enlighten.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/page-flags.h>
  26. #include <linux/highmem.h>
  27. #include <xen/interface/xen.h>
  28. #include <xen/interface/physdev.h>
  29. #include <xen/interface/vcpu.h>
  30. #include <xen/interface/sched.h>
  31. #include <xen/features.h>
  32. #include <xen/page.h>
  33. #include <asm/paravirt.h>
  34. #include <asm/page.h>
  35. #include <asm/xen/hypercall.h>
  36. #include <asm/xen/hypervisor.h>
  37. #include <asm/fixmap.h>
  38. #include <asm/processor.h>
  39. #include <asm/setup.h>
  40. #include <asm/desc.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/reboot.h>
  44. #include "xen-ops.h"
  45. #include "mmu.h"
  46. #include "multicalls.h"
  47. EXPORT_SYMBOL_GPL(hypercall_page);
  48. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  49. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  50. /*
  51. * Note about cr3 (pagetable base) values:
  52. *
  53. * xen_cr3 contains the current logical cr3 value; it contains the
  54. * last set cr3. This may not be the current effective cr3, because
  55. * its update may be being lazily deferred. However, a vcpu looking
  56. * at its own cr3 can use this value knowing that it everything will
  57. * be self-consistent.
  58. *
  59. * xen_current_cr3 contains the actual vcpu cr3; it is set once the
  60. * hypercall to set the vcpu cr3 is complete (so it may be a little
  61. * out of date, but it will never be set early). If one vcpu is
  62. * looking at another vcpu's cr3 value, it should use this variable.
  63. */
  64. DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
  65. DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
  66. struct start_info *xen_start_info;
  67. EXPORT_SYMBOL_GPL(xen_start_info);
  68. static /* __initdata */ struct shared_info dummy_shared_info;
  69. /*
  70. * Point at some empty memory to start with. We map the real shared_info
  71. * page as soon as fixmap is up and running.
  72. */
  73. struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
  74. /*
  75. * Flag to determine whether vcpu info placement is available on all
  76. * VCPUs. We assume it is to start with, and then set it to zero on
  77. * the first failure. This is because it can succeed on some VCPUs
  78. * and not others, since it can involve hypervisor memory allocation,
  79. * or because the guest failed to guarantee all the appropriate
  80. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  81. *
  82. * Note that any particular CPU may be using a placed vcpu structure,
  83. * but we can only optimise if the all are.
  84. *
  85. * 0: not available, 1: available
  86. */
  87. static int have_vcpu_info_placement = 0;
  88. static void __init xen_vcpu_setup(int cpu)
  89. {
  90. struct vcpu_register_vcpu_info info;
  91. int err;
  92. struct vcpu_info *vcpup;
  93. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  94. if (!have_vcpu_info_placement)
  95. return; /* already tested, not available */
  96. vcpup = &per_cpu(xen_vcpu_info, cpu);
  97. info.mfn = virt_to_mfn(vcpup);
  98. info.offset = offset_in_page(vcpup);
  99. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  100. cpu, vcpup, info.mfn, info.offset);
  101. /* Check to see if the hypervisor will put the vcpu_info
  102. structure where we want it, which allows direct access via
  103. a percpu-variable. */
  104. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  105. if (err) {
  106. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  107. have_vcpu_info_placement = 0;
  108. } else {
  109. /* This cpu is using the registered vcpu info, even if
  110. later ones fail to. */
  111. per_cpu(xen_vcpu, cpu) = vcpup;
  112. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  113. cpu, vcpup);
  114. }
  115. }
  116. static void __init xen_banner(void)
  117. {
  118. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  119. pv_info.name);
  120. printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
  121. }
  122. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  123. unsigned int *cx, unsigned int *dx)
  124. {
  125. unsigned maskedx = ~0;
  126. /*
  127. * Mask out inconvenient features, to try and disable as many
  128. * unsupported kernel subsystems as possible.
  129. */
  130. if (*ax == 1)
  131. maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
  132. (1 << X86_FEATURE_ACPI) | /* disable ACPI */
  133. (1 << X86_FEATURE_SEP) | /* disable SEP */
  134. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  135. asm(XEN_EMULATE_PREFIX "cpuid"
  136. : "=a" (*ax),
  137. "=b" (*bx),
  138. "=c" (*cx),
  139. "=d" (*dx)
  140. : "0" (*ax), "2" (*cx));
  141. *dx &= maskedx;
  142. }
  143. static void xen_set_debugreg(int reg, unsigned long val)
  144. {
  145. HYPERVISOR_set_debugreg(reg, val);
  146. }
  147. static unsigned long xen_get_debugreg(int reg)
  148. {
  149. return HYPERVISOR_get_debugreg(reg);
  150. }
  151. static unsigned long xen_save_fl(void)
  152. {
  153. struct vcpu_info *vcpu;
  154. unsigned long flags;
  155. vcpu = x86_read_percpu(xen_vcpu);
  156. /* flag has opposite sense of mask */
  157. flags = !vcpu->evtchn_upcall_mask;
  158. /* convert to IF type flag
  159. -0 -> 0x00000000
  160. -1 -> 0xffffffff
  161. */
  162. return (-flags) & X86_EFLAGS_IF;
  163. }
  164. static void xen_restore_fl(unsigned long flags)
  165. {
  166. struct vcpu_info *vcpu;
  167. /* convert from IF type flag */
  168. flags = !(flags & X86_EFLAGS_IF);
  169. /* There's a one instruction preempt window here. We need to
  170. make sure we're don't switch CPUs between getting the vcpu
  171. pointer and updating the mask. */
  172. preempt_disable();
  173. vcpu = x86_read_percpu(xen_vcpu);
  174. vcpu->evtchn_upcall_mask = flags;
  175. preempt_enable_no_resched();
  176. /* Doesn't matter if we get preempted here, because any
  177. pending event will get dealt with anyway. */
  178. if (flags == 0) {
  179. preempt_check_resched();
  180. barrier(); /* unmask then check (avoid races) */
  181. if (unlikely(vcpu->evtchn_upcall_pending))
  182. force_evtchn_callback();
  183. }
  184. }
  185. static void xen_irq_disable(void)
  186. {
  187. /* There's a one instruction preempt window here. We need to
  188. make sure we're don't switch CPUs between getting the vcpu
  189. pointer and updating the mask. */
  190. preempt_disable();
  191. x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
  192. preempt_enable_no_resched();
  193. }
  194. static void xen_irq_enable(void)
  195. {
  196. struct vcpu_info *vcpu;
  197. /* There's a one instruction preempt window here. We need to
  198. make sure we're don't switch CPUs between getting the vcpu
  199. pointer and updating the mask. */
  200. preempt_disable();
  201. vcpu = x86_read_percpu(xen_vcpu);
  202. vcpu->evtchn_upcall_mask = 0;
  203. preempt_enable_no_resched();
  204. /* Doesn't matter if we get preempted here, because any
  205. pending event will get dealt with anyway. */
  206. barrier(); /* unmask then check (avoid races) */
  207. if (unlikely(vcpu->evtchn_upcall_pending))
  208. force_evtchn_callback();
  209. }
  210. static void xen_safe_halt(void)
  211. {
  212. /* Blocking includes an implicit local_irq_enable(). */
  213. if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
  214. BUG();
  215. }
  216. static void xen_halt(void)
  217. {
  218. if (irqs_disabled())
  219. HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
  220. else
  221. xen_safe_halt();
  222. }
  223. static void xen_leave_lazy(void)
  224. {
  225. paravirt_leave_lazy(paravirt_get_lazy_mode());
  226. xen_mc_flush();
  227. }
  228. static unsigned long xen_store_tr(void)
  229. {
  230. return 0;
  231. }
  232. static void xen_set_ldt(const void *addr, unsigned entries)
  233. {
  234. struct mmuext_op *op;
  235. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  236. op = mcs.args;
  237. op->cmd = MMUEXT_SET_LDT;
  238. op->arg1.linear_addr = (unsigned long)addr;
  239. op->arg2.nr_ents = entries;
  240. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  241. xen_mc_issue(PARAVIRT_LAZY_CPU);
  242. }
  243. static void xen_load_gdt(const struct desc_ptr *dtr)
  244. {
  245. unsigned long *frames;
  246. unsigned long va = dtr->address;
  247. unsigned int size = dtr->size + 1;
  248. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  249. int f;
  250. struct multicall_space mcs;
  251. /* A GDT can be up to 64k in size, which corresponds to 8192
  252. 8-byte entries, or 16 4k pages.. */
  253. BUG_ON(size > 65536);
  254. BUG_ON(va & ~PAGE_MASK);
  255. mcs = xen_mc_entry(sizeof(*frames) * pages);
  256. frames = mcs.args;
  257. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  258. frames[f] = virt_to_mfn(va);
  259. make_lowmem_page_readonly((void *)va);
  260. }
  261. MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
  262. xen_mc_issue(PARAVIRT_LAZY_CPU);
  263. }
  264. static void load_TLS_descriptor(struct thread_struct *t,
  265. unsigned int cpu, unsigned int i)
  266. {
  267. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  268. xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  269. struct multicall_space mc = __xen_mc_entry(0);
  270. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  271. }
  272. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  273. {
  274. xen_mc_batch();
  275. load_TLS_descriptor(t, cpu, 0);
  276. load_TLS_descriptor(t, cpu, 1);
  277. load_TLS_descriptor(t, cpu, 2);
  278. xen_mc_issue(PARAVIRT_LAZY_CPU);
  279. /*
  280. * XXX sleazy hack: If we're being called in a lazy-cpu zone,
  281. * it means we're in a context switch, and %gs has just been
  282. * saved. This means we can zero it out to prevent faults on
  283. * exit from the hypervisor if the next process has no %gs.
  284. * Either way, it has been saved, and the new value will get
  285. * loaded properly. This will go away as soon as Xen has been
  286. * modified to not save/restore %gs for normal hypercalls.
  287. */
  288. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
  289. loadsegment(gs, 0);
  290. }
  291. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  292. const void *ptr)
  293. {
  294. unsigned long lp = (unsigned long)&dt[entrynum];
  295. xmaddr_t mach_lp = virt_to_machine(lp);
  296. u64 entry = *(u64 *)ptr;
  297. preempt_disable();
  298. xen_mc_flush();
  299. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  300. BUG();
  301. preempt_enable();
  302. }
  303. static int cvt_gate_to_trap(int vector, u32 low, u32 high,
  304. struct trap_info *info)
  305. {
  306. u8 type, dpl;
  307. type = (high >> 8) & 0x1f;
  308. dpl = (high >> 13) & 3;
  309. if (type != 0xf && type != 0xe)
  310. return 0;
  311. info->vector = vector;
  312. info->address = (high & 0xffff0000) | (low & 0x0000ffff);
  313. info->cs = low >> 16;
  314. info->flags = dpl;
  315. /* interrupt gates clear IF */
  316. if (type == 0xe)
  317. info->flags |= 4;
  318. return 1;
  319. }
  320. /* Locations of each CPU's IDT */
  321. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  322. /* Set an IDT entry. If the entry is part of the current IDT, then
  323. also update Xen. */
  324. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  325. {
  326. unsigned long p = (unsigned long)&dt[entrynum];
  327. unsigned long start, end;
  328. preempt_disable();
  329. start = __get_cpu_var(idt_desc).address;
  330. end = start + __get_cpu_var(idt_desc).size + 1;
  331. xen_mc_flush();
  332. native_write_idt_entry(dt, entrynum, g);
  333. if (p >= start && (p + 8) <= end) {
  334. struct trap_info info[2];
  335. u32 *desc = (u32 *)g;
  336. info[1].address = 0;
  337. if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
  338. if (HYPERVISOR_set_trap_table(info))
  339. BUG();
  340. }
  341. preempt_enable();
  342. }
  343. static void xen_convert_trap_info(const struct desc_ptr *desc,
  344. struct trap_info *traps)
  345. {
  346. unsigned in, out, count;
  347. count = (desc->size+1) / 8;
  348. BUG_ON(count > 256);
  349. for (in = out = 0; in < count; in++) {
  350. const u32 *entry = (u32 *)(desc->address + in * 8);
  351. if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
  352. out++;
  353. }
  354. traps[out].address = 0;
  355. }
  356. void xen_copy_trap_info(struct trap_info *traps)
  357. {
  358. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  359. xen_convert_trap_info(desc, traps);
  360. }
  361. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  362. hold a spinlock to protect the static traps[] array (static because
  363. it avoids allocation, and saves stack space). */
  364. static void xen_load_idt(const struct desc_ptr *desc)
  365. {
  366. static DEFINE_SPINLOCK(lock);
  367. static struct trap_info traps[257];
  368. spin_lock(&lock);
  369. __get_cpu_var(idt_desc) = *desc;
  370. xen_convert_trap_info(desc, traps);
  371. xen_mc_flush();
  372. if (HYPERVISOR_set_trap_table(traps))
  373. BUG();
  374. spin_unlock(&lock);
  375. }
  376. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  377. they're handled differently. */
  378. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  379. const void *desc, int type)
  380. {
  381. preempt_disable();
  382. switch (type) {
  383. case DESC_LDT:
  384. case DESC_TSS:
  385. /* ignore */
  386. break;
  387. default: {
  388. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  389. xen_mc_flush();
  390. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  391. BUG();
  392. }
  393. }
  394. preempt_enable();
  395. }
  396. static void xen_load_sp0(struct tss_struct *tss,
  397. struct thread_struct *thread)
  398. {
  399. struct multicall_space mcs = xen_mc_entry(0);
  400. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  401. xen_mc_issue(PARAVIRT_LAZY_CPU);
  402. }
  403. static void xen_set_iopl_mask(unsigned mask)
  404. {
  405. struct physdev_set_iopl set_iopl;
  406. /* Force the change at ring 0. */
  407. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  408. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  409. }
  410. static void xen_io_delay(void)
  411. {
  412. }
  413. #ifdef CONFIG_X86_LOCAL_APIC
  414. static u32 xen_apic_read(unsigned long reg)
  415. {
  416. return 0;
  417. }
  418. static void xen_apic_write(unsigned long reg, u32 val)
  419. {
  420. /* Warn to see if there's any stray references */
  421. WARN_ON(1);
  422. }
  423. #endif
  424. static void xen_flush_tlb(void)
  425. {
  426. struct mmuext_op *op;
  427. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  428. op = mcs.args;
  429. op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
  430. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  431. xen_mc_issue(PARAVIRT_LAZY_MMU);
  432. }
  433. static void xen_flush_tlb_single(unsigned long addr)
  434. {
  435. struct mmuext_op *op;
  436. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  437. op = mcs.args;
  438. op->cmd = MMUEXT_INVLPG_LOCAL;
  439. op->arg1.linear_addr = addr & PAGE_MASK;
  440. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  441. xen_mc_issue(PARAVIRT_LAZY_MMU);
  442. }
  443. static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
  444. unsigned long va)
  445. {
  446. struct {
  447. struct mmuext_op op;
  448. cpumask_t mask;
  449. } *args;
  450. cpumask_t cpumask = *cpus;
  451. struct multicall_space mcs;
  452. /*
  453. * A couple of (to be removed) sanity checks:
  454. *
  455. * - current CPU must not be in mask
  456. * - mask must exist :)
  457. */
  458. BUG_ON(cpus_empty(cpumask));
  459. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  460. BUG_ON(!mm);
  461. /* If a CPU which we ran on has gone down, OK. */
  462. cpus_and(cpumask, cpumask, cpu_online_map);
  463. if (cpus_empty(cpumask))
  464. return;
  465. mcs = xen_mc_entry(sizeof(*args));
  466. args = mcs.args;
  467. args->mask = cpumask;
  468. args->op.arg2.vcpumask = &args->mask;
  469. if (va == TLB_FLUSH_ALL) {
  470. args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
  471. } else {
  472. args->op.cmd = MMUEXT_INVLPG_MULTI;
  473. args->op.arg1.linear_addr = va;
  474. }
  475. MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
  476. xen_mc_issue(PARAVIRT_LAZY_MMU);
  477. }
  478. static void xen_write_cr2(unsigned long cr2)
  479. {
  480. x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
  481. }
  482. static unsigned long xen_read_cr2(void)
  483. {
  484. return x86_read_percpu(xen_vcpu)->arch.cr2;
  485. }
  486. static unsigned long xen_read_cr2_direct(void)
  487. {
  488. return x86_read_percpu(xen_vcpu_info.arch.cr2);
  489. }
  490. static void xen_write_cr4(unsigned long cr4)
  491. {
  492. /* Just ignore cr4 changes; Xen doesn't allow us to do
  493. anything anyway. */
  494. }
  495. static unsigned long xen_read_cr3(void)
  496. {
  497. return x86_read_percpu(xen_cr3);
  498. }
  499. static void set_current_cr3(void *v)
  500. {
  501. x86_write_percpu(xen_current_cr3, (unsigned long)v);
  502. }
  503. static void xen_write_cr3(unsigned long cr3)
  504. {
  505. struct mmuext_op *op;
  506. struct multicall_space mcs;
  507. unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
  508. BUG_ON(preemptible());
  509. mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
  510. /* Update while interrupts are disabled, so its atomic with
  511. respect to ipis */
  512. x86_write_percpu(xen_cr3, cr3);
  513. op = mcs.args;
  514. op->cmd = MMUEXT_NEW_BASEPTR;
  515. op->arg1.mfn = mfn;
  516. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  517. /* Update xen_update_cr3 once the batch has actually
  518. been submitted. */
  519. xen_mc_callback(set_current_cr3, (void *)cr3);
  520. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  521. }
  522. /* Early in boot, while setting up the initial pagetable, assume
  523. everything is pinned. */
  524. static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
  525. {
  526. BUG_ON(mem_map); /* should only be used early */
  527. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  528. }
  529. /* Early release_pt assumes that all pts are pinned, since there's
  530. only init_mm and anything attached to that is pinned. */
  531. static void xen_release_pt_init(u32 pfn)
  532. {
  533. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  534. }
  535. static void pin_pagetable_pfn(unsigned level, unsigned long pfn)
  536. {
  537. struct mmuext_op op;
  538. op.cmd = level;
  539. op.arg1.mfn = pfn_to_mfn(pfn);
  540. if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
  541. BUG();
  542. }
  543. /* This needs to make sure the new pte page is pinned iff its being
  544. attached to a pinned pagetable. */
  545. static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
  546. {
  547. struct page *page = pfn_to_page(pfn);
  548. if (PagePinned(virt_to_page(mm->pgd))) {
  549. SetPagePinned(page);
  550. if (!PageHighMem(page)) {
  551. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  552. pin_pagetable_pfn(level, pfn);
  553. } else
  554. /* make sure there are no stray mappings of
  555. this page */
  556. kmap_flush_unused();
  557. }
  558. }
  559. static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
  560. {
  561. xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L1_TABLE);
  562. }
  563. static void xen_alloc_pd(struct mm_struct *mm, u32 pfn)
  564. {
  565. xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L2_TABLE);
  566. }
  567. /* This should never happen until we're OK to use struct page */
  568. static void xen_release_pt(u32 pfn)
  569. {
  570. struct page *page = pfn_to_page(pfn);
  571. if (PagePinned(page)) {
  572. if (!PageHighMem(page)) {
  573. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  574. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  575. }
  576. }
  577. }
  578. #ifdef CONFIG_HIGHPTE
  579. static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
  580. {
  581. pgprot_t prot = PAGE_KERNEL;
  582. if (PagePinned(page))
  583. prot = PAGE_KERNEL_RO;
  584. if (0 && PageHighMem(page))
  585. printk("mapping highpte %lx type %d prot %s\n",
  586. page_to_pfn(page), type,
  587. (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
  588. return kmap_atomic_prot(page, type, prot);
  589. }
  590. #endif
  591. static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
  592. {
  593. /* If there's an existing pte, then don't allow _PAGE_RW to be set */
  594. if (pte_val_ma(*ptep) & _PAGE_PRESENT)
  595. pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
  596. pte_val_ma(pte));
  597. return pte;
  598. }
  599. /* Init-time set_pte while constructing initial pagetables, which
  600. doesn't allow RO pagetable pages to be remapped RW */
  601. static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
  602. {
  603. pte = mask_rw_pte(ptep, pte);
  604. xen_set_pte(ptep, pte);
  605. }
  606. static __init void xen_pagetable_setup_start(pgd_t *base)
  607. {
  608. pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
  609. /* special set_pte for pagetable initialization */
  610. pv_mmu_ops.set_pte = xen_set_pte_init;
  611. init_mm.pgd = base;
  612. /*
  613. * copy top-level of Xen-supplied pagetable into place. For
  614. * !PAE we can use this as-is, but for PAE it is a stand-in
  615. * while we copy the pmd pages.
  616. */
  617. memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
  618. if (PTRS_PER_PMD > 1) {
  619. int i;
  620. /*
  621. * For PAE, need to allocate new pmds, rather than
  622. * share Xen's, since Xen doesn't like pmd's being
  623. * shared between address spaces.
  624. */
  625. for (i = 0; i < PTRS_PER_PGD; i++) {
  626. if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
  627. pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
  628. memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
  629. PAGE_SIZE);
  630. make_lowmem_page_readonly(pmd);
  631. set_pgd(&base[i], __pgd(1 + __pa(pmd)));
  632. } else
  633. pgd_clear(&base[i]);
  634. }
  635. }
  636. /* make sure zero_page is mapped RO so we can use it in pagetables */
  637. make_lowmem_page_readonly(empty_zero_page);
  638. make_lowmem_page_readonly(base);
  639. /*
  640. * Switch to new pagetable. This is done before
  641. * pagetable_init has done anything so that the new pages
  642. * added to the table can be prepared properly for Xen.
  643. */
  644. xen_write_cr3(__pa(base));
  645. /* Unpin initial Xen pagetable */
  646. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
  647. PFN_DOWN(__pa(xen_start_info->pt_base)));
  648. }
  649. static __init void xen_pagetable_setup_done(pgd_t *base)
  650. {
  651. /* This will work as long as patching hasn't happened yet
  652. (which it hasn't) */
  653. pv_mmu_ops.alloc_pt = xen_alloc_pt;
  654. pv_mmu_ops.alloc_pd = xen_alloc_pd;
  655. pv_mmu_ops.release_pt = xen_release_pt;
  656. pv_mmu_ops.release_pd = xen_release_pt;
  657. pv_mmu_ops.set_pte = xen_set_pte;
  658. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  659. /*
  660. * Create a mapping for the shared info page.
  661. * Should be set_fixmap(), but shared_info is a machine
  662. * address with no corresponding pseudo-phys address.
  663. */
  664. set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
  665. PFN_DOWN(xen_start_info->shared_info),
  666. PAGE_KERNEL);
  667. HYPERVISOR_shared_info =
  668. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  669. } else
  670. HYPERVISOR_shared_info =
  671. (struct shared_info *)__va(xen_start_info->shared_info);
  672. /* Actually pin the pagetable down, but we can't set PG_pinned
  673. yet because the page structures don't exist yet. */
  674. {
  675. unsigned level;
  676. #ifdef CONFIG_X86_PAE
  677. level = MMUEXT_PIN_L3_TABLE;
  678. #else
  679. level = MMUEXT_PIN_L2_TABLE;
  680. #endif
  681. pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
  682. }
  683. }
  684. /* This is called once we have the cpu_possible_map */
  685. void __init xen_setup_vcpu_info_placement(void)
  686. {
  687. int cpu;
  688. for_each_possible_cpu(cpu)
  689. xen_vcpu_setup(cpu);
  690. /* xen_vcpu_setup managed to place the vcpu_info within the
  691. percpu area for all cpus, so make use of it */
  692. if (have_vcpu_info_placement) {
  693. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  694. pv_irq_ops.save_fl = xen_save_fl_direct;
  695. pv_irq_ops.restore_fl = xen_restore_fl_direct;
  696. pv_irq_ops.irq_disable = xen_irq_disable_direct;
  697. pv_irq_ops.irq_enable = xen_irq_enable_direct;
  698. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  699. pv_cpu_ops.iret = xen_iret_direct;
  700. }
  701. }
  702. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  703. unsigned long addr, unsigned len)
  704. {
  705. char *start, *end, *reloc;
  706. unsigned ret;
  707. start = end = reloc = NULL;
  708. #define SITE(op, x) \
  709. case PARAVIRT_PATCH(op.x): \
  710. if (have_vcpu_info_placement) { \
  711. start = (char *)xen_##x##_direct; \
  712. end = xen_##x##_direct_end; \
  713. reloc = xen_##x##_direct_reloc; \
  714. } \
  715. goto patch_site
  716. switch (type) {
  717. SITE(pv_irq_ops, irq_enable);
  718. SITE(pv_irq_ops, irq_disable);
  719. SITE(pv_irq_ops, save_fl);
  720. SITE(pv_irq_ops, restore_fl);
  721. #undef SITE
  722. patch_site:
  723. if (start == NULL || (end-start) > len)
  724. goto default_patch;
  725. ret = paravirt_patch_insns(insnbuf, len, start, end);
  726. /* Note: because reloc is assigned from something that
  727. appears to be an array, gcc assumes it's non-null,
  728. but doesn't know its relationship with start and
  729. end. */
  730. if (reloc > start && reloc < end) {
  731. int reloc_off = reloc - start;
  732. long *relocp = (long *)(insnbuf + reloc_off);
  733. long delta = start - (char *)addr;
  734. *relocp += delta;
  735. }
  736. break;
  737. default_patch:
  738. default:
  739. ret = paravirt_patch_default(type, clobbers, insnbuf,
  740. addr, len);
  741. break;
  742. }
  743. return ret;
  744. }
  745. static const struct pv_info xen_info __initdata = {
  746. .paravirt_enabled = 1,
  747. .shared_kernel_pmd = 0,
  748. .name = "Xen",
  749. };
  750. static const struct pv_init_ops xen_init_ops __initdata = {
  751. .patch = xen_patch,
  752. .banner = xen_banner,
  753. .memory_setup = xen_memory_setup,
  754. .arch_setup = xen_arch_setup,
  755. .post_allocator_init = xen_mark_init_mm_pinned,
  756. };
  757. static const struct pv_time_ops xen_time_ops __initdata = {
  758. .time_init = xen_time_init,
  759. .set_wallclock = xen_set_wallclock,
  760. .get_wallclock = xen_get_wallclock,
  761. .get_cpu_khz = xen_cpu_khz,
  762. .sched_clock = xen_sched_clock,
  763. };
  764. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  765. .cpuid = xen_cpuid,
  766. .set_debugreg = xen_set_debugreg,
  767. .get_debugreg = xen_get_debugreg,
  768. .clts = native_clts,
  769. .read_cr0 = native_read_cr0,
  770. .write_cr0 = native_write_cr0,
  771. .read_cr4 = native_read_cr4,
  772. .read_cr4_safe = native_read_cr4_safe,
  773. .write_cr4 = xen_write_cr4,
  774. .wbinvd = native_wbinvd,
  775. .read_msr = native_read_msr_safe,
  776. .write_msr = native_write_msr_safe,
  777. .read_tsc = native_read_tsc,
  778. .read_pmc = native_read_pmc,
  779. .iret = (void *)&hypercall_page[__HYPERVISOR_iret],
  780. .irq_enable_syscall_ret = NULL, /* never called */
  781. .load_tr_desc = paravirt_nop,
  782. .set_ldt = xen_set_ldt,
  783. .load_gdt = xen_load_gdt,
  784. .load_idt = xen_load_idt,
  785. .load_tls = xen_load_tls,
  786. .store_gdt = native_store_gdt,
  787. .store_idt = native_store_idt,
  788. .store_tr = xen_store_tr,
  789. .write_ldt_entry = xen_write_ldt_entry,
  790. .write_gdt_entry = xen_write_gdt_entry,
  791. .write_idt_entry = xen_write_idt_entry,
  792. .load_sp0 = xen_load_sp0,
  793. .set_iopl_mask = xen_set_iopl_mask,
  794. .io_delay = xen_io_delay,
  795. .lazy_mode = {
  796. .enter = paravirt_enter_lazy_cpu,
  797. .leave = xen_leave_lazy,
  798. },
  799. };
  800. static const struct pv_irq_ops xen_irq_ops __initdata = {
  801. .init_IRQ = xen_init_IRQ,
  802. .save_fl = xen_save_fl,
  803. .restore_fl = xen_restore_fl,
  804. .irq_disable = xen_irq_disable,
  805. .irq_enable = xen_irq_enable,
  806. .safe_halt = xen_safe_halt,
  807. .halt = xen_halt,
  808. };
  809. static const struct pv_apic_ops xen_apic_ops __initdata = {
  810. #ifdef CONFIG_X86_LOCAL_APIC
  811. .apic_write = xen_apic_write,
  812. .apic_write_atomic = xen_apic_write,
  813. .apic_read = xen_apic_read,
  814. .setup_boot_clock = paravirt_nop,
  815. .setup_secondary_clock = paravirt_nop,
  816. .startup_ipi_hook = paravirt_nop,
  817. #endif
  818. };
  819. static const struct pv_mmu_ops xen_mmu_ops __initdata = {
  820. .pagetable_setup_start = xen_pagetable_setup_start,
  821. .pagetable_setup_done = xen_pagetable_setup_done,
  822. .read_cr2 = xen_read_cr2,
  823. .write_cr2 = xen_write_cr2,
  824. .read_cr3 = xen_read_cr3,
  825. .write_cr3 = xen_write_cr3,
  826. .flush_tlb_user = xen_flush_tlb,
  827. .flush_tlb_kernel = xen_flush_tlb,
  828. .flush_tlb_single = xen_flush_tlb_single,
  829. .flush_tlb_others = xen_flush_tlb_others,
  830. .pte_update = paravirt_nop,
  831. .pte_update_defer = paravirt_nop,
  832. .alloc_pt = xen_alloc_pt_init,
  833. .release_pt = xen_release_pt_init,
  834. .alloc_pd = xen_alloc_pt_init,
  835. .alloc_pd_clone = paravirt_nop,
  836. .release_pd = xen_release_pt_init,
  837. #ifdef CONFIG_HIGHPTE
  838. .kmap_atomic_pte = xen_kmap_atomic_pte,
  839. #endif
  840. .set_pte = NULL, /* see xen_pagetable_setup_* */
  841. .set_pte_at = xen_set_pte_at,
  842. .set_pmd = xen_set_pmd,
  843. .pte_val = xen_pte_val,
  844. .pgd_val = xen_pgd_val,
  845. .make_pte = xen_make_pte,
  846. .make_pgd = xen_make_pgd,
  847. #ifdef CONFIG_X86_PAE
  848. .set_pte_atomic = xen_set_pte_atomic,
  849. .set_pte_present = xen_set_pte_at,
  850. .set_pud = xen_set_pud,
  851. .pte_clear = xen_pte_clear,
  852. .pmd_clear = xen_pmd_clear,
  853. .make_pmd = xen_make_pmd,
  854. .pmd_val = xen_pmd_val,
  855. #endif /* PAE */
  856. .activate_mm = xen_activate_mm,
  857. .dup_mmap = xen_dup_mmap,
  858. .exit_mmap = xen_exit_mmap,
  859. .lazy_mode = {
  860. .enter = paravirt_enter_lazy_mmu,
  861. .leave = xen_leave_lazy,
  862. },
  863. };
  864. #ifdef CONFIG_SMP
  865. static const struct smp_ops xen_smp_ops __initdata = {
  866. .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
  867. .smp_prepare_cpus = xen_smp_prepare_cpus,
  868. .cpu_up = xen_cpu_up,
  869. .smp_cpus_done = xen_smp_cpus_done,
  870. .smp_send_stop = xen_smp_send_stop,
  871. .smp_send_reschedule = xen_smp_send_reschedule,
  872. .smp_call_function_mask = xen_smp_call_function_mask,
  873. };
  874. #endif /* CONFIG_SMP */
  875. static void xen_reboot(int reason)
  876. {
  877. #ifdef CONFIG_SMP
  878. smp_send_stop();
  879. #endif
  880. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
  881. BUG();
  882. }
  883. static void xen_restart(char *msg)
  884. {
  885. xen_reboot(SHUTDOWN_reboot);
  886. }
  887. static void xen_emergency_restart(void)
  888. {
  889. xen_reboot(SHUTDOWN_reboot);
  890. }
  891. static void xen_machine_halt(void)
  892. {
  893. xen_reboot(SHUTDOWN_poweroff);
  894. }
  895. static void xen_crash_shutdown(struct pt_regs *regs)
  896. {
  897. xen_reboot(SHUTDOWN_crash);
  898. }
  899. static const struct machine_ops __initdata xen_machine_ops = {
  900. .restart = xen_restart,
  901. .halt = xen_machine_halt,
  902. .power_off = xen_machine_halt,
  903. .shutdown = xen_machine_halt,
  904. .crash_shutdown = xen_crash_shutdown,
  905. .emergency_restart = xen_emergency_restart,
  906. };
  907. static void __init xen_reserve_top(void)
  908. {
  909. unsigned long top = HYPERVISOR_VIRT_START;
  910. struct xen_platform_parameters pp;
  911. if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
  912. top = pp.virt_start;
  913. reserve_top_address(-top + 2 * PAGE_SIZE);
  914. }
  915. /* First C function to be called on Xen boot */
  916. asmlinkage void __init xen_start_kernel(void)
  917. {
  918. pgd_t *pgd;
  919. if (!xen_start_info)
  920. return;
  921. BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
  922. /* Install Xen paravirt ops */
  923. pv_info = xen_info;
  924. pv_init_ops = xen_init_ops;
  925. pv_time_ops = xen_time_ops;
  926. pv_cpu_ops = xen_cpu_ops;
  927. pv_irq_ops = xen_irq_ops;
  928. pv_apic_ops = xen_apic_ops;
  929. pv_mmu_ops = xen_mmu_ops;
  930. machine_ops = xen_machine_ops;
  931. #ifdef CONFIG_SMP
  932. smp_ops = xen_smp_ops;
  933. #endif
  934. xen_setup_features();
  935. /* Get mfn list */
  936. if (!xen_feature(XENFEAT_auto_translated_physmap))
  937. phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
  938. pgd = (pgd_t *)xen_start_info->pt_base;
  939. init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
  940. init_mm.pgd = pgd; /* use the Xen pagetables to start */
  941. /* keep using Xen gdt for now; no urgent need to change it */
  942. x86_write_percpu(xen_cr3, __pa(pgd));
  943. x86_write_percpu(xen_current_cr3, __pa(pgd));
  944. #ifdef CONFIG_SMP
  945. /* Don't do the full vcpu_info placement stuff until we have a
  946. possible map. */
  947. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  948. #else
  949. /* May as well do it now, since there's no good time to call
  950. it later on UP. */
  951. xen_setup_vcpu_info_placement();
  952. #endif
  953. pv_info.kernel_rpl = 1;
  954. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  955. pv_info.kernel_rpl = 0;
  956. /* set the limit of our address space */
  957. xen_reserve_top();
  958. /* set up basic CPUID stuff */
  959. cpu_detect(&new_cpu_data);
  960. new_cpu_data.hard_math = 1;
  961. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  962. /* Poke various useful things into boot_params */
  963. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  964. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  965. ? __pa(xen_start_info->mod_start) : 0;
  966. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  967. /* Start the world */
  968. start_kernel();
  969. }