vmx.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "segment_descriptor.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. static int bypass_guest_pf = 1;
  33. module_param(bypass_guest_pf, bool, 0);
  34. struct vmcs {
  35. u32 revision_id;
  36. u32 abort;
  37. char data[0];
  38. };
  39. struct vcpu_vmx {
  40. struct kvm_vcpu vcpu;
  41. int launched;
  42. u8 fail;
  43. u32 idt_vectoring_info;
  44. struct kvm_msr_entry *guest_msrs;
  45. struct kvm_msr_entry *host_msrs;
  46. int nmsrs;
  47. int save_nmsrs;
  48. int msr_offset_efer;
  49. #ifdef CONFIG_X86_64
  50. int msr_offset_kernel_gs_base;
  51. #endif
  52. struct vmcs *vmcs;
  53. struct {
  54. int loaded;
  55. u16 fs_sel, gs_sel, ldt_sel;
  56. int gs_ldt_reload_needed;
  57. int fs_reload_needed;
  58. int guest_efer_loaded;
  59. } host_state;
  60. struct {
  61. struct {
  62. bool pending;
  63. u8 vector;
  64. unsigned rip;
  65. } irq;
  66. } rmode;
  67. };
  68. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  69. {
  70. return container_of(vcpu, struct vcpu_vmx, vcpu);
  71. }
  72. static int init_rmode_tss(struct kvm *kvm);
  73. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  74. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  75. static struct page *vmx_io_bitmap_a;
  76. static struct page *vmx_io_bitmap_b;
  77. static struct vmcs_config {
  78. int size;
  79. int order;
  80. u32 revision_id;
  81. u32 pin_based_exec_ctrl;
  82. u32 cpu_based_exec_ctrl;
  83. u32 cpu_based_2nd_exec_ctrl;
  84. u32 vmexit_ctrl;
  85. u32 vmentry_ctrl;
  86. } vmcs_config;
  87. #define VMX_SEGMENT_FIELD(seg) \
  88. [VCPU_SREG_##seg] = { \
  89. .selector = GUEST_##seg##_SELECTOR, \
  90. .base = GUEST_##seg##_BASE, \
  91. .limit = GUEST_##seg##_LIMIT, \
  92. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  93. }
  94. static struct kvm_vmx_segment_field {
  95. unsigned selector;
  96. unsigned base;
  97. unsigned limit;
  98. unsigned ar_bytes;
  99. } kvm_vmx_segment_fields[] = {
  100. VMX_SEGMENT_FIELD(CS),
  101. VMX_SEGMENT_FIELD(DS),
  102. VMX_SEGMENT_FIELD(ES),
  103. VMX_SEGMENT_FIELD(FS),
  104. VMX_SEGMENT_FIELD(GS),
  105. VMX_SEGMENT_FIELD(SS),
  106. VMX_SEGMENT_FIELD(TR),
  107. VMX_SEGMENT_FIELD(LDTR),
  108. };
  109. /*
  110. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  111. * away by decrementing the array size.
  112. */
  113. static const u32 vmx_msr_index[] = {
  114. #ifdef CONFIG_X86_64
  115. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  116. #endif
  117. MSR_EFER, MSR_K6_STAR,
  118. };
  119. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  120. static void load_msrs(struct kvm_msr_entry *e, int n)
  121. {
  122. int i;
  123. for (i = 0; i < n; ++i)
  124. wrmsrl(e[i].index, e[i].data);
  125. }
  126. static void save_msrs(struct kvm_msr_entry *e, int n)
  127. {
  128. int i;
  129. for (i = 0; i < n; ++i)
  130. rdmsrl(e[i].index, e[i].data);
  131. }
  132. static inline int is_page_fault(u32 intr_info)
  133. {
  134. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  135. INTR_INFO_VALID_MASK)) ==
  136. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  137. }
  138. static inline int is_no_device(u32 intr_info)
  139. {
  140. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  141. INTR_INFO_VALID_MASK)) ==
  142. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  143. }
  144. static inline int is_invalid_opcode(u32 intr_info)
  145. {
  146. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  147. INTR_INFO_VALID_MASK)) ==
  148. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  149. }
  150. static inline int is_external_interrupt(u32 intr_info)
  151. {
  152. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  153. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  154. }
  155. static inline int cpu_has_vmx_tpr_shadow(void)
  156. {
  157. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  158. }
  159. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  160. {
  161. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  162. }
  163. static inline int cpu_has_secondary_exec_ctrls(void)
  164. {
  165. return (vmcs_config.cpu_based_exec_ctrl &
  166. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  167. }
  168. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  169. {
  170. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  171. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  172. }
  173. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  174. {
  175. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  176. (irqchip_in_kernel(kvm)));
  177. }
  178. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  179. {
  180. int i;
  181. for (i = 0; i < vmx->nmsrs; ++i)
  182. if (vmx->guest_msrs[i].index == msr)
  183. return i;
  184. return -1;
  185. }
  186. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  187. {
  188. int i;
  189. i = __find_msr_index(vmx, msr);
  190. if (i >= 0)
  191. return &vmx->guest_msrs[i];
  192. return NULL;
  193. }
  194. static void vmcs_clear(struct vmcs *vmcs)
  195. {
  196. u64 phys_addr = __pa(vmcs);
  197. u8 error;
  198. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  199. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  200. : "cc", "memory");
  201. if (error)
  202. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  203. vmcs, phys_addr);
  204. }
  205. static void __vcpu_clear(void *arg)
  206. {
  207. struct vcpu_vmx *vmx = arg;
  208. int cpu = raw_smp_processor_id();
  209. if (vmx->vcpu.cpu == cpu)
  210. vmcs_clear(vmx->vmcs);
  211. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  212. per_cpu(current_vmcs, cpu) = NULL;
  213. rdtscll(vmx->vcpu.arch.host_tsc);
  214. }
  215. static void vcpu_clear(struct vcpu_vmx *vmx)
  216. {
  217. if (vmx->vcpu.cpu == -1)
  218. return;
  219. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  220. vmx->launched = 0;
  221. }
  222. static unsigned long vmcs_readl(unsigned long field)
  223. {
  224. unsigned long value;
  225. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  226. : "=a"(value) : "d"(field) : "cc");
  227. return value;
  228. }
  229. static u16 vmcs_read16(unsigned long field)
  230. {
  231. return vmcs_readl(field);
  232. }
  233. static u32 vmcs_read32(unsigned long field)
  234. {
  235. return vmcs_readl(field);
  236. }
  237. static u64 vmcs_read64(unsigned long field)
  238. {
  239. #ifdef CONFIG_X86_64
  240. return vmcs_readl(field);
  241. #else
  242. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  243. #endif
  244. }
  245. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  246. {
  247. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  248. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  249. dump_stack();
  250. }
  251. static void vmcs_writel(unsigned long field, unsigned long value)
  252. {
  253. u8 error;
  254. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  255. : "=q"(error) : "a"(value), "d"(field) : "cc");
  256. if (unlikely(error))
  257. vmwrite_error(field, value);
  258. }
  259. static void vmcs_write16(unsigned long field, u16 value)
  260. {
  261. vmcs_writel(field, value);
  262. }
  263. static void vmcs_write32(unsigned long field, u32 value)
  264. {
  265. vmcs_writel(field, value);
  266. }
  267. static void vmcs_write64(unsigned long field, u64 value)
  268. {
  269. #ifdef CONFIG_X86_64
  270. vmcs_writel(field, value);
  271. #else
  272. vmcs_writel(field, value);
  273. asm volatile ("");
  274. vmcs_writel(field+1, value >> 32);
  275. #endif
  276. }
  277. static void vmcs_clear_bits(unsigned long field, u32 mask)
  278. {
  279. vmcs_writel(field, vmcs_readl(field) & ~mask);
  280. }
  281. static void vmcs_set_bits(unsigned long field, u32 mask)
  282. {
  283. vmcs_writel(field, vmcs_readl(field) | mask);
  284. }
  285. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  286. {
  287. u32 eb;
  288. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  289. if (!vcpu->fpu_active)
  290. eb |= 1u << NM_VECTOR;
  291. if (vcpu->guest_debug.enabled)
  292. eb |= 1u << 1;
  293. if (vcpu->arch.rmode.active)
  294. eb = ~0;
  295. vmcs_write32(EXCEPTION_BITMAP, eb);
  296. }
  297. static void reload_tss(void)
  298. {
  299. #ifndef CONFIG_X86_64
  300. /*
  301. * VT restores TR but not its size. Useless.
  302. */
  303. struct descriptor_table gdt;
  304. struct segment_descriptor *descs;
  305. get_gdt(&gdt);
  306. descs = (void *)gdt.base;
  307. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  308. load_TR_desc();
  309. #endif
  310. }
  311. static void load_transition_efer(struct vcpu_vmx *vmx)
  312. {
  313. int efer_offset = vmx->msr_offset_efer;
  314. u64 host_efer = vmx->host_msrs[efer_offset].data;
  315. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  316. u64 ignore_bits;
  317. if (efer_offset < 0)
  318. return;
  319. /*
  320. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  321. * outside long mode
  322. */
  323. ignore_bits = EFER_NX | EFER_SCE;
  324. #ifdef CONFIG_X86_64
  325. ignore_bits |= EFER_LMA | EFER_LME;
  326. /* SCE is meaningful only in long mode on Intel */
  327. if (guest_efer & EFER_LMA)
  328. ignore_bits &= ~(u64)EFER_SCE;
  329. #endif
  330. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  331. return;
  332. vmx->host_state.guest_efer_loaded = 1;
  333. guest_efer &= ~ignore_bits;
  334. guest_efer |= host_efer & ignore_bits;
  335. wrmsrl(MSR_EFER, guest_efer);
  336. vmx->vcpu.stat.efer_reload++;
  337. }
  338. static void reload_host_efer(struct vcpu_vmx *vmx)
  339. {
  340. if (vmx->host_state.guest_efer_loaded) {
  341. vmx->host_state.guest_efer_loaded = 0;
  342. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  343. }
  344. }
  345. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  346. {
  347. struct vcpu_vmx *vmx = to_vmx(vcpu);
  348. if (vmx->host_state.loaded)
  349. return;
  350. vmx->host_state.loaded = 1;
  351. /*
  352. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  353. * allow segment selectors with cpl > 0 or ti == 1.
  354. */
  355. vmx->host_state.ldt_sel = read_ldt();
  356. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  357. vmx->host_state.fs_sel = read_fs();
  358. if (!(vmx->host_state.fs_sel & 7)) {
  359. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  360. vmx->host_state.fs_reload_needed = 0;
  361. } else {
  362. vmcs_write16(HOST_FS_SELECTOR, 0);
  363. vmx->host_state.fs_reload_needed = 1;
  364. }
  365. vmx->host_state.gs_sel = read_gs();
  366. if (!(vmx->host_state.gs_sel & 7))
  367. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  368. else {
  369. vmcs_write16(HOST_GS_SELECTOR, 0);
  370. vmx->host_state.gs_ldt_reload_needed = 1;
  371. }
  372. #ifdef CONFIG_X86_64
  373. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  374. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  375. #else
  376. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  377. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  378. #endif
  379. #ifdef CONFIG_X86_64
  380. if (is_long_mode(&vmx->vcpu))
  381. save_msrs(vmx->host_msrs +
  382. vmx->msr_offset_kernel_gs_base, 1);
  383. #endif
  384. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  385. load_transition_efer(vmx);
  386. }
  387. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  388. {
  389. unsigned long flags;
  390. if (!vmx->host_state.loaded)
  391. return;
  392. ++vmx->vcpu.stat.host_state_reload;
  393. vmx->host_state.loaded = 0;
  394. if (vmx->host_state.fs_reload_needed)
  395. load_fs(vmx->host_state.fs_sel);
  396. if (vmx->host_state.gs_ldt_reload_needed) {
  397. load_ldt(vmx->host_state.ldt_sel);
  398. /*
  399. * If we have to reload gs, we must take care to
  400. * preserve our gs base.
  401. */
  402. local_irq_save(flags);
  403. load_gs(vmx->host_state.gs_sel);
  404. #ifdef CONFIG_X86_64
  405. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  406. #endif
  407. local_irq_restore(flags);
  408. }
  409. reload_tss();
  410. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  411. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  412. reload_host_efer(vmx);
  413. }
  414. /*
  415. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  416. * vcpu mutex is already taken.
  417. */
  418. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  419. {
  420. struct vcpu_vmx *vmx = to_vmx(vcpu);
  421. u64 phys_addr = __pa(vmx->vmcs);
  422. u64 tsc_this, delta;
  423. if (vcpu->cpu != cpu) {
  424. vcpu_clear(vmx);
  425. kvm_migrate_apic_timer(vcpu);
  426. }
  427. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  428. u8 error;
  429. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  430. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  431. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  432. : "cc");
  433. if (error)
  434. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  435. vmx->vmcs, phys_addr);
  436. }
  437. if (vcpu->cpu != cpu) {
  438. struct descriptor_table dt;
  439. unsigned long sysenter_esp;
  440. vcpu->cpu = cpu;
  441. /*
  442. * Linux uses per-cpu TSS and GDT, so set these when switching
  443. * processors.
  444. */
  445. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  446. get_gdt(&dt);
  447. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  448. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  449. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  450. /*
  451. * Make sure the time stamp counter is monotonous.
  452. */
  453. rdtscll(tsc_this);
  454. delta = vcpu->arch.host_tsc - tsc_this;
  455. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  456. }
  457. }
  458. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  459. {
  460. vmx_load_host_state(to_vmx(vcpu));
  461. }
  462. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  463. {
  464. if (vcpu->fpu_active)
  465. return;
  466. vcpu->fpu_active = 1;
  467. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  468. if (vcpu->arch.cr0 & X86_CR0_TS)
  469. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  470. update_exception_bitmap(vcpu);
  471. }
  472. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  473. {
  474. if (!vcpu->fpu_active)
  475. return;
  476. vcpu->fpu_active = 0;
  477. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  478. update_exception_bitmap(vcpu);
  479. }
  480. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  481. {
  482. vcpu_clear(to_vmx(vcpu));
  483. }
  484. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  485. {
  486. return vmcs_readl(GUEST_RFLAGS);
  487. }
  488. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  489. {
  490. if (vcpu->arch.rmode.active)
  491. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  492. vmcs_writel(GUEST_RFLAGS, rflags);
  493. }
  494. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  495. {
  496. unsigned long rip;
  497. u32 interruptibility;
  498. rip = vmcs_readl(GUEST_RIP);
  499. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  500. vmcs_writel(GUEST_RIP, rip);
  501. /*
  502. * We emulated an instruction, so temporary interrupt blocking
  503. * should be removed, if set.
  504. */
  505. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  506. if (interruptibility & 3)
  507. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  508. interruptibility & ~3);
  509. vcpu->arch.interrupt_window_open = 1;
  510. }
  511. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  512. bool has_error_code, u32 error_code)
  513. {
  514. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  515. nr | INTR_TYPE_EXCEPTION
  516. | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
  517. | INTR_INFO_VALID_MASK);
  518. if (has_error_code)
  519. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  520. }
  521. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  522. {
  523. struct vcpu_vmx *vmx = to_vmx(vcpu);
  524. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  525. }
  526. /*
  527. * Swap MSR entry in host/guest MSR entry array.
  528. */
  529. #ifdef CONFIG_X86_64
  530. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  531. {
  532. struct kvm_msr_entry tmp;
  533. tmp = vmx->guest_msrs[to];
  534. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  535. vmx->guest_msrs[from] = tmp;
  536. tmp = vmx->host_msrs[to];
  537. vmx->host_msrs[to] = vmx->host_msrs[from];
  538. vmx->host_msrs[from] = tmp;
  539. }
  540. #endif
  541. /*
  542. * Set up the vmcs to automatically save and restore system
  543. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  544. * mode, as fiddling with msrs is very expensive.
  545. */
  546. static void setup_msrs(struct vcpu_vmx *vmx)
  547. {
  548. int save_nmsrs;
  549. vmx_load_host_state(vmx);
  550. save_nmsrs = 0;
  551. #ifdef CONFIG_X86_64
  552. if (is_long_mode(&vmx->vcpu)) {
  553. int index;
  554. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  555. if (index >= 0)
  556. move_msr_up(vmx, index, save_nmsrs++);
  557. index = __find_msr_index(vmx, MSR_LSTAR);
  558. if (index >= 0)
  559. move_msr_up(vmx, index, save_nmsrs++);
  560. index = __find_msr_index(vmx, MSR_CSTAR);
  561. if (index >= 0)
  562. move_msr_up(vmx, index, save_nmsrs++);
  563. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  564. if (index >= 0)
  565. move_msr_up(vmx, index, save_nmsrs++);
  566. /*
  567. * MSR_K6_STAR is only needed on long mode guests, and only
  568. * if efer.sce is enabled.
  569. */
  570. index = __find_msr_index(vmx, MSR_K6_STAR);
  571. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  572. move_msr_up(vmx, index, save_nmsrs++);
  573. }
  574. #endif
  575. vmx->save_nmsrs = save_nmsrs;
  576. #ifdef CONFIG_X86_64
  577. vmx->msr_offset_kernel_gs_base =
  578. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  579. #endif
  580. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  581. }
  582. /*
  583. * reads and returns guest's timestamp counter "register"
  584. * guest_tsc = host_tsc + tsc_offset -- 21.3
  585. */
  586. static u64 guest_read_tsc(void)
  587. {
  588. u64 host_tsc, tsc_offset;
  589. rdtscll(host_tsc);
  590. tsc_offset = vmcs_read64(TSC_OFFSET);
  591. return host_tsc + tsc_offset;
  592. }
  593. /*
  594. * writes 'guest_tsc' into guest's timestamp counter "register"
  595. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  596. */
  597. static void guest_write_tsc(u64 guest_tsc)
  598. {
  599. u64 host_tsc;
  600. rdtscll(host_tsc);
  601. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  602. }
  603. /*
  604. * Reads an msr value (of 'msr_index') into 'pdata'.
  605. * Returns 0 on success, non-0 otherwise.
  606. * Assumes vcpu_load() was already called.
  607. */
  608. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  609. {
  610. u64 data;
  611. struct kvm_msr_entry *msr;
  612. if (!pdata) {
  613. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  614. return -EINVAL;
  615. }
  616. switch (msr_index) {
  617. #ifdef CONFIG_X86_64
  618. case MSR_FS_BASE:
  619. data = vmcs_readl(GUEST_FS_BASE);
  620. break;
  621. case MSR_GS_BASE:
  622. data = vmcs_readl(GUEST_GS_BASE);
  623. break;
  624. case MSR_EFER:
  625. return kvm_get_msr_common(vcpu, msr_index, pdata);
  626. #endif
  627. case MSR_IA32_TIME_STAMP_COUNTER:
  628. data = guest_read_tsc();
  629. break;
  630. case MSR_IA32_SYSENTER_CS:
  631. data = vmcs_read32(GUEST_SYSENTER_CS);
  632. break;
  633. case MSR_IA32_SYSENTER_EIP:
  634. data = vmcs_readl(GUEST_SYSENTER_EIP);
  635. break;
  636. case MSR_IA32_SYSENTER_ESP:
  637. data = vmcs_readl(GUEST_SYSENTER_ESP);
  638. break;
  639. default:
  640. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  641. if (msr) {
  642. data = msr->data;
  643. break;
  644. }
  645. return kvm_get_msr_common(vcpu, msr_index, pdata);
  646. }
  647. *pdata = data;
  648. return 0;
  649. }
  650. /*
  651. * Writes msr value into into the appropriate "register".
  652. * Returns 0 on success, non-0 otherwise.
  653. * Assumes vcpu_load() was already called.
  654. */
  655. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  656. {
  657. struct vcpu_vmx *vmx = to_vmx(vcpu);
  658. struct kvm_msr_entry *msr;
  659. int ret = 0;
  660. switch (msr_index) {
  661. #ifdef CONFIG_X86_64
  662. case MSR_EFER:
  663. ret = kvm_set_msr_common(vcpu, msr_index, data);
  664. if (vmx->host_state.loaded) {
  665. reload_host_efer(vmx);
  666. load_transition_efer(vmx);
  667. }
  668. break;
  669. case MSR_FS_BASE:
  670. vmcs_writel(GUEST_FS_BASE, data);
  671. break;
  672. case MSR_GS_BASE:
  673. vmcs_writel(GUEST_GS_BASE, data);
  674. break;
  675. #endif
  676. case MSR_IA32_SYSENTER_CS:
  677. vmcs_write32(GUEST_SYSENTER_CS, data);
  678. break;
  679. case MSR_IA32_SYSENTER_EIP:
  680. vmcs_writel(GUEST_SYSENTER_EIP, data);
  681. break;
  682. case MSR_IA32_SYSENTER_ESP:
  683. vmcs_writel(GUEST_SYSENTER_ESP, data);
  684. break;
  685. case MSR_IA32_TIME_STAMP_COUNTER:
  686. guest_write_tsc(data);
  687. break;
  688. default:
  689. msr = find_msr_entry(vmx, msr_index);
  690. if (msr) {
  691. msr->data = data;
  692. if (vmx->host_state.loaded)
  693. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  694. break;
  695. }
  696. ret = kvm_set_msr_common(vcpu, msr_index, data);
  697. }
  698. return ret;
  699. }
  700. /*
  701. * Sync the rsp and rip registers into the vcpu structure. This allows
  702. * registers to be accessed by indexing vcpu->arch.regs.
  703. */
  704. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  705. {
  706. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  707. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  708. }
  709. /*
  710. * Syncs rsp and rip back into the vmcs. Should be called after possible
  711. * modification.
  712. */
  713. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  714. {
  715. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  716. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  717. }
  718. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  719. {
  720. unsigned long dr7 = 0x400;
  721. int old_singlestep;
  722. old_singlestep = vcpu->guest_debug.singlestep;
  723. vcpu->guest_debug.enabled = dbg->enabled;
  724. if (vcpu->guest_debug.enabled) {
  725. int i;
  726. dr7 |= 0x200; /* exact */
  727. for (i = 0; i < 4; ++i) {
  728. if (!dbg->breakpoints[i].enabled)
  729. continue;
  730. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  731. dr7 |= 2 << (i*2); /* global enable */
  732. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  733. }
  734. vcpu->guest_debug.singlestep = dbg->singlestep;
  735. } else
  736. vcpu->guest_debug.singlestep = 0;
  737. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  738. unsigned long flags;
  739. flags = vmcs_readl(GUEST_RFLAGS);
  740. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  741. vmcs_writel(GUEST_RFLAGS, flags);
  742. }
  743. update_exception_bitmap(vcpu);
  744. vmcs_writel(GUEST_DR7, dr7);
  745. return 0;
  746. }
  747. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  748. {
  749. struct vcpu_vmx *vmx = to_vmx(vcpu);
  750. u32 idtv_info_field;
  751. idtv_info_field = vmx->idt_vectoring_info;
  752. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  753. if (is_external_interrupt(idtv_info_field))
  754. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  755. else
  756. printk(KERN_DEBUG "pending exception: not handled yet\n");
  757. }
  758. return -1;
  759. }
  760. static __init int cpu_has_kvm_support(void)
  761. {
  762. unsigned long ecx = cpuid_ecx(1);
  763. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  764. }
  765. static __init int vmx_disabled_by_bios(void)
  766. {
  767. u64 msr;
  768. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  769. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  770. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  771. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  772. /* locked but not enabled */
  773. }
  774. static void hardware_enable(void *garbage)
  775. {
  776. int cpu = raw_smp_processor_id();
  777. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  778. u64 old;
  779. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  780. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  781. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  782. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  783. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  784. /* enable and lock */
  785. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  786. MSR_IA32_FEATURE_CONTROL_LOCKED |
  787. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  788. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  789. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  790. : "memory", "cc");
  791. }
  792. static void hardware_disable(void *garbage)
  793. {
  794. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  795. }
  796. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  797. u32 msr, u32 *result)
  798. {
  799. u32 vmx_msr_low, vmx_msr_high;
  800. u32 ctl = ctl_min | ctl_opt;
  801. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  802. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  803. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  804. /* Ensure minimum (required) set of control bits are supported. */
  805. if (ctl_min & ~ctl)
  806. return -EIO;
  807. *result = ctl;
  808. return 0;
  809. }
  810. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  811. {
  812. u32 vmx_msr_low, vmx_msr_high;
  813. u32 min, opt;
  814. u32 _pin_based_exec_control = 0;
  815. u32 _cpu_based_exec_control = 0;
  816. u32 _cpu_based_2nd_exec_control = 0;
  817. u32 _vmexit_control = 0;
  818. u32 _vmentry_control = 0;
  819. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  820. opt = 0;
  821. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  822. &_pin_based_exec_control) < 0)
  823. return -EIO;
  824. min = CPU_BASED_HLT_EXITING |
  825. #ifdef CONFIG_X86_64
  826. CPU_BASED_CR8_LOAD_EXITING |
  827. CPU_BASED_CR8_STORE_EXITING |
  828. #endif
  829. CPU_BASED_USE_IO_BITMAPS |
  830. CPU_BASED_MOV_DR_EXITING |
  831. CPU_BASED_USE_TSC_OFFSETING;
  832. opt = CPU_BASED_TPR_SHADOW |
  833. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  834. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  835. &_cpu_based_exec_control) < 0)
  836. return -EIO;
  837. #ifdef CONFIG_X86_64
  838. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  839. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  840. ~CPU_BASED_CR8_STORE_EXITING;
  841. #endif
  842. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  843. min = 0;
  844. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  845. SECONDARY_EXEC_WBINVD_EXITING;
  846. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  847. &_cpu_based_2nd_exec_control) < 0)
  848. return -EIO;
  849. }
  850. #ifndef CONFIG_X86_64
  851. if (!(_cpu_based_2nd_exec_control &
  852. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  853. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  854. #endif
  855. min = 0;
  856. #ifdef CONFIG_X86_64
  857. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  858. #endif
  859. opt = 0;
  860. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  861. &_vmexit_control) < 0)
  862. return -EIO;
  863. min = opt = 0;
  864. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  865. &_vmentry_control) < 0)
  866. return -EIO;
  867. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  868. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  869. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  870. return -EIO;
  871. #ifdef CONFIG_X86_64
  872. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  873. if (vmx_msr_high & (1u<<16))
  874. return -EIO;
  875. #endif
  876. /* Require Write-Back (WB) memory type for VMCS accesses. */
  877. if (((vmx_msr_high >> 18) & 15) != 6)
  878. return -EIO;
  879. vmcs_conf->size = vmx_msr_high & 0x1fff;
  880. vmcs_conf->order = get_order(vmcs_config.size);
  881. vmcs_conf->revision_id = vmx_msr_low;
  882. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  883. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  884. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  885. vmcs_conf->vmexit_ctrl = _vmexit_control;
  886. vmcs_conf->vmentry_ctrl = _vmentry_control;
  887. return 0;
  888. }
  889. static struct vmcs *alloc_vmcs_cpu(int cpu)
  890. {
  891. int node = cpu_to_node(cpu);
  892. struct page *pages;
  893. struct vmcs *vmcs;
  894. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  895. if (!pages)
  896. return NULL;
  897. vmcs = page_address(pages);
  898. memset(vmcs, 0, vmcs_config.size);
  899. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  900. return vmcs;
  901. }
  902. static struct vmcs *alloc_vmcs(void)
  903. {
  904. return alloc_vmcs_cpu(raw_smp_processor_id());
  905. }
  906. static void free_vmcs(struct vmcs *vmcs)
  907. {
  908. free_pages((unsigned long)vmcs, vmcs_config.order);
  909. }
  910. static void free_kvm_area(void)
  911. {
  912. int cpu;
  913. for_each_online_cpu(cpu)
  914. free_vmcs(per_cpu(vmxarea, cpu));
  915. }
  916. static __init int alloc_kvm_area(void)
  917. {
  918. int cpu;
  919. for_each_online_cpu(cpu) {
  920. struct vmcs *vmcs;
  921. vmcs = alloc_vmcs_cpu(cpu);
  922. if (!vmcs) {
  923. free_kvm_area();
  924. return -ENOMEM;
  925. }
  926. per_cpu(vmxarea, cpu) = vmcs;
  927. }
  928. return 0;
  929. }
  930. static __init int hardware_setup(void)
  931. {
  932. if (setup_vmcs_config(&vmcs_config) < 0)
  933. return -EIO;
  934. return alloc_kvm_area();
  935. }
  936. static __exit void hardware_unsetup(void)
  937. {
  938. free_kvm_area();
  939. }
  940. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  941. {
  942. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  943. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  944. vmcs_write16(sf->selector, save->selector);
  945. vmcs_writel(sf->base, save->base);
  946. vmcs_write32(sf->limit, save->limit);
  947. vmcs_write32(sf->ar_bytes, save->ar);
  948. } else {
  949. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  950. << AR_DPL_SHIFT;
  951. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  952. }
  953. }
  954. static void enter_pmode(struct kvm_vcpu *vcpu)
  955. {
  956. unsigned long flags;
  957. vcpu->arch.rmode.active = 0;
  958. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  959. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  960. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  961. flags = vmcs_readl(GUEST_RFLAGS);
  962. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  963. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  964. vmcs_writel(GUEST_RFLAGS, flags);
  965. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  966. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  967. update_exception_bitmap(vcpu);
  968. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  969. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  970. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  971. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  972. vmcs_write16(GUEST_SS_SELECTOR, 0);
  973. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  974. vmcs_write16(GUEST_CS_SELECTOR,
  975. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  976. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  977. }
  978. static gva_t rmode_tss_base(struct kvm *kvm)
  979. {
  980. if (!kvm->arch.tss_addr) {
  981. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  982. kvm->memslots[0].npages - 3;
  983. return base_gfn << PAGE_SHIFT;
  984. }
  985. return kvm->arch.tss_addr;
  986. }
  987. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  988. {
  989. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  990. save->selector = vmcs_read16(sf->selector);
  991. save->base = vmcs_readl(sf->base);
  992. save->limit = vmcs_read32(sf->limit);
  993. save->ar = vmcs_read32(sf->ar_bytes);
  994. vmcs_write16(sf->selector, save->base >> 4);
  995. vmcs_write32(sf->base, save->base & 0xfffff);
  996. vmcs_write32(sf->limit, 0xffff);
  997. vmcs_write32(sf->ar_bytes, 0xf3);
  998. }
  999. static void enter_rmode(struct kvm_vcpu *vcpu)
  1000. {
  1001. unsigned long flags;
  1002. vcpu->arch.rmode.active = 1;
  1003. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1004. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1005. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1006. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1007. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1008. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1009. flags = vmcs_readl(GUEST_RFLAGS);
  1010. vcpu->arch.rmode.save_iopl
  1011. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1012. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1013. vmcs_writel(GUEST_RFLAGS, flags);
  1014. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1015. update_exception_bitmap(vcpu);
  1016. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1017. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1018. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1019. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1020. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1021. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1022. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1023. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1024. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1025. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1026. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1027. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1028. kvm_mmu_reset_context(vcpu);
  1029. init_rmode_tss(vcpu->kvm);
  1030. }
  1031. #ifdef CONFIG_X86_64
  1032. static void enter_lmode(struct kvm_vcpu *vcpu)
  1033. {
  1034. u32 guest_tr_ar;
  1035. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1036. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1037. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1038. __FUNCTION__);
  1039. vmcs_write32(GUEST_TR_AR_BYTES,
  1040. (guest_tr_ar & ~AR_TYPE_MASK)
  1041. | AR_TYPE_BUSY_64_TSS);
  1042. }
  1043. vcpu->arch.shadow_efer |= EFER_LMA;
  1044. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1045. vmcs_write32(VM_ENTRY_CONTROLS,
  1046. vmcs_read32(VM_ENTRY_CONTROLS)
  1047. | VM_ENTRY_IA32E_MODE);
  1048. }
  1049. static void exit_lmode(struct kvm_vcpu *vcpu)
  1050. {
  1051. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1052. vmcs_write32(VM_ENTRY_CONTROLS,
  1053. vmcs_read32(VM_ENTRY_CONTROLS)
  1054. & ~VM_ENTRY_IA32E_MODE);
  1055. }
  1056. #endif
  1057. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1058. {
  1059. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1060. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1061. }
  1062. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1063. {
  1064. vmx_fpu_deactivate(vcpu);
  1065. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1066. enter_pmode(vcpu);
  1067. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1068. enter_rmode(vcpu);
  1069. #ifdef CONFIG_X86_64
  1070. if (vcpu->arch.shadow_efer & EFER_LME) {
  1071. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1072. enter_lmode(vcpu);
  1073. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1074. exit_lmode(vcpu);
  1075. }
  1076. #endif
  1077. vmcs_writel(CR0_READ_SHADOW, cr0);
  1078. vmcs_writel(GUEST_CR0,
  1079. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1080. vcpu->arch.cr0 = cr0;
  1081. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1082. vmx_fpu_activate(vcpu);
  1083. }
  1084. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1085. {
  1086. vmcs_writel(GUEST_CR3, cr3);
  1087. if (vcpu->arch.cr0 & X86_CR0_PE)
  1088. vmx_fpu_deactivate(vcpu);
  1089. }
  1090. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1091. {
  1092. vmcs_writel(CR4_READ_SHADOW, cr4);
  1093. vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
  1094. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1095. vcpu->arch.cr4 = cr4;
  1096. }
  1097. #ifdef CONFIG_X86_64
  1098. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1099. {
  1100. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1101. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1102. vcpu->arch.shadow_efer = efer;
  1103. if (efer & EFER_LMA) {
  1104. vmcs_write32(VM_ENTRY_CONTROLS,
  1105. vmcs_read32(VM_ENTRY_CONTROLS) |
  1106. VM_ENTRY_IA32E_MODE);
  1107. msr->data = efer;
  1108. } else {
  1109. vmcs_write32(VM_ENTRY_CONTROLS,
  1110. vmcs_read32(VM_ENTRY_CONTROLS) &
  1111. ~VM_ENTRY_IA32E_MODE);
  1112. msr->data = efer & ~EFER_LME;
  1113. }
  1114. setup_msrs(vmx);
  1115. }
  1116. #endif
  1117. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1118. {
  1119. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1120. return vmcs_readl(sf->base);
  1121. }
  1122. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1123. struct kvm_segment *var, int seg)
  1124. {
  1125. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1126. u32 ar;
  1127. var->base = vmcs_readl(sf->base);
  1128. var->limit = vmcs_read32(sf->limit);
  1129. var->selector = vmcs_read16(sf->selector);
  1130. ar = vmcs_read32(sf->ar_bytes);
  1131. if (ar & AR_UNUSABLE_MASK)
  1132. ar = 0;
  1133. var->type = ar & 15;
  1134. var->s = (ar >> 4) & 1;
  1135. var->dpl = (ar >> 5) & 3;
  1136. var->present = (ar >> 7) & 1;
  1137. var->avl = (ar >> 12) & 1;
  1138. var->l = (ar >> 13) & 1;
  1139. var->db = (ar >> 14) & 1;
  1140. var->g = (ar >> 15) & 1;
  1141. var->unusable = (ar >> 16) & 1;
  1142. }
  1143. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1144. {
  1145. u32 ar;
  1146. if (var->unusable)
  1147. ar = 1 << 16;
  1148. else {
  1149. ar = var->type & 15;
  1150. ar |= (var->s & 1) << 4;
  1151. ar |= (var->dpl & 3) << 5;
  1152. ar |= (var->present & 1) << 7;
  1153. ar |= (var->avl & 1) << 12;
  1154. ar |= (var->l & 1) << 13;
  1155. ar |= (var->db & 1) << 14;
  1156. ar |= (var->g & 1) << 15;
  1157. }
  1158. if (ar == 0) /* a 0 value means unusable */
  1159. ar = AR_UNUSABLE_MASK;
  1160. return ar;
  1161. }
  1162. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1163. struct kvm_segment *var, int seg)
  1164. {
  1165. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1166. u32 ar;
  1167. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1168. vcpu->arch.rmode.tr.selector = var->selector;
  1169. vcpu->arch.rmode.tr.base = var->base;
  1170. vcpu->arch.rmode.tr.limit = var->limit;
  1171. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1172. return;
  1173. }
  1174. vmcs_writel(sf->base, var->base);
  1175. vmcs_write32(sf->limit, var->limit);
  1176. vmcs_write16(sf->selector, var->selector);
  1177. if (vcpu->arch.rmode.active && var->s) {
  1178. /*
  1179. * Hack real-mode segments into vm86 compatibility.
  1180. */
  1181. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1182. vmcs_writel(sf->base, 0xf0000);
  1183. ar = 0xf3;
  1184. } else
  1185. ar = vmx_segment_access_rights(var);
  1186. vmcs_write32(sf->ar_bytes, ar);
  1187. }
  1188. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1189. {
  1190. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1191. *db = (ar >> 14) & 1;
  1192. *l = (ar >> 13) & 1;
  1193. }
  1194. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1195. {
  1196. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1197. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1198. }
  1199. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1200. {
  1201. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1202. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1203. }
  1204. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1205. {
  1206. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1207. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1208. }
  1209. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1210. {
  1211. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1212. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1213. }
  1214. static int init_rmode_tss(struct kvm *kvm)
  1215. {
  1216. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1217. u16 data = 0;
  1218. int ret = 0;
  1219. int r;
  1220. down_read(&current->mm->mmap_sem);
  1221. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1222. if (r < 0)
  1223. goto out;
  1224. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1225. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1226. if (r < 0)
  1227. goto out;
  1228. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1229. if (r < 0)
  1230. goto out;
  1231. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1232. if (r < 0)
  1233. goto out;
  1234. data = ~0;
  1235. r = kvm_write_guest_page(kvm, fn, &data,
  1236. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1237. sizeof(u8));
  1238. if (r < 0)
  1239. goto out;
  1240. ret = 1;
  1241. out:
  1242. up_read(&current->mm->mmap_sem);
  1243. return ret;
  1244. }
  1245. static void seg_setup(int seg)
  1246. {
  1247. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1248. vmcs_write16(sf->selector, 0);
  1249. vmcs_writel(sf->base, 0);
  1250. vmcs_write32(sf->limit, 0xffff);
  1251. vmcs_write32(sf->ar_bytes, 0x93);
  1252. }
  1253. static int alloc_apic_access_page(struct kvm *kvm)
  1254. {
  1255. struct kvm_userspace_memory_region kvm_userspace_mem;
  1256. int r = 0;
  1257. down_write(&kvm->slots_lock);
  1258. if (kvm->arch.apic_access_page)
  1259. goto out;
  1260. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1261. kvm_userspace_mem.flags = 0;
  1262. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1263. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1264. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1265. if (r)
  1266. goto out;
  1267. down_read(&current->mm->mmap_sem);
  1268. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1269. up_read(&current->mm->mmap_sem);
  1270. out:
  1271. up_write(&kvm->slots_lock);
  1272. return r;
  1273. }
  1274. /*
  1275. * Sets up the vmcs for emulated real mode.
  1276. */
  1277. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1278. {
  1279. u32 host_sysenter_cs;
  1280. u32 junk;
  1281. unsigned long a;
  1282. struct descriptor_table dt;
  1283. int i;
  1284. unsigned long kvm_vmx_return;
  1285. u32 exec_control;
  1286. /* I/O */
  1287. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1288. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1289. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1290. /* Control */
  1291. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1292. vmcs_config.pin_based_exec_ctrl);
  1293. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1294. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1295. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1296. #ifdef CONFIG_X86_64
  1297. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1298. CPU_BASED_CR8_LOAD_EXITING;
  1299. #endif
  1300. }
  1301. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1302. if (cpu_has_secondary_exec_ctrls()) {
  1303. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1304. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1305. exec_control &=
  1306. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1307. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1308. }
  1309. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1310. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1311. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1312. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1313. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1314. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1315. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1316. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1317. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1318. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1319. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1320. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1321. #ifdef CONFIG_X86_64
  1322. rdmsrl(MSR_FS_BASE, a);
  1323. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1324. rdmsrl(MSR_GS_BASE, a);
  1325. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1326. #else
  1327. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1328. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1329. #endif
  1330. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1331. get_idt(&dt);
  1332. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1333. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1334. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1335. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1336. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1337. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1338. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1339. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1340. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1341. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1342. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1343. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1344. for (i = 0; i < NR_VMX_MSR; ++i) {
  1345. u32 index = vmx_msr_index[i];
  1346. u32 data_low, data_high;
  1347. u64 data;
  1348. int j = vmx->nmsrs;
  1349. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1350. continue;
  1351. if (wrmsr_safe(index, data_low, data_high) < 0)
  1352. continue;
  1353. data = data_low | ((u64)data_high << 32);
  1354. vmx->host_msrs[j].index = index;
  1355. vmx->host_msrs[j].reserved = 0;
  1356. vmx->host_msrs[j].data = data;
  1357. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1358. ++vmx->nmsrs;
  1359. }
  1360. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1361. /* 22.2.1, 20.8.1 */
  1362. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1363. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1364. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1365. return 0;
  1366. }
  1367. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1368. {
  1369. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1370. u64 msr;
  1371. int ret;
  1372. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1373. ret = -ENOMEM;
  1374. goto out;
  1375. }
  1376. vmx->vcpu.arch.rmode.active = 0;
  1377. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1378. set_cr8(&vmx->vcpu, 0);
  1379. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1380. if (vmx->vcpu.vcpu_id == 0)
  1381. msr |= MSR_IA32_APICBASE_BSP;
  1382. kvm_set_apic_base(&vmx->vcpu, msr);
  1383. fx_init(&vmx->vcpu);
  1384. /*
  1385. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1386. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1387. */
  1388. if (vmx->vcpu.vcpu_id == 0) {
  1389. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1390. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1391. } else {
  1392. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1393. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1394. }
  1395. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1396. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1397. seg_setup(VCPU_SREG_DS);
  1398. seg_setup(VCPU_SREG_ES);
  1399. seg_setup(VCPU_SREG_FS);
  1400. seg_setup(VCPU_SREG_GS);
  1401. seg_setup(VCPU_SREG_SS);
  1402. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1403. vmcs_writel(GUEST_TR_BASE, 0);
  1404. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1405. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1406. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1407. vmcs_writel(GUEST_LDTR_BASE, 0);
  1408. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1409. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1410. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1411. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1412. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1413. vmcs_writel(GUEST_RFLAGS, 0x02);
  1414. if (vmx->vcpu.vcpu_id == 0)
  1415. vmcs_writel(GUEST_RIP, 0xfff0);
  1416. else
  1417. vmcs_writel(GUEST_RIP, 0);
  1418. vmcs_writel(GUEST_RSP, 0);
  1419. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1420. vmcs_writel(GUEST_DR7, 0x400);
  1421. vmcs_writel(GUEST_GDTR_BASE, 0);
  1422. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1423. vmcs_writel(GUEST_IDTR_BASE, 0);
  1424. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1425. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1426. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1427. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1428. guest_write_tsc(0);
  1429. /* Special registers */
  1430. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1431. setup_msrs(vmx);
  1432. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1433. if (cpu_has_vmx_tpr_shadow()) {
  1434. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1435. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1436. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1437. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1438. vmcs_write32(TPR_THRESHOLD, 0);
  1439. }
  1440. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1441. vmcs_write64(APIC_ACCESS_ADDR,
  1442. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1443. vmx->vcpu.arch.cr0 = 0x60000010;
  1444. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1445. vmx_set_cr4(&vmx->vcpu, 0);
  1446. #ifdef CONFIG_X86_64
  1447. vmx_set_efer(&vmx->vcpu, 0);
  1448. #endif
  1449. vmx_fpu_activate(&vmx->vcpu);
  1450. update_exception_bitmap(&vmx->vcpu);
  1451. return 0;
  1452. out:
  1453. return ret;
  1454. }
  1455. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1456. {
  1457. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1458. if (vcpu->arch.rmode.active) {
  1459. vmx->rmode.irq.pending = true;
  1460. vmx->rmode.irq.vector = irq;
  1461. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1462. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1463. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1464. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1465. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1466. return;
  1467. }
  1468. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1469. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1470. }
  1471. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1472. {
  1473. int word_index = __ffs(vcpu->arch.irq_summary);
  1474. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1475. int irq = word_index * BITS_PER_LONG + bit_index;
  1476. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1477. if (!vcpu->arch.irq_pending[word_index])
  1478. clear_bit(word_index, &vcpu->arch.irq_summary);
  1479. vmx_inject_irq(vcpu, irq);
  1480. }
  1481. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1482. struct kvm_run *kvm_run)
  1483. {
  1484. u32 cpu_based_vm_exec_control;
  1485. vcpu->arch.interrupt_window_open =
  1486. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1487. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1488. if (vcpu->arch.interrupt_window_open &&
  1489. vcpu->arch.irq_summary &&
  1490. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1491. /*
  1492. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1493. */
  1494. kvm_do_inject_irq(vcpu);
  1495. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1496. if (!vcpu->arch.interrupt_window_open &&
  1497. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1498. /*
  1499. * Interrupts blocked. Wait for unblock.
  1500. */
  1501. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1502. else
  1503. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1504. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1505. }
  1506. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1507. {
  1508. int ret;
  1509. struct kvm_userspace_memory_region tss_mem = {
  1510. .slot = 8,
  1511. .guest_phys_addr = addr,
  1512. .memory_size = PAGE_SIZE * 3,
  1513. .flags = 0,
  1514. };
  1515. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1516. if (ret)
  1517. return ret;
  1518. kvm->arch.tss_addr = addr;
  1519. return 0;
  1520. }
  1521. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1522. {
  1523. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1524. set_debugreg(dbg->bp[0], 0);
  1525. set_debugreg(dbg->bp[1], 1);
  1526. set_debugreg(dbg->bp[2], 2);
  1527. set_debugreg(dbg->bp[3], 3);
  1528. if (dbg->singlestep) {
  1529. unsigned long flags;
  1530. flags = vmcs_readl(GUEST_RFLAGS);
  1531. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1532. vmcs_writel(GUEST_RFLAGS, flags);
  1533. }
  1534. }
  1535. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1536. int vec, u32 err_code)
  1537. {
  1538. if (!vcpu->arch.rmode.active)
  1539. return 0;
  1540. /*
  1541. * Instruction with address size override prefix opcode 0x67
  1542. * Cause the #SS fault with 0 error code in VM86 mode.
  1543. */
  1544. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1545. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1546. return 1;
  1547. return 0;
  1548. }
  1549. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1550. {
  1551. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1552. u32 intr_info, error_code;
  1553. unsigned long cr2, rip;
  1554. u32 vect_info;
  1555. enum emulation_result er;
  1556. vect_info = vmx->idt_vectoring_info;
  1557. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1558. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1559. !is_page_fault(intr_info))
  1560. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1561. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1562. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1563. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1564. set_bit(irq, vcpu->arch.irq_pending);
  1565. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1566. }
  1567. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1568. return 1; /* already handled by vmx_vcpu_run() */
  1569. if (is_no_device(intr_info)) {
  1570. vmx_fpu_activate(vcpu);
  1571. return 1;
  1572. }
  1573. if (is_invalid_opcode(intr_info)) {
  1574. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1575. if (er != EMULATE_DONE)
  1576. kvm_queue_exception(vcpu, UD_VECTOR);
  1577. return 1;
  1578. }
  1579. error_code = 0;
  1580. rip = vmcs_readl(GUEST_RIP);
  1581. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1582. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1583. if (is_page_fault(intr_info)) {
  1584. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1585. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1586. }
  1587. if (vcpu->arch.rmode.active &&
  1588. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1589. error_code)) {
  1590. if (vcpu->arch.halt_request) {
  1591. vcpu->arch.halt_request = 0;
  1592. return kvm_emulate_halt(vcpu);
  1593. }
  1594. return 1;
  1595. }
  1596. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1597. (INTR_TYPE_EXCEPTION | 1)) {
  1598. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1599. return 0;
  1600. }
  1601. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1602. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1603. kvm_run->ex.error_code = error_code;
  1604. return 0;
  1605. }
  1606. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1607. struct kvm_run *kvm_run)
  1608. {
  1609. ++vcpu->stat.irq_exits;
  1610. return 1;
  1611. }
  1612. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1613. {
  1614. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1615. return 0;
  1616. }
  1617. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1618. {
  1619. unsigned long exit_qualification;
  1620. int size, down, in, string, rep;
  1621. unsigned port;
  1622. ++vcpu->stat.io_exits;
  1623. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1624. string = (exit_qualification & 16) != 0;
  1625. if (string) {
  1626. if (emulate_instruction(vcpu,
  1627. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1628. return 0;
  1629. return 1;
  1630. }
  1631. size = (exit_qualification & 7) + 1;
  1632. in = (exit_qualification & 8) != 0;
  1633. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1634. rep = (exit_qualification & 32) != 0;
  1635. port = exit_qualification >> 16;
  1636. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1637. }
  1638. static void
  1639. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1640. {
  1641. /*
  1642. * Patch in the VMCALL instruction:
  1643. */
  1644. hypercall[0] = 0x0f;
  1645. hypercall[1] = 0x01;
  1646. hypercall[2] = 0xc1;
  1647. }
  1648. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1649. {
  1650. unsigned long exit_qualification;
  1651. int cr;
  1652. int reg;
  1653. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1654. cr = exit_qualification & 15;
  1655. reg = (exit_qualification >> 8) & 15;
  1656. switch ((exit_qualification >> 4) & 3) {
  1657. case 0: /* mov to cr */
  1658. switch (cr) {
  1659. case 0:
  1660. vcpu_load_rsp_rip(vcpu);
  1661. set_cr0(vcpu, vcpu->arch.regs[reg]);
  1662. skip_emulated_instruction(vcpu);
  1663. return 1;
  1664. case 3:
  1665. vcpu_load_rsp_rip(vcpu);
  1666. set_cr3(vcpu, vcpu->arch.regs[reg]);
  1667. skip_emulated_instruction(vcpu);
  1668. return 1;
  1669. case 4:
  1670. vcpu_load_rsp_rip(vcpu);
  1671. set_cr4(vcpu, vcpu->arch.regs[reg]);
  1672. skip_emulated_instruction(vcpu);
  1673. return 1;
  1674. case 8:
  1675. vcpu_load_rsp_rip(vcpu);
  1676. set_cr8(vcpu, vcpu->arch.regs[reg]);
  1677. skip_emulated_instruction(vcpu);
  1678. if (irqchip_in_kernel(vcpu->kvm))
  1679. return 1;
  1680. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1681. return 0;
  1682. };
  1683. break;
  1684. case 2: /* clts */
  1685. vcpu_load_rsp_rip(vcpu);
  1686. vmx_fpu_deactivate(vcpu);
  1687. vcpu->arch.cr0 &= ~X86_CR0_TS;
  1688. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1689. vmx_fpu_activate(vcpu);
  1690. skip_emulated_instruction(vcpu);
  1691. return 1;
  1692. case 1: /*mov from cr*/
  1693. switch (cr) {
  1694. case 3:
  1695. vcpu_load_rsp_rip(vcpu);
  1696. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  1697. vcpu_put_rsp_rip(vcpu);
  1698. skip_emulated_instruction(vcpu);
  1699. return 1;
  1700. case 8:
  1701. vcpu_load_rsp_rip(vcpu);
  1702. vcpu->arch.regs[reg] = get_cr8(vcpu);
  1703. vcpu_put_rsp_rip(vcpu);
  1704. skip_emulated_instruction(vcpu);
  1705. return 1;
  1706. }
  1707. break;
  1708. case 3: /* lmsw */
  1709. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1710. skip_emulated_instruction(vcpu);
  1711. return 1;
  1712. default:
  1713. break;
  1714. }
  1715. kvm_run->exit_reason = 0;
  1716. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1717. (int)(exit_qualification >> 4) & 3, cr);
  1718. return 0;
  1719. }
  1720. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1721. {
  1722. unsigned long exit_qualification;
  1723. unsigned long val;
  1724. int dr, reg;
  1725. /*
  1726. * FIXME: this code assumes the host is debugging the guest.
  1727. * need to deal with guest debugging itself too.
  1728. */
  1729. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1730. dr = exit_qualification & 7;
  1731. reg = (exit_qualification >> 8) & 15;
  1732. vcpu_load_rsp_rip(vcpu);
  1733. if (exit_qualification & 16) {
  1734. /* mov from dr */
  1735. switch (dr) {
  1736. case 6:
  1737. val = 0xffff0ff0;
  1738. break;
  1739. case 7:
  1740. val = 0x400;
  1741. break;
  1742. default:
  1743. val = 0;
  1744. }
  1745. vcpu->arch.regs[reg] = val;
  1746. } else {
  1747. /* mov to dr */
  1748. }
  1749. vcpu_put_rsp_rip(vcpu);
  1750. skip_emulated_instruction(vcpu);
  1751. return 1;
  1752. }
  1753. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1754. {
  1755. kvm_emulate_cpuid(vcpu);
  1756. return 1;
  1757. }
  1758. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1759. {
  1760. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1761. u64 data;
  1762. if (vmx_get_msr(vcpu, ecx, &data)) {
  1763. kvm_inject_gp(vcpu, 0);
  1764. return 1;
  1765. }
  1766. /* FIXME: handling of bits 32:63 of rax, rdx */
  1767. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  1768. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1769. skip_emulated_instruction(vcpu);
  1770. return 1;
  1771. }
  1772. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1773. {
  1774. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1775. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  1776. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1777. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1778. kvm_inject_gp(vcpu, 0);
  1779. return 1;
  1780. }
  1781. skip_emulated_instruction(vcpu);
  1782. return 1;
  1783. }
  1784. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1785. struct kvm_run *kvm_run)
  1786. {
  1787. return 1;
  1788. }
  1789. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1790. struct kvm_run *kvm_run)
  1791. {
  1792. u32 cpu_based_vm_exec_control;
  1793. /* clear pending irq */
  1794. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1795. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1796. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1797. /*
  1798. * If the user space waits to inject interrupts, exit as soon as
  1799. * possible
  1800. */
  1801. if (kvm_run->request_interrupt_window &&
  1802. !vcpu->arch.irq_summary) {
  1803. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1804. ++vcpu->stat.irq_window_exits;
  1805. return 0;
  1806. }
  1807. return 1;
  1808. }
  1809. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1810. {
  1811. skip_emulated_instruction(vcpu);
  1812. return kvm_emulate_halt(vcpu);
  1813. }
  1814. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1815. {
  1816. skip_emulated_instruction(vcpu);
  1817. kvm_emulate_hypercall(vcpu);
  1818. return 1;
  1819. }
  1820. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1821. {
  1822. skip_emulated_instruction(vcpu);
  1823. /* TODO: Add support for VT-d/pass-through device */
  1824. return 1;
  1825. }
  1826. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1827. {
  1828. u64 exit_qualification;
  1829. enum emulation_result er;
  1830. unsigned long offset;
  1831. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1832. offset = exit_qualification & 0xffful;
  1833. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1834. if (er != EMULATE_DONE) {
  1835. printk(KERN_ERR
  1836. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1837. offset);
  1838. return -ENOTSUPP;
  1839. }
  1840. return 1;
  1841. }
  1842. /*
  1843. * The exit handlers return 1 if the exit was handled fully and guest execution
  1844. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1845. * to be done to userspace and return 0.
  1846. */
  1847. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1848. struct kvm_run *kvm_run) = {
  1849. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1850. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1851. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1852. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1853. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1854. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1855. [EXIT_REASON_CPUID] = handle_cpuid,
  1856. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1857. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1858. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1859. [EXIT_REASON_HLT] = handle_halt,
  1860. [EXIT_REASON_VMCALL] = handle_vmcall,
  1861. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1862. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1863. [EXIT_REASON_WBINVD] = handle_wbinvd,
  1864. };
  1865. static const int kvm_vmx_max_exit_handlers =
  1866. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1867. /*
  1868. * The guest has exited. See if we can fix it or if we need userspace
  1869. * assistance.
  1870. */
  1871. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1872. {
  1873. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1874. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1875. u32 vectoring_info = vmx->idt_vectoring_info;
  1876. if (unlikely(vmx->fail)) {
  1877. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1878. kvm_run->fail_entry.hardware_entry_failure_reason
  1879. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1880. return 0;
  1881. }
  1882. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1883. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1884. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1885. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1886. if (exit_reason < kvm_vmx_max_exit_handlers
  1887. && kvm_vmx_exit_handlers[exit_reason])
  1888. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1889. else {
  1890. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1891. kvm_run->hw.hardware_exit_reason = exit_reason;
  1892. }
  1893. return 0;
  1894. }
  1895. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1896. {
  1897. }
  1898. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1899. {
  1900. int max_irr, tpr;
  1901. if (!vm_need_tpr_shadow(vcpu->kvm))
  1902. return;
  1903. if (!kvm_lapic_enabled(vcpu) ||
  1904. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1905. vmcs_write32(TPR_THRESHOLD, 0);
  1906. return;
  1907. }
  1908. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1909. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1910. }
  1911. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1912. {
  1913. u32 cpu_based_vm_exec_control;
  1914. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1915. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1916. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1917. }
  1918. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1919. {
  1920. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1921. u32 idtv_info_field, intr_info_field;
  1922. int has_ext_irq, interrupt_window_open;
  1923. int vector;
  1924. update_tpr_threshold(vcpu);
  1925. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1926. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1927. idtv_info_field = vmx->idt_vectoring_info;
  1928. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1929. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1930. /* TODO: fault when IDT_Vectoring */
  1931. if (printk_ratelimit())
  1932. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1933. }
  1934. if (has_ext_irq)
  1935. enable_irq_window(vcpu);
  1936. return;
  1937. }
  1938. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1939. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  1940. == INTR_TYPE_EXT_INTR
  1941. && vcpu->arch.rmode.active) {
  1942. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  1943. vmx_inject_irq(vcpu, vect);
  1944. if (unlikely(has_ext_irq))
  1945. enable_irq_window(vcpu);
  1946. return;
  1947. }
  1948. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1949. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1950. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1951. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1952. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1953. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1954. if (unlikely(has_ext_irq))
  1955. enable_irq_window(vcpu);
  1956. return;
  1957. }
  1958. if (!has_ext_irq)
  1959. return;
  1960. interrupt_window_open =
  1961. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1962. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1963. if (interrupt_window_open) {
  1964. vector = kvm_cpu_get_interrupt(vcpu);
  1965. vmx_inject_irq(vcpu, vector);
  1966. kvm_timer_intr_post(vcpu, vector);
  1967. } else
  1968. enable_irq_window(vcpu);
  1969. }
  1970. /*
  1971. * Failure to inject an interrupt should give us the information
  1972. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  1973. * when fetching the interrupt redirection bitmap in the real-mode
  1974. * tss, this doesn't happen. So we do it ourselves.
  1975. */
  1976. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  1977. {
  1978. vmx->rmode.irq.pending = 0;
  1979. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  1980. return;
  1981. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  1982. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  1983. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  1984. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  1985. return;
  1986. }
  1987. vmx->idt_vectoring_info =
  1988. VECTORING_INFO_VALID_MASK
  1989. | INTR_TYPE_EXT_INTR
  1990. | vmx->rmode.irq.vector;
  1991. }
  1992. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1993. {
  1994. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1995. u32 intr_info;
  1996. /*
  1997. * Loading guest fpu may have cleared host cr0.ts
  1998. */
  1999. vmcs_writel(HOST_CR0, read_cr0());
  2000. asm(
  2001. /* Store host registers */
  2002. #ifdef CONFIG_X86_64
  2003. "push %%rdx; push %%rbp;"
  2004. "push %%rcx \n\t"
  2005. #else
  2006. "push %%edx; push %%ebp;"
  2007. "push %%ecx \n\t"
  2008. #endif
  2009. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2010. /* Check if vmlaunch of vmresume is needed */
  2011. "cmpl $0, %c[launched](%0) \n\t"
  2012. /* Load guest registers. Don't clobber flags. */
  2013. #ifdef CONFIG_X86_64
  2014. "mov %c[cr2](%0), %%rax \n\t"
  2015. "mov %%rax, %%cr2 \n\t"
  2016. "mov %c[rax](%0), %%rax \n\t"
  2017. "mov %c[rbx](%0), %%rbx \n\t"
  2018. "mov %c[rdx](%0), %%rdx \n\t"
  2019. "mov %c[rsi](%0), %%rsi \n\t"
  2020. "mov %c[rdi](%0), %%rdi \n\t"
  2021. "mov %c[rbp](%0), %%rbp \n\t"
  2022. "mov %c[r8](%0), %%r8 \n\t"
  2023. "mov %c[r9](%0), %%r9 \n\t"
  2024. "mov %c[r10](%0), %%r10 \n\t"
  2025. "mov %c[r11](%0), %%r11 \n\t"
  2026. "mov %c[r12](%0), %%r12 \n\t"
  2027. "mov %c[r13](%0), %%r13 \n\t"
  2028. "mov %c[r14](%0), %%r14 \n\t"
  2029. "mov %c[r15](%0), %%r15 \n\t"
  2030. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2031. #else
  2032. "mov %c[cr2](%0), %%eax \n\t"
  2033. "mov %%eax, %%cr2 \n\t"
  2034. "mov %c[rax](%0), %%eax \n\t"
  2035. "mov %c[rbx](%0), %%ebx \n\t"
  2036. "mov %c[rdx](%0), %%edx \n\t"
  2037. "mov %c[rsi](%0), %%esi \n\t"
  2038. "mov %c[rdi](%0), %%edi \n\t"
  2039. "mov %c[rbp](%0), %%ebp \n\t"
  2040. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2041. #endif
  2042. /* Enter guest mode */
  2043. "jne .Llaunched \n\t"
  2044. ASM_VMX_VMLAUNCH "\n\t"
  2045. "jmp .Lkvm_vmx_return \n\t"
  2046. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2047. ".Lkvm_vmx_return: "
  2048. /* Save guest registers, load host registers, keep flags */
  2049. #ifdef CONFIG_X86_64
  2050. "xchg %0, (%%rsp) \n\t"
  2051. "mov %%rax, %c[rax](%0) \n\t"
  2052. "mov %%rbx, %c[rbx](%0) \n\t"
  2053. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2054. "mov %%rdx, %c[rdx](%0) \n\t"
  2055. "mov %%rsi, %c[rsi](%0) \n\t"
  2056. "mov %%rdi, %c[rdi](%0) \n\t"
  2057. "mov %%rbp, %c[rbp](%0) \n\t"
  2058. "mov %%r8, %c[r8](%0) \n\t"
  2059. "mov %%r9, %c[r9](%0) \n\t"
  2060. "mov %%r10, %c[r10](%0) \n\t"
  2061. "mov %%r11, %c[r11](%0) \n\t"
  2062. "mov %%r12, %c[r12](%0) \n\t"
  2063. "mov %%r13, %c[r13](%0) \n\t"
  2064. "mov %%r14, %c[r14](%0) \n\t"
  2065. "mov %%r15, %c[r15](%0) \n\t"
  2066. "mov %%cr2, %%rax \n\t"
  2067. "mov %%rax, %c[cr2](%0) \n\t"
  2068. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2069. #else
  2070. "xchg %0, (%%esp) \n\t"
  2071. "mov %%eax, %c[rax](%0) \n\t"
  2072. "mov %%ebx, %c[rbx](%0) \n\t"
  2073. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2074. "mov %%edx, %c[rdx](%0) \n\t"
  2075. "mov %%esi, %c[rsi](%0) \n\t"
  2076. "mov %%edi, %c[rdi](%0) \n\t"
  2077. "mov %%ebp, %c[rbp](%0) \n\t"
  2078. "mov %%cr2, %%eax \n\t"
  2079. "mov %%eax, %c[cr2](%0) \n\t"
  2080. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2081. #endif
  2082. "setbe %c[fail](%0) \n\t"
  2083. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2084. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2085. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2086. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2087. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2088. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2089. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2090. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2091. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2092. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2093. #ifdef CONFIG_X86_64
  2094. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2095. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2096. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2097. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2098. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2099. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2100. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2101. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2102. #endif
  2103. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2104. : "cc", "memory"
  2105. #ifdef CONFIG_X86_64
  2106. , "rbx", "rdi", "rsi"
  2107. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2108. #else
  2109. , "ebx", "edi", "rsi"
  2110. #endif
  2111. );
  2112. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2113. if (vmx->rmode.irq.pending)
  2114. fixup_rmode_irq(vmx);
  2115. vcpu->arch.interrupt_window_open =
  2116. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2117. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2118. vmx->launched = 1;
  2119. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2120. /* We need to handle NMIs before interrupts are enabled */
  2121. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2122. asm("int $2");
  2123. }
  2124. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2125. {
  2126. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2127. if (vmx->vmcs) {
  2128. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2129. free_vmcs(vmx->vmcs);
  2130. vmx->vmcs = NULL;
  2131. }
  2132. }
  2133. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2134. {
  2135. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2136. vmx_free_vmcs(vcpu);
  2137. kfree(vmx->host_msrs);
  2138. kfree(vmx->guest_msrs);
  2139. kvm_vcpu_uninit(vcpu);
  2140. kmem_cache_free(kvm_vcpu_cache, vmx);
  2141. }
  2142. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2143. {
  2144. int err;
  2145. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2146. int cpu;
  2147. if (!vmx)
  2148. return ERR_PTR(-ENOMEM);
  2149. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2150. if (err)
  2151. goto free_vcpu;
  2152. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2153. if (!vmx->guest_msrs) {
  2154. err = -ENOMEM;
  2155. goto uninit_vcpu;
  2156. }
  2157. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2158. if (!vmx->host_msrs)
  2159. goto free_guest_msrs;
  2160. vmx->vmcs = alloc_vmcs();
  2161. if (!vmx->vmcs)
  2162. goto free_msrs;
  2163. vmcs_clear(vmx->vmcs);
  2164. cpu = get_cpu();
  2165. vmx_vcpu_load(&vmx->vcpu, cpu);
  2166. err = vmx_vcpu_setup(vmx);
  2167. vmx_vcpu_put(&vmx->vcpu);
  2168. put_cpu();
  2169. if (err)
  2170. goto free_vmcs;
  2171. if (vm_need_virtualize_apic_accesses(kvm))
  2172. if (alloc_apic_access_page(kvm) != 0)
  2173. goto free_vmcs;
  2174. return &vmx->vcpu;
  2175. free_vmcs:
  2176. free_vmcs(vmx->vmcs);
  2177. free_msrs:
  2178. kfree(vmx->host_msrs);
  2179. free_guest_msrs:
  2180. kfree(vmx->guest_msrs);
  2181. uninit_vcpu:
  2182. kvm_vcpu_uninit(&vmx->vcpu);
  2183. free_vcpu:
  2184. kmem_cache_free(kvm_vcpu_cache, vmx);
  2185. return ERR_PTR(err);
  2186. }
  2187. static void __init vmx_check_processor_compat(void *rtn)
  2188. {
  2189. struct vmcs_config vmcs_conf;
  2190. *(int *)rtn = 0;
  2191. if (setup_vmcs_config(&vmcs_conf) < 0)
  2192. *(int *)rtn = -EIO;
  2193. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2194. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2195. smp_processor_id());
  2196. *(int *)rtn = -EIO;
  2197. }
  2198. }
  2199. static struct kvm_x86_ops vmx_x86_ops = {
  2200. .cpu_has_kvm_support = cpu_has_kvm_support,
  2201. .disabled_by_bios = vmx_disabled_by_bios,
  2202. .hardware_setup = hardware_setup,
  2203. .hardware_unsetup = hardware_unsetup,
  2204. .check_processor_compatibility = vmx_check_processor_compat,
  2205. .hardware_enable = hardware_enable,
  2206. .hardware_disable = hardware_disable,
  2207. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2208. .vcpu_create = vmx_create_vcpu,
  2209. .vcpu_free = vmx_free_vcpu,
  2210. .vcpu_reset = vmx_vcpu_reset,
  2211. .prepare_guest_switch = vmx_save_host_state,
  2212. .vcpu_load = vmx_vcpu_load,
  2213. .vcpu_put = vmx_vcpu_put,
  2214. .vcpu_decache = vmx_vcpu_decache,
  2215. .set_guest_debug = set_guest_debug,
  2216. .guest_debug_pre = kvm_guest_debug_pre,
  2217. .get_msr = vmx_get_msr,
  2218. .set_msr = vmx_set_msr,
  2219. .get_segment_base = vmx_get_segment_base,
  2220. .get_segment = vmx_get_segment,
  2221. .set_segment = vmx_set_segment,
  2222. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2223. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2224. .set_cr0 = vmx_set_cr0,
  2225. .set_cr3 = vmx_set_cr3,
  2226. .set_cr4 = vmx_set_cr4,
  2227. #ifdef CONFIG_X86_64
  2228. .set_efer = vmx_set_efer,
  2229. #endif
  2230. .get_idt = vmx_get_idt,
  2231. .set_idt = vmx_set_idt,
  2232. .get_gdt = vmx_get_gdt,
  2233. .set_gdt = vmx_set_gdt,
  2234. .cache_regs = vcpu_load_rsp_rip,
  2235. .decache_regs = vcpu_put_rsp_rip,
  2236. .get_rflags = vmx_get_rflags,
  2237. .set_rflags = vmx_set_rflags,
  2238. .tlb_flush = vmx_flush_tlb,
  2239. .run = vmx_vcpu_run,
  2240. .handle_exit = kvm_handle_exit,
  2241. .skip_emulated_instruction = skip_emulated_instruction,
  2242. .patch_hypercall = vmx_patch_hypercall,
  2243. .get_irq = vmx_get_irq,
  2244. .set_irq = vmx_inject_irq,
  2245. .queue_exception = vmx_queue_exception,
  2246. .exception_injected = vmx_exception_injected,
  2247. .inject_pending_irq = vmx_intr_assist,
  2248. .inject_pending_vectors = do_interrupt_requests,
  2249. .set_tss_addr = vmx_set_tss_addr,
  2250. };
  2251. static int __init vmx_init(void)
  2252. {
  2253. void *iova;
  2254. int r;
  2255. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2256. if (!vmx_io_bitmap_a)
  2257. return -ENOMEM;
  2258. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2259. if (!vmx_io_bitmap_b) {
  2260. r = -ENOMEM;
  2261. goto out;
  2262. }
  2263. /*
  2264. * Allow direct access to the PC debug port (it is often used for I/O
  2265. * delays, but the vmexits simply slow things down).
  2266. */
  2267. iova = kmap(vmx_io_bitmap_a);
  2268. memset(iova, 0xff, PAGE_SIZE);
  2269. clear_bit(0x80, iova);
  2270. kunmap(vmx_io_bitmap_a);
  2271. iova = kmap(vmx_io_bitmap_b);
  2272. memset(iova, 0xff, PAGE_SIZE);
  2273. kunmap(vmx_io_bitmap_b);
  2274. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2275. if (r)
  2276. goto out1;
  2277. if (bypass_guest_pf)
  2278. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2279. return 0;
  2280. out1:
  2281. __free_page(vmx_io_bitmap_b);
  2282. out:
  2283. __free_page(vmx_io_bitmap_a);
  2284. return r;
  2285. }
  2286. static void __exit vmx_exit(void)
  2287. {
  2288. __free_page(vmx_io_bitmap_b);
  2289. __free_page(vmx_io_bitmap_a);
  2290. kvm_exit();
  2291. }
  2292. module_init(vmx_init)
  2293. module_exit(vmx_exit)