phy_lp.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; see the file COPYING. If not, write to
  15. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  16. Boston, MA 02110-1301, USA.
  17. */
  18. #include "b43.h"
  19. #include "main.h"
  20. #include "phy_lp.h"
  21. #include "phy_common.h"
  22. #include "tables_lpphy.h"
  23. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  24. {
  25. struct b43_phy_lp *lpphy;
  26. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  27. if (!lpphy)
  28. return -ENOMEM;
  29. dev->phy.lp = lpphy;
  30. return 0;
  31. }
  32. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  33. {
  34. struct b43_phy *phy = &dev->phy;
  35. struct b43_phy_lp *lpphy = phy->lp;
  36. memset(lpphy, 0, sizeof(*lpphy));
  37. //TODO
  38. }
  39. static void b43_lpphy_op_free(struct b43_wldev *dev)
  40. {
  41. struct b43_phy_lp *lpphy = dev->phy.lp;
  42. kfree(lpphy);
  43. dev->phy.lp = NULL;
  44. }
  45. static void lpphy_read_band_sprom(struct b43_wldev *dev)
  46. {
  47. struct b43_phy_lp *lpphy = dev->phy.lp;
  48. struct ssb_bus *bus = dev->dev->bus;
  49. u16 cckpo, maxpwr;
  50. u32 ofdmpo;
  51. int i;
  52. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  53. lpphy->tx_isolation_med_band = bus->sprom.tri2g;
  54. lpphy->bx_arch = bus->sprom.bxa2g;
  55. lpphy->rx_pwr_offset = bus->sprom.rxpo2g;
  56. lpphy->rssi_vf = bus->sprom.rssismf2g;
  57. lpphy->rssi_vc = bus->sprom.rssismc2g;
  58. lpphy->rssi_gs = bus->sprom.rssisav2g;
  59. lpphy->txpa[0] = bus->sprom.pa0b0;
  60. lpphy->txpa[1] = bus->sprom.pa0b1;
  61. lpphy->txpa[2] = bus->sprom.pa0b2;
  62. maxpwr = bus->sprom.maxpwr_bg;
  63. lpphy->max_tx_pwr_med_band = maxpwr;
  64. cckpo = bus->sprom.cck2gpo;
  65. ofdmpo = bus->sprom.ofdm2gpo;
  66. if (cckpo) {
  67. for (i = 0; i < 4; i++) {
  68. lpphy->tx_max_rate[i] =
  69. maxpwr - (ofdmpo & 0xF) * 2;
  70. ofdmpo >>= 4;
  71. }
  72. ofdmpo = bus->sprom.ofdm2gpo;
  73. for (i = 4; i < 15; i++) {
  74. lpphy->tx_max_rate[i] =
  75. maxpwr - (ofdmpo & 0xF) * 2;
  76. ofdmpo >>= 4;
  77. }
  78. } else {
  79. ofdmpo &= 0xFF;
  80. for (i = 0; i < 4; i++)
  81. lpphy->tx_max_rate[i] = maxpwr;
  82. for (i = 4; i < 15; i++)
  83. lpphy->tx_max_rate[i] = maxpwr - ofdmpo;
  84. }
  85. } else { /* 5GHz */
  86. lpphy->tx_isolation_low_band = bus->sprom.tri5gl;
  87. lpphy->tx_isolation_med_band = bus->sprom.tri5g;
  88. lpphy->tx_isolation_hi_band = bus->sprom.tri5gh;
  89. lpphy->bx_arch = bus->sprom.bxa5g;
  90. lpphy->rx_pwr_offset = bus->sprom.rxpo5g;
  91. lpphy->rssi_vf = bus->sprom.rssismf5g;
  92. lpphy->rssi_vc = bus->sprom.rssismc5g;
  93. lpphy->rssi_gs = bus->sprom.rssisav5g;
  94. lpphy->txpa[0] = bus->sprom.pa1b0;
  95. lpphy->txpa[1] = bus->sprom.pa1b1;
  96. lpphy->txpa[2] = bus->sprom.pa1b2;
  97. lpphy->txpal[0] = bus->sprom.pa1lob0;
  98. lpphy->txpal[1] = bus->sprom.pa1lob1;
  99. lpphy->txpal[2] = bus->sprom.pa1lob2;
  100. lpphy->txpah[0] = bus->sprom.pa1hib0;
  101. lpphy->txpah[1] = bus->sprom.pa1hib1;
  102. lpphy->txpah[2] = bus->sprom.pa1hib2;
  103. maxpwr = bus->sprom.maxpwr_al;
  104. ofdmpo = bus->sprom.ofdm5glpo;
  105. lpphy->max_tx_pwr_low_band = maxpwr;
  106. for (i = 4; i < 12; i++) {
  107. lpphy->tx_max_ratel[i] = maxpwr - (ofdmpo & 0xF) * 2;
  108. ofdmpo >>= 4;
  109. }
  110. maxpwr = bus->sprom.maxpwr_a;
  111. ofdmpo = bus->sprom.ofdm5gpo;
  112. lpphy->max_tx_pwr_med_band = maxpwr;
  113. for (i = 4; i < 12; i++) {
  114. lpphy->tx_max_rate[i] = maxpwr - (ofdmpo & 0xF) * 2;
  115. ofdmpo >>= 4;
  116. }
  117. maxpwr = bus->sprom.maxpwr_ah;
  118. ofdmpo = bus->sprom.ofdm5ghpo;
  119. lpphy->max_tx_pwr_hi_band = maxpwr;
  120. for (i = 4; i < 12; i++) {
  121. lpphy->tx_max_rateh[i] = maxpwr - (ofdmpo & 0xF) * 2;
  122. ofdmpo >>= 4;
  123. }
  124. }
  125. }
  126. static void lpphy_adjust_gain_table(struct b43_wldev *dev)
  127. {
  128. struct b43_phy_lp *lpphy = dev->phy.lp;
  129. u32 freq = dev->wl->hw->conf.channel->center_freq;
  130. u16 temp[3];
  131. u16 isolation;
  132. B43_WARN_ON(dev->phy.rev >= 2);
  133. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  134. isolation = lpphy->tx_isolation_med_band;
  135. else if (freq <= 5320)
  136. isolation = lpphy->tx_isolation_low_band;
  137. else if (freq <= 5700)
  138. isolation = lpphy->tx_isolation_med_band;
  139. else
  140. isolation = lpphy->tx_isolation_hi_band;
  141. temp[0] = ((isolation - 26) / 12) << 12;
  142. temp[1] = temp[0] + 0x1000;
  143. temp[2] = temp[0] + 0x2000;
  144. b43_lptab_write_bulk(dev, B43_LPTAB16(12, 0), 3, temp);
  145. b43_lptab_write_bulk(dev, B43_LPTAB16(13, 0), 3, temp);
  146. }
  147. static void lpphy_table_init(struct b43_wldev *dev)
  148. {
  149. if (dev->phy.rev < 2)
  150. lpphy_rev0_1_table_init(dev);
  151. else
  152. lpphy_rev2plus_table_init(dev);
  153. lpphy_init_tx_gain_table(dev);
  154. if (dev->phy.rev < 2)
  155. lpphy_adjust_gain_table(dev);
  156. }
  157. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  158. {
  159. struct ssb_bus *bus = dev->dev->bus;
  160. u16 tmp, tmp2;
  161. if (dev->phy.rev == 1 &&
  162. (bus->sprom.boardflags_hi & B43_BFH_FEM_BT)) {
  163. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  164. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  165. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  166. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  167. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  168. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  169. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  170. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  171. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  172. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  173. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  174. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  175. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  176. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  177. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  178. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  179. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  180. (bus->boardinfo.type == 0x048A) || ((dev->phy.rev == 0) &&
  181. (bus->sprom.boardflags_lo & B43_BFL_FEM))) {
  182. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  183. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  184. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  185. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  186. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  187. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  188. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  189. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  190. } else if (dev->phy.rev == 1 ||
  191. (bus->sprom.boardflags_lo & B43_BFL_FEM)) {
  192. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  193. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  194. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  195. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  196. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  197. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  198. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  199. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  200. } else {
  201. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  202. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  203. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  204. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  205. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  206. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  207. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  208. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  209. }
  210. if (dev->phy.rev == 1) {
  211. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  212. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  213. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  214. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  215. }
  216. if ((bus->sprom.boardflags_hi & B43_BFH_FEM_BT) &&
  217. (bus->chip_id == 0x5354) &&
  218. (bus->chip_package == SSB_CHIPPACK_BCM4712S)) {
  219. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  220. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  221. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  222. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  223. }
  224. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  225. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  226. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  227. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  228. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  229. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  230. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  231. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  232. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  233. } else { /* 5GHz */
  234. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  235. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  236. }
  237. if (dev->phy.rev == 1) {
  238. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  239. tmp2 = (tmp & 0x03E0) >> 5;
  240. tmp2 |= tmp << 5;
  241. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  242. tmp = b43_phy_read(dev, B43_LPPHY_OFDMSYNCTHRESH0);
  243. tmp2 = (tmp & 0x1F00) >> 8;
  244. tmp2 |= tmp << 5;
  245. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  246. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  247. tmp2 = tmp & 0x00FF;
  248. tmp2 |= tmp << 8;
  249. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  250. }
  251. }
  252. static void lpphy_save_dig_flt_state(struct b43_wldev *dev)
  253. {
  254. static const u16 addr[] = {
  255. B43_PHY_OFDM(0xC1),
  256. B43_PHY_OFDM(0xC2),
  257. B43_PHY_OFDM(0xC3),
  258. B43_PHY_OFDM(0xC4),
  259. B43_PHY_OFDM(0xC5),
  260. B43_PHY_OFDM(0xC6),
  261. B43_PHY_OFDM(0xC7),
  262. B43_PHY_OFDM(0xC8),
  263. B43_PHY_OFDM(0xCF),
  264. };
  265. static const u16 coefs[] = {
  266. 0xDE5E, 0xE832, 0xE331, 0x4D26,
  267. 0x0026, 0x1420, 0x0020, 0xFE08,
  268. 0x0008,
  269. };
  270. struct b43_phy_lp *lpphy = dev->phy.lp;
  271. int i;
  272. for (i = 0; i < ARRAY_SIZE(addr); i++) {
  273. lpphy->dig_flt_state[i] = b43_phy_read(dev, addr[i]);
  274. b43_phy_write(dev, addr[i], coefs[i]);
  275. }
  276. }
  277. static void lpphy_restore_dig_flt_state(struct b43_wldev *dev)
  278. {
  279. static const u16 addr[] = {
  280. B43_PHY_OFDM(0xC1),
  281. B43_PHY_OFDM(0xC2),
  282. B43_PHY_OFDM(0xC3),
  283. B43_PHY_OFDM(0xC4),
  284. B43_PHY_OFDM(0xC5),
  285. B43_PHY_OFDM(0xC6),
  286. B43_PHY_OFDM(0xC7),
  287. B43_PHY_OFDM(0xC8),
  288. B43_PHY_OFDM(0xCF),
  289. };
  290. struct b43_phy_lp *lpphy = dev->phy.lp;
  291. int i;
  292. for (i = 0; i < ARRAY_SIZE(addr); i++)
  293. b43_phy_write(dev, addr[i], lpphy->dig_flt_state[i]);
  294. }
  295. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  296. {
  297. struct ssb_bus *bus = dev->dev->bus;
  298. struct b43_phy_lp *lpphy = dev->phy.lp;
  299. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  300. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  301. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  302. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  303. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  304. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  305. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  306. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  307. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  308. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0xB4);
  309. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  310. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  311. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  312. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  313. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  314. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  315. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  316. if (bus->boardinfo.rev >= 0x18) {
  317. b43_lptab_write(dev, B43_LPTAB32(17, 65), 0xEC);
  318. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x14);
  319. } else {
  320. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  321. }
  322. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  323. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  324. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  325. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  326. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  327. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  328. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  329. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  330. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xF81F, 0xA0);
  331. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  332. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  333. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  334. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  335. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  336. } else {
  337. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  338. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  339. }
  340. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  341. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  342. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  343. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  344. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  345. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  346. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  347. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  348. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  349. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  350. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 1)) {
  351. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  352. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  353. }
  354. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  355. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  356. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  357. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  358. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  359. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  360. } else /* 5GHz */
  361. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  362. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  363. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  364. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  365. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  366. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  367. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  368. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  369. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  370. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  371. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  372. b43_phy_set(dev, B43_LPPHY_AFE_ADC_CTL_0, 0x1C);
  373. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL, 0x00FF, 0x8800);
  374. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_1, 0xFC3C, 0x0400);
  375. }
  376. lpphy_save_dig_flt_state(dev);
  377. }
  378. static void lpphy_baseband_init(struct b43_wldev *dev)
  379. {
  380. lpphy_table_init(dev);
  381. if (dev->phy.rev >= 2)
  382. lpphy_baseband_rev2plus_init(dev);
  383. else
  384. lpphy_baseband_rev0_1_init(dev);
  385. }
  386. struct b2062_freqdata {
  387. u16 freq;
  388. u8 data[6];
  389. };
  390. /* Initialize the 2062 radio. */
  391. static void lpphy_2062_init(struct b43_wldev *dev)
  392. {
  393. struct ssb_bus *bus = dev->dev->bus;
  394. u32 crystalfreq, pdiv, tmp, ref;
  395. unsigned int i;
  396. const struct b2062_freqdata *fd = NULL;
  397. static const struct b2062_freqdata freqdata_tab[] = {
  398. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  399. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  400. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  401. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  402. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  403. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  404. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  405. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  406. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  407. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  408. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  409. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  410. };
  411. b2062_upload_init_table(dev);
  412. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  413. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  414. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  415. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  416. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  417. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  418. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  419. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  420. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  421. else
  422. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  423. /* Get the crystal freq, in Hz. */
  424. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  425. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  426. B43_WARN_ON(crystalfreq == 0);
  427. if (crystalfreq >= 30000000) {
  428. pdiv = 1;
  429. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  430. } else {
  431. pdiv = 2;
  432. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  433. }
  434. tmp = (800000000 * pdiv + crystalfreq) / (32000000 * pdiv);
  435. tmp = (tmp - 1) & 0xFF;
  436. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  437. tmp = (2 * crystalfreq + 1000000 * pdiv) / (2000000 * pdiv);
  438. tmp = ((tmp & 0xFF) - 1) & 0xFFFF;
  439. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  440. ref = (1000 * pdiv + 2 * crystalfreq) / (2000 * pdiv);
  441. ref &= 0xFFFF;
  442. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  443. if (ref < freqdata_tab[i].freq) {
  444. fd = &freqdata_tab[i];
  445. break;
  446. }
  447. }
  448. if (!fd)
  449. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  450. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  451. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  452. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  453. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  454. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  455. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  456. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  457. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  458. }
  459. /* Initialize the 2063 radio. */
  460. static void lpphy_2063_init(struct b43_wldev *dev)
  461. {
  462. b2063_upload_init_table(dev);
  463. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  464. b43_radio_set(dev, B2063_COMM8, 0x38);
  465. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  466. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  467. b43_radio_write(dev, B2063_PA_SP7, 0);
  468. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  469. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  470. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  471. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  472. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  473. }
  474. struct lpphy_stx_table_entry {
  475. u16 phy_offset;
  476. u16 phy_shift;
  477. u16 rf_addr;
  478. u16 rf_shift;
  479. u16 mask;
  480. };
  481. static const struct lpphy_stx_table_entry lpphy_stx_table[] = {
  482. { .phy_offset = 2, .phy_shift = 6, .rf_addr = 0x3d, .rf_shift = 3, .mask = 0x01, },
  483. { .phy_offset = 1, .phy_shift = 12, .rf_addr = 0x4c, .rf_shift = 1, .mask = 0x01, },
  484. { .phy_offset = 1, .phy_shift = 8, .rf_addr = 0x50, .rf_shift = 0, .mask = 0x7f, },
  485. { .phy_offset = 0, .phy_shift = 8, .rf_addr = 0x44, .rf_shift = 0, .mask = 0xff, },
  486. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4a, .rf_shift = 0, .mask = 0xff, },
  487. { .phy_offset = 0, .phy_shift = 4, .rf_addr = 0x4d, .rf_shift = 0, .mask = 0xff, },
  488. { .phy_offset = 1, .phy_shift = 4, .rf_addr = 0x4e, .rf_shift = 0, .mask = 0xff, },
  489. { .phy_offset = 0, .phy_shift = 12, .rf_addr = 0x4f, .rf_shift = 0, .mask = 0x0f, },
  490. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4f, .rf_shift = 4, .mask = 0x0f, },
  491. { .phy_offset = 3, .phy_shift = 0, .rf_addr = 0x49, .rf_shift = 0, .mask = 0x0f, },
  492. { .phy_offset = 4, .phy_shift = 3, .rf_addr = 0x46, .rf_shift = 4, .mask = 0x07, },
  493. { .phy_offset = 3, .phy_shift = 15, .rf_addr = 0x46, .rf_shift = 0, .mask = 0x01, },
  494. { .phy_offset = 4, .phy_shift = 0, .rf_addr = 0x46, .rf_shift = 1, .mask = 0x07, },
  495. { .phy_offset = 3, .phy_shift = 8, .rf_addr = 0x48, .rf_shift = 4, .mask = 0x07, },
  496. { .phy_offset = 3, .phy_shift = 11, .rf_addr = 0x48, .rf_shift = 0, .mask = 0x0f, },
  497. { .phy_offset = 3, .phy_shift = 4, .rf_addr = 0x49, .rf_shift = 4, .mask = 0x0f, },
  498. { .phy_offset = 2, .phy_shift = 15, .rf_addr = 0x45, .rf_shift = 0, .mask = 0x01, },
  499. { .phy_offset = 5, .phy_shift = 13, .rf_addr = 0x52, .rf_shift = 4, .mask = 0x07, },
  500. { .phy_offset = 6, .phy_shift = 0, .rf_addr = 0x52, .rf_shift = 7, .mask = 0x01, },
  501. { .phy_offset = 5, .phy_shift = 3, .rf_addr = 0x41, .rf_shift = 5, .mask = 0x07, },
  502. { .phy_offset = 5, .phy_shift = 6, .rf_addr = 0x41, .rf_shift = 0, .mask = 0x0f, },
  503. { .phy_offset = 5, .phy_shift = 10, .rf_addr = 0x42, .rf_shift = 5, .mask = 0x07, },
  504. { .phy_offset = 4, .phy_shift = 15, .rf_addr = 0x42, .rf_shift = 0, .mask = 0x01, },
  505. { .phy_offset = 5, .phy_shift = 0, .rf_addr = 0x42, .rf_shift = 1, .mask = 0x07, },
  506. { .phy_offset = 4, .phy_shift = 11, .rf_addr = 0x43, .rf_shift = 4, .mask = 0x0f, },
  507. { .phy_offset = 4, .phy_shift = 7, .rf_addr = 0x43, .rf_shift = 0, .mask = 0x0f, },
  508. { .phy_offset = 4, .phy_shift = 6, .rf_addr = 0x45, .rf_shift = 1, .mask = 0x01, },
  509. { .phy_offset = 2, .phy_shift = 7, .rf_addr = 0x40, .rf_shift = 4, .mask = 0x0f, },
  510. { .phy_offset = 2, .phy_shift = 11, .rf_addr = 0x40, .rf_shift = 0, .mask = 0x0f, },
  511. };
  512. static void lpphy_sync_stx(struct b43_wldev *dev)
  513. {
  514. const struct lpphy_stx_table_entry *e;
  515. unsigned int i;
  516. u16 tmp;
  517. for (i = 0; i < ARRAY_SIZE(lpphy_stx_table); i++) {
  518. e = &lpphy_stx_table[i];
  519. tmp = b43_radio_read(dev, e->rf_addr);
  520. tmp >>= e->rf_shift;
  521. tmp <<= e->phy_shift;
  522. b43_phy_maskset(dev, B43_PHY_OFDM(0xF2 + e->phy_offset),
  523. ~(e->mask << e->phy_shift), tmp);
  524. }
  525. }
  526. static void lpphy_radio_init(struct b43_wldev *dev)
  527. {
  528. /* The radio is attached through the 4wire bus. */
  529. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  530. udelay(1);
  531. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  532. udelay(1);
  533. if (dev->phy.rev < 2) {
  534. lpphy_2062_init(dev);
  535. } else {
  536. lpphy_2063_init(dev);
  537. lpphy_sync_stx(dev);
  538. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  539. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  540. if (dev->dev->bus->chip_id == 0x4325) {
  541. // TODO SSB PMU recalibration
  542. }
  543. }
  544. }
  545. struct lpphy_iq_est { u32 iq_prod, i_pwr, q_pwr; };
  546. static void lpphy_set_rc_cap(struct b43_wldev *dev)
  547. {
  548. u8 rc_cap = dev->phy.lp->rc_cap;
  549. b43_radio_write(dev, B2062_N_RXBB_CALIB2, max_t(u8, rc_cap-4, 0x80));
  550. b43_radio_write(dev, B2062_N_TX_CTL_A, ((rc_cap & 0x1F) >> 1) | 0x80);
  551. b43_radio_write(dev, B2062_S_RXG_CNT16, ((rc_cap & 0x1F) >> 2) | 0x80);
  552. }
  553. static u8 lpphy_get_bb_mult(struct b43_wldev *dev)
  554. {
  555. return (b43_lptab_read(dev, B43_LPTAB16(0, 87)) & 0xFF00) >> 8;
  556. }
  557. static void lpphy_set_bb_mult(struct b43_wldev *dev, u8 bb_mult)
  558. {
  559. b43_lptab_write(dev, B43_LPTAB16(0, 87), (u16)bb_mult << 8);
  560. }
  561. static void lpphy_disable_crs(struct b43_wldev *dev)
  562. {
  563. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x80);
  564. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x1);
  565. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  566. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFB);
  567. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x4);
  568. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFF7);
  569. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  570. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x10);
  571. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  572. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFDF);
  573. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  574. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFBF);
  575. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  576. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x7);
  577. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x38);
  578. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F);
  579. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x100);
  580. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFDFF);
  581. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL0, 0);
  582. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL1, 1);
  583. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL2, 0x20);
  584. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFBFF);
  585. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xF7FF);
  586. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL, 0);
  587. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, 0x45AF);
  588. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0x3FF);
  589. }
  590. static void lpphy_restore_crs(struct b43_wldev *dev)
  591. {
  592. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  593. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x60);
  594. else
  595. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x20);
  596. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFF80);
  597. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFC00);
  598. }
  599. struct lpphy_tx_gains { u16 gm, pga, pad, dac; };
  600. static struct lpphy_tx_gains lpphy_get_tx_gains(struct b43_wldev *dev)
  601. {
  602. struct lpphy_tx_gains gains;
  603. u16 tmp;
  604. gains.dac = (b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0x380) >> 7;
  605. if (dev->phy.rev < 2) {
  606. tmp = b43_phy_read(dev,
  607. B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL) & 0x7FF;
  608. gains.gm = tmp & 0x0007;
  609. gains.pga = (tmp & 0x0078) >> 3;
  610. gains.pad = (tmp & 0x780) >> 7;
  611. } else {
  612. tmp = b43_phy_read(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL);
  613. gains.pad = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0xFF;
  614. gains.gm = tmp & 0xFF;
  615. gains.pga = (tmp >> 8) & 0xFF;
  616. }
  617. return gains;
  618. }
  619. static void lpphy_set_dac_gain(struct b43_wldev *dev, u16 dac)
  620. {
  621. u16 ctl = b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0xC7F;
  622. ctl |= dac << 7;
  623. b43_phy_maskset(dev, B43_LPPHY_AFE_DAC_CTL, 0xF000, ctl);
  624. }
  625. static void lpphy_set_tx_gains(struct b43_wldev *dev,
  626. struct lpphy_tx_gains gains)
  627. {
  628. u16 rf_gain, pa_gain;
  629. if (dev->phy.rev < 2) {
  630. rf_gain = (gains.pad << 7) | (gains.pga << 3) | gains.gm;
  631. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  632. 0xF800, rf_gain);
  633. } else {
  634. pa_gain = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0x7F00;
  635. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  636. (gains.pga << 8) | gains.gm);
  637. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  638. 0x8000, gains.pad | pa_gain);
  639. b43_phy_write(dev, B43_PHY_OFDM(0xFC),
  640. (gains.pga << 8) | gains.gm);
  641. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD),
  642. 0x8000, gains.pad | pa_gain);
  643. }
  644. lpphy_set_dac_gain(dev, gains.dac);
  645. if (dev->phy.rev < 2) {
  646. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF, 1 << 8);
  647. } else {
  648. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFF7F, 1 << 7);
  649. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xBFFF, 1 << 14);
  650. }
  651. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFBF, 1 << 4);
  652. }
  653. static void lpphy_rev0_1_set_rx_gain(struct b43_wldev *dev, u32 gain)
  654. {
  655. u16 trsw = gain & 0x1;
  656. u16 lna = (gain & 0xFFFC) | ((gain & 0xC) >> 2);
  657. u16 ext_lna = (gain & 2) >> 1;
  658. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  659. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  660. 0xFBFF, ext_lna << 10);
  661. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  662. 0xF7FF, ext_lna << 11);
  663. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, lna);
  664. }
  665. static void lpphy_rev2plus_set_rx_gain(struct b43_wldev *dev, u32 gain)
  666. {
  667. u16 low_gain = gain & 0xFFFF;
  668. u16 high_gain = (gain >> 16) & 0xF;
  669. u16 ext_lna = (gain >> 21) & 0x1;
  670. u16 trsw = ~(gain >> 20) & 0x1;
  671. u16 tmp;
  672. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  673. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  674. 0xFDFF, ext_lna << 9);
  675. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  676. 0xFBFF, ext_lna << 10);
  677. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, low_gain);
  678. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF0, high_gain);
  679. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  680. tmp = (gain >> 2) & 0x3;
  681. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  682. 0xE7FF, tmp<<11);
  683. b43_phy_maskset(dev, B43_PHY_OFDM(0xE6), 0xFFE7, tmp << 3);
  684. }
  685. }
  686. static void lpphy_enable_rx_gain_override(struct b43_wldev *dev)
  687. {
  688. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFE);
  689. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFEF);
  690. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFBF);
  691. if (dev->phy.rev >= 2) {
  692. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  693. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  694. return;
  695. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFBFF);
  696. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFF7);
  697. } else {
  698. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFDFF);
  699. }
  700. }
  701. static void lpphy_disable_rx_gain_override(struct b43_wldev *dev)
  702. {
  703. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1);
  704. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  705. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  706. if (dev->phy.rev >= 2) {
  707. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  708. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  709. return;
  710. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x400);
  711. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x8);
  712. } else {
  713. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x200);
  714. }
  715. }
  716. static void lpphy_set_rx_gain(struct b43_wldev *dev, u32 gain)
  717. {
  718. if (dev->phy.rev < 2)
  719. lpphy_rev0_1_set_rx_gain(dev, gain);
  720. else
  721. lpphy_rev2plus_set_rx_gain(dev, gain);
  722. lpphy_enable_rx_gain_override(dev);
  723. }
  724. static void lpphy_set_rx_gain_by_index(struct b43_wldev *dev, u16 idx)
  725. {
  726. u32 gain = b43_lptab_read(dev, B43_LPTAB16(12, idx));
  727. lpphy_set_rx_gain(dev, gain);
  728. }
  729. static void lpphy_stop_ddfs(struct b43_wldev *dev)
  730. {
  731. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFD);
  732. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xFFDF);
  733. }
  734. static void lpphy_run_ddfs(struct b43_wldev *dev, int i_on, int q_on,
  735. int incr1, int incr2, int scale_idx)
  736. {
  737. lpphy_stop_ddfs(dev);
  738. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0xFF80);
  739. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0x80FF);
  740. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0xFF80, incr1);
  741. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0x80FF, incr2 << 8);
  742. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF7, i_on << 3);
  743. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFEF, q_on << 4);
  744. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFF9F, scale_idx << 5);
  745. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFB);
  746. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x2);
  747. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x20);
  748. }
  749. static bool lpphy_rx_iq_est(struct b43_wldev *dev, u16 samples, u8 time,
  750. struct lpphy_iq_est *iq_est)
  751. {
  752. int i;
  753. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFF7);
  754. b43_phy_write(dev, B43_LPPHY_IQ_NUM_SMPLS_ADDR, samples);
  755. b43_phy_maskset(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFF00, time);
  756. b43_phy_mask(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFEFF);
  757. b43_phy_set(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFDFF);
  758. for (i = 0; i < 500; i++) {
  759. if (!(b43_phy_read(dev,
  760. B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200))
  761. break;
  762. msleep(1);
  763. }
  764. if ((b43_phy_read(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200)) {
  765. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  766. return false;
  767. }
  768. iq_est->iq_prod = b43_phy_read(dev, B43_LPPHY_IQ_ACC_HI_ADDR);
  769. iq_est->iq_prod <<= 16;
  770. iq_est->iq_prod |= b43_phy_read(dev, B43_LPPHY_IQ_ACC_LO_ADDR);
  771. iq_est->i_pwr = b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_HI_ADDR);
  772. iq_est->i_pwr <<= 16;
  773. iq_est->i_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_LO_ADDR);
  774. iq_est->q_pwr = b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_HI_ADDR);
  775. iq_est->q_pwr <<= 16;
  776. iq_est->q_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_LO_ADDR);
  777. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  778. return true;
  779. }
  780. static int lpphy_loopback(struct b43_wldev *dev)
  781. {
  782. struct lpphy_iq_est iq_est;
  783. int i, index = -1;
  784. u32 tmp;
  785. memset(&iq_est, 0, sizeof(iq_est));
  786. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x3);
  787. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  788. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  789. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  790. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  791. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  792. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x8);
  793. b43_radio_write(dev, B2062_N_TX_CTL_A, 0x80);
  794. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x80);
  795. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x80);
  796. for (i = 0; i < 32; i++) {
  797. lpphy_set_rx_gain_by_index(dev, i);
  798. lpphy_run_ddfs(dev, 1, 1, 5, 5, 0);
  799. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  800. continue;
  801. tmp = (iq_est.i_pwr + iq_est.q_pwr) / 1000;
  802. if ((tmp > 4000) && (tmp < 10000)) {
  803. index = i;
  804. break;
  805. }
  806. }
  807. lpphy_stop_ddfs(dev);
  808. return index;
  809. }
  810. static u32 lpphy_qdiv_roundup(u32 dividend, u32 divisor, u8 precision)
  811. {
  812. u32 quotient, remainder, rbit, roundup, tmp;
  813. if (divisor == 0) {
  814. quotient = 0;
  815. remainder = 0;
  816. } else {
  817. quotient = dividend / divisor;
  818. remainder = dividend % divisor;
  819. }
  820. rbit = divisor & 0x1;
  821. roundup = (divisor >> 1) + rbit;
  822. precision--;
  823. while (precision != 0xFF) {
  824. tmp = remainder - roundup;
  825. quotient <<= 1;
  826. remainder <<= 1;
  827. if (remainder >= roundup) {
  828. remainder = (tmp << 1) + rbit;
  829. quotient--;
  830. }
  831. precision--;
  832. }
  833. if (remainder >= roundup)
  834. quotient++;
  835. return quotient;
  836. }
  837. /* Read the TX power control mode from hardware. */
  838. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  839. {
  840. struct b43_phy_lp *lpphy = dev->phy.lp;
  841. u16 ctl;
  842. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  843. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  844. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  845. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  846. break;
  847. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  848. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  849. break;
  850. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  851. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  852. break;
  853. default:
  854. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  855. B43_WARN_ON(1);
  856. break;
  857. }
  858. }
  859. /* Set the TX power control mode in hardware. */
  860. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  861. {
  862. struct b43_phy_lp *lpphy = dev->phy.lp;
  863. u16 ctl;
  864. switch (lpphy->txpctl_mode) {
  865. case B43_LPPHY_TXPCTL_OFF:
  866. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  867. break;
  868. case B43_LPPHY_TXPCTL_HW:
  869. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  870. break;
  871. case B43_LPPHY_TXPCTL_SW:
  872. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  873. break;
  874. default:
  875. ctl = 0;
  876. B43_WARN_ON(1);
  877. }
  878. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  879. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  880. }
  881. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  882. enum b43_lpphy_txpctl_mode mode)
  883. {
  884. struct b43_phy_lp *lpphy = dev->phy.lp;
  885. enum b43_lpphy_txpctl_mode oldmode;
  886. oldmode = lpphy->txpctl_mode;
  887. lpphy_read_tx_pctl_mode_from_hardware(dev);
  888. if (lpphy->txpctl_mode == mode)
  889. return;
  890. lpphy->txpctl_mode = mode;
  891. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  892. //TODO Update TX Power NPT
  893. //TODO Clear all TX Power offsets
  894. } else {
  895. if (mode == B43_LPPHY_TXPCTL_HW) {
  896. //TODO Recalculate target TX power
  897. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  898. 0xFF80, lpphy->tssi_idx);
  899. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  900. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  901. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  902. //TODO Disable TX gain override
  903. lpphy->tx_pwr_idx_over = -1;
  904. }
  905. }
  906. if (dev->phy.rev >= 2) {
  907. if (mode == B43_LPPHY_TXPCTL_HW)
  908. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0x2);
  909. else
  910. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0);
  911. }
  912. lpphy_write_tx_pctl_mode_to_hardware(dev);
  913. }
  914. static void lpphy_rev0_1_rc_calib(struct b43_wldev *dev)
  915. {
  916. struct b43_phy_lp *lpphy = dev->phy.lp;
  917. struct lpphy_iq_est iq_est;
  918. struct lpphy_tx_gains tx_gains;
  919. static const u32 ideal_pwr_table[22] = {
  920. 0x10000, 0x10557, 0x10e2d, 0x113e0, 0x10f22, 0x0ff64,
  921. 0x0eda2, 0x0e5d4, 0x0efd1, 0x0fbe8, 0x0b7b8, 0x04b35,
  922. 0x01a5e, 0x00a0b, 0x00444, 0x001fd, 0x000ff, 0x00088,
  923. 0x0004c, 0x0002c, 0x0001a, 0xc0006,
  924. };
  925. bool old_txg_ovr;
  926. u8 old_bbmult;
  927. u16 old_rf_ovr, old_rf_ovrval, old_afe_ovr, old_afe_ovrval,
  928. old_rf2_ovr, old_rf2_ovrval, old_phy_ctl, old_txpctl;
  929. u32 normal_pwr, ideal_pwr, mean_sq_pwr, tmp = 0, mean_sq_pwr_min = 0;
  930. int loopback, i, j, inner_sum;
  931. memset(&iq_est, 0, sizeof(iq_est));
  932. b43_switch_channel(dev, 7);
  933. old_txg_ovr = (b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) >> 6) & 1;
  934. old_bbmult = lpphy_get_bb_mult(dev);
  935. if (old_txg_ovr)
  936. tx_gains = lpphy_get_tx_gains(dev);
  937. old_rf_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_0);
  938. old_rf_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_VAL_0);
  939. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR);
  940. old_afe_ovrval = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVRVAL);
  941. old_rf2_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2);
  942. old_rf2_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2_VAL);
  943. old_phy_ctl = b43_phy_read(dev, B43_LPPHY_LP_PHY_CTL);
  944. old_txpctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD) &
  945. B43_LPPHY_TX_PWR_CTL_CMD_MODE;
  946. lpphy_set_tx_power_control(dev, B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  947. lpphy_disable_crs(dev);
  948. loopback = lpphy_loopback(dev);
  949. if (loopback == -1)
  950. goto finish;
  951. lpphy_set_rx_gain_by_index(dev, loopback);
  952. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFFBF, 0x40);
  953. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFF8, 0x1);
  954. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFC7, 0x8);
  955. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F, 0xC0);
  956. for (i = 128; i <= 159; i++) {
  957. b43_radio_write(dev, B2062_N_RXBB_CALIB2, i);
  958. inner_sum = 0;
  959. for (j = 5; j <= 25; j++) {
  960. lpphy_run_ddfs(dev, 1, 1, j, j, 0);
  961. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  962. goto finish;
  963. mean_sq_pwr = iq_est.i_pwr + iq_est.q_pwr;
  964. if (j == 5)
  965. tmp = mean_sq_pwr;
  966. ideal_pwr = ((ideal_pwr_table[j-5] >> 3) + 1) >> 1;
  967. normal_pwr = lpphy_qdiv_roundup(mean_sq_pwr, tmp, 12);
  968. mean_sq_pwr = ideal_pwr - normal_pwr;
  969. mean_sq_pwr *= mean_sq_pwr;
  970. inner_sum += mean_sq_pwr;
  971. if ((i = 128) || (inner_sum < mean_sq_pwr_min)) {
  972. lpphy->rc_cap = i;
  973. mean_sq_pwr_min = inner_sum;
  974. }
  975. }
  976. }
  977. lpphy_stop_ddfs(dev);
  978. finish:
  979. lpphy_restore_crs(dev);
  980. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, old_rf_ovrval);
  981. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, old_rf_ovr);
  982. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, old_afe_ovrval);
  983. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, old_afe_ovr);
  984. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, old_rf2_ovrval);
  985. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, old_rf2_ovr);
  986. b43_phy_write(dev, B43_LPPHY_LP_PHY_CTL, old_phy_ctl);
  987. lpphy_set_bb_mult(dev, old_bbmult);
  988. if (old_txg_ovr) {
  989. /*
  990. * SPEC FIXME: The specs say "get_tx_gains" here, which is
  991. * illogical. According to lwfinger, vendor driver v4.150.10.5
  992. * has a Set here, while v4.174.64.19 has a Get - regression in
  993. * the vendor driver? This should be tested this once the code
  994. * is testable.
  995. */
  996. lpphy_set_tx_gains(dev, tx_gains);
  997. }
  998. lpphy_set_tx_power_control(dev, old_txpctl);
  999. if (lpphy->rc_cap)
  1000. lpphy_set_rc_cap(dev);
  1001. }
  1002. static void lpphy_rev2plus_rc_calib(struct b43_wldev *dev)
  1003. {
  1004. struct ssb_bus *bus = dev->dev->bus;
  1005. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1006. u8 tmp = b43_radio_read(dev, B2063_RX_BB_SP8) & 0xFF;
  1007. int i;
  1008. b43_radio_write(dev, B2063_RX_BB_SP8, 0x0);
  1009. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1010. b43_radio_mask(dev, B2063_PLL_SP1, 0xF7);
  1011. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1012. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x15);
  1013. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x70);
  1014. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x52);
  1015. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1016. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7D);
  1017. for (i = 0; i < 10000; i++) {
  1018. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1019. break;
  1020. msleep(1);
  1021. }
  1022. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1023. b43_radio_write(dev, B2063_RX_BB_SP8, tmp);
  1024. tmp = b43_radio_read(dev, B2063_TX_BB_SP3) & 0xFF;
  1025. b43_radio_write(dev, B2063_TX_BB_SP3, 0x0);
  1026. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1027. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1028. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x55);
  1029. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x76);
  1030. if (crystal_freq == 24000000) {
  1031. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0xFC);
  1032. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x0);
  1033. } else {
  1034. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x13);
  1035. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1036. }
  1037. b43_radio_write(dev, B2063_PA_SP7, 0x7D);
  1038. for (i = 0; i < 10000; i++) {
  1039. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1040. break;
  1041. msleep(1);
  1042. }
  1043. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1044. b43_radio_write(dev, B2063_TX_BB_SP3, tmp);
  1045. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1046. }
  1047. static void lpphy_calibrate_rc(struct b43_wldev *dev)
  1048. {
  1049. struct b43_phy_lp *lpphy = dev->phy.lp;
  1050. if (dev->phy.rev >= 2) {
  1051. lpphy_rev2plus_rc_calib(dev);
  1052. } else if (!lpphy->rc_cap) {
  1053. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  1054. lpphy_rev0_1_rc_calib(dev);
  1055. } else {
  1056. lpphy_set_rc_cap(dev);
  1057. }
  1058. }
  1059. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  1060. {
  1061. struct b43_phy_lp *lpphy = dev->phy.lp;
  1062. lpphy->tx_pwr_idx_over = index;
  1063. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  1064. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  1065. //TODO
  1066. }
  1067. static void lpphy_btcoex_override(struct b43_wldev *dev)
  1068. {
  1069. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  1070. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  1071. }
  1072. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  1073. {
  1074. struct b43_phy_lp *lpphy = dev->phy.lp;
  1075. u32 *saved_tab;
  1076. const unsigned int saved_tab_size = 256;
  1077. enum b43_lpphy_txpctl_mode txpctl_mode;
  1078. s8 tx_pwr_idx_over;
  1079. u16 tssi_npt, tssi_idx;
  1080. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  1081. if (!saved_tab) {
  1082. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  1083. return;
  1084. }
  1085. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1086. txpctl_mode = lpphy->txpctl_mode;
  1087. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  1088. tssi_npt = lpphy->tssi_npt;
  1089. tssi_idx = lpphy->tssi_idx;
  1090. if (dev->phy.rev < 2) {
  1091. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  1092. saved_tab_size, saved_tab);
  1093. } else {
  1094. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  1095. saved_tab_size, saved_tab);
  1096. }
  1097. //TODO
  1098. kfree(saved_tab);
  1099. }
  1100. static void lpphy_calibration(struct b43_wldev *dev)
  1101. {
  1102. struct b43_phy_lp *lpphy = dev->phy.lp;
  1103. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  1104. b43_mac_suspend(dev);
  1105. lpphy_btcoex_override(dev);
  1106. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1107. saved_pctl_mode = lpphy->txpctl_mode;
  1108. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1109. //TODO Perform transmit power table I/Q LO calibration
  1110. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  1111. lpphy_pr41573_workaround(dev);
  1112. //TODO If a full calibration has not been performed on this channel yet, perform PAPD TX-power calibration
  1113. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  1114. //TODO Perform I/Q calibration with a single control value set
  1115. b43_mac_enable(dev);
  1116. }
  1117. /* Initialize TX power control */
  1118. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  1119. {
  1120. if (0/*FIXME HWPCTL capable */) {
  1121. //TODO
  1122. } else { /* This device is only software TX power control capable. */
  1123. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1124. //TODO
  1125. } else {
  1126. //TODO
  1127. }
  1128. //TODO set BB multiplier to 0x0096
  1129. }
  1130. }
  1131. static int b43_lpphy_op_init(struct b43_wldev *dev)
  1132. {
  1133. lpphy_read_band_sprom(dev); //FIXME should this be in prepare_structs?
  1134. lpphy_baseband_init(dev);
  1135. lpphy_radio_init(dev);
  1136. lpphy_calibrate_rc(dev);
  1137. //TODO set channel
  1138. lpphy_tx_pctl_init(dev);
  1139. lpphy_calibration(dev);
  1140. //TODO ACI init
  1141. return 0;
  1142. }
  1143. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  1144. {
  1145. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1146. return b43_read16(dev, B43_MMIO_PHY_DATA);
  1147. }
  1148. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  1149. {
  1150. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1151. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  1152. }
  1153. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  1154. {
  1155. /* Register 1 is a 32-bit register. */
  1156. B43_WARN_ON(reg == 1);
  1157. /* LP-PHY needs a special bit set for read access */
  1158. if (dev->phy.rev < 2) {
  1159. if (reg != 0x4001)
  1160. reg |= 0x100;
  1161. } else
  1162. reg |= 0x200;
  1163. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1164. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  1165. }
  1166. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  1167. {
  1168. /* Register 1 is a 32-bit register. */
  1169. B43_WARN_ON(reg == 1);
  1170. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1171. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  1172. }
  1173. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  1174. bool blocked)
  1175. {
  1176. //TODO
  1177. }
  1178. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  1179. unsigned int new_channel)
  1180. {
  1181. //TODO
  1182. return 0;
  1183. }
  1184. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  1185. {
  1186. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  1187. return 1;
  1188. return 36;
  1189. }
  1190. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  1191. {
  1192. //TODO
  1193. }
  1194. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  1195. {
  1196. //TODO
  1197. }
  1198. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  1199. bool ignore_tssi)
  1200. {
  1201. //TODO
  1202. return B43_TXPWR_RES_DONE;
  1203. }
  1204. const struct b43_phy_operations b43_phyops_lp = {
  1205. .allocate = b43_lpphy_op_allocate,
  1206. .free = b43_lpphy_op_free,
  1207. .prepare_structs = b43_lpphy_op_prepare_structs,
  1208. .init = b43_lpphy_op_init,
  1209. .phy_read = b43_lpphy_op_read,
  1210. .phy_write = b43_lpphy_op_write,
  1211. .radio_read = b43_lpphy_op_radio_read,
  1212. .radio_write = b43_lpphy_op_radio_write,
  1213. .software_rfkill = b43_lpphy_op_software_rfkill,
  1214. .switch_analog = b43_phyop_switch_analog_generic,
  1215. .switch_channel = b43_lpphy_op_switch_channel,
  1216. .get_default_chan = b43_lpphy_op_get_default_chan,
  1217. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  1218. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  1219. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  1220. };