wmi.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <linux/if_arp.h>
  18. #include "wil6210.h"
  19. #include "txrx.h"
  20. #include "wmi.h"
  21. /**
  22. * WMI event receiving - theory of operations
  23. *
  24. * When firmware about to report WMI event, it fills memory area
  25. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  26. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  27. *
  28. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  29. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  30. * and handles events within the @wmi_event_worker. Every event get detached
  31. * from list, processed and deleted.
  32. *
  33. * Purpose for this mechanism is to release IRQ thread; otherwise,
  34. * if WMI event handling involves another WMI command flow, this 2-nd flow
  35. * won't be completed because of blocked IRQ thread.
  36. */
  37. /**
  38. * Addressing - theory of operations
  39. *
  40. * There are several buses present on the WIL6210 card.
  41. * Same memory areas are visible at different address on
  42. * the different busses. There are 3 main bus masters:
  43. * - MAC CPU (ucode)
  44. * - User CPU (firmware)
  45. * - AHB (host)
  46. *
  47. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  48. * AHB addresses starting from 0x880000
  49. *
  50. * Internally, firmware uses addresses that allows faster access but
  51. * are invisible from the host. To read from these addresses, alternative
  52. * AHB address must be used.
  53. *
  54. * Memory mapping
  55. * Linker address PCI/Host address
  56. * 0x880000 .. 0xa80000 2Mb BAR0
  57. * 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
  58. * 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
  59. */
  60. /**
  61. * @fw_mapping provides memory remapping table
  62. */
  63. static const struct {
  64. u32 from; /* linker address - from, inclusive */
  65. u32 to; /* linker address - to, exclusive */
  66. u32 host; /* PCI/Host address - BAR0 + 0x880000 */
  67. } fw_mapping[] = {
  68. {0x000000, 0x040000, 0x8c0000}, /* FW code RAM 256k */
  69. {0x800000, 0x808000, 0x900000}, /* FW data RAM 32k */
  70. {0x840000, 0x860000, 0x908000}, /* peripheral data RAM 128k/96k used */
  71. {0x880000, 0x88a000, 0x880000}, /* various RGF */
  72. {0x8c0000, 0x932000, 0x8c0000}, /* trivial mapping for upper area */
  73. /*
  74. * 920000..930000 ucode code RAM
  75. * 930000..932000 ucode data RAM
  76. */
  77. };
  78. /**
  79. * return AHB address for given firmware/ucode internal (linker) address
  80. * @x - internal address
  81. * If address have no valid AHB mapping, return 0
  82. */
  83. static u32 wmi_addr_remap(u32 x)
  84. {
  85. uint i;
  86. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  87. if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
  88. return x + fw_mapping[i].host - fw_mapping[i].from;
  89. }
  90. return 0;
  91. }
  92. /**
  93. * Check address validity for WMI buffer; remap if needed
  94. * @ptr - internal (linker) fw/ucode address
  95. *
  96. * Valid buffer should be DWORD aligned
  97. *
  98. * return address for accessing buffer from the host;
  99. * if buffer is not valid, return NULL.
  100. */
  101. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  102. {
  103. u32 off;
  104. u32 ptr = le32_to_cpu(ptr_);
  105. if (ptr % 4)
  106. return NULL;
  107. ptr = wmi_addr_remap(ptr);
  108. if (ptr < WIL6210_FW_HOST_OFF)
  109. return NULL;
  110. off = HOSTADDR(ptr);
  111. if (off > WIL6210_MEM_SIZE - 4)
  112. return NULL;
  113. return wil->csr + off;
  114. }
  115. /**
  116. * Check address validity
  117. */
  118. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  119. {
  120. u32 off;
  121. if (ptr % 4)
  122. return NULL;
  123. if (ptr < WIL6210_FW_HOST_OFF)
  124. return NULL;
  125. off = HOSTADDR(ptr);
  126. if (off > WIL6210_MEM_SIZE - 4)
  127. return NULL;
  128. return wil->csr + off;
  129. }
  130. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  131. struct wil6210_mbox_hdr *hdr)
  132. {
  133. void __iomem *src = wmi_buffer(wil, ptr);
  134. if (!src)
  135. return -EINVAL;
  136. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  137. return 0;
  138. }
  139. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  140. {
  141. struct {
  142. struct wil6210_mbox_hdr hdr;
  143. struct wil6210_mbox_hdr_wmi wmi;
  144. } __packed cmd = {
  145. .hdr = {
  146. .type = WIL_MBOX_HDR_TYPE_WMI,
  147. .flags = 0,
  148. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  149. },
  150. .wmi = {
  151. .id = cpu_to_le16(cmdid),
  152. .info1 = 0,
  153. },
  154. };
  155. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  156. struct wil6210_mbox_ring_desc d_head;
  157. u32 next_head;
  158. void __iomem *dst;
  159. void __iomem *head = wmi_addr(wil, r->head);
  160. uint retry;
  161. if (sizeof(cmd) + len > r->entry_size) {
  162. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  163. (int)(sizeof(cmd) + len), r->entry_size);
  164. return -ERANGE;
  165. }
  166. might_sleep();
  167. if (!test_bit(wil_status_fwready, &wil->status)) {
  168. wil_err(wil, "FW not ready\n");
  169. return -EAGAIN;
  170. }
  171. if (!head) {
  172. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  173. return -EINVAL;
  174. }
  175. /* read Tx head till it is not busy */
  176. for (retry = 5; retry > 0; retry--) {
  177. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  178. if (d_head.sync == 0)
  179. break;
  180. msleep(20);
  181. }
  182. if (d_head.sync != 0) {
  183. wil_err(wil, "WMI head busy\n");
  184. return -EBUSY;
  185. }
  186. /* next head */
  187. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  188. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  189. /* wait till FW finish with previous command */
  190. for (retry = 5; retry > 0; retry--) {
  191. r->tail = ioread32(wil->csr + HOST_MBOX +
  192. offsetof(struct wil6210_mbox_ctl, tx.tail));
  193. if (next_head != r->tail)
  194. break;
  195. msleep(20);
  196. }
  197. if (next_head == r->tail) {
  198. wil_err(wil, "WMI ring full\n");
  199. return -EBUSY;
  200. }
  201. dst = wmi_buffer(wil, d_head.addr);
  202. if (!dst) {
  203. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  204. le32_to_cpu(d_head.addr));
  205. return -EINVAL;
  206. }
  207. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  208. /* set command */
  209. wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
  210. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  211. sizeof(cmd), true);
  212. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  213. len, true);
  214. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  215. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  216. /* mark entry as full */
  217. iowrite32(1, wil->csr + HOSTADDR(r->head) +
  218. offsetof(struct wil6210_mbox_ring_desc, sync));
  219. /* advance next ptr */
  220. iowrite32(r->head = next_head, wil->csr + HOST_MBOX +
  221. offsetof(struct wil6210_mbox_ctl, tx.head));
  222. /* interrupt to FW */
  223. iowrite32(SW_INT_MBOX, wil->csr + HOST_SW_INT);
  224. return 0;
  225. }
  226. int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  227. {
  228. int rc;
  229. mutex_lock(&wil->wmi_mutex);
  230. rc = __wmi_send(wil, cmdid, buf, len);
  231. mutex_unlock(&wil->wmi_mutex);
  232. return rc;
  233. }
  234. /*=== Event handlers ===*/
  235. static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
  236. {
  237. struct net_device *ndev = wil_to_ndev(wil);
  238. struct wireless_dev *wdev = wil->wdev;
  239. struct wmi_ready_event *evt = d;
  240. u32 ver = le32_to_cpu(evt->sw_version);
  241. wil_dbg_wmi(wil, "FW ver. %d; MAC %pM\n", ver, evt->mac);
  242. if (!is_valid_ether_addr(ndev->dev_addr)) {
  243. memcpy(ndev->dev_addr, evt->mac, ETH_ALEN);
  244. memcpy(ndev->perm_addr, evt->mac, ETH_ALEN);
  245. }
  246. snprintf(wdev->wiphy->fw_version, sizeof(wdev->wiphy->fw_version),
  247. "%d", ver);
  248. }
  249. static void wmi_evt_fw_ready(struct wil6210_priv *wil, int id, void *d,
  250. int len)
  251. {
  252. wil_dbg_wmi(wil, "WMI: FW ready\n");
  253. set_bit(wil_status_fwready, &wil->status);
  254. /* reuse wmi_ready for the firmware ready indication */
  255. complete(&wil->wmi_ready);
  256. }
  257. static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  258. {
  259. struct wmi_rx_mgmt_packet_event *data = d;
  260. struct wiphy *wiphy = wil_to_wiphy(wil);
  261. struct ieee80211_mgmt *rx_mgmt_frame =
  262. (struct ieee80211_mgmt *)data->payload;
  263. int ch_no = data->info.channel+1;
  264. u32 freq = ieee80211_channel_to_frequency(ch_no,
  265. IEEE80211_BAND_60GHZ);
  266. struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq);
  267. /* TODO convert LE to CPU */
  268. s32 signal = 0; /* TODO */
  269. __le16 fc = rx_mgmt_frame->frame_control;
  270. u32 d_len = le32_to_cpu(data->info.len);
  271. u16 d_status = le16_to_cpu(data->info.status);
  272. wil_dbg_wmi(wil, "MGMT: channel %d MCS %d SNR %d\n",
  273. data->info.channel, data->info.mcs, data->info.snr);
  274. wil_dbg_wmi(wil, "status 0x%04x len %d stype %04x\n", d_status, d_len,
  275. le16_to_cpu(data->info.stype));
  276. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  277. data->info.qid, data->info.mid, data->info.cid);
  278. if (!channel) {
  279. wil_err(wil, "Frame on unsupported channel\n");
  280. return;
  281. }
  282. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  283. struct cfg80211_bss *bss;
  284. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  285. d_len, signal, GFP_KERNEL);
  286. if (bss) {
  287. wil_dbg_wmi(wil, "Added BSS %pM\n",
  288. rx_mgmt_frame->bssid);
  289. cfg80211_put_bss(wiphy, bss);
  290. } else {
  291. wil_err(wil, "cfg80211_inform_bss() failed\n");
  292. }
  293. } else {
  294. cfg80211_rx_mgmt(wil->wdev, freq, signal,
  295. (void *)rx_mgmt_frame, d_len, GFP_KERNEL);
  296. }
  297. }
  298. static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
  299. void *d, int len)
  300. {
  301. if (wil->scan_request) {
  302. struct wmi_scan_complete_event *data = d;
  303. bool aborted = (data->status != 0);
  304. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
  305. cfg80211_scan_done(wil->scan_request, aborted);
  306. wil->scan_request = NULL;
  307. } else {
  308. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  309. }
  310. }
  311. static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
  312. {
  313. struct net_device *ndev = wil_to_ndev(wil);
  314. struct wireless_dev *wdev = wil->wdev;
  315. struct wmi_connect_event *evt = d;
  316. int ch; /* channel number */
  317. struct station_info sinfo;
  318. u8 *assoc_req_ie, *assoc_resp_ie;
  319. size_t assoc_req_ielen, assoc_resp_ielen;
  320. /* capinfo(u16) + listen_interval(u16) + IEs */
  321. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  322. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  323. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  324. if (len < sizeof(*evt)) {
  325. wil_err(wil, "Connect event too short : %d bytes\n", len);
  326. return;
  327. }
  328. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  329. evt->assoc_resp_len) {
  330. wil_err(wil,
  331. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  332. len, (int)sizeof(*evt), evt->beacon_ie_len,
  333. evt->assoc_req_len, evt->assoc_resp_len);
  334. return;
  335. }
  336. ch = evt->channel + 1;
  337. wil_dbg_wmi(wil, "Connect %pM channel [%d] cid %d\n",
  338. evt->bssid, ch, evt->cid);
  339. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  340. evt->assoc_info, len - sizeof(*evt), true);
  341. /* figure out IE's */
  342. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  343. assoc_req_ie_offset];
  344. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  345. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  346. assoc_req_ie = NULL;
  347. assoc_req_ielen = 0;
  348. }
  349. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  350. evt->assoc_req_len +
  351. assoc_resp_ie_offset];
  352. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  353. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  354. assoc_resp_ie = NULL;
  355. assoc_resp_ielen = 0;
  356. }
  357. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  358. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  359. if (wdev->sme_state != CFG80211_SME_CONNECTING) {
  360. wil_err(wil, "Not in connecting state\n");
  361. return;
  362. }
  363. del_timer_sync(&wil->connect_timer);
  364. cfg80211_connect_result(ndev, evt->bssid,
  365. assoc_req_ie, assoc_req_ielen,
  366. assoc_resp_ie, assoc_resp_ielen,
  367. WLAN_STATUS_SUCCESS, GFP_KERNEL);
  368. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  369. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  370. memset(&sinfo, 0, sizeof(sinfo));
  371. sinfo.generation = wil->sinfo_gen++;
  372. if (assoc_req_ie) {
  373. sinfo.assoc_req_ies = assoc_req_ie;
  374. sinfo.assoc_req_ies_len = assoc_req_ielen;
  375. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  376. }
  377. cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
  378. }
  379. set_bit(wil_status_fwconnected, &wil->status);
  380. /* FIXME FW can transmit only ucast frames to peer */
  381. /* FIXME real ring_id instead of hard coded 0 */
  382. memcpy(wil->dst_addr[0], evt->bssid, ETH_ALEN);
  383. wil->pending_connect_cid = evt->cid;
  384. queue_work(wil->wmi_wq_conn, &wil->connect_worker);
  385. }
  386. static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
  387. void *d, int len)
  388. {
  389. struct wmi_disconnect_event *evt = d;
  390. wil_dbg_wmi(wil, "Disconnect %pM reason %d proto %d wmi\n",
  391. evt->bssid,
  392. evt->protocol_reason_status, evt->disconnect_reason);
  393. wil->sinfo_gen++;
  394. wil6210_disconnect(wil, evt->bssid);
  395. }
  396. static void wmi_evt_notify(struct wil6210_priv *wil, int id, void *d, int len)
  397. {
  398. struct wmi_notify_req_done_event *evt = d;
  399. if (len < sizeof(*evt)) {
  400. wil_err(wil, "Short NOTIFY event\n");
  401. return;
  402. }
  403. wil->stats.tsf = le64_to_cpu(evt->tsf);
  404. wil->stats.snr = le32_to_cpu(evt->snr_val);
  405. wil->stats.bf_mcs = le16_to_cpu(evt->bf_mcs);
  406. wil->stats.my_rx_sector = le16_to_cpu(evt->my_rx_sector);
  407. wil->stats.my_tx_sector = le16_to_cpu(evt->my_tx_sector);
  408. wil->stats.peer_rx_sector = le16_to_cpu(evt->other_rx_sector);
  409. wil->stats.peer_tx_sector = le16_to_cpu(evt->other_tx_sector);
  410. wil_dbg_wmi(wil, "Link status, MCS %d TSF 0x%016llx\n"
  411. "BF status 0x%08x SNR 0x%08x\n"
  412. "Tx Tpt %d goodput %d Rx goodput %d\n"
  413. "Sectors(rx:tx) my %d:%d peer %d:%d\n",
  414. wil->stats.bf_mcs, wil->stats.tsf, evt->status,
  415. wil->stats.snr, le32_to_cpu(evt->tx_tpt),
  416. le32_to_cpu(evt->tx_goodput), le32_to_cpu(evt->rx_goodput),
  417. wil->stats.my_rx_sector, wil->stats.my_tx_sector,
  418. wil->stats.peer_rx_sector, wil->stats.peer_tx_sector);
  419. }
  420. /*
  421. * Firmware reports EAPOL frame using WME event.
  422. * Reconstruct Ethernet frame and deliver it via normal Rx
  423. */
  424. static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
  425. void *d, int len)
  426. {
  427. struct net_device *ndev = wil_to_ndev(wil);
  428. struct wmi_eapol_rx_event *evt = d;
  429. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  430. int sz = eapol_len + ETH_HLEN;
  431. struct sk_buff *skb;
  432. struct ethhdr *eth;
  433. wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
  434. evt->src_mac);
  435. if (eapol_len > 196) { /* TODO: revisit size limit */
  436. wil_err(wil, "EAPOL too large\n");
  437. return;
  438. }
  439. skb = alloc_skb(sz, GFP_KERNEL);
  440. if (!skb) {
  441. wil_err(wil, "Failed to allocate skb\n");
  442. return;
  443. }
  444. eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
  445. memcpy(eth->h_dest, ndev->dev_addr, ETH_ALEN);
  446. memcpy(eth->h_source, evt->src_mac, ETH_ALEN);
  447. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  448. memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
  449. skb->protocol = eth_type_trans(skb, ndev);
  450. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  451. ndev->stats.rx_packets++;
  452. ndev->stats.rx_bytes += skb->len;
  453. } else {
  454. ndev->stats.rx_dropped++;
  455. }
  456. }
  457. static void wmi_evt_linkup(struct wil6210_priv *wil, int id, void *d, int len)
  458. {
  459. struct net_device *ndev = wil_to_ndev(wil);
  460. struct wmi_data_port_open_event *evt = d;
  461. wil_dbg_wmi(wil, "Link UP for CID %d\n", evt->cid);
  462. netif_carrier_on(ndev);
  463. }
  464. static void wmi_evt_linkdown(struct wil6210_priv *wil, int id, void *d, int len)
  465. {
  466. struct net_device *ndev = wil_to_ndev(wil);
  467. struct wmi_wbe_link_down_event *evt = d;
  468. wil_dbg_wmi(wil, "Link DOWN for CID %d, reason %d\n",
  469. evt->cid, le32_to_cpu(evt->reason));
  470. netif_carrier_off(ndev);
  471. }
  472. static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
  473. int len)
  474. {
  475. struct wmi_vring_ba_status_event *evt = d;
  476. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d\n",
  477. evt->ringid, evt->status ? "N/A" : "OK", evt->agg_wsize,
  478. __le16_to_cpu(evt->ba_timeout));
  479. }
  480. static const struct {
  481. int eventid;
  482. void (*handler)(struct wil6210_priv *wil, int eventid,
  483. void *data, int data_len);
  484. } wmi_evt_handlers[] = {
  485. {WMI_READY_EVENTID, wmi_evt_ready},
  486. {WMI_FW_READY_EVENTID, wmi_evt_fw_ready},
  487. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  488. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  489. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  490. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  491. {WMI_NOTIFY_REQ_DONE_EVENTID, wmi_evt_notify},
  492. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  493. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_linkup},
  494. {WMI_WBE_LINKDOWN_EVENTID, wmi_evt_linkdown},
  495. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  496. };
  497. /*
  498. * Run in IRQ context
  499. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  500. * that will be eventually handled by the @wmi_event_worker in the thread
  501. * context of thread "wil6210_wmi"
  502. */
  503. void wmi_recv_cmd(struct wil6210_priv *wil)
  504. {
  505. struct wil6210_mbox_ring_desc d_tail;
  506. struct wil6210_mbox_hdr hdr;
  507. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  508. struct pending_wmi_event *evt;
  509. u8 *cmd;
  510. void __iomem *src;
  511. ulong flags;
  512. if (!test_bit(wil_status_reset_done, &wil->status)) {
  513. wil_err(wil, "Reset not completed\n");
  514. return;
  515. }
  516. for (;;) {
  517. u16 len;
  518. r->head = ioread32(wil->csr + HOST_MBOX +
  519. offsetof(struct wil6210_mbox_ctl, rx.head));
  520. if (r->tail == r->head)
  521. return;
  522. /* read cmd from tail */
  523. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  524. sizeof(struct wil6210_mbox_ring_desc));
  525. if (d_tail.sync == 0) {
  526. wil_err(wil, "Mbox evt not owned by FW?\n");
  527. return;
  528. }
  529. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  530. wil_err(wil, "Mbox evt at 0x%08x?\n",
  531. le32_to_cpu(d_tail.addr));
  532. return;
  533. }
  534. len = le16_to_cpu(hdr.len);
  535. src = wmi_buffer(wil, d_tail.addr) +
  536. sizeof(struct wil6210_mbox_hdr);
  537. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  538. event.wmi) + len, 4),
  539. GFP_KERNEL);
  540. if (!evt)
  541. return;
  542. evt->event.hdr = hdr;
  543. cmd = (void *)&evt->event.wmi;
  544. wil_memcpy_fromio_32(cmd, src, len);
  545. /* mark entry as empty */
  546. iowrite32(0, wil->csr + HOSTADDR(r->tail) +
  547. offsetof(struct wil6210_mbox_ring_desc, sync));
  548. /* indicate */
  549. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  550. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  551. hdr.flags);
  552. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  553. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  554. wil_dbg_wmi(wil, "WMI event 0x%04x\n",
  555. evt->event.wmi.id);
  556. }
  557. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  558. &evt->event.hdr, sizeof(hdr) + len, true);
  559. /* advance tail */
  560. r->tail = r->base + ((r->tail - r->base +
  561. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  562. iowrite32(r->tail, wil->csr + HOST_MBOX +
  563. offsetof(struct wil6210_mbox_ctl, rx.tail));
  564. /* add to the pending list */
  565. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  566. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  567. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  568. {
  569. int q = queue_work(wil->wmi_wq,
  570. &wil->wmi_event_worker);
  571. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  572. }
  573. }
  574. }
  575. int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
  576. u16 reply_id, void *reply, u8 reply_size, int to_msec)
  577. {
  578. int rc;
  579. int remain;
  580. mutex_lock(&wil->wmi_mutex);
  581. rc = __wmi_send(wil, cmdid, buf, len);
  582. if (rc)
  583. goto out;
  584. wil->reply_id = reply_id;
  585. wil->reply_buf = reply;
  586. wil->reply_size = reply_size;
  587. remain = wait_for_completion_timeout(&wil->wmi_ready,
  588. msecs_to_jiffies(to_msec));
  589. if (0 == remain) {
  590. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  591. cmdid, reply_id, to_msec);
  592. rc = -ETIME;
  593. } else {
  594. wil_dbg_wmi(wil,
  595. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  596. cmdid, reply_id,
  597. to_msec - jiffies_to_msecs(remain));
  598. }
  599. wil->reply_id = 0;
  600. wil->reply_buf = NULL;
  601. wil->reply_size = 0;
  602. out:
  603. mutex_unlock(&wil->wmi_mutex);
  604. return rc;
  605. }
  606. int wmi_echo(struct wil6210_priv *wil)
  607. {
  608. struct wmi_echo_cmd cmd = {
  609. .value = cpu_to_le32(0x12345678),
  610. };
  611. return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
  612. WMI_ECHO_RSP_EVENTID, NULL, 0, 20);
  613. }
  614. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  615. {
  616. struct wmi_set_mac_address_cmd cmd;
  617. memcpy(cmd.mac, addr, ETH_ALEN);
  618. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  619. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
  620. }
  621. int wmi_set_bcon(struct wil6210_priv *wil, int bi, u8 wmi_nettype)
  622. {
  623. struct wmi_bcon_ctrl_cmd cmd = {
  624. .bcon_interval = cpu_to_le16(bi),
  625. .network_type = wmi_nettype,
  626. .disable_sec_offload = 1,
  627. };
  628. if (!wil->secure_pcp)
  629. cmd.disable_sec = 1;
  630. return wmi_send(wil, WMI_BCON_CTRL_CMDID, &cmd, sizeof(cmd));
  631. }
  632. int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
  633. {
  634. struct wmi_set_ssid_cmd cmd = {
  635. .ssid_len = cpu_to_le32(ssid_len),
  636. };
  637. if (ssid_len > sizeof(cmd.ssid))
  638. return -EINVAL;
  639. memcpy(cmd.ssid, ssid, ssid_len);
  640. return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
  641. }
  642. int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
  643. {
  644. int rc;
  645. struct {
  646. struct wil6210_mbox_hdr_wmi wmi;
  647. struct wmi_set_ssid_cmd cmd;
  648. } __packed reply;
  649. int len; /* reply.cmd.ssid_len in CPU order */
  650. rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
  651. &reply, sizeof(reply), 20);
  652. if (rc)
  653. return rc;
  654. len = le32_to_cpu(reply.cmd.ssid_len);
  655. if (len > sizeof(reply.cmd.ssid))
  656. return -EINVAL;
  657. *ssid_len = len;
  658. memcpy(ssid, reply.cmd.ssid, len);
  659. return 0;
  660. }
  661. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  662. {
  663. struct wmi_set_pcp_channel_cmd cmd = {
  664. .channel = channel - 1,
  665. };
  666. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
  667. }
  668. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  669. {
  670. int rc;
  671. struct {
  672. struct wil6210_mbox_hdr_wmi wmi;
  673. struct wmi_set_pcp_channel_cmd cmd;
  674. } __packed reply;
  675. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
  676. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  677. if (rc)
  678. return rc;
  679. if (reply.cmd.channel > 3)
  680. return -EINVAL;
  681. *channel = reply.cmd.channel + 1;
  682. return 0;
  683. }
  684. int wmi_tx_eapol(struct wil6210_priv *wil, struct sk_buff *skb)
  685. {
  686. struct wmi_eapol_tx_cmd *cmd;
  687. struct ethhdr *eth;
  688. u16 eapol_len = skb->len - ETH_HLEN;
  689. void *eapol = skb->data + ETH_HLEN;
  690. uint i;
  691. int rc;
  692. skb_set_mac_header(skb, 0);
  693. eth = eth_hdr(skb);
  694. wil_dbg_wmi(wil, "EAPOL %d bytes to %pM\n", eapol_len, eth->h_dest);
  695. for (i = 0; i < ARRAY_SIZE(wil->vring_tx); i++) {
  696. if (memcmp(wil->dst_addr[i], eth->h_dest, ETH_ALEN) == 0)
  697. goto found_dest;
  698. }
  699. return -EINVAL;
  700. found_dest:
  701. /* find out eapol data & len */
  702. cmd = kzalloc(sizeof(*cmd) + eapol_len, GFP_KERNEL);
  703. if (!cmd)
  704. return -EINVAL;
  705. memcpy(cmd->dst_mac, eth->h_dest, ETH_ALEN);
  706. cmd->eapol_len = cpu_to_le16(eapol_len);
  707. memcpy(cmd->eapol, eapol, eapol_len);
  708. rc = wmi_send(wil, WMI_EAPOL_TX_CMDID, cmd, sizeof(*cmd) + eapol_len);
  709. kfree(cmd);
  710. return rc;
  711. }
  712. int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
  713. const void *mac_addr)
  714. {
  715. struct wmi_delete_cipher_key_cmd cmd = {
  716. .key_index = key_index,
  717. };
  718. if (mac_addr)
  719. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  720. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  721. }
  722. int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
  723. const void *mac_addr, int key_len, const void *key)
  724. {
  725. struct wmi_add_cipher_key_cmd cmd = {
  726. .key_index = key_index,
  727. .key_usage = WMI_KEY_USE_PAIRWISE,
  728. .key_len = key_len,
  729. };
  730. if (!key || (key_len > sizeof(cmd.key)))
  731. return -EINVAL;
  732. memcpy(cmd.key, key, key_len);
  733. if (mac_addr)
  734. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  735. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  736. }
  737. int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
  738. {
  739. int rc;
  740. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  741. struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
  742. if (!cmd)
  743. return -ENOMEM;
  744. cmd->mgmt_frm_type = type;
  745. /* BUG: FW API define ieLen as u8. Will fix FW */
  746. cmd->ie_len = cpu_to_le16(ie_len);
  747. memcpy(cmd->ie_info, ie, ie_len);
  748. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
  749. kfree(cmd);
  750. return rc;
  751. }
  752. int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
  753. {
  754. struct wireless_dev *wdev = wil->wdev;
  755. struct net_device *ndev = wil_to_ndev(wil);
  756. struct wmi_cfg_rx_chain_cmd cmd = {
  757. .action = WMI_RX_CHAIN_ADD,
  758. .rx_sw_ring = {
  759. .max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
  760. .ring_mem_base = cpu_to_le64(vring->pa),
  761. .ring_size = cpu_to_le16(vring->size),
  762. },
  763. .mid = 0, /* TODO - what is it? */
  764. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  765. };
  766. struct {
  767. struct wil6210_mbox_hdr_wmi wmi;
  768. struct wmi_cfg_rx_chain_done_event evt;
  769. } __packed evt;
  770. int rc;
  771. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  772. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  773. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  774. if (ch)
  775. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  776. cmd.sniffer_cfg.phy_info_mode =
  777. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  778. cmd.sniffer_cfg.phy_support =
  779. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  780. ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
  781. }
  782. /* typical time for secure PCP is 840ms */
  783. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  784. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  785. if (rc)
  786. return rc;
  787. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  788. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  789. le32_to_cpu(evt.evt.status), vring->hwtail);
  790. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  791. rc = -EINVAL;
  792. return rc;
  793. }
  794. void wmi_event_flush(struct wil6210_priv *wil)
  795. {
  796. struct pending_wmi_event *evt, *t;
  797. wil_dbg_wmi(wil, "%s()\n", __func__);
  798. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  799. list_del(&evt->list);
  800. kfree(evt);
  801. }
  802. }
  803. static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
  804. void *d, int len)
  805. {
  806. uint i;
  807. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  808. if (wmi_evt_handlers[i].eventid == id) {
  809. wmi_evt_handlers[i].handler(wil, id, d, len);
  810. return true;
  811. }
  812. }
  813. return false;
  814. }
  815. static void wmi_event_handle(struct wil6210_priv *wil,
  816. struct wil6210_mbox_hdr *hdr)
  817. {
  818. u16 len = le16_to_cpu(hdr->len);
  819. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  820. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  821. struct wil6210_mbox_hdr_wmi *wmi = (void *)(&hdr[1]);
  822. void *evt_data = (void *)(&wmi[1]);
  823. u16 id = le16_to_cpu(wmi->id);
  824. /* check if someone waits for this event */
  825. if (wil->reply_id && wil->reply_id == id) {
  826. if (wil->reply_buf) {
  827. memcpy(wil->reply_buf, wmi,
  828. min(len, wil->reply_size));
  829. } else {
  830. wmi_evt_call_handler(wil, id, evt_data,
  831. len - sizeof(*wmi));
  832. }
  833. wil_dbg_wmi(wil, "Complete WMI 0x%04x\n", id);
  834. complete(&wil->wmi_ready);
  835. return;
  836. }
  837. /* unsolicited event */
  838. /* search for handler */
  839. if (!wmi_evt_call_handler(wil, id, evt_data,
  840. len - sizeof(*wmi))) {
  841. wil_err(wil, "Unhandled event 0x%04x\n", id);
  842. }
  843. } else {
  844. wil_err(wil, "Unknown event type\n");
  845. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  846. hdr, sizeof(*hdr) + len, true);
  847. }
  848. }
  849. /*
  850. * Retrieve next WMI event from the pending list
  851. */
  852. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  853. {
  854. ulong flags;
  855. struct list_head *ret = NULL;
  856. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  857. if (!list_empty(&wil->pending_wmi_ev)) {
  858. ret = wil->pending_wmi_ev.next;
  859. list_del(ret);
  860. }
  861. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  862. return ret;
  863. }
  864. /*
  865. * Handler for the WMI events
  866. */
  867. void wmi_event_worker(struct work_struct *work)
  868. {
  869. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  870. wmi_event_worker);
  871. struct pending_wmi_event *evt;
  872. struct list_head *lh;
  873. while ((lh = next_wmi_ev(wil)) != NULL) {
  874. evt = list_entry(lh, struct pending_wmi_event, list);
  875. wmi_event_handle(wil, &evt->event.hdr);
  876. kfree(evt);
  877. }
  878. }