667. * xfs_iextents_copy()
  2668. *
  2669. * This is called to copy the REAL extents (as opposed to the delayed
  2670. * allocation extents) from the inode into the given buffer. It
  2671. * returns the number of bytes copied into the buffer.
  2672. *
  2673. * If there are no delayed allocation extents, then we can just
  2674. * memcpy() the extents into the buffer. Otherwise, we need to
  2675. * examine each extent in turn and skip those which are delayed.
  2676. */
  2677. int
  2678. xfs_iextents_copy(
  2679. xfs_inode_t *ip,
  2680. xfs_bmbt_rec_t *dp,
  2681. int whichfork)
  2682. {
  2683. int copied;
  2684. int i;
  2685. xfs_ifork_t *ifp;
  2686. int nrecs;
  2687. xfs_fsblock_t start_block;
  2688. ifp = XFS_IFORK_PTR(ip, whichfork);
  2689. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2690. ASSERT(ifp->if_bytes > 0);
  2691. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2692. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2693. ASSERT(nrecs > 0);
  2694. /*
  2695. * There are some delayed allocation extents in the
  2696. * inode, so copy the extents one at a time and skip
  2697. * the delayed ones. There must be at least one
  2698. * non-delayed extent.
  2699. */
  2700. copied = 0;
  2701. for (i = 0; i < nrecs; i++) {
  2702. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2703. start_block = xfs_bmbt_get_startblock(ep);
  2704. if (ISNULLSTARTBLOCK(start_block)) {
  2705. /*
  2706. * It's a delayed allocation extent, so skip it.
  2707. */
  2708. continue;
  2709. }
  2710. /* Translate to on disk format */
  2711. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2712. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2713. dp++;
  2714. copied++;
  2715. }
  2716. ASSERT(copied != 0);
  2717. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2718. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2719. }
  2720. /*
  2721. * Each of the following cases stores data into the same region
  2722. * of the on-disk inode, so only one of them can be valid at
  2723. * any given time. While it is possible to have conflicting formats
  2724. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2725. * in EXTENTS format, this can only happen when the fork has
  2726. * changed formats after being modified but before being flushed.
  2727. * In these cases, the format always takes precedence, because the
  2728. * format indicates the current state of the fork.
  2729. */
  2730. /*ARGSUSED*/
  2731. STATIC int
  2732. xfs_iflush_fork(
  2733. xfs_inode_t *ip,
  2734. xfs_dinode_t *dip,
  2735. xfs_inode_log_item_t *iip,
  2736. int whichfork,
  2737. xfs_buf_t *bp)
  2738. {
  2739. char *cp;
  2740. xfs_ifork_t *ifp;
  2741. xfs_mount_t *mp;
  2742. #ifdef XFS_TRANS_DEBUG
  2743. int first;
  2744. #endif
  2745. static const short brootflag[2] =
  2746. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2747. static const short dataflag[2] =
  2748. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2749. static const short extflag[2] =
  2750. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2751. if (iip == NULL)
  2752. return 0;
  2753. ifp = XFS_IFORK_PTR(ip, whichfork);
  2754. /*
  2755. * This can happen if we gave up in iformat in an error path,
  2756. * for the attribute fork.
  2757. */
  2758. if (ifp == NULL) {
  2759. ASSERT(whichfork == XFS_ATTR_FORK);
  2760. return 0;
  2761. }
  2762. cp = XFS_DFORK_PTR(dip, whichfork);
  2763. mp = ip->i_mount;
  2764. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2765. case XFS_DINODE_FMT_LOCAL:
  2766. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2767. (ifp->if_bytes > 0)) {
  2768. ASSERT(ifp->if_u1.if_data != NULL);
  2769. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2770. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2771. }
  2772. break;
  2773. case XFS_DINODE_FMT_EXTENTS:
  2774. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2775. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2776. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2777. (ifp->if_bytes == 0));
  2778. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2779. (ifp->if_bytes > 0));
  2780. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2781. (ifp->if_bytes > 0)) {
  2782. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2783. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2784. whichfork);
  2785. }
  2786. break;
  2787. case XFS_DINODE_FMT_BTREE:
  2788. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2789. (ifp->if_broot_bytes > 0)) {
  2790. ASSERT(ifp->if_broot != NULL);
  2791. ASSERT(ifp->if_broot_bytes <=
  2792. (XFS_IFORK_SIZE(ip, whichfork) +
  2793. XFS_BROOT_SIZE_ADJ));
  2794. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2795. (xfs_bmdr_block_t *)cp,
  2796. XFS_DFORK_SIZE(dip, mp, whichfork));
  2797. }
  2798. break;
  2799. case XFS_DINODE_FMT_DEV:
  2800. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2801. ASSERT(whichfork == XFS_DATA_FORK);
  2802. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2803. }
  2804. break;
  2805. case XFS_DINODE_FMT_UUID:
  2806. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2807. ASSERT(whichfork == XFS_DATA_FORK);
  2808. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2809. sizeof(uuid_t));
  2810. }
  2811. break;
  2812. default:
  2813. ASSERT(0);
  2814. break;
  2815. }
  2816. return 0;
  2817. }
  2818. /*
  2819. * xfs_iflush() will write a modified inode's changes out to the
  2820. * inode's on disk home. The caller must have the inode lock held
  2821. * in at least shared mode and the inode flush semaphore must be
  2822. * held as well. The inode lock will still be held upon return from
  2823. * the call and the caller is free to unlock it.
  2824. * The inode flush lock will be unlocked when the inode reaches the disk.
  2825. * The flags indicate how the inode's buffer should be written out.
  2826. */
  2827. int
  2828. xfs_iflush(
  2829. xfs_inode_t *ip,
  2830. uint flags)
  2831. {
  2832. xfs_inode_log_item_t *iip;
  2833. xfs_buf_t *bp;
  2834. xfs_dinode_t *dip;
  2835. xfs_mount_t *mp;
  2836. int error;
  2837. /* REFERENCED */
  2838. xfs_inode_t *iq;
  2839. int clcount; /* count of inodes clustered */
  2840. int bufwasdelwri;
  2841. struct hlist_node *entry;
  2842. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2843. XFS_STATS_INC(xs_iflush_count);
  2844. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2845. ASSERT(issemalocked(&(ip->i_flock)));
  2846. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2847. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2848. iip = ip->i_itemp;
  2849. mp = ip->i_mount;
  2850. /*
  2851. * If the inode isn't dirty, then just release the inode
  2852. * flush lock and do nothing.
  2853. */
  2854. if ((ip->i_update_core == 0) &&
  2855. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2856. ASSERT((iip != NULL) ?
  2857. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2858. xfs_ifunlock(ip);
  2859. return 0;
  2860. }
  2861. /*
  2862. * We can't flush the inode until it is unpinned, so
  2863. * wait for it. We know noone new can pin it, because
  2864. * we are holding the inode lock shared and you need
  2865. * to hold it exclusively to pin the inode.
  2866. */
  2867. xfs_iunpin_wait(ip);
  2868. /*
  2869. * This may have been unpinned because the filesystem is shutting
  2870. * down forcibly. If that's the case we must not write this inode
  2871. * to disk, because the log record didn't make it to disk!
  2872. */
  2873. if (XFS_FORCED_SHUTDOWN(mp)) {
  2874. ip->i_update_core = 0;
  2875. if (iip)
  2876. iip->ili_format.ilf_fields = 0;
  2877. xfs_ifunlock(ip);
  2878. return XFS_ERROR(EIO);
  2879. }
  2880. /*
  2881. * Get the buffer containing the on-disk inode.
  2882. */
  2883. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2884. if (error) {
  2885. xfs_ifunlock(ip);
  2886. return error;
  2887. }
  2888. /*
  2889. * Decide how buffer will be flushed out. This is done before
  2890. * the call to xfs_iflush_int because this field is zeroed by it.
  2891. */
  2892. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2893. /*
  2894. * Flush out the inode buffer according to the directions
  2895. * of the caller. In the cases where the caller has given
  2896. * us a choice choose the non-delwri case. This is because
  2897. * the inode is in the AIL and we need to get it out soon.
  2898. */
  2899. switch (flags) {
  2900. case XFS_IFLUSH_SYNC:
  2901. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2902. flags = 0;
  2903. break;
  2904. case XFS_IFLUSH_ASYNC:
  2905. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2906. flags = INT_ASYNC;
  2907. break;
  2908. case XFS_IFLUSH_DELWRI:
  2909. flags = INT_DELWRI;
  2910. break;
  2911. default:
  2912. ASSERT(0);
  2913. flags = 0;
  2914. break;
  2915. }
  2916. } else {
  2917. switch (flags) {
  2918. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2919. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2920. case XFS_IFLUSH_DELWRI:
  2921. flags = INT_DELWRI;
  2922. break;
  2923. case XFS_IFLUSH_ASYNC:
  2924. flags = INT_ASYNC;
  2925. break;
  2926. case XFS_IFLUSH_SYNC:
  2927. flags = 0;
  2928. break;
  2929. default:
  2930. ASSERT(0);
  2931. flags = 0;
  2932. break;
  2933. }
  2934. }
  2935. /*
  2936. * First flush out the inode that xfs_iflush was called with.
  2937. */
  2938. error = xfs_iflush_int(ip, bp);
  2939. if (error) {
  2940. goto corrupt_out;
  2941. }
  2942. /*
  2943. * inode clustering:
  2944. * see if other inodes can be gathered into this write
  2945. */
  2946. spin_lock(&ip->i_cluster->icl_lock);
  2947. ip->i_cluster->icl_buf = bp;
  2948. clcount = 0;
  2949. hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
  2950. if (iq == ip)
  2951. continue;
  2952. /*
  2953. * Do an un-protected check to see if the inode is dirty and
  2954. * is a candidate for flushing. These checks will be repeated
  2955. * later after the appropriate locks are acquired.
  2956. */
  2957. iip = iq->i_itemp;
  2958. if ((iq->i_update_core == 0) &&
  2959. ((iip == NULL) ||
  2960. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2961. xfs_ipincount(iq) == 0) {
  2962. continue;
  2963. }
  2964. /*
  2965. * Try to get locks. If any are unavailable,
  2966. * then this inode cannot be flushed and is skipped.
  2967. */
  2968. /* get inode locks (just i_lock) */
  2969. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2970. /* get inode flush lock */
  2971. if (xfs_iflock_nowait(iq)) {
  2972. /* check if pinned */
  2973. if (xfs_ipincount(iq) == 0) {
  2974. /* arriving here means that
  2975. * this inode can be flushed.
  2976. * first re-check that it's
  2977. * dirty
  2978. */
  2979. iip = iq->i_itemp;
  2980. if ((iq->i_update_core != 0)||
  2981. ((iip != NULL) &&
  2982. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2983. clcount++;
  2984. error = xfs_iflush_int(iq, bp);
  2985. if (error) {
  2986. xfs_iunlock(iq,
  2987. XFS_ILOCK_SHARED);
  2988. goto cluster_corrupt_out;
  2989. }
  2990. } else {
  2991. xfs_ifunlock(iq);
  2992. }
  2993. } else {
  2994. xfs_ifunlock(iq);
  2995. }
  2996. }
  2997. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2998. }
  2999. }
  3000. spin_unlock(&ip->i_cluster->icl_lock);
  3001. if (clcount) {
  3002. XFS_STATS_INC(xs_icluster_flushcnt);
  3003. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3004. }
  3005. /*
  3006. * If the buffer is pinned then push on the log so we won't
  3007. * get stuck waiting in the write for too long.
  3008. */
  3009. if (XFS_BUF_ISPINNED(bp)){
  3010. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3011. }
  3012. if (flags & INT_DELWRI) {
  3013. xfs_bdwrite(mp, bp);
  3014. } else if (flags & INT_ASYNC) {
  3015. xfs_bawrite(mp, bp);
  3016. } else {
  3017. error = xfs_bwrite(mp, bp);
  3018. }
  3019. return error;
  3020. corrupt_out:
  3021. xfs_buf_relse(bp);
  3022. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3023. xfs_iflush_abort(ip);
  3024. /*
  3025. * Unlocks the flush lock
  3026. */
  3027. return XFS_ERROR(EFSCORRUPTED);
  3028. cluster_corrupt_out:
  3029. /* Corruption detected in the clustering loop. Invalidate the
  3030. * inode buffer and shut down the filesystem.
  3031. */
  3032. spin_unlock(&ip->i_cluster->icl_lock);
  3033. /*
  3034. * Clean up the buffer. If it was B_DELWRI, just release it --
  3035. * brelse can handle it with no problems. If not, shut down the
  3036. * filesystem before releasing the buffer.
  3037. */
  3038. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3039. xfs_buf_relse(bp);
  3040. }
  3041. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3042. if(!bufwasdelwri) {
  3043. /*
  3044. * Just like incore_relse: if we have b_iodone functions,
  3045. * mark the buffer as an error and call them. Otherwise
  3046. * mark it as stale and brelse.
  3047. */
  3048. if (XFS_BUF_IODONE_FUNC(bp)) {
  3049. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3050. XFS_BUF_UNDONE(bp);
  3051. XFS_BUF_STALE(bp);
  3052. XFS_BUF_SHUT(bp);
  3053. XFS_BUF_ERROR(bp,EIO);
  3054. xfs_biodone(bp);
  3055. } else {
  3056. XFS_BUF_STALE(bp);
  3057. xfs_buf_relse(bp);
  3058. }
  3059. }
  3060. xfs_iflush_abort(iq);
  3061. /*
  3062. * Unlocks the flush lock
  3063. */
  3064. return XFS_ERROR(EFSCORRUPTED);
  3065. }
  3066. STATIC int
  3067. xfs_iflush_int(
  3068. xfs_inode_t *ip,
  3069. xfs_buf_t *bp)
  3070. {
  3071. xfs_inode_log_item_t *iip;
  3072. xfs_dinode_t *dip;
  3073. xfs_mount_t *mp;
  3074. #ifdef XFS_TRANS_DEBUG
  3075. int first;
  3076. #endif
  3077. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3078. ASSERT(issemalocked(&(ip->i_flock)));
  3079. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3080. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3081. iip = ip->i_itemp;
  3082. mp = ip->i_mount;
  3083. /*
  3084. * If the inode isn't dirty, then just release the inode
  3085. * flush lock and do nothing.
  3086. */
  3087. if ((ip->i_update_core == 0) &&
  3088. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3089. xfs_ifunlock(ip);
  3090. return 0;
  3091. }
  3092. /* set *dip = inode's place in the buffer */
  3093. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3094. /*
  3095. * Clear i_update_core before copying out the data.
  3096. * This is for coordination with our timestamp updates
  3097. * that don't hold the inode lock. They will always
  3098. * update the timestamps BEFORE setting i_update_core,
  3099. * so if we clear i_update_core after they set it we
  3100. * are guaranteed to see their updates to the timestamps.
  3101. * I believe that this depends on strongly ordered memory
  3102. * semantics, but we have that. We use the SYNCHRONIZE
  3103. * macro to make sure that the compiler does not reorder
  3104. * the i_update_core access below the data copy below.
  3105. */
  3106. ip->i_update_core = 0;
  3107. SYNCHRONIZE();
  3108. /*
  3109. * Make sure to get the latest atime from the Linux inode.
  3110. */
  3111. xfs_synchronize_atime(ip);
  3112. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3113. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3114. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3115. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3116. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3117. goto corrupt_out;
  3118. }
  3119. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3120. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3121. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3122. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3123. ip->i_ino, ip, ip->i_d.di_magic);
  3124. goto corrupt_out;
  3125. }
  3126. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3127. if (XFS_TEST_ERROR(
  3128. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3129. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3130. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3131. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3132. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3133. ip->i_ino, ip);
  3134. goto corrupt_out;
  3135. }
  3136. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3137. if (XFS_TEST_ERROR(
  3138. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3139. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3140. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3141. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3142. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3143. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3144. ip->i_ino, ip);
  3145. goto corrupt_out;
  3146. }
  3147. }
  3148. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3149. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3150. XFS_RANDOM_IFLUSH_5)) {
  3151. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3152. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3153. ip->i_ino,
  3154. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3155. ip->i_d.di_nblocks,
  3156. ip);
  3157. goto corrupt_out;
  3158. }
  3159. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3160. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3161. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3162. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3163. ip->i_ino, ip->i_d.di_forkoff, ip);
  3164. goto corrupt_out;
  3165. }
  3166. /*
  3167. * bump the flush iteration count, used to detect flushes which
  3168. * postdate a log record during recovery.
  3169. */
  3170. ip->i_d.di_flushiter++;
  3171. /*
  3172. * Copy the dirty parts of the inode into the on-disk
  3173. * inode. We always copy out the core of the inode,
  3174. * because if the inode is dirty at all the core must
  3175. * be.
  3176. */
  3177. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3178. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3179. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3180. ip->i_d.di_flushiter = 0;
  3181. /*
  3182. * If this is really an old format inode and the superblock version
  3183. * has not been updated to support only new format inodes, then
  3184. * convert back to the old inode format. If the superblock version
  3185. * has been updated, then make the conversion permanent.
  3186. */
  3187. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3188. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3189. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3190. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3191. /*
  3192. * Convert it back.
  3193. */
  3194. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3195. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3196. } else {
  3197. /*
  3198. * The superblock version has already been bumped,
  3199. * so just make the conversion to the new inode
  3200. * format permanent.
  3201. */
  3202. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3203. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3204. ip->i_d.di_onlink = 0;
  3205. dip->di_core.di_onlink = 0;
  3206. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3207. memset(&(dip->di_core.di_pad[0]), 0,
  3208. sizeof(dip->di_core.di_pad));
  3209. ASSERT(ip->i_d.di_projid == 0);
  3210. }
  3211. }
  3212. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3213. goto corrupt_out;
  3214. }
  3215. if (XFS_IFORK_Q(ip)) {
  3216. /*
  3217. * The only error from xfs_iflush_fork is on the data fork.
  3218. */
  3219. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3220. }
  3221. xfs_inobp_check(mp, bp);
  3222. /*
  3223. * We've recorded everything logged in the inode, so we'd
  3224. * like to clear the ilf_fields bits so we don't log and
  3225. * flush things unnecessarily. However, we can't stop
  3226. * logging all this information until the data we've copied
  3227. * into the disk buffer is written to disk. If we did we might
  3228. * overwrite the copy of the inode in the log with all the
  3229. * data after re-logging only part of it, and in the face of
  3230. * a crash we wouldn't have all the data we need to recover.
  3231. *
  3232. * What we do is move the bits to the ili_last_fields field.
  3233. * When logging the inode, these bits are moved back to the
  3234. * ilf_fields field. In the xfs_iflush_done() routine we
  3235. * clear ili_last_fields, since we know that the information
  3236. * those bits represent is permanently on disk. As long as
  3237. * the flush completes before the inode is logged again, then
  3238. * both ilf_fields and ili_last_fields will be cleared.
  3239. *
  3240. * We can play with the ilf_fields bits here, because the inode
  3241. * lock must be held exclusively in order to set bits there
  3242. * and the flush lock protects the ili_last_fields bits.
  3243. * Set ili_logged so the flush done
  3244. * routine can tell whether or not to look in the AIL.
  3245. * Also, store the current LSN of the inode so that we can tell
  3246. * whether the item has moved in the AIL from xfs_iflush_done().
  3247. * In order to read the lsn we need the AIL lock, because
  3248. * it is a 64 bit value that cannot be read atomically.
  3249. */
  3250. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3251. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3252. iip->ili_format.ilf_fields = 0;
  3253. iip->ili_logged = 1;
  3254. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3255. spin_lock(&mp->m_ail_lock);
  3256. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3257. spin_unlock(&mp->m_ail_lock);
  3258. /*
  3259. * Attach the function xfs_iflush_done to the inode's
  3260. * buffer. This will remove the inode from the AIL
  3261. * and unlock the inode's flush lock when the inode is
  3262. * completely written to disk.
  3263. */
  3264. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3265. xfs_iflush_done, (xfs_log_item_t *)iip);
  3266. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3267. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3268. } else {
  3269. /*
  3270. * We're flushing an inode which is not in the AIL and has
  3271. * not been logged but has i_update_core set. For this
  3272. * case we can use a B_DELWRI flush and immediately drop
  3273. * the inode flush lock because we can avoid the whole
  3274. * AIL state thing. It's OK to drop the flush lock now,
  3275. * because we've already locked the buffer and to do anything
  3276. * you really need both.
  3277. */
  3278. if (iip != NULL) {
  3279. ASSERT(iip->ili_logged == 0);
  3280. ASSERT(iip->ili_last_fields == 0);
  3281. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3282. }
  3283. xfs_ifunlock(ip);
  3284. }
  3285. return 0;
  3286. corrupt_out:
  3287. return XFS_ERROR(EFSCORRUPTED);
  3288. }
  3289. /*
  3290. * Flush all inactive inodes in mp.
  3291. */
  3292. void
  3293. xfs_iflush_all(
  3294. xfs_mount_t *mp)
  3295. {
  3296. xfs_inode_t *ip;
  3297. bhv_vnode_t *vp;
  3298. again:
  3299. XFS_MOUNT_ILOCK(mp);
  3300. ip = mp->m_inodes;
  3301. if (ip == NULL)
  3302. goto out;
  3303. do {
  3304. /* Make sure we skip markers inserted by sync */
  3305. if (ip->i_mount == NULL) {
  3306. ip = ip->i_mnext;
  3307. continue;
  3308. }
  3309. vp = XFS_ITOV_NULL(ip);
  3310. if (!vp) {
  3311. XFS_MOUNT_IUNLOCK(mp);
  3312. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3313. goto again;
  3314. }
  3315. ASSERT(vn_count(vp) == 0);
  3316. ip = ip->i_mnext;
  3317. } while (ip != mp->m_inodes);
  3318. out:
  3319. XFS_MOUNT_IUNLOCK(mp);
  3320. }
  3321. #ifdef XFS_ILOCK_TRACE
  3322. ktrace_t *xfs_ilock_trace_buf;
  3323. void
  3324. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3325. {
  3326. ktrace_enter(ip->i_lock_trace,
  3327. (void *)ip,
  3328. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3329. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3330. (void *)ra, /* caller of ilock */
  3331. (void *)(unsigned long)current_cpu(),
  3332. (void *)(unsigned long)current_pid(),
  3333. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3334. }
  3335. #endif
  3336. /*
  3337. * Return a pointer to the extent record at file index idx.
  3338. */
  3339. xfs_bmbt_rec_host_t *
  3340. xfs_iext_get_ext(
  3341. xfs_ifork_t *ifp, /* inode fork pointer */
  3342. xfs_extnum_t idx) /* index of target extent */
  3343. {
  3344. ASSERT(idx >= 0);
  3345. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3346. return ifp->if_u1.if_ext_irec->er_extbuf;
  3347. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3348. xfs_ext_irec_t *erp; /* irec pointer */
  3349. int erp_idx = 0; /* irec index */
  3350. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3351. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3352. return &erp->er_extbuf[page_idx];
  3353. } else if (ifp->if_bytes) {
  3354. return &ifp->if_u1.if_extents[idx];
  3355. } else {
  3356. return NULL;
  3357. }
  3358. }
  3359. /*
  3360. * Insert new item(s) into the extent records for incore inode
  3361. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3362. */
  3363. void
  3364. xfs_iext_insert(
  3365. xfs_ifork_t *ifp, /* inode fork pointer */
  3366. xfs_extnum_t idx, /* starting index of new items */
  3367. xfs_extnum_t count, /* number of inserted items */
  3368. xfs_bmbt_irec_t *new) /* items to insert */
  3369. {
  3370. xfs_extnum_t i; /* extent record index */
  3371. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3372. xfs_iext_add(ifp, idx, count);
  3373. for (i = idx; i < idx + count; i++, new++)
  3374. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3375. }
  3376. /*
  3377. * This is called when the amount of space required for incore file
  3378. * extents needs to be increased. The ext_diff parameter stores the
  3379. * number of new extents being added and the idx parameter contains
  3380. * the extent index where the new extents will be added. If the new
  3381. * extents are being appended, then we just need to (re)allocate and
  3382. * initialize the space. Otherwise, if the new extents are being
  3383. * inserted into the middle of the existing entries, a bit more work
  3384. * is required to make room for the new extents to be inserted. The
  3385. * caller is responsible for filling in the new extent entries upon
  3386. * return.
  3387. */
  3388. void
  3389. xfs_iext_add(
  3390. xfs_ifork_t *ifp, /* inode fork pointer */
  3391. xfs_extnum_t idx, /* index to begin adding exts */
  3392. int ext_diff) /* number of extents to add */
  3393. {
  3394. int byte_diff; /* new bytes being added */
  3395. int new_size; /* size of extents after adding */
  3396. xfs_extnum_t nextents; /* number of extents in file */
  3397. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3398. ASSERT((idx >= 0) && (idx <= nextents));
  3399. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3400. new_size = ifp->if_bytes + byte_diff;
  3401. /*
  3402. * If the new number of extents (nextents + ext_diff)
  3403. * fits inside the inode, then continue to use the inline
  3404. * extent buffer.
  3405. */
  3406. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3407. if (idx < nextents) {
  3408. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3409. &ifp->if_u2.if_inline_ext[idx],
  3410. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3411. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3412. }
  3413. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3414. ifp->if_real_bytes = 0;
  3415. ifp->if_lastex = nextents + ext_diff;
  3416. }
  3417. /*
  3418. * Otherwise use a linear (direct) extent list.
  3419. * If the extents are currently inside the inode,
  3420. * xfs_iext_realloc_direct will switch us from
  3421. * inline to direct extent allocation mode.
  3422. */
  3423. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3424. xfs_iext_realloc_direct(ifp, new_size);
  3425. if (idx < nextents) {
  3426. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3427. &ifp->if_u1.if_extents[idx],
  3428. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3429. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3430. }
  3431. }
  3432. /* Indirection array */
  3433. else {
  3434. xfs_ext_irec_t *erp;
  3435. int erp_idx = 0;
  3436. int page_idx = idx;
  3437. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3438. if (ifp->if_flags & XFS_IFEXTIREC) {
  3439. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3440. } else {
  3441. xfs_iext_irec_init(ifp);
  3442. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3443. erp = ifp->if_u1.if_ext_irec;
  3444. }
  3445. /* Extents fit in target extent page */
  3446. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3447. if (page_idx < erp->er_extcount) {
  3448. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3449. &erp->er_extbuf[page_idx],
  3450. (erp->er_extcount - page_idx) *
  3451. sizeof(xfs_bmbt_rec_t));
  3452. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3453. }
  3454. erp->er_extcount += ext_diff;
  3455. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3456. }
  3457. /* Insert a new extent page */
  3458. else if (erp) {
  3459. xfs_iext_add_indirect_multi(ifp,
  3460. erp_idx, page_idx, ext_diff);
  3461. }
  3462. /*
  3463. * If extent(s) are being appended to the last page in
  3464. * the indirection array and the new extent(s) don't fit
  3465. * in the page, then erp is NULL and erp_idx is set to
  3466. * the next index needed in the indirection array.
  3467. */
  3468. else {
  3469. int count = ext_diff;
  3470. while (count) {
  3471. erp = xfs_iext_irec_new(ifp, erp_idx);
  3472. erp->er_extcount = count;
  3473. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3474. if (count) {
  3475. erp_idx++;
  3476. }
  3477. }
  3478. }
  3479. }
  3480. ifp->if_bytes = new_size;
  3481. }
  3482. /*
  3483. * This is called when incore extents are being added to the indirection
  3484. * array and the new extents do not fit in the target extent list. The
  3485. * erp_idx parameter contains the irec index for the target extent list
  3486. * in the indirection array, and the idx parameter contains the extent
  3487. * index within the list. The number of extents being added is stored
  3488. * in the count parameter.
  3489. *
  3490. * |-------| |-------|
  3491. * | | | | idx - number of extents before idx
  3492. * | idx | | count |
  3493. * | | | | count - number of extents being inserted at idx
  3494. * |-------| |-------|
  3495. * | count | | nex2 | nex2 - number of extents after idx + count
  3496. * |-------| |-------|
  3497. */
  3498. void
  3499. xfs_iext_add_indirect_multi(
  3500. xfs_ifork_t *ifp, /* inode fork pointer */
  3501. int erp_idx, /* target extent irec index */
  3502. xfs_extnum_t idx, /* index within target list */
  3503. int count) /* new extents being added */
  3504. {
  3505. int byte_diff; /* new bytes being added */
  3506. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3507. xfs_extnum_t ext_diff; /* number of extents to add */
  3508. xfs_extnum_t ext_cnt; /* new extents still needed */
  3509. xfs_extnum_t nex2; /* extents after idx + count */
  3510. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3511. int nlists; /* number of irec's (lists) */
  3512. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3513. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3514. nex2 = erp->er_extcount - idx;
  3515. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3516. /*
  3517. * Save second part of target extent list
  3518. * (all extents past */
  3519. if (nex2) {
  3520. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3521. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3522. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3523. erp->er_extcount -= nex2;
  3524. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3525. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3526. }
  3527. /*
  3528. * Add the new extents to the end of the target
  3529. * list, then allocate new irec record(s) and
  3530. * extent buffer(s) as needed to store the rest
  3531. * of the new extents.
  3532. */
  3533. ext_cnt = count;
  3534. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3535. if (ext_diff) {
  3536. erp->er_extcount += ext_diff;
  3537. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3538. ext_cnt -= ext_diff;
  3539. }
  3540. while (ext_cnt) {
  3541. erp_idx++;
  3542. erp = xfs_iext_irec_new(ifp, erp_idx);
  3543. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3544. erp->er_extcount = ext_diff;
  3545. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3546. ext_cnt -= ext_diff;
  3547. }
  3548. /* Add nex2 extents back to indirection array */
  3549. if (nex2) {
  3550. xfs_extnum_t ext_avail;
  3551. int i;
  3552. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3553. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3554. i = 0;
  3555. /*
  3556. * If nex2 extents fit in the current page, append
  3557. * nex2_ep after the new extents.
  3558. */
  3559. if (nex2 <= ext_avail) {
  3560. i = erp->er_extcount;
  3561. }
  3562. /*
  3563. * Otherwise, check if space is available in the
  3564. * next page.
  3565. */
  3566. else if ((erp_idx < nlists - 1) &&
  3567. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3568. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3569. erp_idx++;
  3570. erp++;
  3571. /* Create a hole for nex2 extents */
  3572. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3573. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3574. }
  3575. /*
  3576. * Final choice, create a new extent page for
  3577. * nex2 extents.
  3578. */
  3579. else {
  3580. erp_idx++;
  3581. erp = xfs_iext_irec_new(ifp, erp_idx);
  3582. }
  3583. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3584. kmem_free(nex2_ep, byte_diff);
  3585. erp->er_extcount += nex2;
  3586. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3587. }
  3588. }
  3589. /*
  3590. * This is called when the amount of space required for incore file
  3591. * extents needs to be decreased. The ext_diff parameter stores the
  3592. * number of extents to be removed and the idx parameter contains
  3593. * the extent index where the extents will be removed from.
  3594. *
  3595. * If the amount of space needed has decreased below the linear
  3596. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3597. * extent array. Otherwise, use kmem_realloc() to adjust the
  3598. * size to what is needed.
  3599. */
  3600. void
  3601. xfs_iext_remove(
  3602. xfs_ifork_t *ifp, /* inode fork pointer */
  3603. xfs_extnum_t idx, /* index to begin removing exts */
  3604. int ext_diff) /* number of extents to remove */
  3605. {
  3606. xfs_extnum_t nextents; /* number of extents in file */
  3607. int new_size; /* size of extents after removal */
  3608. ASSERT(ext_diff > 0);
  3609. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3610. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3611. if (new_size == 0) {
  3612. xfs_iext_destroy(ifp);
  3613. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3614. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3615. } else if (ifp->if_real_bytes) {
  3616. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3617. } else {
  3618. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3619. }
  3620. ifp->if_bytes = new_size;
  3621. }
  3622. /*
  3623. * This removes ext_diff extents from the inline buffer, beginning
  3624. * at extent index idx.
  3625. */
  3626. void
  3627. xfs_iext_remove_inline(
  3628. xfs_ifork_t *ifp, /* inode fork pointer */
  3629. xfs_extnum_t idx, /* index to begin removing exts */
  3630. int ext_diff) /* number of extents to remove */
  3631. {
  3632. int nextents; /* number of extents in file */
  3633. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3634. ASSERT(idx < XFS_INLINE_EXTS);
  3635. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3636. ASSERT(((nextents - ext_diff) > 0) &&
  3637. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3638. if (idx + ext_diff < nextents) {
  3639. memmove(&ifp->if_u2.if_inline_ext[idx],
  3640. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3641. (nextents - (idx + ext_diff)) *
  3642. sizeof(xfs_bmbt_rec_t));
  3643. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3644. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3645. } else {
  3646. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3647. ext_diff * sizeof(xfs_bmbt_rec_t));
  3648. }
  3649. }
  3650. /*
  3651. * This removes ext_diff extents from a linear (direct) extent list,
  3652. * beginning at extent index idx. If the extents are being removed
  3653. * from the end of the list (ie. truncate) then we just need to re-
  3654. * allocate the list to remove the extra space. Otherwise, if the
  3655. * extents are being removed from the middle of the existing extent
  3656. * entries, then we first need to move the extent records beginning
  3657. * at idx + ext_diff up in the list to overwrite the records being
  3658. * removed, then remove the extra space via kmem_realloc.
  3659. */
  3660. void
  3661. xfs_iext_remove_direct(
  3662. xfs_ifork_t *ifp, /* inode fork pointer */
  3663. xfs_extnum_t idx, /* index to begin removing exts */
  3664. int ext_diff) /* number of extents to remove */
  3665. {
  3666. xfs_extnum_t nextents; /* number of extents in file */
  3667. int new_size; /* size of extents after removal */
  3668. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3669. new_size = ifp->if_bytes -
  3670. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3671. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3672. if (new_size == 0) {
  3673. xfs_iext_destroy(ifp);
  3674. return;
  3675. }
  3676. /* Move extents up in the list (if needed) */
  3677. if (idx + ext_diff < nextents) {
  3678. memmove(&ifp->if_u1.if_extents[idx],
  3679. &ifp->if_u1.if_extents[idx + ext_diff],
  3680. (nextents - (idx + ext_diff)) *
  3681. sizeof(xfs_bmbt_rec_t));
  3682. }
  3683. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3684. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3685. /*
  3686. * Reallocate the direct extent list. If the extents
  3687. * will fit inside the inode then xfs_iext_realloc_direct
  3688. * will switch from direct to inline extent allocation
  3689. * mode for us.
  3690. */
  3691. xfs_iext_realloc_direct(ifp, new_size);
  3692. ifp->if_bytes = new_size;
  3693. }
  3694. /*
  3695. * This is called when incore extents are being removed from the
  3696. * indirection array and the extents being removed span multiple extent
  3697. * buffers. The idx parameter contains the file extent index where we
  3698. * want to begin removing extents, and the count parameter contains
  3699. * how many extents need to be removed.
  3700. *
  3701. * |-------| |-------|
  3702. * | nex1 | | | nex1 - number of extents before idx
  3703. * |-------| | count |
  3704. * | | | | count - number of extents being removed at idx
  3705. * | count | |-------|
  3706. * | | | nex2 | nex2 - number of extents after idx + count
  3707. * |-------| |-------|
  3708. */
  3709. void
  3710. xfs_iext_remove_indirect(
  3711. xfs_ifork_t *ifp, /* inode fork pointer */
  3712. xfs_extnum_t idx, /* index to begin removing extents */
  3713. int count) /* number of extents to remove */
  3714. {
  3715. xfs_ext_irec_t *erp; /* indirection array pointer */
  3716. int erp_idx = 0; /* indirection array index */
  3717. xfs_extnum_t ext_cnt; /* extents left to remove */
  3718. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3719. xfs_extnum_t nex1; /* number of extents before idx */
  3720. xfs_extnum_t nex2; /* extents after idx + count */
  3721. int nlists; /* entries in indirection array */
  3722. int page_idx = idx; /* index in target extent list */
  3723. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3724. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3725. ASSERT(erp != NULL);
  3726. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3727. nex1 = page_idx;
  3728. ext_cnt = count;
  3729. while (ext_cnt) {
  3730. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3731. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3732. /*
  3733. * Check for deletion of entire list;
  3734. * xfs_iext_irec_remove() updates extent offsets.
  3735. */
  3736. if (ext_diff == erp->er_extcount) {
  3737. xfs_iext_irec_remove(ifp, erp_idx);
  3738. ext_cnt -= ext_diff;
  3739. nex1 = 0;
  3740. if (ext_cnt) {
  3741. ASSERT(erp_idx < ifp->if_real_bytes /
  3742. XFS_IEXT_BUFSZ);
  3743. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3744. nex1 = 0;
  3745. continue;
  3746. } else {
  3747. break;
  3748. }
  3749. }
  3750. /* Move extents up (if needed) */
  3751. if (nex2) {
  3752. memmove(&erp->er_extbuf[nex1],
  3753. &erp->er_extbuf[nex1 + ext_diff],
  3754. nex2 * sizeof(xfs_bmbt_rec_t));
  3755. }
  3756. /* Zero out rest of page */
  3757. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3758. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3759. /* Update remaining counters */
  3760. erp->er_extcount -= ext_diff;
  3761. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3762. ext_cnt -= ext_diff;
  3763. nex1 = 0;
  3764. erp_idx++;
  3765. erp++;
  3766. }
  3767. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3768. xfs_iext_irec_compact(ifp);
  3769. }
  3770. /*
  3771. * Create, destroy, or resize a linear (direct) block of extents.
  3772. */
  3773. void
  3774. xfs_iext_realloc_direct(
  3775. xfs_ifork_t *ifp, /* inode fork pointer */
  3776. int new_size) /* new size of extents */
  3777. {
  3778. int rnew_size; /* real new size of extents */
  3779. rnew_size = new_size;
  3780. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3781. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3782. (new_size != ifp->if_real_bytes)));
  3783. /* Free extent records */
  3784. if (new_size == 0) {
  3785. xfs_iext_destroy(ifp);
  3786. }
  3787. /* Resize direct extent list and zero any new bytes */
  3788. else if (ifp->if_real_bytes) {
  3789. /* Check if extents will fit inside the inode */
  3790. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3791. xfs_iext_direct_to_inline(ifp, new_size /
  3792. (uint)sizeof(xfs_bmbt_rec_t));
  3793. ifp->if_bytes = new_size;
  3794. return;
  3795. }
  3796. if (!is_power_of_2(new_size)){
  3797. rnew_size = roundup_pow_of_two(new_size);
  3798. }
  3799. if (rnew_size != ifp->if_real_bytes) {
  3800. ifp->if_u1.if_extents =
  3801. kmem_realloc(ifp->if_u1.if_extents,
  3802. rnew_size,
  3803. ifp->if_real_bytes,
  3804. KM_SLEEP);
  3805. }
  3806. if (rnew_size > ifp->if_real_bytes) {
  3807. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3808. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3809. rnew_size - ifp->if_real_bytes);
  3810. }
  3811. }
  3812. /*
  3813. * Switch from the inline extent buffer to a direct
  3814. * extent list. Be sure to include the inline extent
  3815. * bytes in new_size.
  3816. */
  3817. else {
  3818. new_size += ifp->if_bytes;
  3819. if (!is_power_of_2(new_size)) {
  3820. rnew_size = roundup_pow_of_two(new_size);
  3821. }
  3822. xfs_iext_inline_to_direct(ifp, rnew_size);
  3823. }
  3824. ifp->if_real_bytes = rnew_size;
  3825. ifp->if_bytes = new_size;
  3826. }
  3827. /*
  3828. * Switch from linear (direct) extent records to inline buffer.
  3829. */
  3830. void
  3831. xfs_iext_direct_to_inline(
  3832. xfs_ifork_t *ifp, /* inode fork pointer */
  3833. xfs_extnum_t nextents) /* number of extents in file */
  3834. {
  3835. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3836. ASSERT(nextents <= XFS_INLINE_EXTS);
  3837. /*
  3838. * The inline buffer was zeroed when we switched
  3839. * from inline to direct extent allocation mode,
  3840. * so we don't need to clear it here.
  3841. */
  3842. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3843. nextents * sizeof(xfs_bmbt_rec_t));
  3844. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3845. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3846. ifp->if_real_bytes = 0;
  3847. }
  3848. /*
  3849. * Switch from inline buffer to linear (direct) extent records.
  3850. * new_size should already be rounded up to the next power of 2
  3851. * by the caller (when appropriate), so use new_size as it is.
  3852. * However, since new_size may be rounded up, we can't update
  3853. * if_bytes here. It is the caller's responsibility to update
  3854. * if_bytes upon return.
  3855. */
  3856. void
  3857. xfs_iext_inline_to_direct(
  3858. xfs_ifork_t *ifp, /* inode fork pointer */
  3859. int new_size) /* number of extents in file */
  3860. {
  3861. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3862. memset(ifp->if_u1.if_extents, 0, new_size);
  3863. if (ifp->if_bytes) {
  3864. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3865. ifp->if_bytes);
  3866. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3867. sizeof(xfs_bmbt_rec_t));
  3868. }
  3869. ifp->if_real_bytes = new_size;
  3870. }
  3871. /*
  3872. * Resize an extent indirection array to new_size bytes.
  3873. */
  3874. void
  3875. xfs_iext_realloc_indirect(
  3876. xfs_ifork_t *ifp, /* inode fork pointer */
  3877. int new_size) /* new indirection array size */
  3878. {
  3879. int nlists; /* number of irec's (ex lists) */
  3880. int size; /* current indirection array size */
  3881. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3882. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3883. size = nlists * sizeof(xfs_ext_irec_t);
  3884. ASSERT(ifp->if_real_bytes);
  3885. ASSERT((new_size >= 0) && (new_size != size));
  3886. if (new_size == 0) {
  3887. xfs_iext_destroy(ifp);
  3888. } else {
  3889. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3890. kmem_realloc(ifp->if_u1.if_ext_irec,
  3891. new_size, size, KM_SLEEP);
  3892. }
  3893. }
  3894. /*
  3895. * Switch from indirection array to linear (direct) extent allocations.
  3896. */
  3897. void
  3898. xfs_iext_indirect_to_direct(
  3899. xfs_ifork_t *ifp) /* inode fork pointer */
  3900. {
  3901. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3902. xfs_extnum_t nextents; /* number of extents in file */
  3903. int size; /* size of file extents */
  3904. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3905. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3906. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3907. size = nextents * sizeof(xfs_bmbt_rec_t);
  3908. xfs_iext_irec_compact_full(ifp);
  3909. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3910. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3911. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3912. ifp->if_flags &= ~XFS_IFEXTIREC;
  3913. ifp->if_u1.if_extents = ep;
  3914. ifp->if_bytes = size;
  3915. if (nextents < XFS_LINEAR_EXTS) {
  3916. xfs_iext_realloc_direct(ifp, size);
  3917. }
  3918. }
  3919. /*
  3920. * Free incore file extents.
  3921. */
  3922. void
  3923. xfs_iext_destroy(
  3924. xfs_ifork_t *ifp) /* inode fork pointer */
  3925. {
  3926. if (ifp->if_flags & XFS_IFEXTIREC) {
  3927. int erp_idx;
  3928. int nlists;
  3929. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3930. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3931. xfs_iext_irec_remove(ifp, erp_idx);
  3932. }
  3933. ifp->if_flags &= ~XFS_IFEXTIREC;
  3934. } else if (ifp->if_real_bytes) {
  3935. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3936. } else if (ifp->if_bytes) {
  3937. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3938. sizeof(xfs_bmbt_rec_t));
  3939. }
  3940. ifp->if_u1.if_extents = NULL;
  3941. ifp->if_real_bytes = 0;
  3942. ifp->if_bytes = 0;
  3943. }
  3944. /*
  3945. * Return a pointer to the extent record for file system block bno.
  3946. */
  3947. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3948. xfs_iext_bno_to_ext(
  3949. xfs_ifork_t *ifp, /* inode fork pointer */
  3950. xfs_fileoff_t bno, /* block number to search for */
  3951. xfs_extnum_t *idxp) /* index of target extent */
  3952. {
  3953. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3954. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3955. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3956. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3957. int high; /* upper boundary in search */
  3958. xfs_extnum_t idx = 0; /* index of target extent */
  3959. int low; /* lower boundary in search */
  3960. xfs_extnum_t nextents; /* number of file extents */
  3961. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3962. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3963. if (nextents == 0) {
  3964. *idxp = 0;
  3965. return NULL;
  3966. }
  3967. low = 0;
  3968. if (ifp->if_flags & XFS_IFEXTIREC) {
  3969. /* Find target extent list */
  3970. int erp_idx = 0;
  3971. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3972. base = erp->er_extbuf;
  3973. high = erp->er_extcount - 1;
  3974. } else {
  3975. base = ifp->if_u1.if_extents;
  3976. high = nextents - 1;
  3977. }
  3978. /* Binary search extent records */
  3979. while (low <= high) {
  3980. idx = (low + high) >> 1;
  3981. ep = base + idx;
  3982. startoff = xfs_bmbt_get_startoff(ep);
  3983. blockcount = xfs_bmbt_get_blockcount(ep);
  3984. if (bno < startoff) {
  3985. high = idx - 1;
  3986. } else if (bno >= startoff + blockcount) {
  3987. low = idx + 1;
  3988. } else {
  3989. /* Convert back to file-based extent index */
  3990. if (ifp->if_flags & XFS_IFEXTIREC) {
  3991. idx += erp->er_extoff;
  3992. }
  3993. *idxp = idx;
  3994. return ep;
  3995. }
  3996. }
  3997. /* Convert back to file-based extent index */
  3998. if (ifp->if_flags & XFS_IFEXTIREC) {
  3999. idx += erp->er_extoff;
  4000. }
  4001. if (bno >= startoff + blockcount) {
  4002. if (++idx == nextents) {
  4003. ep = NULL;
  4004. } else {
  4005. ep = xfs_iext_get_ext(ifp, idx);
  4006. }
  4007. }
  4008. *idxp = idx;
  4009. return ep;
  4010. }
  4011. /*
  4012. * Return a pointer to the indirection array entry containing the
  4013. * extent record for filesystem block bno. Store the index of the
  4014. * target irec in *erp_idxp.
  4015. */
  4016. xfs_ext_irec_t * /* pointer to found extent record */
  4017. xfs_iext_bno_to_irec(
  4018. xfs_ifork_t *ifp, /* inode fork pointer */
  4019. xfs_fileoff_t bno, /* block number to search for */
  4020. int *erp_idxp) /* irec index of target ext list */
  4021. {
  4022. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4023. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4024. int erp_idx; /* indirection array index */
  4025. int nlists; /* number of extent irec's (lists) */
  4026. int high; /* binary search upper limit */
  4027. int low; /* binary search lower limit */
  4028. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4029. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4030. erp_idx = 0;
  4031. low = 0;
  4032. high = nlists - 1;
  4033. while (low <= high) {
  4034. erp_idx = (low + high) >> 1;
  4035. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4036. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4037. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4038. high = erp_idx - 1;
  4039. } else if (erp_next && bno >=
  4040. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4041. low = erp_idx + 1;
  4042. } else {
  4043. break;
  4044. }
  4045. }
  4046. *erp_idxp = erp_idx;
  4047. return erp;
  4048. }
  4049. /*
  4050. * Return a pointer to the indirection array entry containing the
  4051. * extent record at file extent index *idxp. Store the index of the
  4052. * target irec in *erp_idxp and store the page index of the target
  4053. * extent record in *idxp.
  4054. */
  4055. xfs_ext_irec_t *
  4056. xfs_iext_idx_to_irec(
  4057. xfs_ifork_t *ifp, /* inode fork pointer */
  4058. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4059. int *erp_idxp, /* pointer to target irec */
  4060. int realloc) /* new bytes were just added */
  4061. {
  4062. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4063. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4064. int erp_idx; /* indirection array index */
  4065. int nlists; /* number of irec's (ex lists) */
  4066. int high; /* binary search upper limit */
  4067. int low; /* binary search lower limit */
  4068. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4069. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4070. ASSERT(page_idx >= 0 && page_idx <=
  4071. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4072. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4073. erp_idx = 0;
  4074. low = 0;
  4075. high = nlists - 1;
  4076. /* Binary search extent irec's */
  4077. while (low <= high) {
  4078. erp_idx = (low + high) >> 1;
  4079. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4080. prev = erp_idx > 0 ? erp - 1 : NULL;
  4081. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4082. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4083. high = erp_idx - 1;
  4084. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4085. (page_idx == erp->er_extoff + erp->er_extcount &&
  4086. !realloc)) {
  4087. low = erp_idx + 1;
  4088. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4089. erp->er_extcount == XFS_LINEAR_EXTS) {
  4090. ASSERT(realloc);
  4091. page_idx = 0;
  4092. erp_idx++;
  4093. erp = erp_idx < nlists ? erp + 1 : NULL;
  4094. break;
  4095. } else {
  4096. page_idx -= erp->er_extoff;
  4097. break;
  4098. }
  4099. }
  4100. *idxp = page_idx;
  4101. *erp_idxp = erp_idx;
  4102. return(erp);
  4103. }
  4104. /*
  4105. * Allocate and initialize an indirection array once the space needed
  4106. * for incore extents increases above XFS_IEXT_BUFSZ.
  4107. */
  4108. void
  4109. xfs_iext_irec_init(
  4110. xfs_ifork_t *ifp) /* inode fork pointer */
  4111. {
  4112. xfs_ext_irec_t *erp; /* indirection array pointer */
  4113. xfs_extnum_t nextents; /* number of extents in file */
  4114. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4115. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4116. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4117. erp = (xfs_ext_irec_t *)
  4118. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4119. if (nextents == 0) {
  4120. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4121. } else if (!ifp->if_real_bytes) {
  4122. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4123. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4124. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4125. }
  4126. erp->er_extbuf = ifp->if_u1.if_extents;
  4127. erp->er_extcount = nextents;
  4128. erp->er_extoff = 0;
  4129. ifp->if_flags |= XFS_IFEXTIREC;
  4130. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4131. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4132. ifp->if_u1.if_ext_irec = erp;
  4133. return;
  4134. }
  4135. /*
  4136. * Allocate and initialize a new entry in the indirection array.
  4137. */
  4138. xfs_ext_irec_t *
  4139. xfs_iext_irec_new(
  4140. xfs_ifork_t *ifp, /* inode fork pointer */
  4141. int erp_idx) /* index for new irec */
  4142. {
  4143. xfs_ext_irec_t *erp; /* indirection array pointer */
  4144. int i; /* loop counter */
  4145. int nlists; /* number of irec's (ex lists) */
  4146. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4147. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4148. /* Resize indirection array */
  4149. xfs_iext_realloc_indirect(ifp, ++nlists *
  4150. sizeof(xfs_ext_irec_t));
  4151. /*
  4152. * Move records down in the array so the
  4153. * new page can use erp_idx.
  4154. */
  4155. erp = ifp->if_u1.if_ext_irec;
  4156. for (i = nlists - 1; i > erp_idx; i--) {
  4157. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4158. }
  4159. ASSERT(i == erp_idx);
  4160. /* Initialize new extent record */
  4161. erp = ifp->if_u1.if_ext_irec;
  4162. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4163. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4164. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4165. erp[erp_idx].er_extcount = 0;
  4166. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4167. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4168. return (&erp[erp_idx]);
  4169. }
  4170. /*
  4171. * Remove a record from the indirection array.
  4172. */
  4173. void
  4174. xfs_iext_irec_remove(
  4175. xfs_ifork_t *ifp, /* inode fork pointer */
  4176. int erp_idx) /* irec index to remove */
  4177. {
  4178. xfs_ext_irec_t *erp; /* indirection array pointer */
  4179. int i; /* loop counter */
  4180. int nlists; /* number of irec's (ex lists) */
  4181. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4182. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4183. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4184. if (erp->er_extbuf) {
  4185. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4186. -erp->er_extcount);
  4187. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4188. }
  4189. /* Compact extent records */
  4190. erp = ifp->if_u1.if_ext_irec;
  4191. for (i = erp_idx; i < nlists - 1; i++) {
  4192. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4193. }
  4194. /*
  4195. * Manually free the last extent record from the indirection
  4196. * array. A call to xfs_iext_realloc_indirect() with a size
  4197. * of zero would result in a call to xfs_iext_destroy() which
  4198. * would in turn call this function again, creating a nasty
  4199. * infinite loop.
  4200. */
  4201. if (--nlists) {
  4202. xfs_iext_realloc_indirect(ifp,
  4203. nlists * sizeof(xfs_ext_irec_t));
  4204. } else {
  4205. kmem_free(ifp->if_u1.if_ext_irec,
  4206. sizeof(xfs_ext_irec_t));
  4207. }
  4208. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4209. }
  4210. /*
  4211. * This is called to clean up large amounts of unused memory allocated
  4212. * by the indirection array. Before compacting anything though, verify
  4213. * that the indirection array is still needed and switch back to the
  4214. * linear extent list (or even the inline buffer) if possible. The
  4215. * compaction policy is as follows:
  4216. *
  4217. * Full Compaction: Extents fit into a single page (or inline buffer)
  4218. * Full Compaction: Extents occupy less than 10% of allocated space
  4219. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4220. * No Compaction: Extents occupy at least 50% of allocated space
  4221. */
  4222. void
  4223. xfs_iext_irec_compact(
  4224. xfs_ifork_t *ifp) /* inode fork pointer */
  4225. {
  4226. xfs_extnum_t nextents; /* number of extents in file */
  4227. int nlists; /* number of irec's (ex lists) */
  4228. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4229. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4230. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4231. if (nextents == 0) {
  4232. xfs_iext_destroy(ifp);
  4233. } else if (nextents <= XFS_INLINE_EXTS) {
  4234. xfs_iext_indirect_to_direct(ifp);
  4235. xfs_iext_direct_to_inline(ifp, nextents);
  4236. } else if (nextents <= XFS_LINEAR_EXTS) {
  4237. xfs_iext_indirect_to_direct(ifp);
  4238. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4239. xfs_iext_irec_compact_full(ifp);
  4240. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4241. xfs_iext_irec_compact_pages(ifp);
  4242. }
  4243. }
  4244. /*
  4245. * Combine extents from neighboring extent pages.
  4246. */
  4247. void
  4248. xfs_iext_irec_compact_pages(
  4249. xfs_ifork_t *ifp) /* inode fork pointer */
  4250. {
  4251. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4252. int erp_idx = 0; /* indirection array index */
  4253. int nlists; /* number of irec's (ex lists) */
  4254. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4255. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4256. while (erp_idx < nlists - 1) {
  4257. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4258. erp_next = erp + 1;
  4259. if (erp_next->er_extcount <=
  4260. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4261. memmove(&erp->er_extbuf[erp->er_extcount],
  4262. erp_next->er_extbuf, erp_next->er_extcount *
  4263. sizeof(xfs_bmbt_rec_t));
  4264. erp->er_extcount += erp_next->er_extcount;
  4265. /*
  4266. * Free page before removing extent record
  4267. * so er_extoffs don't get modified in
  4268. * xfs_iext_irec_remove.
  4269. */
  4270. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4271. erp_next->er_extbuf = NULL;
  4272. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4273. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4274. } else {
  4275. erp_idx++;
  4276. }
  4277. }
  4278. }
  4279. /*
  4280. * Fully compact the extent records managed by the indirection array.
  4281. */
  4282. void
  4283. xfs_iext_irec_compact_full(
  4284. xfs_ifork_t *ifp) /* inode fork pointer */
  4285. {
  4286. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4287. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4288. int erp_idx = 0; /* extent irec index */
  4289. int ext_avail; /* empty entries in ex list */
  4290. int ext_diff; /* number of exts to add */
  4291. int nlists; /* number of irec's (ex lists) */
  4292. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4293. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4294. erp = ifp->if_u1.if_ext_irec;
  4295. ep = &erp->er_extbuf[erp->er_extcount];
  4296. erp_next = erp + 1;
  4297. ep_next = erp_next->er_extbuf;
  4298. while (erp_idx < nlists - 1) {
  4299. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4300. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4301. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4302. erp->er_extcount += ext_diff;
  4303. erp_next->er_extcount -= ext_diff;
  4304. /* Remove next page */
  4305. if (erp_next->er_extcount == 0) {
  4306. /*
  4307. * Free page before removing extent record
  4308. * so er_extoffs don't get modified in
  4309. * xfs_iext_irec_remove.
  4310. */
  4311. kmem_free(erp_next->er_extbuf,
  4312. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4313. erp_next->er_extbuf = NULL;
  4314. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4315. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4316. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4317. /* Update next page */
  4318. } else {
  4319. /* Move rest of page up to become next new page */
  4320. memmove(erp_next->er_extbuf, ep_next,
  4321. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4322. ep_next = erp_next->er_extbuf;
  4323. memset(&ep_next[erp_next->er_extcount], 0,
  4324. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4325. sizeof(xfs_bmbt_rec_t));
  4326. }
  4327. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4328. erp_idx++;
  4329. if (erp_idx < nlists)
  4330. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4331. else
  4332. break;
  4333. }
  4334. ep = &erp->er_extbuf[erp->er_extcount];
  4335. erp_next = erp + 1;
  4336. ep_next = erp_next->er_extbuf;
  4337. }
  4338. }
  4339. /*
  4340. * This is called to update the er_extoff field in the indirection
  4341. * array when extents have been added or removed from one of the
  4342. * extent lists. erp_idx contains the irec index to begin updating
  4343. * at and ext_diff contains the number of extents that were added
  4344. * or removed.
  4345. */
  4346. void
  4347. xfs_iext_irec_update_extoffs(
  4348. xfs_ifork_t *ifp, /* inode fork pointer */
  4349. int erp_idx, /* irec index to update */
  4350. int ext_diff) /* number of new extents */
  4351. {
  4352. int i; /* loop counter */
  4353. int nlists; /* number of irec's (ex lists */
  4354. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4355. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4356. for (i = erp_idx; i < nlists; i++) {
  4357. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4358. }
  4359. }