cfq-iosched.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/rbtree.h>
  13. #include <linux/ioprio.h>
  14. /*
  15. * tunables
  16. */
  17. /* max queue in one round of service */
  18. static const int cfq_quantum = 4;
  19. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  20. /* maximum backwards seek, in KiB */
  21. static const int cfq_back_max = 16 * 1024;
  22. /* penalty of a backwards seek */
  23. static const int cfq_back_penalty = 2;
  24. static const int cfq_slice_sync = HZ / 10;
  25. static int cfq_slice_async = HZ / 25;
  26. static const int cfq_slice_async_rq = 2;
  27. static int cfq_slice_idle = HZ / 125;
  28. /*
  29. * offset from end of service tree
  30. */
  31. #define CFQ_IDLE_DELAY (HZ / 5)
  32. /*
  33. * below this threshold, we consider thinktime immediate
  34. */
  35. #define CFQ_MIN_TT (2)
  36. #define CFQ_SLICE_SCALE (5)
  37. #define RQ_CIC(rq) \
  38. ((struct cfq_io_context *) (rq)->elevator_private)
  39. #define RQ_CFQQ(rq) ((rq)->elevator_private2)
  40. static struct kmem_cache *cfq_pool;
  41. static struct kmem_cache *cfq_ioc_pool;
  42. static DEFINE_PER_CPU(unsigned long, ioc_count);
  43. static struct completion *ioc_gone;
  44. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  45. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  46. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  47. #define ASYNC (0)
  48. #define SYNC (1)
  49. #define sample_valid(samples) ((samples) > 80)
  50. /*
  51. * Most of our rbtree usage is for sorting with min extraction, so
  52. * if we cache the leftmost node we don't have to walk down the tree
  53. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  54. * move this into the elevator for the rq sorting as well.
  55. */
  56. struct cfq_rb_root {
  57. struct rb_root rb;
  58. struct rb_node *left;
  59. };
  60. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
  61. /*
  62. * Per block device queue structure
  63. */
  64. struct cfq_data {
  65. struct request_queue *queue;
  66. /*
  67. * rr list of queues with requests and the count of them
  68. */
  69. struct cfq_rb_root service_tree;
  70. unsigned int busy_queues;
  71. int rq_in_driver;
  72. int sync_flight;
  73. int hw_tag;
  74. /*
  75. * idle window management
  76. */
  77. struct timer_list idle_slice_timer;
  78. struct work_struct unplug_work;
  79. struct cfq_queue *active_queue;
  80. struct cfq_io_context *active_cic;
  81. /*
  82. * async queue for each priority case
  83. */
  84. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  85. struct cfq_queue *async_idle_cfqq;
  86. sector_t last_position;
  87. unsigned long last_end_request;
  88. /*
  89. * tunables, see top of file
  90. */
  91. unsigned int cfq_quantum;
  92. unsigned int cfq_fifo_expire[2];
  93. unsigned int cfq_back_penalty;
  94. unsigned int cfq_back_max;
  95. unsigned int cfq_slice[2];
  96. unsigned int cfq_slice_async_rq;
  97. unsigned int cfq_slice_idle;
  98. struct list_head cic_list;
  99. };
  100. /*
  101. * Per process-grouping structure
  102. */
  103. struct cfq_queue {
  104. /* reference count */
  105. atomic_t ref;
  106. /* parent cfq_data */
  107. struct cfq_data *cfqd;
  108. /* service_tree member */
  109. struct rb_node rb_node;
  110. /* service_tree key */
  111. unsigned long rb_key;
  112. /* sorted list of pending requests */
  113. struct rb_root sort_list;
  114. /* if fifo isn't expired, next request to serve */
  115. struct request *next_rq;
  116. /* requests queued in sort_list */
  117. int queued[2];
  118. /* currently allocated requests */
  119. int allocated[2];
  120. /* pending metadata requests */
  121. int meta_pending;
  122. /* fifo list of requests in sort_list */
  123. struct list_head fifo;
  124. unsigned long slice_end;
  125. long slice_resid;
  126. /* number of requests that are on the dispatch list or inside driver */
  127. int dispatched;
  128. /* io prio of this group */
  129. unsigned short ioprio, org_ioprio;
  130. unsigned short ioprio_class, org_ioprio_class;
  131. /* various state flags, see below */
  132. unsigned int flags;
  133. };
  134. enum cfqq_state_flags {
  135. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  136. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  137. CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
  138. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  139. CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
  140. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  141. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  142. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  143. CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
  144. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  145. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  146. };
  147. #define CFQ_CFQQ_FNS(name) \
  148. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  149. { \
  150. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  151. } \
  152. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  153. { \
  154. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  155. } \
  156. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  157. { \
  158. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  159. }
  160. CFQ_CFQQ_FNS(on_rr);
  161. CFQ_CFQQ_FNS(wait_request);
  162. CFQ_CFQQ_FNS(must_alloc);
  163. CFQ_CFQQ_FNS(must_alloc_slice);
  164. CFQ_CFQQ_FNS(must_dispatch);
  165. CFQ_CFQQ_FNS(fifo_expire);
  166. CFQ_CFQQ_FNS(idle_window);
  167. CFQ_CFQQ_FNS(prio_changed);
  168. CFQ_CFQQ_FNS(queue_new);
  169. CFQ_CFQQ_FNS(slice_new);
  170. CFQ_CFQQ_FNS(sync);
  171. #undef CFQ_CFQQ_FNS
  172. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  173. static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
  174. struct io_context *, gfp_t);
  175. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  176. struct io_context *);
  177. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  178. int is_sync)
  179. {
  180. return cic->cfqq[!!is_sync];
  181. }
  182. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  183. struct cfq_queue *cfqq, int is_sync)
  184. {
  185. cic->cfqq[!!is_sync] = cfqq;
  186. }
  187. /*
  188. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  189. * set (in which case it could also be direct WRITE).
  190. */
  191. static inline int cfq_bio_sync(struct bio *bio)
  192. {
  193. if (bio_data_dir(bio) == READ || bio_sync(bio))
  194. return 1;
  195. return 0;
  196. }
  197. /*
  198. * scheduler run of queue, if there are requests pending and no one in the
  199. * driver that will restart queueing
  200. */
  201. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  202. {
  203. if (cfqd->busy_queues)
  204. kblockd_schedule_work(&cfqd->unplug_work);
  205. }
  206. static int cfq_queue_empty(struct request_queue *q)
  207. {
  208. struct cfq_data *cfqd = q->elevator->elevator_data;
  209. return !cfqd->busy_queues;
  210. }
  211. /*
  212. * Scale schedule slice based on io priority. Use the sync time slice only
  213. * if a queue is marked sync and has sync io queued. A sync queue with async
  214. * io only, should not get full sync slice length.
  215. */
  216. static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
  217. unsigned short prio)
  218. {
  219. const int base_slice = cfqd->cfq_slice[sync];
  220. WARN_ON(prio >= IOPRIO_BE_NR);
  221. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  222. }
  223. static inline int
  224. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  225. {
  226. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  227. }
  228. static inline void
  229. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  230. {
  231. cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
  232. }
  233. /*
  234. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  235. * isn't valid until the first request from the dispatch is activated
  236. * and the slice time set.
  237. */
  238. static inline int cfq_slice_used(struct cfq_queue *cfqq)
  239. {
  240. if (cfq_cfqq_slice_new(cfqq))
  241. return 0;
  242. if (time_before(jiffies, cfqq->slice_end))
  243. return 0;
  244. return 1;
  245. }
  246. /*
  247. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  248. * We choose the request that is closest to the head right now. Distance
  249. * behind the head is penalized and only allowed to a certain extent.
  250. */
  251. static struct request *
  252. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
  253. {
  254. sector_t last, s1, s2, d1 = 0, d2 = 0;
  255. unsigned long back_max;
  256. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  257. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  258. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  259. if (rq1 == NULL || rq1 == rq2)
  260. return rq2;
  261. if (rq2 == NULL)
  262. return rq1;
  263. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  264. return rq1;
  265. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  266. return rq2;
  267. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  268. return rq1;
  269. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  270. return rq2;
  271. s1 = rq1->sector;
  272. s2 = rq2->sector;
  273. last = cfqd->last_position;
  274. /*
  275. * by definition, 1KiB is 2 sectors
  276. */
  277. back_max = cfqd->cfq_back_max * 2;
  278. /*
  279. * Strict one way elevator _except_ in the case where we allow
  280. * short backward seeks which are biased as twice the cost of a
  281. * similar forward seek.
  282. */
  283. if (s1 >= last)
  284. d1 = s1 - last;
  285. else if (s1 + back_max >= last)
  286. d1 = (last - s1) * cfqd->cfq_back_penalty;
  287. else
  288. wrap |= CFQ_RQ1_WRAP;
  289. if (s2 >= last)
  290. d2 = s2 - last;
  291. else if (s2 + back_max >= last)
  292. d2 = (last - s2) * cfqd->cfq_back_penalty;
  293. else
  294. wrap |= CFQ_RQ2_WRAP;
  295. /* Found required data */
  296. /*
  297. * By doing switch() on the bit mask "wrap" we avoid having to
  298. * check two variables for all permutations: --> faster!
  299. */
  300. switch (wrap) {
  301. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  302. if (d1 < d2)
  303. return rq1;
  304. else if (d2 < d1)
  305. return rq2;
  306. else {
  307. if (s1 >= s2)
  308. return rq1;
  309. else
  310. return rq2;
  311. }
  312. case CFQ_RQ2_WRAP:
  313. return rq1;
  314. case CFQ_RQ1_WRAP:
  315. return rq2;
  316. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  317. default:
  318. /*
  319. * Since both rqs are wrapped,
  320. * start with the one that's further behind head
  321. * (--> only *one* back seek required),
  322. * since back seek takes more time than forward.
  323. */
  324. if (s1 <= s2)
  325. return rq1;
  326. else
  327. return rq2;
  328. }
  329. }
  330. /*
  331. * The below is leftmost cache rbtree addon
  332. */
  333. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  334. {
  335. if (!root->left)
  336. root->left = rb_first(&root->rb);
  337. if (root->left)
  338. return rb_entry(root->left, struct cfq_queue, rb_node);
  339. return NULL;
  340. }
  341. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  342. {
  343. if (root->left == n)
  344. root->left = NULL;
  345. rb_erase(n, &root->rb);
  346. RB_CLEAR_NODE(n);
  347. }
  348. /*
  349. * would be nice to take fifo expire time into account as well
  350. */
  351. static struct request *
  352. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  353. struct request *last)
  354. {
  355. struct rb_node *rbnext = rb_next(&last->rb_node);
  356. struct rb_node *rbprev = rb_prev(&last->rb_node);
  357. struct request *next = NULL, *prev = NULL;
  358. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  359. if (rbprev)
  360. prev = rb_entry_rq(rbprev);
  361. if (rbnext)
  362. next = rb_entry_rq(rbnext);
  363. else {
  364. rbnext = rb_first(&cfqq->sort_list);
  365. if (rbnext && rbnext != &last->rb_node)
  366. next = rb_entry_rq(rbnext);
  367. }
  368. return cfq_choose_req(cfqd, next, prev);
  369. }
  370. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  371. struct cfq_queue *cfqq)
  372. {
  373. /*
  374. * just an approximation, should be ok.
  375. */
  376. return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  377. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  378. }
  379. /*
  380. * The cfqd->service_tree holds all pending cfq_queue's that have
  381. * requests waiting to be processed. It is sorted in the order that
  382. * we will service the queues.
  383. */
  384. static void cfq_service_tree_add(struct cfq_data *cfqd,
  385. struct cfq_queue *cfqq, int add_front)
  386. {
  387. struct rb_node **p, *parent;
  388. struct cfq_queue *__cfqq;
  389. unsigned long rb_key;
  390. int left;
  391. if (cfq_class_idle(cfqq)) {
  392. rb_key = CFQ_IDLE_DELAY;
  393. parent = rb_last(&cfqd->service_tree.rb);
  394. if (parent && parent != &cfqq->rb_node) {
  395. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  396. rb_key += __cfqq->rb_key;
  397. } else
  398. rb_key += jiffies;
  399. } else if (!add_front) {
  400. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  401. rb_key += cfqq->slice_resid;
  402. cfqq->slice_resid = 0;
  403. } else
  404. rb_key = 0;
  405. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  406. /*
  407. * same position, nothing more to do
  408. */
  409. if (rb_key == cfqq->rb_key)
  410. return;
  411. cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
  412. }
  413. left = 1;
  414. parent = NULL;
  415. p = &cfqd->service_tree.rb.rb_node;
  416. while (*p) {
  417. struct rb_node **n;
  418. parent = *p;
  419. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  420. /*
  421. * sort RT queues first, we always want to give
  422. * preference to them. IDLE queues goes to the back.
  423. * after that, sort on the next service time.
  424. */
  425. if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
  426. n = &(*p)->rb_left;
  427. else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
  428. n = &(*p)->rb_right;
  429. else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
  430. n = &(*p)->rb_left;
  431. else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
  432. n = &(*p)->rb_right;
  433. else if (rb_key < __cfqq->rb_key)
  434. n = &(*p)->rb_left;
  435. else
  436. n = &(*p)->rb_right;
  437. if (n == &(*p)->rb_right)
  438. left = 0;
  439. p = n;
  440. }
  441. if (left)
  442. cfqd->service_tree.left = &cfqq->rb_node;
  443. cfqq->rb_key = rb_key;
  444. rb_link_node(&cfqq->rb_node, parent, p);
  445. rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
  446. }
  447. /*
  448. * Update cfqq's position in the service tree.
  449. */
  450. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  451. {
  452. /*
  453. * Resorting requires the cfqq to be on the RR list already.
  454. */
  455. if (cfq_cfqq_on_rr(cfqq))
  456. cfq_service_tree_add(cfqd, cfqq, 0);
  457. }
  458. /*
  459. * add to busy list of queues for service, trying to be fair in ordering
  460. * the pending list according to last request service
  461. */
  462. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  463. {
  464. BUG_ON(cfq_cfqq_on_rr(cfqq));
  465. cfq_mark_cfqq_on_rr(cfqq);
  466. cfqd->busy_queues++;
  467. cfq_resort_rr_list(cfqd, cfqq);
  468. }
  469. /*
  470. * Called when the cfqq no longer has requests pending, remove it from
  471. * the service tree.
  472. */
  473. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  474. {
  475. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  476. cfq_clear_cfqq_on_rr(cfqq);
  477. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  478. cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
  479. BUG_ON(!cfqd->busy_queues);
  480. cfqd->busy_queues--;
  481. }
  482. /*
  483. * rb tree support functions
  484. */
  485. static void cfq_del_rq_rb(struct request *rq)
  486. {
  487. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  488. struct cfq_data *cfqd = cfqq->cfqd;
  489. const int sync = rq_is_sync(rq);
  490. BUG_ON(!cfqq->queued[sync]);
  491. cfqq->queued[sync]--;
  492. elv_rb_del(&cfqq->sort_list, rq);
  493. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  494. cfq_del_cfqq_rr(cfqd, cfqq);
  495. }
  496. static void cfq_add_rq_rb(struct request *rq)
  497. {
  498. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  499. struct cfq_data *cfqd = cfqq->cfqd;
  500. struct request *__alias;
  501. cfqq->queued[rq_is_sync(rq)]++;
  502. /*
  503. * looks a little odd, but the first insert might return an alias.
  504. * if that happens, put the alias on the dispatch list
  505. */
  506. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  507. cfq_dispatch_insert(cfqd->queue, __alias);
  508. if (!cfq_cfqq_on_rr(cfqq))
  509. cfq_add_cfqq_rr(cfqd, cfqq);
  510. /*
  511. * check if this request is a better next-serve candidate
  512. */
  513. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
  514. BUG_ON(!cfqq->next_rq);
  515. }
  516. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  517. {
  518. elv_rb_del(&cfqq->sort_list, rq);
  519. cfqq->queued[rq_is_sync(rq)]--;
  520. cfq_add_rq_rb(rq);
  521. }
  522. static struct request *
  523. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  524. {
  525. struct task_struct *tsk = current;
  526. struct cfq_io_context *cic;
  527. struct cfq_queue *cfqq;
  528. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  529. if (!cic)
  530. return NULL;
  531. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  532. if (cfqq) {
  533. sector_t sector = bio->bi_sector + bio_sectors(bio);
  534. return elv_rb_find(&cfqq->sort_list, sector);
  535. }
  536. return NULL;
  537. }
  538. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  539. {
  540. struct cfq_data *cfqd = q->elevator->elevator_data;
  541. cfqd->rq_in_driver++;
  542. /*
  543. * If the depth is larger 1, it really could be queueing. But lets
  544. * make the mark a little higher - idling could still be good for
  545. * low queueing, and a low queueing number could also just indicate
  546. * a SCSI mid layer like behaviour where limit+1 is often seen.
  547. */
  548. if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
  549. cfqd->hw_tag = 1;
  550. cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
  551. }
  552. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  553. {
  554. struct cfq_data *cfqd = q->elevator->elevator_data;
  555. WARN_ON(!cfqd->rq_in_driver);
  556. cfqd->rq_in_driver--;
  557. }
  558. static void cfq_remove_request(struct request *rq)
  559. {
  560. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  561. if (cfqq->next_rq == rq)
  562. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  563. list_del_init(&rq->queuelist);
  564. cfq_del_rq_rb(rq);
  565. if (rq_is_meta(rq)) {
  566. WARN_ON(!cfqq->meta_pending);
  567. cfqq->meta_pending--;
  568. }
  569. }
  570. static int cfq_merge(struct request_queue *q, struct request **req,
  571. struct bio *bio)
  572. {
  573. struct cfq_data *cfqd = q->elevator->elevator_data;
  574. struct request *__rq;
  575. __rq = cfq_find_rq_fmerge(cfqd, bio);
  576. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  577. *req = __rq;
  578. return ELEVATOR_FRONT_MERGE;
  579. }
  580. return ELEVATOR_NO_MERGE;
  581. }
  582. static void cfq_merged_request(struct request_queue *q, struct request *req,
  583. int type)
  584. {
  585. if (type == ELEVATOR_FRONT_MERGE) {
  586. struct cfq_queue *cfqq = RQ_CFQQ(req);
  587. cfq_reposition_rq_rb(cfqq, req);
  588. }
  589. }
  590. static void
  591. cfq_merged_requests(struct request_queue *q, struct request *rq,
  592. struct request *next)
  593. {
  594. /*
  595. * reposition in fifo if next is older than rq
  596. */
  597. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  598. time_before(next->start_time, rq->start_time))
  599. list_move(&rq->queuelist, &next->queuelist);
  600. cfq_remove_request(next);
  601. }
  602. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  603. struct bio *bio)
  604. {
  605. struct cfq_data *cfqd = q->elevator->elevator_data;
  606. struct cfq_io_context *cic;
  607. struct cfq_queue *cfqq;
  608. /*
  609. * Disallow merge of a sync bio into an async request.
  610. */
  611. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  612. return 0;
  613. /*
  614. * Lookup the cfqq that this bio will be queued with. Allow
  615. * merge only if rq is queued there.
  616. */
  617. cic = cfq_cic_lookup(cfqd, current->io_context);
  618. if (!cic)
  619. return 0;
  620. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  621. if (cfqq == RQ_CFQQ(rq))
  622. return 1;
  623. return 0;
  624. }
  625. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  626. struct cfq_queue *cfqq)
  627. {
  628. if (cfqq) {
  629. cfqq->slice_end = 0;
  630. cfq_clear_cfqq_must_alloc_slice(cfqq);
  631. cfq_clear_cfqq_fifo_expire(cfqq);
  632. cfq_mark_cfqq_slice_new(cfqq);
  633. cfq_clear_cfqq_queue_new(cfqq);
  634. }
  635. cfqd->active_queue = cfqq;
  636. }
  637. /*
  638. * current cfqq expired its slice (or was too idle), select new one
  639. */
  640. static void
  641. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  642. int timed_out)
  643. {
  644. if (cfq_cfqq_wait_request(cfqq))
  645. del_timer(&cfqd->idle_slice_timer);
  646. cfq_clear_cfqq_must_dispatch(cfqq);
  647. cfq_clear_cfqq_wait_request(cfqq);
  648. /*
  649. * store what was left of this slice, if the queue idled/timed out
  650. */
  651. if (timed_out && !cfq_cfqq_slice_new(cfqq))
  652. cfqq->slice_resid = cfqq->slice_end - jiffies;
  653. cfq_resort_rr_list(cfqd, cfqq);
  654. if (cfqq == cfqd->active_queue)
  655. cfqd->active_queue = NULL;
  656. if (cfqd->active_cic) {
  657. put_io_context(cfqd->active_cic->ioc);
  658. cfqd->active_cic = NULL;
  659. }
  660. }
  661. static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
  662. {
  663. struct cfq_queue *cfqq = cfqd->active_queue;
  664. if (cfqq)
  665. __cfq_slice_expired(cfqd, cfqq, timed_out);
  666. }
  667. /*
  668. * Get next queue for service. Unless we have a queue preemption,
  669. * we'll simply select the first cfqq in the service tree.
  670. */
  671. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  672. {
  673. if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
  674. return NULL;
  675. return cfq_rb_first(&cfqd->service_tree);
  676. }
  677. /*
  678. * Get and set a new active queue for service.
  679. */
  680. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
  681. {
  682. struct cfq_queue *cfqq;
  683. cfqq = cfq_get_next_queue(cfqd);
  684. __cfq_set_active_queue(cfqd, cfqq);
  685. return cfqq;
  686. }
  687. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  688. struct request *rq)
  689. {
  690. if (rq->sector >= cfqd->last_position)
  691. return rq->sector - cfqd->last_position;
  692. else
  693. return cfqd->last_position - rq->sector;
  694. }
  695. static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
  696. {
  697. struct cfq_io_context *cic = cfqd->active_cic;
  698. if (!sample_valid(cic->seek_samples))
  699. return 0;
  700. return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
  701. }
  702. static int cfq_close_cooperator(struct cfq_data *cfq_data,
  703. struct cfq_queue *cfqq)
  704. {
  705. /*
  706. * We should notice if some of the queues are cooperating, eg
  707. * working closely on the same area of the disk. In that case,
  708. * we can group them together and don't waste time idling.
  709. */
  710. return 0;
  711. }
  712. #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
  713. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  714. {
  715. struct cfq_queue *cfqq = cfqd->active_queue;
  716. struct cfq_io_context *cic;
  717. unsigned long sl;
  718. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  719. WARN_ON(cfq_cfqq_slice_new(cfqq));
  720. /*
  721. * idle is disabled, either manually or by past process history
  722. */
  723. if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
  724. return;
  725. /*
  726. * task has exited, don't wait
  727. */
  728. cic = cfqd->active_cic;
  729. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  730. return;
  731. /*
  732. * See if this prio level has a good candidate
  733. */
  734. if (cfq_close_cooperator(cfqd, cfqq) &&
  735. (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
  736. return;
  737. cfq_mark_cfqq_must_dispatch(cfqq);
  738. cfq_mark_cfqq_wait_request(cfqq);
  739. /*
  740. * we don't want to idle for seeks, but we do want to allow
  741. * fair distribution of slice time for a process doing back-to-back
  742. * seeks. so allow a little bit of time for him to submit a new rq
  743. */
  744. sl = cfqd->cfq_slice_idle;
  745. if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
  746. sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
  747. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  748. }
  749. /*
  750. * Move request from internal lists to the request queue dispatch list.
  751. */
  752. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  753. {
  754. struct cfq_data *cfqd = q->elevator->elevator_data;
  755. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  756. cfq_remove_request(rq);
  757. cfqq->dispatched++;
  758. elv_dispatch_sort(q, rq);
  759. if (cfq_cfqq_sync(cfqq))
  760. cfqd->sync_flight++;
  761. }
  762. /*
  763. * return expired entry, or NULL to just start from scratch in rbtree
  764. */
  765. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  766. {
  767. struct cfq_data *cfqd = cfqq->cfqd;
  768. struct request *rq;
  769. int fifo;
  770. if (cfq_cfqq_fifo_expire(cfqq))
  771. return NULL;
  772. cfq_mark_cfqq_fifo_expire(cfqq);
  773. if (list_empty(&cfqq->fifo))
  774. return NULL;
  775. fifo = cfq_cfqq_sync(cfqq);
  776. rq = rq_entry_fifo(cfqq->fifo.next);
  777. if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
  778. return NULL;
  779. return rq;
  780. }
  781. static inline int
  782. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  783. {
  784. const int base_rq = cfqd->cfq_slice_async_rq;
  785. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  786. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  787. }
  788. /*
  789. * Select a queue for service. If we have a current active queue,
  790. * check whether to continue servicing it, or retrieve and set a new one.
  791. */
  792. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  793. {
  794. struct cfq_queue *cfqq;
  795. cfqq = cfqd->active_queue;
  796. if (!cfqq)
  797. goto new_queue;
  798. /*
  799. * The active queue has run out of time, expire it and select new.
  800. */
  801. if (cfq_slice_used(cfqq))
  802. goto expire;
  803. /*
  804. * The active queue has requests and isn't expired, allow it to
  805. * dispatch.
  806. */
  807. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  808. goto keep_queue;
  809. /*
  810. * No requests pending. If the active queue still has requests in
  811. * flight or is idling for a new request, allow either of these
  812. * conditions to happen (or time out) before selecting a new queue.
  813. */
  814. if (timer_pending(&cfqd->idle_slice_timer) ||
  815. (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
  816. cfqq = NULL;
  817. goto keep_queue;
  818. }
  819. expire:
  820. cfq_slice_expired(cfqd, 0);
  821. new_queue:
  822. cfqq = cfq_set_active_queue(cfqd);
  823. keep_queue:
  824. return cfqq;
  825. }
  826. /*
  827. * Dispatch some requests from cfqq, moving them to the request queue
  828. * dispatch list.
  829. */
  830. static int
  831. __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  832. int max_dispatch)
  833. {
  834. int dispatched = 0;
  835. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  836. do {
  837. struct request *rq;
  838. /*
  839. * follow expired path, else get first next available
  840. */
  841. rq = cfq_check_fifo(cfqq);
  842. if (rq == NULL)
  843. rq = cfqq->next_rq;
  844. /*
  845. * finally, insert request into driver dispatch list
  846. */
  847. cfq_dispatch_insert(cfqd->queue, rq);
  848. dispatched++;
  849. if (!cfqd->active_cic) {
  850. atomic_inc(&RQ_CIC(rq)->ioc->refcount);
  851. cfqd->active_cic = RQ_CIC(rq);
  852. }
  853. if (RB_EMPTY_ROOT(&cfqq->sort_list))
  854. break;
  855. } while (dispatched < max_dispatch);
  856. /*
  857. * expire an async queue immediately if it has used up its slice. idle
  858. * queue always expire after 1 dispatch round.
  859. */
  860. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  861. dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  862. cfq_class_idle(cfqq))) {
  863. cfqq->slice_end = jiffies + 1;
  864. cfq_slice_expired(cfqd, 0);
  865. }
  866. return dispatched;
  867. }
  868. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  869. {
  870. int dispatched = 0;
  871. while (cfqq->next_rq) {
  872. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  873. dispatched++;
  874. }
  875. BUG_ON(!list_empty(&cfqq->fifo));
  876. return dispatched;
  877. }
  878. /*
  879. * Drain our current requests. Used for barriers and when switching
  880. * io schedulers on-the-fly.
  881. */
  882. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  883. {
  884. struct cfq_queue *cfqq;
  885. int dispatched = 0;
  886. while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
  887. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  888. cfq_slice_expired(cfqd, 0);
  889. BUG_ON(cfqd->busy_queues);
  890. return dispatched;
  891. }
  892. static int cfq_dispatch_requests(struct request_queue *q, int force)
  893. {
  894. struct cfq_data *cfqd = q->elevator->elevator_data;
  895. struct cfq_queue *cfqq;
  896. int dispatched;
  897. if (!cfqd->busy_queues)
  898. return 0;
  899. if (unlikely(force))
  900. return cfq_forced_dispatch(cfqd);
  901. dispatched = 0;
  902. while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
  903. int max_dispatch;
  904. max_dispatch = cfqd->cfq_quantum;
  905. if (cfq_class_idle(cfqq))
  906. max_dispatch = 1;
  907. if (cfqq->dispatched >= max_dispatch) {
  908. if (cfqd->busy_queues > 1)
  909. break;
  910. if (cfqq->dispatched >= 4 * max_dispatch)
  911. break;
  912. }
  913. if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
  914. break;
  915. cfq_clear_cfqq_must_dispatch(cfqq);
  916. cfq_clear_cfqq_wait_request(cfqq);
  917. del_timer(&cfqd->idle_slice_timer);
  918. dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
  919. }
  920. return dispatched;
  921. }
  922. /*
  923. * task holds one reference to the queue, dropped when task exits. each rq
  924. * in-flight on this queue also holds a reference, dropped when rq is freed.
  925. *
  926. * queue lock must be held here.
  927. */
  928. static void cfq_put_queue(struct cfq_queue *cfqq)
  929. {
  930. struct cfq_data *cfqd = cfqq->cfqd;
  931. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  932. if (!atomic_dec_and_test(&cfqq->ref))
  933. return;
  934. BUG_ON(rb_first(&cfqq->sort_list));
  935. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  936. BUG_ON(cfq_cfqq_on_rr(cfqq));
  937. if (unlikely(cfqd->active_queue == cfqq)) {
  938. __cfq_slice_expired(cfqd, cfqq, 0);
  939. cfq_schedule_dispatch(cfqd);
  940. }
  941. kmem_cache_free(cfq_pool, cfqq);
  942. }
  943. /*
  944. * Call func for each cic attached to this ioc. Returns number of cic's seen.
  945. */
  946. static unsigned int
  947. call_for_each_cic(struct io_context *ioc,
  948. void (*func)(struct io_context *, struct cfq_io_context *))
  949. {
  950. struct cfq_io_context *cic;
  951. struct hlist_node *n;
  952. int called = 0;
  953. rcu_read_lock();
  954. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list) {
  955. func(ioc, cic);
  956. called++;
  957. }
  958. rcu_read_unlock();
  959. return called;
  960. }
  961. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  962. {
  963. unsigned long flags;
  964. BUG_ON(!cic->dead_key);
  965. spin_lock_irqsave(&ioc->lock, flags);
  966. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  967. hlist_del_rcu(&cic->cic_list);
  968. spin_unlock_irqrestore(&ioc->lock, flags);
  969. kmem_cache_free(cfq_ioc_pool, cic);
  970. }
  971. static void cfq_free_io_context(struct io_context *ioc)
  972. {
  973. int freed;
  974. /*
  975. * ioc->refcount is zero here, so no more cic's are allowed to be
  976. * linked into this ioc. So it should be ok to iterate over the known
  977. * list, we will see all cic's since no new ones are added.
  978. */
  979. freed = call_for_each_cic(ioc, cic_free_func);
  980. elv_ioc_count_mod(ioc_count, -freed);
  981. if (ioc_gone && !elv_ioc_count_read(ioc_count))
  982. complete(ioc_gone);
  983. }
  984. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  985. {
  986. if (unlikely(cfqq == cfqd->active_queue)) {
  987. __cfq_slice_expired(cfqd, cfqq, 0);
  988. cfq_schedule_dispatch(cfqd);
  989. }
  990. cfq_put_queue(cfqq);
  991. }
  992. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  993. struct cfq_io_context *cic)
  994. {
  995. list_del_init(&cic->queue_list);
  996. /*
  997. * Make sure key == NULL is seen for dead queues
  998. */
  999. smp_wmb();
  1000. cic->dead_key = (unsigned long) cic->key;
  1001. cic->key = NULL;
  1002. if (cic->cfqq[ASYNC]) {
  1003. cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
  1004. cic->cfqq[ASYNC] = NULL;
  1005. }
  1006. if (cic->cfqq[SYNC]) {
  1007. cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
  1008. cic->cfqq[SYNC] = NULL;
  1009. }
  1010. }
  1011. static void cfq_exit_single_io_context(struct io_context *ioc,
  1012. struct cfq_io_context *cic)
  1013. {
  1014. struct cfq_data *cfqd = cic->key;
  1015. if (cfqd) {
  1016. struct request_queue *q = cfqd->queue;
  1017. unsigned long flags;
  1018. spin_lock_irqsave(q->queue_lock, flags);
  1019. __cfq_exit_single_io_context(cfqd, cic);
  1020. spin_unlock_irqrestore(q->queue_lock, flags);
  1021. }
  1022. }
  1023. /*
  1024. * The process that ioc belongs to has exited, we need to clean up
  1025. * and put the internal structures we have that belongs to that process.
  1026. */
  1027. static void cfq_exit_io_context(struct io_context *ioc)
  1028. {
  1029. rcu_assign_pointer(ioc->ioc_data, NULL);
  1030. call_for_each_cic(ioc, cfq_exit_single_io_context);
  1031. }
  1032. static struct cfq_io_context *
  1033. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  1034. {
  1035. struct cfq_io_context *cic;
  1036. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  1037. cfqd->queue->node);
  1038. if (cic) {
  1039. cic->last_end_request = jiffies;
  1040. INIT_LIST_HEAD(&cic->queue_list);
  1041. INIT_HLIST_NODE(&cic->cic_list);
  1042. cic->dtor = cfq_free_io_context;
  1043. cic->exit = cfq_exit_io_context;
  1044. elv_ioc_count_inc(ioc_count);
  1045. }
  1046. return cic;
  1047. }
  1048. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  1049. {
  1050. struct task_struct *tsk = current;
  1051. int ioprio_class;
  1052. if (!cfq_cfqq_prio_changed(cfqq))
  1053. return;
  1054. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  1055. switch (ioprio_class) {
  1056. default:
  1057. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  1058. case IOPRIO_CLASS_NONE:
  1059. /*
  1060. * no prio set, place us in the middle of the BE classes
  1061. */
  1062. cfqq->ioprio = task_nice_ioprio(tsk);
  1063. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1064. break;
  1065. case IOPRIO_CLASS_RT:
  1066. cfqq->ioprio = task_ioprio(ioc);
  1067. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  1068. break;
  1069. case IOPRIO_CLASS_BE:
  1070. cfqq->ioprio = task_ioprio(ioc);
  1071. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1072. break;
  1073. case IOPRIO_CLASS_IDLE:
  1074. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  1075. cfqq->ioprio = 7;
  1076. cfq_clear_cfqq_idle_window(cfqq);
  1077. break;
  1078. }
  1079. /*
  1080. * keep track of original prio settings in case we have to temporarily
  1081. * elevate the priority of this queue
  1082. */
  1083. cfqq->org_ioprio = cfqq->ioprio;
  1084. cfqq->org_ioprio_class = cfqq->ioprio_class;
  1085. cfq_clear_cfqq_prio_changed(cfqq);
  1086. }
  1087. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  1088. {
  1089. struct cfq_data *cfqd = cic->key;
  1090. struct cfq_queue *cfqq;
  1091. unsigned long flags;
  1092. if (unlikely(!cfqd))
  1093. return;
  1094. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1095. cfqq = cic->cfqq[ASYNC];
  1096. if (cfqq) {
  1097. struct cfq_queue *new_cfqq;
  1098. new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
  1099. if (new_cfqq) {
  1100. cic->cfqq[ASYNC] = new_cfqq;
  1101. cfq_put_queue(cfqq);
  1102. }
  1103. }
  1104. cfqq = cic->cfqq[SYNC];
  1105. if (cfqq)
  1106. cfq_mark_cfqq_prio_changed(cfqq);
  1107. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1108. }
  1109. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  1110. {
  1111. call_for_each_cic(ioc, changed_ioprio);
  1112. ioc->ioprio_changed = 0;
  1113. }
  1114. static struct cfq_queue *
  1115. cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
  1116. struct io_context *ioc, gfp_t gfp_mask)
  1117. {
  1118. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1119. struct cfq_io_context *cic;
  1120. retry:
  1121. cic = cfq_cic_lookup(cfqd, ioc);
  1122. /* cic always exists here */
  1123. cfqq = cic_to_cfqq(cic, is_sync);
  1124. if (!cfqq) {
  1125. if (new_cfqq) {
  1126. cfqq = new_cfqq;
  1127. new_cfqq = NULL;
  1128. } else if (gfp_mask & __GFP_WAIT) {
  1129. /*
  1130. * Inform the allocator of the fact that we will
  1131. * just repeat this allocation if it fails, to allow
  1132. * the allocator to do whatever it needs to attempt to
  1133. * free memory.
  1134. */
  1135. spin_unlock_irq(cfqd->queue->queue_lock);
  1136. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  1137. gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
  1138. cfqd->queue->node);
  1139. spin_lock_irq(cfqd->queue->queue_lock);
  1140. goto retry;
  1141. } else {
  1142. cfqq = kmem_cache_alloc_node(cfq_pool,
  1143. gfp_mask | __GFP_ZERO,
  1144. cfqd->queue->node);
  1145. if (!cfqq)
  1146. goto out;
  1147. }
  1148. RB_CLEAR_NODE(&cfqq->rb_node);
  1149. INIT_LIST_HEAD(&cfqq->fifo);
  1150. atomic_set(&cfqq->ref, 0);
  1151. cfqq->cfqd = cfqd;
  1152. cfq_mark_cfqq_prio_changed(cfqq);
  1153. cfq_mark_cfqq_queue_new(cfqq);
  1154. cfq_init_prio_data(cfqq, ioc);
  1155. if (is_sync) {
  1156. if (!cfq_class_idle(cfqq))
  1157. cfq_mark_cfqq_idle_window(cfqq);
  1158. cfq_mark_cfqq_sync(cfqq);
  1159. }
  1160. }
  1161. if (new_cfqq)
  1162. kmem_cache_free(cfq_pool, new_cfqq);
  1163. out:
  1164. WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
  1165. return cfqq;
  1166. }
  1167. static struct cfq_queue **
  1168. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  1169. {
  1170. switch (ioprio_class) {
  1171. case IOPRIO_CLASS_RT:
  1172. return &cfqd->async_cfqq[0][ioprio];
  1173. case IOPRIO_CLASS_BE:
  1174. return &cfqd->async_cfqq[1][ioprio];
  1175. case IOPRIO_CLASS_IDLE:
  1176. return &cfqd->async_idle_cfqq;
  1177. default:
  1178. BUG();
  1179. }
  1180. }
  1181. static struct cfq_queue *
  1182. cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
  1183. gfp_t gfp_mask)
  1184. {
  1185. const int ioprio = task_ioprio(ioc);
  1186. const int ioprio_class = task_ioprio_class(ioc);
  1187. struct cfq_queue **async_cfqq = NULL;
  1188. struct cfq_queue *cfqq = NULL;
  1189. if (!is_sync) {
  1190. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  1191. cfqq = *async_cfqq;
  1192. }
  1193. if (!cfqq) {
  1194. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  1195. if (!cfqq)
  1196. return NULL;
  1197. }
  1198. /*
  1199. * pin the queue now that it's allocated, scheduler exit will prune it
  1200. */
  1201. if (!is_sync && !(*async_cfqq)) {
  1202. atomic_inc(&cfqq->ref);
  1203. *async_cfqq = cfqq;
  1204. }
  1205. atomic_inc(&cfqq->ref);
  1206. return cfqq;
  1207. }
  1208. static void cfq_cic_free(struct cfq_io_context *cic)
  1209. {
  1210. kmem_cache_free(cfq_ioc_pool, cic);
  1211. elv_ioc_count_dec(ioc_count);
  1212. if (ioc_gone && !elv_ioc_count_read(ioc_count))
  1213. complete(ioc_gone);
  1214. }
  1215. /*
  1216. * We drop cfq io contexts lazily, so we may find a dead one.
  1217. */
  1218. static void
  1219. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  1220. struct cfq_io_context *cic)
  1221. {
  1222. unsigned long flags;
  1223. WARN_ON(!list_empty(&cic->queue_list));
  1224. spin_lock_irqsave(&ioc->lock, flags);
  1225. if (ioc->ioc_data == cic)
  1226. rcu_assign_pointer(ioc->ioc_data, NULL);
  1227. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  1228. hlist_del_rcu(&cic->cic_list);
  1229. spin_unlock_irqrestore(&ioc->lock, flags);
  1230. cfq_cic_free(cic);
  1231. }
  1232. static struct cfq_io_context *
  1233. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  1234. {
  1235. struct cfq_io_context *cic;
  1236. void *k;
  1237. if (unlikely(!ioc))
  1238. return NULL;
  1239. /*
  1240. * we maintain a last-hit cache, to avoid browsing over the tree
  1241. */
  1242. cic = rcu_dereference(ioc->ioc_data);
  1243. if (cic && cic->key == cfqd)
  1244. return cic;
  1245. do {
  1246. rcu_read_lock();
  1247. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  1248. rcu_read_unlock();
  1249. if (!cic)
  1250. break;
  1251. /* ->key must be copied to avoid race with cfq_exit_queue() */
  1252. k = cic->key;
  1253. if (unlikely(!k)) {
  1254. cfq_drop_dead_cic(cfqd, ioc, cic);
  1255. continue;
  1256. }
  1257. rcu_assign_pointer(ioc->ioc_data, cic);
  1258. break;
  1259. } while (1);
  1260. return cic;
  1261. }
  1262. /*
  1263. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  1264. * the process specific cfq io context when entered from the block layer.
  1265. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  1266. */
  1267. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  1268. struct cfq_io_context *cic, gfp_t gfp_mask)
  1269. {
  1270. unsigned long flags;
  1271. int ret;
  1272. ret = radix_tree_preload(gfp_mask);
  1273. if (!ret) {
  1274. cic->ioc = ioc;
  1275. cic->key = cfqd;
  1276. spin_lock_irqsave(&ioc->lock, flags);
  1277. ret = radix_tree_insert(&ioc->radix_root,
  1278. (unsigned long) cfqd, cic);
  1279. if (!ret)
  1280. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  1281. spin_unlock_irqrestore(&ioc->lock, flags);
  1282. radix_tree_preload_end();
  1283. if (!ret) {
  1284. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1285. list_add(&cic->queue_list, &cfqd->cic_list);
  1286. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1287. }
  1288. }
  1289. if (ret)
  1290. printk(KERN_ERR "cfq: cic link failed!\n");
  1291. return ret;
  1292. }
  1293. /*
  1294. * Setup general io context and cfq io context. There can be several cfq
  1295. * io contexts per general io context, if this process is doing io to more
  1296. * than one device managed by cfq.
  1297. */
  1298. static struct cfq_io_context *
  1299. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  1300. {
  1301. struct io_context *ioc = NULL;
  1302. struct cfq_io_context *cic;
  1303. might_sleep_if(gfp_mask & __GFP_WAIT);
  1304. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  1305. if (!ioc)
  1306. return NULL;
  1307. cic = cfq_cic_lookup(cfqd, ioc);
  1308. if (cic)
  1309. goto out;
  1310. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  1311. if (cic == NULL)
  1312. goto err;
  1313. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  1314. goto err_free;
  1315. out:
  1316. smp_read_barrier_depends();
  1317. if (unlikely(ioc->ioprio_changed))
  1318. cfq_ioc_set_ioprio(ioc);
  1319. return cic;
  1320. err_free:
  1321. cfq_cic_free(cic);
  1322. err:
  1323. put_io_context(ioc);
  1324. return NULL;
  1325. }
  1326. static void
  1327. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  1328. {
  1329. unsigned long elapsed = jiffies - cic->last_end_request;
  1330. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  1331. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  1332. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  1333. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  1334. }
  1335. static void
  1336. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
  1337. struct request *rq)
  1338. {
  1339. sector_t sdist;
  1340. u64 total;
  1341. if (cic->last_request_pos < rq->sector)
  1342. sdist = rq->sector - cic->last_request_pos;
  1343. else
  1344. sdist = cic->last_request_pos - rq->sector;
  1345. /*
  1346. * Don't allow the seek distance to get too large from the
  1347. * odd fragment, pagein, etc
  1348. */
  1349. if (cic->seek_samples <= 60) /* second&third seek */
  1350. sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
  1351. else
  1352. sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
  1353. cic->seek_samples = (7*cic->seek_samples + 256) / 8;
  1354. cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
  1355. total = cic->seek_total + (cic->seek_samples/2);
  1356. do_div(total, cic->seek_samples);
  1357. cic->seek_mean = (sector_t)total;
  1358. }
  1359. /*
  1360. * Disable idle window if the process thinks too long or seeks so much that
  1361. * it doesn't matter
  1362. */
  1363. static void
  1364. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1365. struct cfq_io_context *cic)
  1366. {
  1367. int enable_idle;
  1368. /*
  1369. * Don't idle for async or idle io prio class
  1370. */
  1371. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  1372. return;
  1373. enable_idle = cfq_cfqq_idle_window(cfqq);
  1374. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  1375. (cfqd->hw_tag && CIC_SEEKY(cic)))
  1376. enable_idle = 0;
  1377. else if (sample_valid(cic->ttime_samples)) {
  1378. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  1379. enable_idle = 0;
  1380. else
  1381. enable_idle = 1;
  1382. }
  1383. if (enable_idle)
  1384. cfq_mark_cfqq_idle_window(cfqq);
  1385. else
  1386. cfq_clear_cfqq_idle_window(cfqq);
  1387. }
  1388. /*
  1389. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  1390. * no or if we aren't sure, a 1 will cause a preempt.
  1391. */
  1392. static int
  1393. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  1394. struct request *rq)
  1395. {
  1396. struct cfq_queue *cfqq;
  1397. cfqq = cfqd->active_queue;
  1398. if (!cfqq)
  1399. return 0;
  1400. if (cfq_slice_used(cfqq))
  1401. return 1;
  1402. if (cfq_class_idle(new_cfqq))
  1403. return 0;
  1404. if (cfq_class_idle(cfqq))
  1405. return 1;
  1406. /*
  1407. * if the new request is sync, but the currently running queue is
  1408. * not, let the sync request have priority.
  1409. */
  1410. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  1411. return 1;
  1412. /*
  1413. * So both queues are sync. Let the new request get disk time if
  1414. * it's a metadata request and the current queue is doing regular IO.
  1415. */
  1416. if (rq_is_meta(rq) && !cfqq->meta_pending)
  1417. return 1;
  1418. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  1419. return 0;
  1420. /*
  1421. * if this request is as-good as one we would expect from the
  1422. * current cfqq, let it preempt
  1423. */
  1424. if (cfq_rq_close(cfqd, rq))
  1425. return 1;
  1426. return 0;
  1427. }
  1428. /*
  1429. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  1430. * let it have half of its nominal slice.
  1431. */
  1432. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1433. {
  1434. cfq_slice_expired(cfqd, 1);
  1435. /*
  1436. * Put the new queue at the front of the of the current list,
  1437. * so we know that it will be selected next.
  1438. */
  1439. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1440. cfq_service_tree_add(cfqd, cfqq, 1);
  1441. cfqq->slice_end = 0;
  1442. cfq_mark_cfqq_slice_new(cfqq);
  1443. }
  1444. /*
  1445. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  1446. * something we should do about it
  1447. */
  1448. static void
  1449. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1450. struct request *rq)
  1451. {
  1452. struct cfq_io_context *cic = RQ_CIC(rq);
  1453. if (rq_is_meta(rq))
  1454. cfqq->meta_pending++;
  1455. cfq_update_io_thinktime(cfqd, cic);
  1456. cfq_update_io_seektime(cfqd, cic, rq);
  1457. cfq_update_idle_window(cfqd, cfqq, cic);
  1458. cic->last_request_pos = rq->sector + rq->nr_sectors;
  1459. if (cfqq == cfqd->active_queue) {
  1460. /*
  1461. * if we are waiting for a request for this queue, let it rip
  1462. * immediately and flag that we must not expire this queue
  1463. * just now
  1464. */
  1465. if (cfq_cfqq_wait_request(cfqq)) {
  1466. cfq_mark_cfqq_must_dispatch(cfqq);
  1467. del_timer(&cfqd->idle_slice_timer);
  1468. blk_start_queueing(cfqd->queue);
  1469. }
  1470. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  1471. /*
  1472. * not the active queue - expire current slice if it is
  1473. * idle and has expired it's mean thinktime or this new queue
  1474. * has some old slice time left and is of higher priority
  1475. */
  1476. cfq_preempt_queue(cfqd, cfqq);
  1477. cfq_mark_cfqq_must_dispatch(cfqq);
  1478. blk_start_queueing(cfqd->queue);
  1479. }
  1480. }
  1481. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  1482. {
  1483. struct cfq_data *cfqd = q->elevator->elevator_data;
  1484. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1485. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  1486. cfq_add_rq_rb(rq);
  1487. list_add_tail(&rq->queuelist, &cfqq->fifo);
  1488. cfq_rq_enqueued(cfqd, cfqq, rq);
  1489. }
  1490. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  1491. {
  1492. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1493. struct cfq_data *cfqd = cfqq->cfqd;
  1494. const int sync = rq_is_sync(rq);
  1495. unsigned long now;
  1496. now = jiffies;
  1497. WARN_ON(!cfqd->rq_in_driver);
  1498. WARN_ON(!cfqq->dispatched);
  1499. cfqd->rq_in_driver--;
  1500. cfqq->dispatched--;
  1501. if (cfq_cfqq_sync(cfqq))
  1502. cfqd->sync_flight--;
  1503. if (!cfq_class_idle(cfqq))
  1504. cfqd->last_end_request = now;
  1505. if (sync)
  1506. RQ_CIC(rq)->last_end_request = now;
  1507. /*
  1508. * If this is the active queue, check if it needs to be expired,
  1509. * or if we want to idle in case it has no pending requests.
  1510. */
  1511. if (cfqd->active_queue == cfqq) {
  1512. if (cfq_cfqq_slice_new(cfqq)) {
  1513. cfq_set_prio_slice(cfqd, cfqq);
  1514. cfq_clear_cfqq_slice_new(cfqq);
  1515. }
  1516. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  1517. cfq_slice_expired(cfqd, 1);
  1518. else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
  1519. cfq_arm_slice_timer(cfqd);
  1520. }
  1521. if (!cfqd->rq_in_driver)
  1522. cfq_schedule_dispatch(cfqd);
  1523. }
  1524. /*
  1525. * we temporarily boost lower priority queues if they are holding fs exclusive
  1526. * resources. they are boosted to normal prio (CLASS_BE/4)
  1527. */
  1528. static void cfq_prio_boost(struct cfq_queue *cfqq)
  1529. {
  1530. if (has_fs_excl()) {
  1531. /*
  1532. * boost idle prio on transactions that would lock out other
  1533. * users of the filesystem
  1534. */
  1535. if (cfq_class_idle(cfqq))
  1536. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1537. if (cfqq->ioprio > IOPRIO_NORM)
  1538. cfqq->ioprio = IOPRIO_NORM;
  1539. } else {
  1540. /*
  1541. * check if we need to unboost the queue
  1542. */
  1543. if (cfqq->ioprio_class != cfqq->org_ioprio_class)
  1544. cfqq->ioprio_class = cfqq->org_ioprio_class;
  1545. if (cfqq->ioprio != cfqq->org_ioprio)
  1546. cfqq->ioprio = cfqq->org_ioprio;
  1547. }
  1548. }
  1549. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  1550. {
  1551. if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
  1552. !cfq_cfqq_must_alloc_slice(cfqq)) {
  1553. cfq_mark_cfqq_must_alloc_slice(cfqq);
  1554. return ELV_MQUEUE_MUST;
  1555. }
  1556. return ELV_MQUEUE_MAY;
  1557. }
  1558. static int cfq_may_queue(struct request_queue *q, int rw)
  1559. {
  1560. struct cfq_data *cfqd = q->elevator->elevator_data;
  1561. struct task_struct *tsk = current;
  1562. struct cfq_io_context *cic;
  1563. struct cfq_queue *cfqq;
  1564. /*
  1565. * don't force setup of a queue from here, as a call to may_queue
  1566. * does not necessarily imply that a request actually will be queued.
  1567. * so just lookup a possibly existing queue, or return 'may queue'
  1568. * if that fails
  1569. */
  1570. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1571. if (!cic)
  1572. return ELV_MQUEUE_MAY;
  1573. cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
  1574. if (cfqq) {
  1575. cfq_init_prio_data(cfqq, cic->ioc);
  1576. cfq_prio_boost(cfqq);
  1577. return __cfq_may_queue(cfqq);
  1578. }
  1579. return ELV_MQUEUE_MAY;
  1580. }
  1581. /*
  1582. * queue lock held here
  1583. */
  1584. static void cfq_put_request(struct request *rq)
  1585. {
  1586. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1587. if (cfqq) {
  1588. const int rw = rq_data_dir(rq);
  1589. BUG_ON(!cfqq->allocated[rw]);
  1590. cfqq->allocated[rw]--;
  1591. put_io_context(RQ_CIC(rq)->ioc);
  1592. rq->elevator_private = NULL;
  1593. rq->elevator_private2 = NULL;
  1594. cfq_put_queue(cfqq);
  1595. }
  1596. }
  1597. /*
  1598. * Allocate cfq data structures associated with this request.
  1599. */
  1600. static int
  1601. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  1602. {
  1603. struct cfq_data *cfqd = q->elevator->elevator_data;
  1604. struct cfq_io_context *cic;
  1605. const int rw = rq_data_dir(rq);
  1606. const int is_sync = rq_is_sync(rq);
  1607. struct cfq_queue *cfqq;
  1608. unsigned long flags;
  1609. might_sleep_if(gfp_mask & __GFP_WAIT);
  1610. cic = cfq_get_io_context(cfqd, gfp_mask);
  1611. spin_lock_irqsave(q->queue_lock, flags);
  1612. if (!cic)
  1613. goto queue_fail;
  1614. cfqq = cic_to_cfqq(cic, is_sync);
  1615. if (!cfqq) {
  1616. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  1617. if (!cfqq)
  1618. goto queue_fail;
  1619. cic_set_cfqq(cic, cfqq, is_sync);
  1620. }
  1621. cfqq->allocated[rw]++;
  1622. cfq_clear_cfqq_must_alloc(cfqq);
  1623. atomic_inc(&cfqq->ref);
  1624. spin_unlock_irqrestore(q->queue_lock, flags);
  1625. rq->elevator_private = cic;
  1626. rq->elevator_private2 = cfqq;
  1627. return 0;
  1628. queue_fail:
  1629. if (cic)
  1630. put_io_context(cic->ioc);
  1631. cfq_schedule_dispatch(cfqd);
  1632. spin_unlock_irqrestore(q->queue_lock, flags);
  1633. return 1;
  1634. }
  1635. static void cfq_kick_queue(struct work_struct *work)
  1636. {
  1637. struct cfq_data *cfqd =
  1638. container_of(work, struct cfq_data, unplug_work);
  1639. struct request_queue *q = cfqd->queue;
  1640. unsigned long flags;
  1641. spin_lock_irqsave(q->queue_lock, flags);
  1642. blk_start_queueing(q);
  1643. spin_unlock_irqrestore(q->queue_lock, flags);
  1644. }
  1645. /*
  1646. * Timer running if the active_queue is currently idling inside its time slice
  1647. */
  1648. static void cfq_idle_slice_timer(unsigned long data)
  1649. {
  1650. struct cfq_data *cfqd = (struct cfq_data *) data;
  1651. struct cfq_queue *cfqq;
  1652. unsigned long flags;
  1653. int timed_out = 1;
  1654. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1655. cfqq = cfqd->active_queue;
  1656. if (cfqq) {
  1657. timed_out = 0;
  1658. /*
  1659. * expired
  1660. */
  1661. if (cfq_slice_used(cfqq))
  1662. goto expire;
  1663. /*
  1664. * only expire and reinvoke request handler, if there are
  1665. * other queues with pending requests
  1666. */
  1667. if (!cfqd->busy_queues)
  1668. goto out_cont;
  1669. /*
  1670. * not expired and it has a request pending, let it dispatch
  1671. */
  1672. if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1673. cfq_mark_cfqq_must_dispatch(cfqq);
  1674. goto out_kick;
  1675. }
  1676. }
  1677. expire:
  1678. cfq_slice_expired(cfqd, timed_out);
  1679. out_kick:
  1680. cfq_schedule_dispatch(cfqd);
  1681. out_cont:
  1682. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1683. }
  1684. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  1685. {
  1686. del_timer_sync(&cfqd->idle_slice_timer);
  1687. kblockd_flush_work(&cfqd->unplug_work);
  1688. }
  1689. static void cfq_put_async_queues(struct cfq_data *cfqd)
  1690. {
  1691. int i;
  1692. for (i = 0; i < IOPRIO_BE_NR; i++) {
  1693. if (cfqd->async_cfqq[0][i])
  1694. cfq_put_queue(cfqd->async_cfqq[0][i]);
  1695. if (cfqd->async_cfqq[1][i])
  1696. cfq_put_queue(cfqd->async_cfqq[1][i]);
  1697. }
  1698. if (cfqd->async_idle_cfqq)
  1699. cfq_put_queue(cfqd->async_idle_cfqq);
  1700. }
  1701. static void cfq_exit_queue(elevator_t *e)
  1702. {
  1703. struct cfq_data *cfqd = e->elevator_data;
  1704. struct request_queue *q = cfqd->queue;
  1705. cfq_shutdown_timer_wq(cfqd);
  1706. spin_lock_irq(q->queue_lock);
  1707. if (cfqd->active_queue)
  1708. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  1709. while (!list_empty(&cfqd->cic_list)) {
  1710. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  1711. struct cfq_io_context,
  1712. queue_list);
  1713. __cfq_exit_single_io_context(cfqd, cic);
  1714. }
  1715. cfq_put_async_queues(cfqd);
  1716. spin_unlock_irq(q->queue_lock);
  1717. cfq_shutdown_timer_wq(cfqd);
  1718. kfree(cfqd);
  1719. }
  1720. static void *cfq_init_queue(struct request_queue *q)
  1721. {
  1722. struct cfq_data *cfqd;
  1723. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  1724. if (!cfqd)
  1725. return NULL;
  1726. cfqd->service_tree = CFQ_RB_ROOT;
  1727. INIT_LIST_HEAD(&cfqd->cic_list);
  1728. cfqd->queue = q;
  1729. init_timer(&cfqd->idle_slice_timer);
  1730. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  1731. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  1732. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  1733. cfqd->last_end_request = jiffies;
  1734. cfqd->cfq_quantum = cfq_quantum;
  1735. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  1736. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  1737. cfqd->cfq_back_max = cfq_back_max;
  1738. cfqd->cfq_back_penalty = cfq_back_penalty;
  1739. cfqd->cfq_slice[0] = cfq_slice_async;
  1740. cfqd->cfq_slice[1] = cfq_slice_sync;
  1741. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  1742. cfqd->cfq_slice_idle = cfq_slice_idle;
  1743. return cfqd;
  1744. }
  1745. static void cfq_slab_kill(void)
  1746. {
  1747. if (cfq_pool)
  1748. kmem_cache_destroy(cfq_pool);
  1749. if (cfq_ioc_pool)
  1750. kmem_cache_destroy(cfq_ioc_pool);
  1751. }
  1752. static int __init cfq_slab_setup(void)
  1753. {
  1754. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  1755. if (!cfq_pool)
  1756. goto fail;
  1757. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, SLAB_DESTROY_BY_RCU);
  1758. if (!cfq_ioc_pool)
  1759. goto fail;
  1760. return 0;
  1761. fail:
  1762. cfq_slab_kill();
  1763. return -ENOMEM;
  1764. }
  1765. /*
  1766. * sysfs parts below -->
  1767. */
  1768. static ssize_t
  1769. cfq_var_show(unsigned int var, char *page)
  1770. {
  1771. return sprintf(page, "%d\n", var);
  1772. }
  1773. static ssize_t
  1774. cfq_var_store(unsigned int *var, const char *page, size_t count)
  1775. {
  1776. char *p = (char *) page;
  1777. *var = simple_strtoul(p, &p, 10);
  1778. return count;
  1779. }
  1780. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  1781. static ssize_t __FUNC(elevator_t *e, char *page) \
  1782. { \
  1783. struct cfq_data *cfqd = e->elevator_data; \
  1784. unsigned int __data = __VAR; \
  1785. if (__CONV) \
  1786. __data = jiffies_to_msecs(__data); \
  1787. return cfq_var_show(__data, (page)); \
  1788. }
  1789. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  1790. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  1791. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  1792. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  1793. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  1794. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  1795. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  1796. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  1797. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  1798. #undef SHOW_FUNCTION
  1799. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  1800. static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
  1801. { \
  1802. struct cfq_data *cfqd = e->elevator_data; \
  1803. unsigned int __data; \
  1804. int ret = cfq_var_store(&__data, (page), count); \
  1805. if (__data < (MIN)) \
  1806. __data = (MIN); \
  1807. else if (__data > (MAX)) \
  1808. __data = (MAX); \
  1809. if (__CONV) \
  1810. *(__PTR) = msecs_to_jiffies(__data); \
  1811. else \
  1812. *(__PTR) = __data; \
  1813. return ret; \
  1814. }
  1815. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  1816. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  1817. UINT_MAX, 1);
  1818. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  1819. UINT_MAX, 1);
  1820. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  1821. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  1822. UINT_MAX, 0);
  1823. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  1824. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  1825. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  1826. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  1827. UINT_MAX, 0);
  1828. #undef STORE_FUNCTION
  1829. #define CFQ_ATTR(name) \
  1830. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  1831. static struct elv_fs_entry cfq_attrs[] = {
  1832. CFQ_ATTR(quantum),
  1833. CFQ_ATTR(fifo_expire_sync),
  1834. CFQ_ATTR(fifo_expire_async),
  1835. CFQ_ATTR(back_seek_max),
  1836. CFQ_ATTR(back_seek_penalty),
  1837. CFQ_ATTR(slice_sync),
  1838. CFQ_ATTR(slice_async),
  1839. CFQ_ATTR(slice_async_rq),
  1840. CFQ_ATTR(slice_idle),
  1841. __ATTR_NULL
  1842. };
  1843. static struct elevator_type iosched_cfq = {
  1844. .ops = {
  1845. .elevator_merge_fn = cfq_merge,
  1846. .elevator_merged_fn = cfq_merged_request,
  1847. .elevator_merge_req_fn = cfq_merged_requests,
  1848. .elevator_allow_merge_fn = cfq_allow_merge,
  1849. .elevator_dispatch_fn = cfq_dispatch_requests,
  1850. .elevator_add_req_fn = cfq_insert_request,
  1851. .elevator_activate_req_fn = cfq_activate_request,
  1852. .elevator_deactivate_req_fn = cfq_deactivate_request,
  1853. .elevator_queue_empty_fn = cfq_queue_empty,
  1854. .elevator_completed_req_fn = cfq_completed_request,
  1855. .elevator_former_req_fn = elv_rb_former_request,
  1856. .elevator_latter_req_fn = elv_rb_latter_request,
  1857. .elevator_set_req_fn = cfq_set_request,
  1858. .elevator_put_req_fn = cfq_put_request,
  1859. .elevator_may_queue_fn = cfq_may_queue,
  1860. .elevator_init_fn = cfq_init_queue,
  1861. .elevator_exit_fn = cfq_exit_queue,
  1862. .trim = cfq_free_io_context,
  1863. },
  1864. .elevator_attrs = cfq_attrs,
  1865. .elevator_name = "cfq",
  1866. .elevator_owner = THIS_MODULE,
  1867. };
  1868. static int __init cfq_init(void)
  1869. {
  1870. /*
  1871. * could be 0 on HZ < 1000 setups
  1872. */
  1873. if (!cfq_slice_async)
  1874. cfq_slice_async = 1;
  1875. if (!cfq_slice_idle)
  1876. cfq_slice_idle = 1;
  1877. if (cfq_slab_setup())
  1878. return -ENOMEM;
  1879. elv_register(&iosched_cfq);
  1880. return 0;
  1881. }
  1882. static void __exit cfq_exit(void)
  1883. {
  1884. DECLARE_COMPLETION_ONSTACK(all_gone);
  1885. elv_unregister(&iosched_cfq);
  1886. ioc_gone = &all_gone;
  1887. /* ioc_gone's update must be visible before reading ioc_count */
  1888. smp_wmb();
  1889. if (elv_ioc_count_read(ioc_count))
  1890. wait_for_completion(ioc_gone);
  1891. synchronize_rcu();
  1892. cfq_slab_kill();
  1893. }
  1894. module_init(cfq_init);
  1895. module_exit(cfq_exit);
  1896. MODULE_AUTHOR("Jens Axboe");
  1897. MODULE_LICENSE("GPL");
  1898. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");