i8253.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. /*
  2. * i8253.c 8253/PIT functions
  3. *
  4. */
  5. #include <linux/clockchips.h>
  6. #include <linux/init.h>
  7. #include <linux/interrupt.h>
  8. #include <linux/jiffies.h>
  9. #include <linux/module.h>
  10. #include <linux/spinlock.h>
  11. #include <asm/delay.h>
  12. #include <asm/i8253.h>
  13. #include <asm/io.h>
  14. #include <asm/time.h>
  15. DEFINE_SPINLOCK(i8253_lock);
  16. /*
  17. * Initialize the PIT timer.
  18. *
  19. * This is also called after resume to bring the PIT into operation again.
  20. */
  21. static void init_pit_timer(enum clock_event_mode mode,
  22. struct clock_event_device *evt)
  23. {
  24. spin_lock(&i8253_lock);
  25. switch(mode) {
  26. case CLOCK_EVT_MODE_PERIODIC:
  27. /* binary, mode 2, LSB/MSB, ch 0 */
  28. outb_p(0x34, PIT_MODE);
  29. outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
  30. outb(LATCH >> 8 , PIT_CH0); /* MSB */
  31. break;
  32. case CLOCK_EVT_MODE_SHUTDOWN:
  33. case CLOCK_EVT_MODE_UNUSED:
  34. if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
  35. evt->mode == CLOCK_EVT_MODE_ONESHOT) {
  36. outb_p(0x30, PIT_MODE);
  37. outb_p(0, PIT_CH0);
  38. outb_p(0, PIT_CH0);
  39. }
  40. break;
  41. case CLOCK_EVT_MODE_ONESHOT:
  42. /* One shot setup */
  43. outb_p(0x38, PIT_MODE);
  44. break;
  45. case CLOCK_EVT_MODE_RESUME:
  46. /* Nothing to do here */
  47. break;
  48. }
  49. spin_unlock(&i8253_lock);
  50. }
  51. /*
  52. * Program the next event in oneshot mode
  53. *
  54. * Delta is given in PIT ticks
  55. */
  56. static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
  57. {
  58. spin_lock(&i8253_lock);
  59. outb_p(delta & 0xff , PIT_CH0); /* LSB */
  60. outb(delta >> 8 , PIT_CH0); /* MSB */
  61. spin_unlock(&i8253_lock);
  62. return 0;
  63. }
  64. /*
  65. * On UP the PIT can serve all of the possible timer functions. On SMP systems
  66. * it can be solely used for the global tick.
  67. *
  68. * The profiling and update capabilites are switched off once the local apic is
  69. * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
  70. * !using_apic_timer decisions in do_timer_interrupt_hook()
  71. */
  72. struct clock_event_device pit_clockevent = {
  73. .name = "pit",
  74. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  75. .set_mode = init_pit_timer,
  76. .set_next_event = pit_next_event,
  77. .irq = 0,
  78. };
  79. static irqreturn_t timer_interrupt(int irq, void *dev_id)
  80. {
  81. pit_clockevent.event_handler(&pit_clockevent);
  82. return IRQ_HANDLED;
  83. }
  84. static struct irqaction irq0 = {
  85. .handler = timer_interrupt,
  86. .flags = IRQF_DISABLED | IRQF_NOBALANCING,
  87. .mask = CPU_MASK_NONE,
  88. .name = "timer"
  89. };
  90. /*
  91. * Initialize the conversion factor and the min/max deltas of the clock event
  92. * structure and register the clock event source with the framework.
  93. */
  94. void __init setup_pit_timer(void)
  95. {
  96. struct clock_event_device *cd = &pit_clockevent;
  97. unsigned int cpu = smp_processor_id();
  98. /*
  99. * Start pit with the boot cpu mask and make it global after the
  100. * IO_APIC has been initialized.
  101. */
  102. cd->cpumask = cpumask_of_cpu(cpu);
  103. clockevent_set_clock(cd, CLOCK_TICK_RATE);
  104. cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd);
  105. cd->min_delta_ns = clockevent_delta2ns(0xF, cd);
  106. clockevents_register_device(cd);
  107. irq0.mask = cpumask_of_cpu(cpu);
  108. setup_irq(0, &irq0);
  109. }
  110. /*
  111. * Since the PIT overflows every tick, its not very useful
  112. * to just read by itself. So use jiffies to emulate a free
  113. * running counter:
  114. */
  115. static cycle_t pit_read(void)
  116. {
  117. unsigned long flags;
  118. int count;
  119. u32 jifs;
  120. static int old_count;
  121. static u32 old_jifs;
  122. spin_lock_irqsave(&i8253_lock, flags);
  123. /*
  124. * Although our caller may have the read side of xtime_lock,
  125. * this is now a seqlock, and we are cheating in this routine
  126. * by having side effects on state that we cannot undo if
  127. * there is a collision on the seqlock and our caller has to
  128. * retry. (Namely, old_jifs and old_count.) So we must treat
  129. * jiffies as volatile despite the lock. We read jiffies
  130. * before latching the timer count to guarantee that although
  131. * the jiffies value might be older than the count (that is,
  132. * the counter may underflow between the last point where
  133. * jiffies was incremented and the point where we latch the
  134. * count), it cannot be newer.
  135. */
  136. jifs = jiffies;
  137. outb_p(0x00, PIT_MODE); /* latch the count ASAP */
  138. count = inb_p(PIT_CH0); /* read the latched count */
  139. count |= inb_p(PIT_CH0) << 8;
  140. /* VIA686a test code... reset the latch if count > max + 1 */
  141. if (count > LATCH) {
  142. outb_p(0x34, PIT_MODE);
  143. outb_p(LATCH & 0xff, PIT_CH0);
  144. outb(LATCH >> 8, PIT_CH0);
  145. count = LATCH - 1;
  146. }
  147. /*
  148. * It's possible for count to appear to go the wrong way for a
  149. * couple of reasons:
  150. *
  151. * 1. The timer counter underflows, but we haven't handled the
  152. * resulting interrupt and incremented jiffies yet.
  153. * 2. Hardware problem with the timer, not giving us continuous time,
  154. * the counter does small "jumps" upwards on some Pentium systems,
  155. * (see c't 95/10 page 335 for Neptun bug.)
  156. *
  157. * Previous attempts to handle these cases intelligently were
  158. * buggy, so we just do the simple thing now.
  159. */
  160. if (count > old_count && jifs == old_jifs) {
  161. count = old_count;
  162. }
  163. old_count = count;
  164. old_jifs = jifs;
  165. spin_unlock_irqrestore(&i8253_lock, flags);
  166. count = (LATCH - 1) - count;
  167. return (cycle_t)(jifs * LATCH) + count;
  168. }
  169. static struct clocksource clocksource_pit = {
  170. .name = "pit",
  171. .rating = 110,
  172. .read = pit_read,
  173. .mask = CLOCKSOURCE_MASK(32),
  174. .mult = 0,
  175. .shift = 20,
  176. };
  177. static int __init init_pit_clocksource(void)
  178. {
  179. if (num_possible_cpus() > 1) /* PIT does not scale! */
  180. return 0;
  181. clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
  182. return clocksource_register(&clocksource_pit);
  183. }
  184. arch_initcall(init_pit_clocksource);