core.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/config.h>
  22. #include <linux/init.h>
  23. #include <linux/device.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <asm/system.h>
  28. #include <asm/hardware.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <asm/leds.h>
  32. #include <asm/hardware/amba.h>
  33. #include <asm/hardware/amba_clcd.h>
  34. #include <asm/hardware/arm_timer.h>
  35. #include <asm/hardware/icst307.h>
  36. #include <asm/mach/arch.h>
  37. #include <asm/mach/flash.h>
  38. #include <asm/mach/irq.h>
  39. #include <asm/mach/time.h>
  40. #include <asm/mach/map.h>
  41. #include <asm/mach/mmc.h>
  42. #include "core.h"
  43. #include "clock.h"
  44. /*
  45. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  46. * is the (PA >> 12).
  47. *
  48. * Setup a VA for the Versatile Vectored Interrupt Controller.
  49. */
  50. #define __io_address(n) __io(IO_ADDRESS(n))
  51. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  52. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  53. static void vic_mask_irq(unsigned int irq)
  54. {
  55. irq -= IRQ_VIC_START;
  56. writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
  57. }
  58. static void vic_unmask_irq(unsigned int irq)
  59. {
  60. irq -= IRQ_VIC_START;
  61. writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
  62. }
  63. static struct irqchip vic_chip = {
  64. .ack = vic_mask_irq,
  65. .mask = vic_mask_irq,
  66. .unmask = vic_unmask_irq,
  67. };
  68. static void sic_mask_irq(unsigned int irq)
  69. {
  70. irq -= IRQ_SIC_START;
  71. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  72. }
  73. static void sic_unmask_irq(unsigned int irq)
  74. {
  75. irq -= IRQ_SIC_START;
  76. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  77. }
  78. static struct irqchip sic_chip = {
  79. .ack = sic_mask_irq,
  80. .mask = sic_mask_irq,
  81. .unmask = sic_unmask_irq,
  82. };
  83. static void
  84. sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
  85. {
  86. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  87. if (status == 0) {
  88. do_bad_IRQ(irq, desc, regs);
  89. return;
  90. }
  91. do {
  92. irq = ffs(status) - 1;
  93. status &= ~(1 << irq);
  94. irq += IRQ_SIC_START;
  95. desc = irq_desc + irq;
  96. desc_handle_irq(irq, desc, regs);
  97. } while (status);
  98. }
  99. #if 1
  100. #define IRQ_MMCI0A IRQ_VICSOURCE22
  101. #define IRQ_AACI IRQ_VICSOURCE24
  102. #define IRQ_ETH IRQ_VICSOURCE25
  103. #define PIC_MASK 0xFFD00000
  104. #else
  105. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  106. #define IRQ_AACI IRQ_SIC_AACI
  107. #define IRQ_ETH IRQ_SIC_ETH
  108. #define PIC_MASK 0
  109. #endif
  110. void __init versatile_init_irq(void)
  111. {
  112. unsigned int i, value;
  113. /* Disable all interrupts initially. */
  114. writel(0, VA_VIC_BASE + VIC_INT_SELECT);
  115. writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
  116. writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
  117. writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
  118. writel(0, VA_VIC_BASE + VIC_ITCR);
  119. writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
  120. /*
  121. * Make sure we clear all existing interrupts
  122. */
  123. writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
  124. for (i = 0; i < 19; i++) {
  125. value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
  126. writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
  127. }
  128. for (i = 0; i < 16; i++) {
  129. value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
  130. writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
  131. }
  132. writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
  133. for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
  134. if (i != IRQ_VICSOURCE31) {
  135. set_irq_chip(i, &vic_chip);
  136. set_irq_handler(i, do_level_IRQ);
  137. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  138. }
  139. }
  140. set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
  141. vic_unmask_irq(IRQ_VICSOURCE31);
  142. /* Do second interrupt controller */
  143. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  144. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  145. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  146. set_irq_chip(i, &sic_chip);
  147. set_irq_handler(i, do_level_IRQ);
  148. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  149. }
  150. }
  151. /*
  152. * Interrupts on secondary controller from 0 to 8 are routed to
  153. * source 31 on PIC.
  154. * Interrupts from 21 to 31 are routed directly to the VIC on
  155. * the corresponding number on primary controller. This is controlled
  156. * by setting PIC_ENABLEx.
  157. */
  158. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  159. }
  160. static struct map_desc versatile_io_desc[] __initdata = {
  161. {
  162. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  163. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  164. .length = SZ_4K,
  165. .type = MT_DEVICE
  166. }, {
  167. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  168. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  169. .length = SZ_4K,
  170. .type = MT_DEVICE
  171. }, {
  172. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  173. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  174. .length = SZ_4K,
  175. .type = MT_DEVICE
  176. }, {
  177. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  178. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  179. .length = SZ_4K * 9,
  180. .type = MT_DEVICE
  181. },
  182. #ifdef CONFIG_MACH_VERSATILE_AB
  183. {
  184. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  185. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  186. .length = SZ_4K,
  187. .type = MT_DEVICE
  188. }, {
  189. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  190. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  191. .length = SZ_64M,
  192. .type = MT_DEVICE
  193. },
  194. #endif
  195. #ifdef CONFIG_DEBUG_LL
  196. {
  197. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  198. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  199. .length = SZ_4K,
  200. .type = MT_DEVICE
  201. },
  202. #endif
  203. #ifdef CONFIG_PCI
  204. {
  205. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  206. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  207. .length = SZ_4K,
  208. .type = MT_DEVICE
  209. }, {
  210. .virtual = VERSATILE_PCI_VIRT_BASE,
  211. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  212. .length = VERSATILE_PCI_BASE_SIZE,
  213. .type = MT_DEVICE
  214. }, {
  215. .virtual = VERSATILE_PCI_CFG_VIRT_BASE,
  216. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  217. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  218. .type = MT_DEVICE
  219. },
  220. #if 0
  221. {
  222. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  223. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  224. .length = SZ_16M,
  225. .type = MT_DEVICE
  226. }, {
  227. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  228. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  229. .length = SZ_16M,
  230. .type = MT_DEVICE
  231. }, {
  232. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  233. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  234. .length = SZ_16M,
  235. .type = MT_DEVICE
  236. },
  237. #endif
  238. #endif
  239. };
  240. void __init versatile_map_io(void)
  241. {
  242. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  243. }
  244. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  245. /*
  246. * This is the Versatile sched_clock implementation. This has
  247. * a resolution of 41.7ns, and a maximum value of about 179s.
  248. */
  249. unsigned long long sched_clock(void)
  250. {
  251. unsigned long long v;
  252. v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
  253. do_div(v, 3);
  254. return v;
  255. }
  256. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  257. static int versatile_flash_init(void)
  258. {
  259. u32 val;
  260. val = __raw_readl(VERSATILE_FLASHCTRL);
  261. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  262. __raw_writel(val, VERSATILE_FLASHCTRL);
  263. return 0;
  264. }
  265. static void versatile_flash_exit(void)
  266. {
  267. u32 val;
  268. val = __raw_readl(VERSATILE_FLASHCTRL);
  269. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  270. __raw_writel(val, VERSATILE_FLASHCTRL);
  271. }
  272. static void versatile_flash_set_vpp(int on)
  273. {
  274. u32 val;
  275. val = __raw_readl(VERSATILE_FLASHCTRL);
  276. if (on)
  277. val |= VERSATILE_FLASHPROG_FLVPPEN;
  278. else
  279. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  280. __raw_writel(val, VERSATILE_FLASHCTRL);
  281. }
  282. static struct flash_platform_data versatile_flash_data = {
  283. .map_name = "cfi_probe",
  284. .width = 4,
  285. .init = versatile_flash_init,
  286. .exit = versatile_flash_exit,
  287. .set_vpp = versatile_flash_set_vpp,
  288. };
  289. static struct resource versatile_flash_resource = {
  290. .start = VERSATILE_FLASH_BASE,
  291. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
  292. .flags = IORESOURCE_MEM,
  293. };
  294. static struct platform_device versatile_flash_device = {
  295. .name = "armflash",
  296. .id = 0,
  297. .dev = {
  298. .platform_data = &versatile_flash_data,
  299. },
  300. .num_resources = 1,
  301. .resource = &versatile_flash_resource,
  302. };
  303. static struct resource smc91x_resources[] = {
  304. [0] = {
  305. .start = VERSATILE_ETH_BASE,
  306. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  307. .flags = IORESOURCE_MEM,
  308. },
  309. [1] = {
  310. .start = IRQ_ETH,
  311. .end = IRQ_ETH,
  312. .flags = IORESOURCE_IRQ,
  313. },
  314. };
  315. static struct platform_device smc91x_device = {
  316. .name = "smc91x",
  317. .id = 0,
  318. .num_resources = ARRAY_SIZE(smc91x_resources),
  319. .resource = smc91x_resources,
  320. };
  321. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  322. unsigned int mmc_status(struct device *dev)
  323. {
  324. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  325. u32 mask;
  326. if (adev->res.start == VERSATILE_MMCI0_BASE)
  327. mask = 1;
  328. else
  329. mask = 2;
  330. return readl(VERSATILE_SYSMCI) & mask;
  331. }
  332. static struct mmc_platform_data mmc0_plat_data = {
  333. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  334. .status = mmc_status,
  335. };
  336. /*
  337. * Clock handling
  338. */
  339. static const struct icst307_params versatile_oscvco_params = {
  340. .ref = 24000,
  341. .vco_max = 200000,
  342. .vd_min = 4 + 8,
  343. .vd_max = 511 + 8,
  344. .rd_min = 1 + 2,
  345. .rd_max = 127 + 2,
  346. };
  347. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  348. {
  349. void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  350. #if defined(CONFIG_ARCH_VERSATILE_PB)
  351. void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
  352. #elif defined(CONFIG_MACH_VERSATILE_AB)
  353. void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
  354. #endif
  355. u32 val;
  356. val = readl(sys_osc) & ~0x7ffff;
  357. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  358. writel(0xa05f, sys_lock);
  359. writel(val, sys_osc);
  360. writel(0, sys_lock);
  361. }
  362. static struct clk versatile_clcd_clk = {
  363. .name = "CLCDCLK",
  364. .params = &versatile_oscvco_params,
  365. .setvco = versatile_oscvco_set,
  366. };
  367. /*
  368. * CLCD support.
  369. */
  370. #define SYS_CLCD_MODE_MASK (3 << 0)
  371. #define SYS_CLCD_MODE_888 (0 << 0)
  372. #define SYS_CLCD_MODE_5551 (1 << 0)
  373. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  374. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  375. #define SYS_CLCD_NLCDIOON (1 << 2)
  376. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  377. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  378. #define SYS_CLCD_ID_MASK (0x1f << 8)
  379. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  380. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  381. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  382. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  383. #define SYS_CLCD_ID_VGA (0x1f << 8)
  384. static struct clcd_panel vga = {
  385. .mode = {
  386. .name = "VGA",
  387. .refresh = 60,
  388. .xres = 640,
  389. .yres = 480,
  390. .pixclock = 39721,
  391. .left_margin = 40,
  392. .right_margin = 24,
  393. .upper_margin = 32,
  394. .lower_margin = 11,
  395. .hsync_len = 96,
  396. .vsync_len = 2,
  397. .sync = 0,
  398. .vmode = FB_VMODE_NONINTERLACED,
  399. },
  400. .width = -1,
  401. .height = -1,
  402. .tim2 = TIM2_BCD | TIM2_IPC,
  403. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  404. .bpp = 16,
  405. };
  406. static struct clcd_panel sanyo_3_8_in = {
  407. .mode = {
  408. .name = "Sanyo QVGA",
  409. .refresh = 116,
  410. .xres = 320,
  411. .yres = 240,
  412. .pixclock = 100000,
  413. .left_margin = 6,
  414. .right_margin = 6,
  415. .upper_margin = 5,
  416. .lower_margin = 5,
  417. .hsync_len = 6,
  418. .vsync_len = 6,
  419. .sync = 0,
  420. .vmode = FB_VMODE_NONINTERLACED,
  421. },
  422. .width = -1,
  423. .height = -1,
  424. .tim2 = TIM2_BCD,
  425. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  426. .bpp = 16,
  427. };
  428. static struct clcd_panel sanyo_2_5_in = {
  429. .mode = {
  430. .name = "Sanyo QVGA Portrait",
  431. .refresh = 116,
  432. .xres = 240,
  433. .yres = 320,
  434. .pixclock = 100000,
  435. .left_margin = 20,
  436. .right_margin = 10,
  437. .upper_margin = 2,
  438. .lower_margin = 2,
  439. .hsync_len = 10,
  440. .vsync_len = 2,
  441. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  442. .vmode = FB_VMODE_NONINTERLACED,
  443. },
  444. .width = -1,
  445. .height = -1,
  446. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  447. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  448. .bpp = 16,
  449. };
  450. static struct clcd_panel epson_2_2_in = {
  451. .mode = {
  452. .name = "Epson QCIF",
  453. .refresh = 390,
  454. .xres = 176,
  455. .yres = 220,
  456. .pixclock = 62500,
  457. .left_margin = 3,
  458. .right_margin = 2,
  459. .upper_margin = 1,
  460. .lower_margin = 0,
  461. .hsync_len = 3,
  462. .vsync_len = 2,
  463. .sync = 0,
  464. .vmode = FB_VMODE_NONINTERLACED,
  465. },
  466. .width = -1,
  467. .height = -1,
  468. .tim2 = TIM2_BCD | TIM2_IPC,
  469. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  470. .bpp = 16,
  471. };
  472. /*
  473. * Detect which LCD panel is connected, and return the appropriate
  474. * clcd_panel structure. Note: we do not have any information on
  475. * the required timings for the 8.4in panel, so we presently assume
  476. * VGA timings.
  477. */
  478. static struct clcd_panel *versatile_clcd_panel(void)
  479. {
  480. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  481. struct clcd_panel *panel = &vga;
  482. u32 val;
  483. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  484. if (val == SYS_CLCD_ID_SANYO_3_8)
  485. panel = &sanyo_3_8_in;
  486. else if (val == SYS_CLCD_ID_SANYO_2_5)
  487. panel = &sanyo_2_5_in;
  488. else if (val == SYS_CLCD_ID_EPSON_2_2)
  489. panel = &epson_2_2_in;
  490. else if (val == SYS_CLCD_ID_VGA)
  491. panel = &vga;
  492. else {
  493. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  494. val);
  495. panel = &vga;
  496. }
  497. return panel;
  498. }
  499. /*
  500. * Disable all display connectors on the interface module.
  501. */
  502. static void versatile_clcd_disable(struct clcd_fb *fb)
  503. {
  504. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  505. u32 val;
  506. val = readl(sys_clcd);
  507. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  508. writel(val, sys_clcd);
  509. #ifdef CONFIG_MACH_VERSATILE_AB
  510. /*
  511. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  512. */
  513. if (fb->panel == &sanyo_2_5_in) {
  514. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  515. unsigned long ctrl;
  516. ctrl = readl(versatile_ib2_ctrl);
  517. ctrl &= ~0x01;
  518. writel(ctrl, versatile_ib2_ctrl);
  519. }
  520. #endif
  521. }
  522. /*
  523. * Enable the relevant connector on the interface module.
  524. */
  525. static void versatile_clcd_enable(struct clcd_fb *fb)
  526. {
  527. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  528. u32 val;
  529. val = readl(sys_clcd);
  530. val &= ~SYS_CLCD_MODE_MASK;
  531. switch (fb->fb.var.green.length) {
  532. case 5:
  533. val |= SYS_CLCD_MODE_5551;
  534. break;
  535. case 6:
  536. val |= SYS_CLCD_MODE_565_RLSB;
  537. break;
  538. case 8:
  539. val |= SYS_CLCD_MODE_888;
  540. break;
  541. }
  542. /*
  543. * Set the MUX
  544. */
  545. writel(val, sys_clcd);
  546. /*
  547. * And now enable the PSUs
  548. */
  549. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  550. writel(val, sys_clcd);
  551. #ifdef CONFIG_MACH_VERSATILE_AB
  552. /*
  553. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  554. */
  555. if (fb->panel == &sanyo_2_5_in) {
  556. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  557. unsigned long ctrl;
  558. ctrl = readl(versatile_ib2_ctrl);
  559. ctrl |= 0x01;
  560. writel(ctrl, versatile_ib2_ctrl);
  561. }
  562. #endif
  563. }
  564. static unsigned long framesize = SZ_1M;
  565. static int versatile_clcd_setup(struct clcd_fb *fb)
  566. {
  567. dma_addr_t dma;
  568. fb->panel = versatile_clcd_panel();
  569. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  570. &dma, GFP_KERNEL);
  571. if (!fb->fb.screen_base) {
  572. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  573. return -ENOMEM;
  574. }
  575. fb->fb.fix.smem_start = dma;
  576. fb->fb.fix.smem_len = framesize;
  577. return 0;
  578. }
  579. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  580. {
  581. return dma_mmap_writecombine(&fb->dev->dev, vma,
  582. fb->fb.screen_base,
  583. fb->fb.fix.smem_start,
  584. fb->fb.fix.smem_len);
  585. }
  586. static void versatile_clcd_remove(struct clcd_fb *fb)
  587. {
  588. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  589. fb->fb.screen_base, fb->fb.fix.smem_start);
  590. }
  591. static struct clcd_board clcd_plat_data = {
  592. .name = "Versatile",
  593. .check = clcdfb_check,
  594. .decode = clcdfb_decode,
  595. .disable = versatile_clcd_disable,
  596. .enable = versatile_clcd_enable,
  597. .setup = versatile_clcd_setup,
  598. .mmap = versatile_clcd_mmap,
  599. .remove = versatile_clcd_remove,
  600. };
  601. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  602. #define AACI_DMA { 0x80, 0x81 }
  603. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  604. #define MMCI0_DMA { 0x84, 0 }
  605. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  606. #define KMI0_DMA { 0, 0 }
  607. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  608. #define KMI1_DMA { 0, 0 }
  609. /*
  610. * These devices are connected directly to the multi-layer AHB switch
  611. */
  612. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  613. #define SMC_DMA { 0, 0 }
  614. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  615. #define MPMC_DMA { 0, 0 }
  616. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  617. #define CLCD_DMA { 0, 0 }
  618. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  619. #define DMAC_DMA { 0, 0 }
  620. /*
  621. * These devices are connected via the core APB bridge
  622. */
  623. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  624. #define SCTL_DMA { 0, 0 }
  625. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  626. #define WATCHDOG_DMA { 0, 0 }
  627. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  628. #define GPIO0_DMA { 0, 0 }
  629. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  630. #define GPIO1_DMA { 0, 0 }
  631. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  632. #define RTC_DMA { 0, 0 }
  633. /*
  634. * These devices are connected via the DMA APB bridge
  635. */
  636. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  637. #define SCI_DMA { 7, 6 }
  638. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  639. #define UART0_DMA { 15, 14 }
  640. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  641. #define UART1_DMA { 13, 12 }
  642. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  643. #define UART2_DMA { 11, 10 }
  644. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  645. #define SSP_DMA { 9, 8 }
  646. /* FPGA Primecells */
  647. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  648. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  649. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  650. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  651. /* DevChip Primecells */
  652. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  653. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  654. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  655. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  656. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  657. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  658. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  659. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  660. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  661. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  662. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  663. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  664. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  665. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  666. static struct amba_device *amba_devs[] __initdata = {
  667. &dmac_device,
  668. &uart0_device,
  669. &uart1_device,
  670. &uart2_device,
  671. &smc_device,
  672. &mpmc_device,
  673. &clcd_device,
  674. &sctl_device,
  675. &wdog_device,
  676. &gpio0_device,
  677. &gpio1_device,
  678. &rtc_device,
  679. &sci0_device,
  680. &ssp0_device,
  681. &aaci_device,
  682. &mmc0_device,
  683. &kmi0_device,
  684. &kmi1_device,
  685. };
  686. #ifdef CONFIG_LEDS
  687. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  688. static void versatile_leds_event(led_event_t ledevt)
  689. {
  690. unsigned long flags;
  691. u32 val;
  692. local_irq_save(flags);
  693. val = readl(VA_LEDS_BASE);
  694. switch (ledevt) {
  695. case led_idle_start:
  696. val = val & ~VERSATILE_SYS_LED0;
  697. break;
  698. case led_idle_end:
  699. val = val | VERSATILE_SYS_LED0;
  700. break;
  701. case led_timer:
  702. val = val ^ VERSATILE_SYS_LED1;
  703. break;
  704. case led_halted:
  705. val = 0;
  706. break;
  707. default:
  708. break;
  709. }
  710. writel(val, VA_LEDS_BASE);
  711. local_irq_restore(flags);
  712. }
  713. #endif /* CONFIG_LEDS */
  714. void __init versatile_init(void)
  715. {
  716. int i;
  717. clk_register(&versatile_clcd_clk);
  718. platform_device_register(&versatile_flash_device);
  719. platform_device_register(&smc91x_device);
  720. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  721. struct amba_device *d = amba_devs[i];
  722. amba_device_register(d, &iomem_resource);
  723. }
  724. #ifdef CONFIG_LEDS
  725. leds_event = versatile_leds_event;
  726. #endif
  727. }
  728. /*
  729. * Where is the timer (VA)?
  730. */
  731. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  732. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  733. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  734. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  735. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  736. /*
  737. * How long is the timer interval?
  738. */
  739. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  740. #if TIMER_INTERVAL >= 0x100000
  741. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  742. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  743. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  744. #elif TIMER_INTERVAL >= 0x10000
  745. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  746. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  747. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  748. #else
  749. #define TIMER_RELOAD (TIMER_INTERVAL)
  750. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  751. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  752. #endif
  753. /*
  754. * Returns number of ms since last clock interrupt. Note that interrupts
  755. * will have been disabled by do_gettimeoffset()
  756. */
  757. static unsigned long versatile_gettimeoffset(void)
  758. {
  759. unsigned long ticks1, ticks2, status;
  760. /*
  761. * Get the current number of ticks. Note that there is a race
  762. * condition between us reading the timer and checking for
  763. * an interrupt. We get around this by ensuring that the
  764. * counter has not reloaded between our two reads.
  765. */
  766. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  767. do {
  768. ticks1 = ticks2;
  769. status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
  770. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  771. } while (ticks2 > ticks1);
  772. /*
  773. * Number of ticks since last interrupt.
  774. */
  775. ticks1 = TIMER_RELOAD - ticks2;
  776. /*
  777. * Interrupt pending? If so, we've reloaded once already.
  778. *
  779. * FIXME: Need to check this is effectively timer 0 that expires
  780. */
  781. if (status & IRQMASK_TIMERINT0_1)
  782. ticks1 += TIMER_RELOAD;
  783. /*
  784. * Convert the ticks to usecs
  785. */
  786. return TICKS2USECS(ticks1);
  787. }
  788. /*
  789. * IRQ handler for the timer
  790. */
  791. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  792. {
  793. write_seqlock(&xtime_lock);
  794. // ...clear the interrupt
  795. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  796. timer_tick(regs);
  797. write_sequnlock(&xtime_lock);
  798. return IRQ_HANDLED;
  799. }
  800. static struct irqaction versatile_timer_irq = {
  801. .name = "Versatile Timer Tick",
  802. .flags = SA_INTERRUPT | SA_TIMER,
  803. .handler = versatile_timer_interrupt,
  804. };
  805. /*
  806. * Set up timer interrupt, and return the current time in seconds.
  807. */
  808. static void __init versatile_timer_init(void)
  809. {
  810. u32 val;
  811. /*
  812. * set clock frequency:
  813. * VERSATILE_REFCLK is 32KHz
  814. * VERSATILE_TIMCLK is 1MHz
  815. */
  816. val = readl(__io_address(VERSATILE_SCTL_BASE));
  817. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  818. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  819. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  820. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  821. __io_address(VERSATILE_SCTL_BASE));
  822. /*
  823. * Initialise to a known state (all timers off)
  824. */
  825. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  826. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  827. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  828. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  829. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  830. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_VALUE);
  831. writel(TIMER_DIVISOR | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC |
  832. TIMER_CTRL_IE, TIMER0_VA_BASE + TIMER_CTRL);
  833. /*
  834. * Make irqs happen for the system timer
  835. */
  836. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  837. }
  838. struct sys_timer versatile_timer = {
  839. .init = versatile_timer_init,
  840. .offset = versatile_gettimeoffset,
  841. };