dm-thin.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882
  1. /*
  2. * Copyright (C) 2011 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include <linux/device-mapper.h>
  8. #include <linux/dm-io.h>
  9. #include <linux/dm-kcopyd.h>
  10. #include <linux/list.h>
  11. #include <linux/init.h>
  12. #include <linux/module.h>
  13. #include <linux/slab.h>
  14. #define DM_MSG_PREFIX "thin"
  15. /*
  16. * Tunable constants
  17. */
  18. #define ENDIO_HOOK_POOL_SIZE 1024
  19. #define DEFERRED_SET_SIZE 64
  20. #define MAPPING_POOL_SIZE 1024
  21. #define PRISON_CELLS 1024
  22. #define COMMIT_PERIOD HZ
  23. /*
  24. * The block size of the device holding pool data must be
  25. * between 64KB and 1GB.
  26. */
  27. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  28. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  29. /*
  30. * Device id is restricted to 24 bits.
  31. */
  32. #define MAX_DEV_ID ((1 << 24) - 1)
  33. /*
  34. * How do we handle breaking sharing of data blocks?
  35. * =================================================
  36. *
  37. * We use a standard copy-on-write btree to store the mappings for the
  38. * devices (note I'm talking about copy-on-write of the metadata here, not
  39. * the data). When you take an internal snapshot you clone the root node
  40. * of the origin btree. After this there is no concept of an origin or a
  41. * snapshot. They are just two device trees that happen to point to the
  42. * same data blocks.
  43. *
  44. * When we get a write in we decide if it's to a shared data block using
  45. * some timestamp magic. If it is, we have to break sharing.
  46. *
  47. * Let's say we write to a shared block in what was the origin. The
  48. * steps are:
  49. *
  50. * i) plug io further to this physical block. (see bio_prison code).
  51. *
  52. * ii) quiesce any read io to that shared data block. Obviously
  53. * including all devices that share this block. (see deferred_set code)
  54. *
  55. * iii) copy the data block to a newly allocate block. This step can be
  56. * missed out if the io covers the block. (schedule_copy).
  57. *
  58. * iv) insert the new mapping into the origin's btree
  59. * (process_prepared_mapping). This act of inserting breaks some
  60. * sharing of btree nodes between the two devices. Breaking sharing only
  61. * effects the btree of that specific device. Btrees for the other
  62. * devices that share the block never change. The btree for the origin
  63. * device as it was after the last commit is untouched, ie. we're using
  64. * persistent data structures in the functional programming sense.
  65. *
  66. * v) unplug io to this physical block, including the io that triggered
  67. * the breaking of sharing.
  68. *
  69. * Steps (ii) and (iii) occur in parallel.
  70. *
  71. * The metadata _doesn't_ need to be committed before the io continues. We
  72. * get away with this because the io is always written to a _new_ block.
  73. * If there's a crash, then:
  74. *
  75. * - The origin mapping will point to the old origin block (the shared
  76. * one). This will contain the data as it was before the io that triggered
  77. * the breaking of sharing came in.
  78. *
  79. * - The snap mapping still points to the old block. As it would after
  80. * the commit.
  81. *
  82. * The downside of this scheme is the timestamp magic isn't perfect, and
  83. * will continue to think that data block in the snapshot device is shared
  84. * even after the write to the origin has broken sharing. I suspect data
  85. * blocks will typically be shared by many different devices, so we're
  86. * breaking sharing n + 1 times, rather than n, where n is the number of
  87. * devices that reference this data block. At the moment I think the
  88. * benefits far, far outweigh the disadvantages.
  89. */
  90. /*----------------------------------------------------------------*/
  91. /*
  92. * Sometimes we can't deal with a bio straight away. We put them in prison
  93. * where they can't cause any mischief. Bios are put in a cell identified
  94. * by a key, multiple bios can be in the same cell. When the cell is
  95. * subsequently unlocked the bios become available.
  96. */
  97. struct bio_prison;
  98. struct cell_key {
  99. int virtual;
  100. dm_thin_id dev;
  101. dm_block_t block;
  102. };
  103. struct dm_bio_prison_cell {
  104. struct hlist_node list;
  105. struct bio_prison *prison;
  106. struct cell_key key;
  107. struct bio *holder;
  108. struct bio_list bios;
  109. };
  110. struct bio_prison {
  111. spinlock_t lock;
  112. mempool_t *cell_pool;
  113. unsigned nr_buckets;
  114. unsigned hash_mask;
  115. struct hlist_head *cells;
  116. };
  117. static uint32_t calc_nr_buckets(unsigned nr_cells)
  118. {
  119. uint32_t n = 128;
  120. nr_cells /= 4;
  121. nr_cells = min(nr_cells, 8192u);
  122. while (n < nr_cells)
  123. n <<= 1;
  124. return n;
  125. }
  126. static struct kmem_cache *_cell_cache;
  127. /*
  128. * @nr_cells should be the number of cells you want in use _concurrently_.
  129. * Don't confuse it with the number of distinct keys.
  130. */
  131. static struct bio_prison *prison_create(unsigned nr_cells)
  132. {
  133. unsigned i;
  134. uint32_t nr_buckets = calc_nr_buckets(nr_cells);
  135. size_t len = sizeof(struct bio_prison) +
  136. (sizeof(struct hlist_head) * nr_buckets);
  137. struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
  138. if (!prison)
  139. return NULL;
  140. spin_lock_init(&prison->lock);
  141. prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
  142. if (!prison->cell_pool) {
  143. kfree(prison);
  144. return NULL;
  145. }
  146. prison->nr_buckets = nr_buckets;
  147. prison->hash_mask = nr_buckets - 1;
  148. prison->cells = (struct hlist_head *) (prison + 1);
  149. for (i = 0; i < nr_buckets; i++)
  150. INIT_HLIST_HEAD(prison->cells + i);
  151. return prison;
  152. }
  153. static void prison_destroy(struct bio_prison *prison)
  154. {
  155. mempool_destroy(prison->cell_pool);
  156. kfree(prison);
  157. }
  158. static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
  159. {
  160. const unsigned long BIG_PRIME = 4294967291UL;
  161. uint64_t hash = key->block * BIG_PRIME;
  162. return (uint32_t) (hash & prison->hash_mask);
  163. }
  164. static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
  165. {
  166. return (lhs->virtual == rhs->virtual) &&
  167. (lhs->dev == rhs->dev) &&
  168. (lhs->block == rhs->block);
  169. }
  170. static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
  171. struct cell_key *key)
  172. {
  173. struct dm_bio_prison_cell *cell;
  174. struct hlist_node *tmp;
  175. hlist_for_each_entry(cell, tmp, bucket, list)
  176. if (keys_equal(&cell->key, key))
  177. return cell;
  178. return NULL;
  179. }
  180. /*
  181. * This may block if a new cell needs allocating. You must ensure that
  182. * cells will be unlocked even if the calling thread is blocked.
  183. *
  184. * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
  185. */
  186. static int bio_detain(struct bio_prison *prison, struct cell_key *key,
  187. struct bio *inmate, struct dm_bio_prison_cell **ref)
  188. {
  189. int r = 1;
  190. unsigned long flags;
  191. uint32_t hash = hash_key(prison, key);
  192. struct dm_bio_prison_cell *cell, *cell2;
  193. BUG_ON(hash > prison->nr_buckets);
  194. spin_lock_irqsave(&prison->lock, flags);
  195. cell = __search_bucket(prison->cells + hash, key);
  196. if (cell) {
  197. bio_list_add(&cell->bios, inmate);
  198. goto out;
  199. }
  200. /*
  201. * Allocate a new cell
  202. */
  203. spin_unlock_irqrestore(&prison->lock, flags);
  204. cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
  205. spin_lock_irqsave(&prison->lock, flags);
  206. /*
  207. * We've been unlocked, so we have to double check that
  208. * nobody else has inserted this cell in the meantime.
  209. */
  210. cell = __search_bucket(prison->cells + hash, key);
  211. if (cell) {
  212. mempool_free(cell2, prison->cell_pool);
  213. bio_list_add(&cell->bios, inmate);
  214. goto out;
  215. }
  216. /*
  217. * Use new cell.
  218. */
  219. cell = cell2;
  220. cell->prison = prison;
  221. memcpy(&cell->key, key, sizeof(cell->key));
  222. cell->holder = inmate;
  223. bio_list_init(&cell->bios);
  224. hlist_add_head(&cell->list, prison->cells + hash);
  225. r = 0;
  226. out:
  227. spin_unlock_irqrestore(&prison->lock, flags);
  228. *ref = cell;
  229. return r;
  230. }
  231. /*
  232. * @inmates must have been initialised prior to this call
  233. */
  234. static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
  235. {
  236. struct bio_prison *prison = cell->prison;
  237. hlist_del(&cell->list);
  238. if (inmates) {
  239. bio_list_add(inmates, cell->holder);
  240. bio_list_merge(inmates, &cell->bios);
  241. }
  242. mempool_free(cell, prison->cell_pool);
  243. }
  244. static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
  245. {
  246. unsigned long flags;
  247. struct bio_prison *prison = cell->prison;
  248. spin_lock_irqsave(&prison->lock, flags);
  249. __cell_release(cell, bios);
  250. spin_unlock_irqrestore(&prison->lock, flags);
  251. }
  252. /*
  253. * There are a couple of places where we put a bio into a cell briefly
  254. * before taking it out again. In these situations we know that no other
  255. * bio may be in the cell. This function releases the cell, and also does
  256. * a sanity check.
  257. */
  258. static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
  259. {
  260. BUG_ON(cell->holder != bio);
  261. BUG_ON(!bio_list_empty(&cell->bios));
  262. __cell_release(cell, NULL);
  263. }
  264. static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
  265. {
  266. unsigned long flags;
  267. struct bio_prison *prison = cell->prison;
  268. spin_lock_irqsave(&prison->lock, flags);
  269. __cell_release_singleton(cell, bio);
  270. spin_unlock_irqrestore(&prison->lock, flags);
  271. }
  272. /*
  273. * Sometimes we don't want the holder, just the additional bios.
  274. */
  275. static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
  276. struct bio_list *inmates)
  277. {
  278. struct bio_prison *prison = cell->prison;
  279. hlist_del(&cell->list);
  280. bio_list_merge(inmates, &cell->bios);
  281. mempool_free(cell, prison->cell_pool);
  282. }
  283. static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
  284. struct bio_list *inmates)
  285. {
  286. unsigned long flags;
  287. struct bio_prison *prison = cell->prison;
  288. spin_lock_irqsave(&prison->lock, flags);
  289. __cell_release_no_holder(cell, inmates);
  290. spin_unlock_irqrestore(&prison->lock, flags);
  291. }
  292. static void cell_error(struct dm_bio_prison_cell *cell)
  293. {
  294. struct bio_prison *prison = cell->prison;
  295. struct bio_list bios;
  296. struct bio *bio;
  297. unsigned long flags;
  298. bio_list_init(&bios);
  299. spin_lock_irqsave(&prison->lock, flags);
  300. __cell_release(cell, &bios);
  301. spin_unlock_irqrestore(&prison->lock, flags);
  302. while ((bio = bio_list_pop(&bios)))
  303. bio_io_error(bio);
  304. }
  305. /*----------------------------------------------------------------*/
  306. /*
  307. * We use the deferred set to keep track of pending reads to shared blocks.
  308. * We do this to ensure the new mapping caused by a write isn't performed
  309. * until these prior reads have completed. Otherwise the insertion of the
  310. * new mapping could free the old block that the read bios are mapped to.
  311. */
  312. struct deferred_set;
  313. struct deferred_entry {
  314. struct deferred_set *ds;
  315. unsigned count;
  316. struct list_head work_items;
  317. };
  318. struct deferred_set {
  319. spinlock_t lock;
  320. unsigned current_entry;
  321. unsigned sweeper;
  322. struct deferred_entry entries[DEFERRED_SET_SIZE];
  323. };
  324. static void ds_init(struct deferred_set *ds)
  325. {
  326. int i;
  327. spin_lock_init(&ds->lock);
  328. ds->current_entry = 0;
  329. ds->sweeper = 0;
  330. for (i = 0; i < DEFERRED_SET_SIZE; i++) {
  331. ds->entries[i].ds = ds;
  332. ds->entries[i].count = 0;
  333. INIT_LIST_HEAD(&ds->entries[i].work_items);
  334. }
  335. }
  336. static struct deferred_entry *ds_inc(struct deferred_set *ds)
  337. {
  338. unsigned long flags;
  339. struct deferred_entry *entry;
  340. spin_lock_irqsave(&ds->lock, flags);
  341. entry = ds->entries + ds->current_entry;
  342. entry->count++;
  343. spin_unlock_irqrestore(&ds->lock, flags);
  344. return entry;
  345. }
  346. static unsigned ds_next(unsigned index)
  347. {
  348. return (index + 1) % DEFERRED_SET_SIZE;
  349. }
  350. static void __sweep(struct deferred_set *ds, struct list_head *head)
  351. {
  352. while ((ds->sweeper != ds->current_entry) &&
  353. !ds->entries[ds->sweeper].count) {
  354. list_splice_init(&ds->entries[ds->sweeper].work_items, head);
  355. ds->sweeper = ds_next(ds->sweeper);
  356. }
  357. if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
  358. list_splice_init(&ds->entries[ds->sweeper].work_items, head);
  359. }
  360. static void ds_dec(struct deferred_entry *entry, struct list_head *head)
  361. {
  362. unsigned long flags;
  363. spin_lock_irqsave(&entry->ds->lock, flags);
  364. BUG_ON(!entry->count);
  365. --entry->count;
  366. __sweep(entry->ds, head);
  367. spin_unlock_irqrestore(&entry->ds->lock, flags);
  368. }
  369. /*
  370. * Returns 1 if deferred or 0 if no pending items to delay job.
  371. */
  372. static int ds_add_work(struct deferred_set *ds, struct list_head *work)
  373. {
  374. int r = 1;
  375. unsigned long flags;
  376. unsigned next_entry;
  377. spin_lock_irqsave(&ds->lock, flags);
  378. if ((ds->sweeper == ds->current_entry) &&
  379. !ds->entries[ds->current_entry].count)
  380. r = 0;
  381. else {
  382. list_add(work, &ds->entries[ds->current_entry].work_items);
  383. next_entry = ds_next(ds->current_entry);
  384. if (!ds->entries[next_entry].count)
  385. ds->current_entry = next_entry;
  386. }
  387. spin_unlock_irqrestore(&ds->lock, flags);
  388. return r;
  389. }
  390. /*----------------------------------------------------------------*/
  391. /*
  392. * Key building.
  393. */
  394. static void build_data_key(struct dm_thin_device *td,
  395. dm_block_t b, struct cell_key *key)
  396. {
  397. key->virtual = 0;
  398. key->dev = dm_thin_dev_id(td);
  399. key->block = b;
  400. }
  401. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  402. struct cell_key *key)
  403. {
  404. key->virtual = 1;
  405. key->dev = dm_thin_dev_id(td);
  406. key->block = b;
  407. }
  408. /*----------------------------------------------------------------*/
  409. /*
  410. * A pool device ties together a metadata device and a data device. It
  411. * also provides the interface for creating and destroying internal
  412. * devices.
  413. */
  414. struct dm_thin_new_mapping;
  415. struct pool_features {
  416. unsigned zero_new_blocks:1;
  417. unsigned discard_enabled:1;
  418. unsigned discard_passdown:1;
  419. };
  420. struct pool {
  421. struct list_head list;
  422. struct dm_target *ti; /* Only set if a pool target is bound */
  423. struct mapped_device *pool_md;
  424. struct block_device *md_dev;
  425. struct dm_pool_metadata *pmd;
  426. dm_block_t low_water_blocks;
  427. uint32_t sectors_per_block;
  428. struct pool_features pf;
  429. unsigned low_water_triggered:1; /* A dm event has been sent */
  430. unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
  431. struct bio_prison *prison;
  432. struct dm_kcopyd_client *copier;
  433. struct workqueue_struct *wq;
  434. struct work_struct worker;
  435. struct delayed_work waker;
  436. unsigned long last_commit_jiffies;
  437. unsigned ref_count;
  438. spinlock_t lock;
  439. struct bio_list deferred_bios;
  440. struct bio_list deferred_flush_bios;
  441. struct list_head prepared_mappings;
  442. struct list_head prepared_discards;
  443. struct bio_list retry_on_resume_list;
  444. struct deferred_set shared_read_ds;
  445. struct deferred_set all_io_ds;
  446. struct dm_thin_new_mapping *next_mapping;
  447. mempool_t *mapping_pool;
  448. mempool_t *endio_hook_pool;
  449. };
  450. /*
  451. * Target context for a pool.
  452. */
  453. struct pool_c {
  454. struct dm_target *ti;
  455. struct pool *pool;
  456. struct dm_dev *data_dev;
  457. struct dm_dev *metadata_dev;
  458. struct dm_target_callbacks callbacks;
  459. dm_block_t low_water_blocks;
  460. struct pool_features pf;
  461. };
  462. /*
  463. * Target context for a thin.
  464. */
  465. struct thin_c {
  466. struct dm_dev *pool_dev;
  467. struct dm_dev *origin_dev;
  468. dm_thin_id dev_id;
  469. struct pool *pool;
  470. struct dm_thin_device *td;
  471. };
  472. /*----------------------------------------------------------------*/
  473. /*
  474. * A global list of pools that uses a struct mapped_device as a key.
  475. */
  476. static struct dm_thin_pool_table {
  477. struct mutex mutex;
  478. struct list_head pools;
  479. } dm_thin_pool_table;
  480. static void pool_table_init(void)
  481. {
  482. mutex_init(&dm_thin_pool_table.mutex);
  483. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  484. }
  485. static void __pool_table_insert(struct pool *pool)
  486. {
  487. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  488. list_add(&pool->list, &dm_thin_pool_table.pools);
  489. }
  490. static void __pool_table_remove(struct pool *pool)
  491. {
  492. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  493. list_del(&pool->list);
  494. }
  495. static struct pool *__pool_table_lookup(struct mapped_device *md)
  496. {
  497. struct pool *pool = NULL, *tmp;
  498. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  499. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  500. if (tmp->pool_md == md) {
  501. pool = tmp;
  502. break;
  503. }
  504. }
  505. return pool;
  506. }
  507. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  508. {
  509. struct pool *pool = NULL, *tmp;
  510. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  511. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  512. if (tmp->md_dev == md_dev) {
  513. pool = tmp;
  514. break;
  515. }
  516. }
  517. return pool;
  518. }
  519. /*----------------------------------------------------------------*/
  520. struct dm_thin_endio_hook {
  521. struct thin_c *tc;
  522. struct deferred_entry *shared_read_entry;
  523. struct deferred_entry *all_io_entry;
  524. struct dm_thin_new_mapping *overwrite_mapping;
  525. };
  526. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  527. {
  528. struct bio *bio;
  529. struct bio_list bios;
  530. bio_list_init(&bios);
  531. bio_list_merge(&bios, master);
  532. bio_list_init(master);
  533. while ((bio = bio_list_pop(&bios))) {
  534. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  535. if (h->tc == tc)
  536. bio_endio(bio, DM_ENDIO_REQUEUE);
  537. else
  538. bio_list_add(master, bio);
  539. }
  540. }
  541. static void requeue_io(struct thin_c *tc)
  542. {
  543. struct pool *pool = tc->pool;
  544. unsigned long flags;
  545. spin_lock_irqsave(&pool->lock, flags);
  546. __requeue_bio_list(tc, &pool->deferred_bios);
  547. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  548. spin_unlock_irqrestore(&pool->lock, flags);
  549. }
  550. /*
  551. * This section of code contains the logic for processing a thin device's IO.
  552. * Much of the code depends on pool object resources (lists, workqueues, etc)
  553. * but most is exclusively called from the thin target rather than the thin-pool
  554. * target.
  555. */
  556. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  557. {
  558. sector_t block_nr = bio->bi_sector;
  559. (void) sector_div(block_nr, tc->pool->sectors_per_block);
  560. return block_nr;
  561. }
  562. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  563. {
  564. struct pool *pool = tc->pool;
  565. sector_t bi_sector = bio->bi_sector;
  566. bio->bi_bdev = tc->pool_dev->bdev;
  567. bio->bi_sector = (block * pool->sectors_per_block) +
  568. sector_div(bi_sector, pool->sectors_per_block);
  569. }
  570. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  571. {
  572. bio->bi_bdev = tc->origin_dev->bdev;
  573. }
  574. static void issue(struct thin_c *tc, struct bio *bio)
  575. {
  576. struct pool *pool = tc->pool;
  577. unsigned long flags;
  578. /*
  579. * Batch together any FUA/FLUSH bios we find and then issue
  580. * a single commit for them in process_deferred_bios().
  581. */
  582. if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
  583. spin_lock_irqsave(&pool->lock, flags);
  584. bio_list_add(&pool->deferred_flush_bios, bio);
  585. spin_unlock_irqrestore(&pool->lock, flags);
  586. } else
  587. generic_make_request(bio);
  588. }
  589. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  590. {
  591. remap_to_origin(tc, bio);
  592. issue(tc, bio);
  593. }
  594. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  595. dm_block_t block)
  596. {
  597. remap(tc, bio, block);
  598. issue(tc, bio);
  599. }
  600. /*
  601. * wake_worker() is used when new work is queued and when pool_resume is
  602. * ready to continue deferred IO processing.
  603. */
  604. static void wake_worker(struct pool *pool)
  605. {
  606. queue_work(pool->wq, &pool->worker);
  607. }
  608. /*----------------------------------------------------------------*/
  609. /*
  610. * Bio endio functions.
  611. */
  612. struct dm_thin_new_mapping {
  613. struct list_head list;
  614. unsigned quiesced:1;
  615. unsigned prepared:1;
  616. unsigned pass_discard:1;
  617. struct thin_c *tc;
  618. dm_block_t virt_block;
  619. dm_block_t data_block;
  620. struct dm_bio_prison_cell *cell, *cell2;
  621. int err;
  622. /*
  623. * If the bio covers the whole area of a block then we can avoid
  624. * zeroing or copying. Instead this bio is hooked. The bio will
  625. * still be in the cell, so care has to be taken to avoid issuing
  626. * the bio twice.
  627. */
  628. struct bio *bio;
  629. bio_end_io_t *saved_bi_end_io;
  630. };
  631. static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
  632. {
  633. struct pool *pool = m->tc->pool;
  634. if (m->quiesced && m->prepared) {
  635. list_add(&m->list, &pool->prepared_mappings);
  636. wake_worker(pool);
  637. }
  638. }
  639. static void copy_complete(int read_err, unsigned long write_err, void *context)
  640. {
  641. unsigned long flags;
  642. struct dm_thin_new_mapping *m = context;
  643. struct pool *pool = m->tc->pool;
  644. m->err = read_err || write_err ? -EIO : 0;
  645. spin_lock_irqsave(&pool->lock, flags);
  646. m->prepared = 1;
  647. __maybe_add_mapping(m);
  648. spin_unlock_irqrestore(&pool->lock, flags);
  649. }
  650. static void overwrite_endio(struct bio *bio, int err)
  651. {
  652. unsigned long flags;
  653. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  654. struct dm_thin_new_mapping *m = h->overwrite_mapping;
  655. struct pool *pool = m->tc->pool;
  656. m->err = err;
  657. spin_lock_irqsave(&pool->lock, flags);
  658. m->prepared = 1;
  659. __maybe_add_mapping(m);
  660. spin_unlock_irqrestore(&pool->lock, flags);
  661. }
  662. /*----------------------------------------------------------------*/
  663. /*
  664. * Workqueue.
  665. */
  666. /*
  667. * Prepared mapping jobs.
  668. */
  669. /*
  670. * This sends the bios in the cell back to the deferred_bios list.
  671. */
  672. static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
  673. dm_block_t data_block)
  674. {
  675. struct pool *pool = tc->pool;
  676. unsigned long flags;
  677. spin_lock_irqsave(&pool->lock, flags);
  678. cell_release(cell, &pool->deferred_bios);
  679. spin_unlock_irqrestore(&tc->pool->lock, flags);
  680. wake_worker(pool);
  681. }
  682. /*
  683. * Same as cell_defer above, except it omits one particular detainee,
  684. * a write bio that covers the block and has already been processed.
  685. */
  686. static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  687. {
  688. struct bio_list bios;
  689. struct pool *pool = tc->pool;
  690. unsigned long flags;
  691. bio_list_init(&bios);
  692. spin_lock_irqsave(&pool->lock, flags);
  693. cell_release_no_holder(cell, &pool->deferred_bios);
  694. spin_unlock_irqrestore(&pool->lock, flags);
  695. wake_worker(pool);
  696. }
  697. static void process_prepared_mapping(struct dm_thin_new_mapping *m)
  698. {
  699. struct thin_c *tc = m->tc;
  700. struct bio *bio;
  701. int r;
  702. bio = m->bio;
  703. if (bio)
  704. bio->bi_end_io = m->saved_bi_end_io;
  705. if (m->err) {
  706. cell_error(m->cell);
  707. return;
  708. }
  709. /*
  710. * Commit the prepared block into the mapping btree.
  711. * Any I/O for this block arriving after this point will get
  712. * remapped to it directly.
  713. */
  714. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  715. if (r) {
  716. DMERR("dm_thin_insert_block() failed");
  717. cell_error(m->cell);
  718. return;
  719. }
  720. /*
  721. * Release any bios held while the block was being provisioned.
  722. * If we are processing a write bio that completely covers the block,
  723. * we already processed it so can ignore it now when processing
  724. * the bios in the cell.
  725. */
  726. if (bio) {
  727. cell_defer_except(tc, m->cell);
  728. bio_endio(bio, 0);
  729. } else
  730. cell_defer(tc, m->cell, m->data_block);
  731. list_del(&m->list);
  732. mempool_free(m, tc->pool->mapping_pool);
  733. }
  734. static void process_prepared_discard(struct dm_thin_new_mapping *m)
  735. {
  736. int r;
  737. struct thin_c *tc = m->tc;
  738. r = dm_thin_remove_block(tc->td, m->virt_block);
  739. if (r)
  740. DMERR("dm_thin_remove_block() failed");
  741. /*
  742. * Pass the discard down to the underlying device?
  743. */
  744. if (m->pass_discard)
  745. remap_and_issue(tc, m->bio, m->data_block);
  746. else
  747. bio_endio(m->bio, 0);
  748. cell_defer_except(tc, m->cell);
  749. cell_defer_except(tc, m->cell2);
  750. mempool_free(m, tc->pool->mapping_pool);
  751. }
  752. static void process_prepared(struct pool *pool, struct list_head *head,
  753. void (*fn)(struct dm_thin_new_mapping *))
  754. {
  755. unsigned long flags;
  756. struct list_head maps;
  757. struct dm_thin_new_mapping *m, *tmp;
  758. INIT_LIST_HEAD(&maps);
  759. spin_lock_irqsave(&pool->lock, flags);
  760. list_splice_init(head, &maps);
  761. spin_unlock_irqrestore(&pool->lock, flags);
  762. list_for_each_entry_safe(m, tmp, &maps, list)
  763. fn(m);
  764. }
  765. /*
  766. * Deferred bio jobs.
  767. */
  768. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  769. {
  770. sector_t bi_sector = bio->bi_sector;
  771. return !sector_div(bi_sector, pool->sectors_per_block) &&
  772. (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
  773. }
  774. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  775. {
  776. return (bio_data_dir(bio) == WRITE) &&
  777. io_overlaps_block(pool, bio);
  778. }
  779. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  780. bio_end_io_t *fn)
  781. {
  782. *save = bio->bi_end_io;
  783. bio->bi_end_io = fn;
  784. }
  785. static int ensure_next_mapping(struct pool *pool)
  786. {
  787. if (pool->next_mapping)
  788. return 0;
  789. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  790. return pool->next_mapping ? 0 : -ENOMEM;
  791. }
  792. static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
  793. {
  794. struct dm_thin_new_mapping *r = pool->next_mapping;
  795. BUG_ON(!pool->next_mapping);
  796. pool->next_mapping = NULL;
  797. return r;
  798. }
  799. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  800. struct dm_dev *origin, dm_block_t data_origin,
  801. dm_block_t data_dest,
  802. struct dm_bio_prison_cell *cell, struct bio *bio)
  803. {
  804. int r;
  805. struct pool *pool = tc->pool;
  806. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  807. INIT_LIST_HEAD(&m->list);
  808. m->quiesced = 0;
  809. m->prepared = 0;
  810. m->tc = tc;
  811. m->virt_block = virt_block;
  812. m->data_block = data_dest;
  813. m->cell = cell;
  814. m->err = 0;
  815. m->bio = NULL;
  816. if (!ds_add_work(&pool->shared_read_ds, &m->list))
  817. m->quiesced = 1;
  818. /*
  819. * IO to pool_dev remaps to the pool target's data_dev.
  820. *
  821. * If the whole block of data is being overwritten, we can issue the
  822. * bio immediately. Otherwise we use kcopyd to clone the data first.
  823. */
  824. if (io_overwrites_block(pool, bio)) {
  825. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  826. h->overwrite_mapping = m;
  827. m->bio = bio;
  828. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  829. remap_and_issue(tc, bio, data_dest);
  830. } else {
  831. struct dm_io_region from, to;
  832. from.bdev = origin->bdev;
  833. from.sector = data_origin * pool->sectors_per_block;
  834. from.count = pool->sectors_per_block;
  835. to.bdev = tc->pool_dev->bdev;
  836. to.sector = data_dest * pool->sectors_per_block;
  837. to.count = pool->sectors_per_block;
  838. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  839. 0, copy_complete, m);
  840. if (r < 0) {
  841. mempool_free(m, pool->mapping_pool);
  842. DMERR("dm_kcopyd_copy() failed");
  843. cell_error(cell);
  844. }
  845. }
  846. }
  847. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  848. dm_block_t data_origin, dm_block_t data_dest,
  849. struct dm_bio_prison_cell *cell, struct bio *bio)
  850. {
  851. schedule_copy(tc, virt_block, tc->pool_dev,
  852. data_origin, data_dest, cell, bio);
  853. }
  854. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  855. dm_block_t data_dest,
  856. struct dm_bio_prison_cell *cell, struct bio *bio)
  857. {
  858. schedule_copy(tc, virt_block, tc->origin_dev,
  859. virt_block, data_dest, cell, bio);
  860. }
  861. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  862. dm_block_t data_block, struct dm_bio_prison_cell *cell,
  863. struct bio *bio)
  864. {
  865. struct pool *pool = tc->pool;
  866. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  867. INIT_LIST_HEAD(&m->list);
  868. m->quiesced = 1;
  869. m->prepared = 0;
  870. m->tc = tc;
  871. m->virt_block = virt_block;
  872. m->data_block = data_block;
  873. m->cell = cell;
  874. m->err = 0;
  875. m->bio = NULL;
  876. /*
  877. * If the whole block of data is being overwritten or we are not
  878. * zeroing pre-existing data, we can issue the bio immediately.
  879. * Otherwise we use kcopyd to zero the data first.
  880. */
  881. if (!pool->pf.zero_new_blocks)
  882. process_prepared_mapping(m);
  883. else if (io_overwrites_block(pool, bio)) {
  884. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  885. h->overwrite_mapping = m;
  886. m->bio = bio;
  887. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  888. remap_and_issue(tc, bio, data_block);
  889. } else {
  890. int r;
  891. struct dm_io_region to;
  892. to.bdev = tc->pool_dev->bdev;
  893. to.sector = data_block * pool->sectors_per_block;
  894. to.count = pool->sectors_per_block;
  895. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  896. if (r < 0) {
  897. mempool_free(m, pool->mapping_pool);
  898. DMERR("dm_kcopyd_zero() failed");
  899. cell_error(cell);
  900. }
  901. }
  902. }
  903. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  904. {
  905. int r;
  906. dm_block_t free_blocks;
  907. unsigned long flags;
  908. struct pool *pool = tc->pool;
  909. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  910. if (r)
  911. return r;
  912. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  913. DMWARN("%s: reached low water mark, sending event.",
  914. dm_device_name(pool->pool_md));
  915. spin_lock_irqsave(&pool->lock, flags);
  916. pool->low_water_triggered = 1;
  917. spin_unlock_irqrestore(&pool->lock, flags);
  918. dm_table_event(pool->ti->table);
  919. }
  920. if (!free_blocks) {
  921. if (pool->no_free_space)
  922. return -ENOSPC;
  923. else {
  924. /*
  925. * Try to commit to see if that will free up some
  926. * more space.
  927. */
  928. r = dm_pool_commit_metadata(pool->pmd);
  929. if (r) {
  930. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  931. __func__, r);
  932. return r;
  933. }
  934. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  935. if (r)
  936. return r;
  937. /*
  938. * If we still have no space we set a flag to avoid
  939. * doing all this checking and return -ENOSPC.
  940. */
  941. if (!free_blocks) {
  942. DMWARN("%s: no free space available.",
  943. dm_device_name(pool->pool_md));
  944. spin_lock_irqsave(&pool->lock, flags);
  945. pool->no_free_space = 1;
  946. spin_unlock_irqrestore(&pool->lock, flags);
  947. return -ENOSPC;
  948. }
  949. }
  950. }
  951. r = dm_pool_alloc_data_block(pool->pmd, result);
  952. if (r)
  953. return r;
  954. return 0;
  955. }
  956. /*
  957. * If we have run out of space, queue bios until the device is
  958. * resumed, presumably after having been reloaded with more space.
  959. */
  960. static void retry_on_resume(struct bio *bio)
  961. {
  962. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  963. struct thin_c *tc = h->tc;
  964. struct pool *pool = tc->pool;
  965. unsigned long flags;
  966. spin_lock_irqsave(&pool->lock, flags);
  967. bio_list_add(&pool->retry_on_resume_list, bio);
  968. spin_unlock_irqrestore(&pool->lock, flags);
  969. }
  970. static void no_space(struct dm_bio_prison_cell *cell)
  971. {
  972. struct bio *bio;
  973. struct bio_list bios;
  974. bio_list_init(&bios);
  975. cell_release(cell, &bios);
  976. while ((bio = bio_list_pop(&bios)))
  977. retry_on_resume(bio);
  978. }
  979. static void process_discard(struct thin_c *tc, struct bio *bio)
  980. {
  981. int r;
  982. unsigned long flags;
  983. struct pool *pool = tc->pool;
  984. struct dm_bio_prison_cell *cell, *cell2;
  985. struct cell_key key, key2;
  986. dm_block_t block = get_bio_block(tc, bio);
  987. struct dm_thin_lookup_result lookup_result;
  988. struct dm_thin_new_mapping *m;
  989. build_virtual_key(tc->td, block, &key);
  990. if (bio_detain(tc->pool->prison, &key, bio, &cell))
  991. return;
  992. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  993. switch (r) {
  994. case 0:
  995. /*
  996. * Check nobody is fiddling with this pool block. This can
  997. * happen if someone's in the process of breaking sharing
  998. * on this block.
  999. */
  1000. build_data_key(tc->td, lookup_result.block, &key2);
  1001. if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
  1002. cell_release_singleton(cell, bio);
  1003. break;
  1004. }
  1005. if (io_overlaps_block(pool, bio)) {
  1006. /*
  1007. * IO may still be going to the destination block. We must
  1008. * quiesce before we can do the removal.
  1009. */
  1010. m = get_next_mapping(pool);
  1011. m->tc = tc;
  1012. m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
  1013. m->virt_block = block;
  1014. m->data_block = lookup_result.block;
  1015. m->cell = cell;
  1016. m->cell2 = cell2;
  1017. m->err = 0;
  1018. m->bio = bio;
  1019. if (!ds_add_work(&pool->all_io_ds, &m->list)) {
  1020. spin_lock_irqsave(&pool->lock, flags);
  1021. list_add(&m->list, &pool->prepared_discards);
  1022. spin_unlock_irqrestore(&pool->lock, flags);
  1023. wake_worker(pool);
  1024. }
  1025. } else {
  1026. /*
  1027. * This path is hit if people are ignoring
  1028. * limits->discard_granularity. It ignores any
  1029. * part of the discard that is in a subsequent
  1030. * block.
  1031. */
  1032. sector_t offset = bio->bi_sector - (block * pool->sectors_per_block);
  1033. unsigned remaining = (pool->sectors_per_block - offset) << SECTOR_SHIFT;
  1034. bio->bi_size = min(bio->bi_size, remaining);
  1035. cell_release_singleton(cell, bio);
  1036. cell_release_singleton(cell2, bio);
  1037. if ((!lookup_result.shared) && pool->pf.discard_passdown)
  1038. remap_and_issue(tc, bio, lookup_result.block);
  1039. else
  1040. bio_endio(bio, 0);
  1041. }
  1042. break;
  1043. case -ENODATA:
  1044. /*
  1045. * It isn't provisioned, just forget it.
  1046. */
  1047. cell_release_singleton(cell, bio);
  1048. bio_endio(bio, 0);
  1049. break;
  1050. default:
  1051. DMERR("discard: find block unexpectedly returned %d", r);
  1052. cell_release_singleton(cell, bio);
  1053. bio_io_error(bio);
  1054. break;
  1055. }
  1056. }
  1057. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  1058. struct cell_key *key,
  1059. struct dm_thin_lookup_result *lookup_result,
  1060. struct dm_bio_prison_cell *cell)
  1061. {
  1062. int r;
  1063. dm_block_t data_block;
  1064. r = alloc_data_block(tc, &data_block);
  1065. switch (r) {
  1066. case 0:
  1067. schedule_internal_copy(tc, block, lookup_result->block,
  1068. data_block, cell, bio);
  1069. break;
  1070. case -ENOSPC:
  1071. no_space(cell);
  1072. break;
  1073. default:
  1074. DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
  1075. cell_error(cell);
  1076. break;
  1077. }
  1078. }
  1079. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  1080. dm_block_t block,
  1081. struct dm_thin_lookup_result *lookup_result)
  1082. {
  1083. struct dm_bio_prison_cell *cell;
  1084. struct pool *pool = tc->pool;
  1085. struct cell_key key;
  1086. /*
  1087. * If cell is already occupied, then sharing is already in the process
  1088. * of being broken so we have nothing further to do here.
  1089. */
  1090. build_data_key(tc->td, lookup_result->block, &key);
  1091. if (bio_detain(pool->prison, &key, bio, &cell))
  1092. return;
  1093. if (bio_data_dir(bio) == WRITE)
  1094. break_sharing(tc, bio, block, &key, lookup_result, cell);
  1095. else {
  1096. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  1097. h->shared_read_entry = ds_inc(&pool->shared_read_ds);
  1098. cell_release_singleton(cell, bio);
  1099. remap_and_issue(tc, bio, lookup_result->block);
  1100. }
  1101. }
  1102. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  1103. struct dm_bio_prison_cell *cell)
  1104. {
  1105. int r;
  1106. dm_block_t data_block;
  1107. /*
  1108. * Remap empty bios (flushes) immediately, without provisioning.
  1109. */
  1110. if (!bio->bi_size) {
  1111. cell_release_singleton(cell, bio);
  1112. remap_and_issue(tc, bio, 0);
  1113. return;
  1114. }
  1115. /*
  1116. * Fill read bios with zeroes and complete them immediately.
  1117. */
  1118. if (bio_data_dir(bio) == READ) {
  1119. zero_fill_bio(bio);
  1120. cell_release_singleton(cell, bio);
  1121. bio_endio(bio, 0);
  1122. return;
  1123. }
  1124. r = alloc_data_block(tc, &data_block);
  1125. switch (r) {
  1126. case 0:
  1127. if (tc->origin_dev)
  1128. schedule_external_copy(tc, block, data_block, cell, bio);
  1129. else
  1130. schedule_zero(tc, block, data_block, cell, bio);
  1131. break;
  1132. case -ENOSPC:
  1133. no_space(cell);
  1134. break;
  1135. default:
  1136. DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
  1137. cell_error(cell);
  1138. break;
  1139. }
  1140. }
  1141. static void process_bio(struct thin_c *tc, struct bio *bio)
  1142. {
  1143. int r;
  1144. dm_block_t block = get_bio_block(tc, bio);
  1145. struct dm_bio_prison_cell *cell;
  1146. struct cell_key key;
  1147. struct dm_thin_lookup_result lookup_result;
  1148. /*
  1149. * If cell is already occupied, then the block is already
  1150. * being provisioned so we have nothing further to do here.
  1151. */
  1152. build_virtual_key(tc->td, block, &key);
  1153. if (bio_detain(tc->pool->prison, &key, bio, &cell))
  1154. return;
  1155. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  1156. switch (r) {
  1157. case 0:
  1158. /*
  1159. * We can release this cell now. This thread is the only
  1160. * one that puts bios into a cell, and we know there were
  1161. * no preceding bios.
  1162. */
  1163. /*
  1164. * TODO: this will probably have to change when discard goes
  1165. * back in.
  1166. */
  1167. cell_release_singleton(cell, bio);
  1168. if (lookup_result.shared)
  1169. process_shared_bio(tc, bio, block, &lookup_result);
  1170. else
  1171. remap_and_issue(tc, bio, lookup_result.block);
  1172. break;
  1173. case -ENODATA:
  1174. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  1175. cell_release_singleton(cell, bio);
  1176. remap_to_origin_and_issue(tc, bio);
  1177. } else
  1178. provision_block(tc, bio, block, cell);
  1179. break;
  1180. default:
  1181. DMERR("dm_thin_find_block() failed, error = %d", r);
  1182. cell_release_singleton(cell, bio);
  1183. bio_io_error(bio);
  1184. break;
  1185. }
  1186. }
  1187. static int need_commit_due_to_time(struct pool *pool)
  1188. {
  1189. return jiffies < pool->last_commit_jiffies ||
  1190. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1191. }
  1192. static void process_deferred_bios(struct pool *pool)
  1193. {
  1194. unsigned long flags;
  1195. struct bio *bio;
  1196. struct bio_list bios;
  1197. int r;
  1198. bio_list_init(&bios);
  1199. spin_lock_irqsave(&pool->lock, flags);
  1200. bio_list_merge(&bios, &pool->deferred_bios);
  1201. bio_list_init(&pool->deferred_bios);
  1202. spin_unlock_irqrestore(&pool->lock, flags);
  1203. while ((bio = bio_list_pop(&bios))) {
  1204. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  1205. struct thin_c *tc = h->tc;
  1206. /*
  1207. * If we've got no free new_mapping structs, and processing
  1208. * this bio might require one, we pause until there are some
  1209. * prepared mappings to process.
  1210. */
  1211. if (ensure_next_mapping(pool)) {
  1212. spin_lock_irqsave(&pool->lock, flags);
  1213. bio_list_merge(&pool->deferred_bios, &bios);
  1214. spin_unlock_irqrestore(&pool->lock, flags);
  1215. break;
  1216. }
  1217. if (bio->bi_rw & REQ_DISCARD)
  1218. process_discard(tc, bio);
  1219. else
  1220. process_bio(tc, bio);
  1221. }
  1222. /*
  1223. * If there are any deferred flush bios, we must commit
  1224. * the metadata before issuing them.
  1225. */
  1226. bio_list_init(&bios);
  1227. spin_lock_irqsave(&pool->lock, flags);
  1228. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1229. bio_list_init(&pool->deferred_flush_bios);
  1230. spin_unlock_irqrestore(&pool->lock, flags);
  1231. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1232. return;
  1233. r = dm_pool_commit_metadata(pool->pmd);
  1234. if (r) {
  1235. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1236. __func__, r);
  1237. while ((bio = bio_list_pop(&bios)))
  1238. bio_io_error(bio);
  1239. return;
  1240. }
  1241. pool->last_commit_jiffies = jiffies;
  1242. while ((bio = bio_list_pop(&bios)))
  1243. generic_make_request(bio);
  1244. }
  1245. static void do_worker(struct work_struct *ws)
  1246. {
  1247. struct pool *pool = container_of(ws, struct pool, worker);
  1248. process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
  1249. process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
  1250. process_deferred_bios(pool);
  1251. }
  1252. /*
  1253. * We want to commit periodically so that not too much
  1254. * unwritten data builds up.
  1255. */
  1256. static void do_waker(struct work_struct *ws)
  1257. {
  1258. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1259. wake_worker(pool);
  1260. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1261. }
  1262. /*----------------------------------------------------------------*/
  1263. /*
  1264. * Mapping functions.
  1265. */
  1266. /*
  1267. * Called only while mapping a thin bio to hand it over to the workqueue.
  1268. */
  1269. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1270. {
  1271. unsigned long flags;
  1272. struct pool *pool = tc->pool;
  1273. spin_lock_irqsave(&pool->lock, flags);
  1274. bio_list_add(&pool->deferred_bios, bio);
  1275. spin_unlock_irqrestore(&pool->lock, flags);
  1276. wake_worker(pool);
  1277. }
  1278. static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1279. {
  1280. struct pool *pool = tc->pool;
  1281. struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
  1282. h->tc = tc;
  1283. h->shared_read_entry = NULL;
  1284. h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
  1285. h->overwrite_mapping = NULL;
  1286. return h;
  1287. }
  1288. /*
  1289. * Non-blocking function called from the thin target's map function.
  1290. */
  1291. static int thin_bio_map(struct dm_target *ti, struct bio *bio,
  1292. union map_info *map_context)
  1293. {
  1294. int r;
  1295. struct thin_c *tc = ti->private;
  1296. dm_block_t block = get_bio_block(tc, bio);
  1297. struct dm_thin_device *td = tc->td;
  1298. struct dm_thin_lookup_result result;
  1299. map_context->ptr = thin_hook_bio(tc, bio);
  1300. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1301. thin_defer_bio(tc, bio);
  1302. return DM_MAPIO_SUBMITTED;
  1303. }
  1304. r = dm_thin_find_block(td, block, 0, &result);
  1305. /*
  1306. * Note that we defer readahead too.
  1307. */
  1308. switch (r) {
  1309. case 0:
  1310. if (unlikely(result.shared)) {
  1311. /*
  1312. * We have a race condition here between the
  1313. * result.shared value returned by the lookup and
  1314. * snapshot creation, which may cause new
  1315. * sharing.
  1316. *
  1317. * To avoid this always quiesce the origin before
  1318. * taking the snap. You want to do this anyway to
  1319. * ensure a consistent application view
  1320. * (i.e. lockfs).
  1321. *
  1322. * More distant ancestors are irrelevant. The
  1323. * shared flag will be set in their case.
  1324. */
  1325. thin_defer_bio(tc, bio);
  1326. r = DM_MAPIO_SUBMITTED;
  1327. } else {
  1328. remap(tc, bio, result.block);
  1329. r = DM_MAPIO_REMAPPED;
  1330. }
  1331. break;
  1332. case -ENODATA:
  1333. /*
  1334. * In future, the failed dm_thin_find_block above could
  1335. * provide the hint to load the metadata into cache.
  1336. */
  1337. case -EWOULDBLOCK:
  1338. thin_defer_bio(tc, bio);
  1339. r = DM_MAPIO_SUBMITTED;
  1340. break;
  1341. }
  1342. return r;
  1343. }
  1344. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1345. {
  1346. int r;
  1347. unsigned long flags;
  1348. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1349. spin_lock_irqsave(&pt->pool->lock, flags);
  1350. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1351. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1352. if (!r) {
  1353. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1354. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1355. }
  1356. return r;
  1357. }
  1358. static void __requeue_bios(struct pool *pool)
  1359. {
  1360. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1361. bio_list_init(&pool->retry_on_resume_list);
  1362. }
  1363. /*----------------------------------------------------------------
  1364. * Binding of control targets to a pool object
  1365. *--------------------------------------------------------------*/
  1366. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1367. {
  1368. struct pool_c *pt = ti->private;
  1369. pool->ti = ti;
  1370. pool->low_water_blocks = pt->low_water_blocks;
  1371. pool->pf = pt->pf;
  1372. /*
  1373. * If discard_passdown was enabled verify that the data device
  1374. * supports discards. Disable discard_passdown if not; otherwise
  1375. * -EOPNOTSUPP will be returned.
  1376. */
  1377. if (pt->pf.discard_passdown) {
  1378. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1379. if (!q || !blk_queue_discard(q)) {
  1380. char buf[BDEVNAME_SIZE];
  1381. DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
  1382. bdevname(pt->data_dev->bdev, buf));
  1383. pool->pf.discard_passdown = 0;
  1384. }
  1385. }
  1386. return 0;
  1387. }
  1388. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1389. {
  1390. if (pool->ti == ti)
  1391. pool->ti = NULL;
  1392. }
  1393. /*----------------------------------------------------------------
  1394. * Pool creation
  1395. *--------------------------------------------------------------*/
  1396. /* Initialize pool features. */
  1397. static void pool_features_init(struct pool_features *pf)
  1398. {
  1399. pf->zero_new_blocks = 1;
  1400. pf->discard_enabled = 1;
  1401. pf->discard_passdown = 1;
  1402. }
  1403. static void __pool_destroy(struct pool *pool)
  1404. {
  1405. __pool_table_remove(pool);
  1406. if (dm_pool_metadata_close(pool->pmd) < 0)
  1407. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1408. prison_destroy(pool->prison);
  1409. dm_kcopyd_client_destroy(pool->copier);
  1410. if (pool->wq)
  1411. destroy_workqueue(pool->wq);
  1412. if (pool->next_mapping)
  1413. mempool_free(pool->next_mapping, pool->mapping_pool);
  1414. mempool_destroy(pool->mapping_pool);
  1415. mempool_destroy(pool->endio_hook_pool);
  1416. kfree(pool);
  1417. }
  1418. static struct kmem_cache *_new_mapping_cache;
  1419. static struct kmem_cache *_endio_hook_cache;
  1420. static struct pool *pool_create(struct mapped_device *pool_md,
  1421. struct block_device *metadata_dev,
  1422. unsigned long block_size, char **error)
  1423. {
  1424. int r;
  1425. void *err_p;
  1426. struct pool *pool;
  1427. struct dm_pool_metadata *pmd;
  1428. pmd = dm_pool_metadata_open(metadata_dev, block_size);
  1429. if (IS_ERR(pmd)) {
  1430. *error = "Error creating metadata object";
  1431. return (struct pool *)pmd;
  1432. }
  1433. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1434. if (!pool) {
  1435. *error = "Error allocating memory for pool";
  1436. err_p = ERR_PTR(-ENOMEM);
  1437. goto bad_pool;
  1438. }
  1439. pool->pmd = pmd;
  1440. pool->sectors_per_block = block_size;
  1441. pool->low_water_blocks = 0;
  1442. pool_features_init(&pool->pf);
  1443. pool->prison = prison_create(PRISON_CELLS);
  1444. if (!pool->prison) {
  1445. *error = "Error creating pool's bio prison";
  1446. err_p = ERR_PTR(-ENOMEM);
  1447. goto bad_prison;
  1448. }
  1449. pool->copier = dm_kcopyd_client_create();
  1450. if (IS_ERR(pool->copier)) {
  1451. r = PTR_ERR(pool->copier);
  1452. *error = "Error creating pool's kcopyd client";
  1453. err_p = ERR_PTR(r);
  1454. goto bad_kcopyd_client;
  1455. }
  1456. /*
  1457. * Create singlethreaded workqueue that will service all devices
  1458. * that use this metadata.
  1459. */
  1460. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1461. if (!pool->wq) {
  1462. *error = "Error creating pool's workqueue";
  1463. err_p = ERR_PTR(-ENOMEM);
  1464. goto bad_wq;
  1465. }
  1466. INIT_WORK(&pool->worker, do_worker);
  1467. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1468. spin_lock_init(&pool->lock);
  1469. bio_list_init(&pool->deferred_bios);
  1470. bio_list_init(&pool->deferred_flush_bios);
  1471. INIT_LIST_HEAD(&pool->prepared_mappings);
  1472. INIT_LIST_HEAD(&pool->prepared_discards);
  1473. pool->low_water_triggered = 0;
  1474. pool->no_free_space = 0;
  1475. bio_list_init(&pool->retry_on_resume_list);
  1476. ds_init(&pool->shared_read_ds);
  1477. ds_init(&pool->all_io_ds);
  1478. pool->next_mapping = NULL;
  1479. pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
  1480. _new_mapping_cache);
  1481. if (!pool->mapping_pool) {
  1482. *error = "Error creating pool's mapping mempool";
  1483. err_p = ERR_PTR(-ENOMEM);
  1484. goto bad_mapping_pool;
  1485. }
  1486. pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
  1487. _endio_hook_cache);
  1488. if (!pool->endio_hook_pool) {
  1489. *error = "Error creating pool's endio_hook mempool";
  1490. err_p = ERR_PTR(-ENOMEM);
  1491. goto bad_endio_hook_pool;
  1492. }
  1493. pool->ref_count = 1;
  1494. pool->last_commit_jiffies = jiffies;
  1495. pool->pool_md = pool_md;
  1496. pool->md_dev = metadata_dev;
  1497. __pool_table_insert(pool);
  1498. return pool;
  1499. bad_endio_hook_pool:
  1500. mempool_destroy(pool->mapping_pool);
  1501. bad_mapping_pool:
  1502. destroy_workqueue(pool->wq);
  1503. bad_wq:
  1504. dm_kcopyd_client_destroy(pool->copier);
  1505. bad_kcopyd_client:
  1506. prison_destroy(pool->prison);
  1507. bad_prison:
  1508. kfree(pool);
  1509. bad_pool:
  1510. if (dm_pool_metadata_close(pmd))
  1511. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1512. return err_p;
  1513. }
  1514. static void __pool_inc(struct pool *pool)
  1515. {
  1516. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1517. pool->ref_count++;
  1518. }
  1519. static void __pool_dec(struct pool *pool)
  1520. {
  1521. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1522. BUG_ON(!pool->ref_count);
  1523. if (!--pool->ref_count)
  1524. __pool_destroy(pool);
  1525. }
  1526. static struct pool *__pool_find(struct mapped_device *pool_md,
  1527. struct block_device *metadata_dev,
  1528. unsigned long block_size, char **error,
  1529. int *created)
  1530. {
  1531. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1532. if (pool) {
  1533. if (pool->pool_md != pool_md) {
  1534. *error = "metadata device already in use by a pool";
  1535. return ERR_PTR(-EBUSY);
  1536. }
  1537. __pool_inc(pool);
  1538. } else {
  1539. pool = __pool_table_lookup(pool_md);
  1540. if (pool) {
  1541. if (pool->md_dev != metadata_dev) {
  1542. *error = "different pool cannot replace a pool";
  1543. return ERR_PTR(-EINVAL);
  1544. }
  1545. __pool_inc(pool);
  1546. } else {
  1547. pool = pool_create(pool_md, metadata_dev, block_size, error);
  1548. *created = 1;
  1549. }
  1550. }
  1551. return pool;
  1552. }
  1553. /*----------------------------------------------------------------
  1554. * Pool target methods
  1555. *--------------------------------------------------------------*/
  1556. static void pool_dtr(struct dm_target *ti)
  1557. {
  1558. struct pool_c *pt = ti->private;
  1559. mutex_lock(&dm_thin_pool_table.mutex);
  1560. unbind_control_target(pt->pool, ti);
  1561. __pool_dec(pt->pool);
  1562. dm_put_device(ti, pt->metadata_dev);
  1563. dm_put_device(ti, pt->data_dev);
  1564. kfree(pt);
  1565. mutex_unlock(&dm_thin_pool_table.mutex);
  1566. }
  1567. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1568. struct dm_target *ti)
  1569. {
  1570. int r;
  1571. unsigned argc;
  1572. const char *arg_name;
  1573. static struct dm_arg _args[] = {
  1574. {0, 3, "Invalid number of pool feature arguments"},
  1575. };
  1576. /*
  1577. * No feature arguments supplied.
  1578. */
  1579. if (!as->argc)
  1580. return 0;
  1581. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1582. if (r)
  1583. return -EINVAL;
  1584. while (argc && !r) {
  1585. arg_name = dm_shift_arg(as);
  1586. argc--;
  1587. if (!strcasecmp(arg_name, "skip_block_zeroing")) {
  1588. pf->zero_new_blocks = 0;
  1589. continue;
  1590. } else if (!strcasecmp(arg_name, "ignore_discard")) {
  1591. pf->discard_enabled = 0;
  1592. continue;
  1593. } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
  1594. pf->discard_passdown = 0;
  1595. continue;
  1596. }
  1597. ti->error = "Unrecognised pool feature requested";
  1598. r = -EINVAL;
  1599. }
  1600. return r;
  1601. }
  1602. /*
  1603. * thin-pool <metadata dev> <data dev>
  1604. * <data block size (sectors)>
  1605. * <low water mark (blocks)>
  1606. * [<#feature args> [<arg>]*]
  1607. *
  1608. * Optional feature arguments are:
  1609. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1610. * ignore_discard: disable discard
  1611. * no_discard_passdown: don't pass discards down to the data device
  1612. */
  1613. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1614. {
  1615. int r, pool_created = 0;
  1616. struct pool_c *pt;
  1617. struct pool *pool;
  1618. struct pool_features pf;
  1619. struct dm_arg_set as;
  1620. struct dm_dev *data_dev;
  1621. unsigned long block_size;
  1622. dm_block_t low_water_blocks;
  1623. struct dm_dev *metadata_dev;
  1624. sector_t metadata_dev_size;
  1625. char b[BDEVNAME_SIZE];
  1626. /*
  1627. * FIXME Remove validation from scope of lock.
  1628. */
  1629. mutex_lock(&dm_thin_pool_table.mutex);
  1630. if (argc < 4) {
  1631. ti->error = "Invalid argument count";
  1632. r = -EINVAL;
  1633. goto out_unlock;
  1634. }
  1635. as.argc = argc;
  1636. as.argv = argv;
  1637. r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
  1638. if (r) {
  1639. ti->error = "Error opening metadata block device";
  1640. goto out_unlock;
  1641. }
  1642. metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  1643. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
  1644. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1645. bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
  1646. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1647. if (r) {
  1648. ti->error = "Error getting data device";
  1649. goto out_metadata;
  1650. }
  1651. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1652. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1653. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1654. block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
  1655. ti->error = "Invalid block size";
  1656. r = -EINVAL;
  1657. goto out;
  1658. }
  1659. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1660. ti->error = "Invalid low water mark";
  1661. r = -EINVAL;
  1662. goto out;
  1663. }
  1664. /*
  1665. * Set default pool features.
  1666. */
  1667. pool_features_init(&pf);
  1668. dm_consume_args(&as, 4);
  1669. r = parse_pool_features(&as, &pf, ti);
  1670. if (r)
  1671. goto out;
  1672. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1673. if (!pt) {
  1674. r = -ENOMEM;
  1675. goto out;
  1676. }
  1677. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1678. block_size, &ti->error, &pool_created);
  1679. if (IS_ERR(pool)) {
  1680. r = PTR_ERR(pool);
  1681. goto out_free_pt;
  1682. }
  1683. /*
  1684. * 'pool_created' reflects whether this is the first table load.
  1685. * Top level discard support is not allowed to be changed after
  1686. * initial load. This would require a pool reload to trigger thin
  1687. * device changes.
  1688. */
  1689. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1690. ti->error = "Discard support cannot be disabled once enabled";
  1691. r = -EINVAL;
  1692. goto out_flags_changed;
  1693. }
  1694. /*
  1695. * The block layer requires discard_granularity to be a power of 2.
  1696. */
  1697. if (pf.discard_enabled && !is_power_of_2(block_size)) {
  1698. ti->error = "Discard support must be disabled when the block size is not a power of 2";
  1699. r = -EINVAL;
  1700. goto out_flags_changed;
  1701. }
  1702. pt->pool = pool;
  1703. pt->ti = ti;
  1704. pt->metadata_dev = metadata_dev;
  1705. pt->data_dev = data_dev;
  1706. pt->low_water_blocks = low_water_blocks;
  1707. pt->pf = pf;
  1708. ti->num_flush_requests = 1;
  1709. /*
  1710. * Only need to enable discards if the pool should pass
  1711. * them down to the data device. The thin device's discard
  1712. * processing will cause mappings to be removed from the btree.
  1713. */
  1714. if (pf.discard_enabled && pf.discard_passdown) {
  1715. ti->num_discard_requests = 1;
  1716. /*
  1717. * Setting 'discards_supported' circumvents the normal
  1718. * stacking of discard limits (this keeps the pool and
  1719. * thin devices' discard limits consistent).
  1720. */
  1721. ti->discards_supported = 1;
  1722. }
  1723. ti->private = pt;
  1724. pt->callbacks.congested_fn = pool_is_congested;
  1725. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1726. mutex_unlock(&dm_thin_pool_table.mutex);
  1727. return 0;
  1728. out_flags_changed:
  1729. __pool_dec(pool);
  1730. out_free_pt:
  1731. kfree(pt);
  1732. out:
  1733. dm_put_device(ti, data_dev);
  1734. out_metadata:
  1735. dm_put_device(ti, metadata_dev);
  1736. out_unlock:
  1737. mutex_unlock(&dm_thin_pool_table.mutex);
  1738. return r;
  1739. }
  1740. static int pool_map(struct dm_target *ti, struct bio *bio,
  1741. union map_info *map_context)
  1742. {
  1743. int r;
  1744. struct pool_c *pt = ti->private;
  1745. struct pool *pool = pt->pool;
  1746. unsigned long flags;
  1747. /*
  1748. * As this is a singleton target, ti->begin is always zero.
  1749. */
  1750. spin_lock_irqsave(&pool->lock, flags);
  1751. bio->bi_bdev = pt->data_dev->bdev;
  1752. r = DM_MAPIO_REMAPPED;
  1753. spin_unlock_irqrestore(&pool->lock, flags);
  1754. return r;
  1755. }
  1756. /*
  1757. * Retrieves the number of blocks of the data device from
  1758. * the superblock and compares it to the actual device size,
  1759. * thus resizing the data device in case it has grown.
  1760. *
  1761. * This both copes with opening preallocated data devices in the ctr
  1762. * being followed by a resume
  1763. * -and-
  1764. * calling the resume method individually after userspace has
  1765. * grown the data device in reaction to a table event.
  1766. */
  1767. static int pool_preresume(struct dm_target *ti)
  1768. {
  1769. int r;
  1770. struct pool_c *pt = ti->private;
  1771. struct pool *pool = pt->pool;
  1772. sector_t data_size = ti->len;
  1773. dm_block_t sb_data_size;
  1774. /*
  1775. * Take control of the pool object.
  1776. */
  1777. r = bind_control_target(pool, ti);
  1778. if (r)
  1779. return r;
  1780. (void) sector_div(data_size, pool->sectors_per_block);
  1781. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1782. if (r) {
  1783. DMERR("failed to retrieve data device size");
  1784. return r;
  1785. }
  1786. if (data_size < sb_data_size) {
  1787. DMERR("pool target too small, is %llu blocks (expected %llu)",
  1788. (unsigned long long)data_size, sb_data_size);
  1789. return -EINVAL;
  1790. } else if (data_size > sb_data_size) {
  1791. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1792. if (r) {
  1793. DMERR("failed to resize data device");
  1794. return r;
  1795. }
  1796. r = dm_pool_commit_metadata(pool->pmd);
  1797. if (r) {
  1798. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1799. __func__, r);
  1800. return r;
  1801. }
  1802. }
  1803. return 0;
  1804. }
  1805. static void pool_resume(struct dm_target *ti)
  1806. {
  1807. struct pool_c *pt = ti->private;
  1808. struct pool *pool = pt->pool;
  1809. unsigned long flags;
  1810. spin_lock_irqsave(&pool->lock, flags);
  1811. pool->low_water_triggered = 0;
  1812. pool->no_free_space = 0;
  1813. __requeue_bios(pool);
  1814. spin_unlock_irqrestore(&pool->lock, flags);
  1815. do_waker(&pool->waker.work);
  1816. }
  1817. static void pool_postsuspend(struct dm_target *ti)
  1818. {
  1819. int r;
  1820. struct pool_c *pt = ti->private;
  1821. struct pool *pool = pt->pool;
  1822. cancel_delayed_work(&pool->waker);
  1823. flush_workqueue(pool->wq);
  1824. r = dm_pool_commit_metadata(pool->pmd);
  1825. if (r < 0) {
  1826. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1827. __func__, r);
  1828. /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
  1829. }
  1830. }
  1831. static int check_arg_count(unsigned argc, unsigned args_required)
  1832. {
  1833. if (argc != args_required) {
  1834. DMWARN("Message received with %u arguments instead of %u.",
  1835. argc, args_required);
  1836. return -EINVAL;
  1837. }
  1838. return 0;
  1839. }
  1840. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1841. {
  1842. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1843. *dev_id <= MAX_DEV_ID)
  1844. return 0;
  1845. if (warning)
  1846. DMWARN("Message received with invalid device id: %s", arg);
  1847. return -EINVAL;
  1848. }
  1849. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1850. {
  1851. dm_thin_id dev_id;
  1852. int r;
  1853. r = check_arg_count(argc, 2);
  1854. if (r)
  1855. return r;
  1856. r = read_dev_id(argv[1], &dev_id, 1);
  1857. if (r)
  1858. return r;
  1859. r = dm_pool_create_thin(pool->pmd, dev_id);
  1860. if (r) {
  1861. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  1862. argv[1]);
  1863. return r;
  1864. }
  1865. return 0;
  1866. }
  1867. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1868. {
  1869. dm_thin_id dev_id;
  1870. dm_thin_id origin_dev_id;
  1871. int r;
  1872. r = check_arg_count(argc, 3);
  1873. if (r)
  1874. return r;
  1875. r = read_dev_id(argv[1], &dev_id, 1);
  1876. if (r)
  1877. return r;
  1878. r = read_dev_id(argv[2], &origin_dev_id, 1);
  1879. if (r)
  1880. return r;
  1881. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  1882. if (r) {
  1883. DMWARN("Creation of new snapshot %s of device %s failed.",
  1884. argv[1], argv[2]);
  1885. return r;
  1886. }
  1887. return 0;
  1888. }
  1889. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  1890. {
  1891. dm_thin_id dev_id;
  1892. int r;
  1893. r = check_arg_count(argc, 2);
  1894. if (r)
  1895. return r;
  1896. r = read_dev_id(argv[1], &dev_id, 1);
  1897. if (r)
  1898. return r;
  1899. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  1900. if (r)
  1901. DMWARN("Deletion of thin device %s failed.", argv[1]);
  1902. return r;
  1903. }
  1904. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  1905. {
  1906. dm_thin_id old_id, new_id;
  1907. int r;
  1908. r = check_arg_count(argc, 3);
  1909. if (r)
  1910. return r;
  1911. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  1912. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  1913. return -EINVAL;
  1914. }
  1915. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  1916. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  1917. return -EINVAL;
  1918. }
  1919. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  1920. if (r) {
  1921. DMWARN("Failed to change transaction id from %s to %s.",
  1922. argv[1], argv[2]);
  1923. return r;
  1924. }
  1925. return 0;
  1926. }
  1927. static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1928. {
  1929. int r;
  1930. r = check_arg_count(argc, 1);
  1931. if (r)
  1932. return r;
  1933. r = dm_pool_commit_metadata(pool->pmd);
  1934. if (r) {
  1935. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1936. __func__, r);
  1937. return r;
  1938. }
  1939. r = dm_pool_reserve_metadata_snap(pool->pmd);
  1940. if (r)
  1941. DMWARN("reserve_metadata_snap message failed.");
  1942. return r;
  1943. }
  1944. static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1945. {
  1946. int r;
  1947. r = check_arg_count(argc, 1);
  1948. if (r)
  1949. return r;
  1950. r = dm_pool_release_metadata_snap(pool->pmd);
  1951. if (r)
  1952. DMWARN("release_metadata_snap message failed.");
  1953. return r;
  1954. }
  1955. /*
  1956. * Messages supported:
  1957. * create_thin <dev_id>
  1958. * create_snap <dev_id> <origin_id>
  1959. * delete <dev_id>
  1960. * trim <dev_id> <new_size_in_sectors>
  1961. * set_transaction_id <current_trans_id> <new_trans_id>
  1962. * reserve_metadata_snap
  1963. * release_metadata_snap
  1964. */
  1965. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  1966. {
  1967. int r = -EINVAL;
  1968. struct pool_c *pt = ti->private;
  1969. struct pool *pool = pt->pool;
  1970. if (!strcasecmp(argv[0], "create_thin"))
  1971. r = process_create_thin_mesg(argc, argv, pool);
  1972. else if (!strcasecmp(argv[0], "create_snap"))
  1973. r = process_create_snap_mesg(argc, argv, pool);
  1974. else if (!strcasecmp(argv[0], "delete"))
  1975. r = process_delete_mesg(argc, argv, pool);
  1976. else if (!strcasecmp(argv[0], "set_transaction_id"))
  1977. r = process_set_transaction_id_mesg(argc, argv, pool);
  1978. else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
  1979. r = process_reserve_metadata_snap_mesg(argc, argv, pool);
  1980. else if (!strcasecmp(argv[0], "release_metadata_snap"))
  1981. r = process_release_metadata_snap_mesg(argc, argv, pool);
  1982. else
  1983. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  1984. if (!r) {
  1985. r = dm_pool_commit_metadata(pool->pmd);
  1986. if (r)
  1987. DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
  1988. argv[0], r);
  1989. }
  1990. return r;
  1991. }
  1992. /*
  1993. * Status line is:
  1994. * <transaction id> <used metadata sectors>/<total metadata sectors>
  1995. * <used data sectors>/<total data sectors> <held metadata root>
  1996. */
  1997. static int pool_status(struct dm_target *ti, status_type_t type,
  1998. char *result, unsigned maxlen)
  1999. {
  2000. int r, count;
  2001. unsigned sz = 0;
  2002. uint64_t transaction_id;
  2003. dm_block_t nr_free_blocks_data;
  2004. dm_block_t nr_free_blocks_metadata;
  2005. dm_block_t nr_blocks_data;
  2006. dm_block_t nr_blocks_metadata;
  2007. dm_block_t held_root;
  2008. char buf[BDEVNAME_SIZE];
  2009. char buf2[BDEVNAME_SIZE];
  2010. struct pool_c *pt = ti->private;
  2011. struct pool *pool = pt->pool;
  2012. switch (type) {
  2013. case STATUSTYPE_INFO:
  2014. r = dm_pool_get_metadata_transaction_id(pool->pmd,
  2015. &transaction_id);
  2016. if (r)
  2017. return r;
  2018. r = dm_pool_get_free_metadata_block_count(pool->pmd,
  2019. &nr_free_blocks_metadata);
  2020. if (r)
  2021. return r;
  2022. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  2023. if (r)
  2024. return r;
  2025. r = dm_pool_get_free_block_count(pool->pmd,
  2026. &nr_free_blocks_data);
  2027. if (r)
  2028. return r;
  2029. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  2030. if (r)
  2031. return r;
  2032. r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
  2033. if (r)
  2034. return r;
  2035. DMEMIT("%llu %llu/%llu %llu/%llu ",
  2036. (unsigned long long)transaction_id,
  2037. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  2038. (unsigned long long)nr_blocks_metadata,
  2039. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  2040. (unsigned long long)nr_blocks_data);
  2041. if (held_root)
  2042. DMEMIT("%llu", held_root);
  2043. else
  2044. DMEMIT("-");
  2045. break;
  2046. case STATUSTYPE_TABLE:
  2047. DMEMIT("%s %s %lu %llu ",
  2048. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  2049. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  2050. (unsigned long)pool->sectors_per_block,
  2051. (unsigned long long)pt->low_water_blocks);
  2052. count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
  2053. !pt->pf.discard_passdown;
  2054. DMEMIT("%u ", count);
  2055. if (!pool->pf.zero_new_blocks)
  2056. DMEMIT("skip_block_zeroing ");
  2057. if (!pool->pf.discard_enabled)
  2058. DMEMIT("ignore_discard ");
  2059. if (!pt->pf.discard_passdown)
  2060. DMEMIT("no_discard_passdown ");
  2061. break;
  2062. }
  2063. return 0;
  2064. }
  2065. static int pool_iterate_devices(struct dm_target *ti,
  2066. iterate_devices_callout_fn fn, void *data)
  2067. {
  2068. struct pool_c *pt = ti->private;
  2069. return fn(ti, pt->data_dev, 0, ti->len, data);
  2070. }
  2071. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  2072. struct bio_vec *biovec, int max_size)
  2073. {
  2074. struct pool_c *pt = ti->private;
  2075. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  2076. if (!q->merge_bvec_fn)
  2077. return max_size;
  2078. bvm->bi_bdev = pt->data_dev->bdev;
  2079. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  2080. }
  2081. static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
  2082. {
  2083. /*
  2084. * FIXME: these limits may be incompatible with the pool's data device
  2085. */
  2086. limits->max_discard_sectors = pool->sectors_per_block;
  2087. /*
  2088. * This is just a hint, and not enforced. We have to cope with
  2089. * bios that overlap 2 blocks.
  2090. */
  2091. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2092. limits->discard_zeroes_data = pool->pf.zero_new_blocks;
  2093. }
  2094. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2095. {
  2096. struct pool_c *pt = ti->private;
  2097. struct pool *pool = pt->pool;
  2098. blk_limits_io_min(limits, 0);
  2099. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2100. if (pool->pf.discard_enabled)
  2101. set_discard_limits(pool, limits);
  2102. }
  2103. static struct target_type pool_target = {
  2104. .name = "thin-pool",
  2105. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2106. DM_TARGET_IMMUTABLE,
  2107. .version = {1, 2, 0},
  2108. .module = THIS_MODULE,
  2109. .ctr = pool_ctr,
  2110. .dtr = pool_dtr,
  2111. .map = pool_map,
  2112. .postsuspend = pool_postsuspend,
  2113. .preresume = pool_preresume,
  2114. .resume = pool_resume,
  2115. .message = pool_message,
  2116. .status = pool_status,
  2117. .merge = pool_merge,
  2118. .iterate_devices = pool_iterate_devices,
  2119. .io_hints = pool_io_hints,
  2120. };
  2121. /*----------------------------------------------------------------
  2122. * Thin target methods
  2123. *--------------------------------------------------------------*/
  2124. static void thin_dtr(struct dm_target *ti)
  2125. {
  2126. struct thin_c *tc = ti->private;
  2127. mutex_lock(&dm_thin_pool_table.mutex);
  2128. __pool_dec(tc->pool);
  2129. dm_pool_close_thin_device(tc->td);
  2130. dm_put_device(ti, tc->pool_dev);
  2131. if (tc->origin_dev)
  2132. dm_put_device(ti, tc->origin_dev);
  2133. kfree(tc);
  2134. mutex_unlock(&dm_thin_pool_table.mutex);
  2135. }
  2136. /*
  2137. * Thin target parameters:
  2138. *
  2139. * <pool_dev> <dev_id> [origin_dev]
  2140. *
  2141. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2142. * dev_id: the internal device identifier
  2143. * origin_dev: a device external to the pool that should act as the origin
  2144. *
  2145. * If the pool device has discards disabled, they get disabled for the thin
  2146. * device as well.
  2147. */
  2148. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2149. {
  2150. int r;
  2151. struct thin_c *tc;
  2152. struct dm_dev *pool_dev, *origin_dev;
  2153. struct mapped_device *pool_md;
  2154. mutex_lock(&dm_thin_pool_table.mutex);
  2155. if (argc != 2 && argc != 3) {
  2156. ti->error = "Invalid argument count";
  2157. r = -EINVAL;
  2158. goto out_unlock;
  2159. }
  2160. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2161. if (!tc) {
  2162. ti->error = "Out of memory";
  2163. r = -ENOMEM;
  2164. goto out_unlock;
  2165. }
  2166. if (argc == 3) {
  2167. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2168. if (r) {
  2169. ti->error = "Error opening origin device";
  2170. goto bad_origin_dev;
  2171. }
  2172. tc->origin_dev = origin_dev;
  2173. }
  2174. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2175. if (r) {
  2176. ti->error = "Error opening pool device";
  2177. goto bad_pool_dev;
  2178. }
  2179. tc->pool_dev = pool_dev;
  2180. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2181. ti->error = "Invalid device id";
  2182. r = -EINVAL;
  2183. goto bad_common;
  2184. }
  2185. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2186. if (!pool_md) {
  2187. ti->error = "Couldn't get pool mapped device";
  2188. r = -EINVAL;
  2189. goto bad_common;
  2190. }
  2191. tc->pool = __pool_table_lookup(pool_md);
  2192. if (!tc->pool) {
  2193. ti->error = "Couldn't find pool object";
  2194. r = -EINVAL;
  2195. goto bad_pool_lookup;
  2196. }
  2197. __pool_inc(tc->pool);
  2198. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2199. if (r) {
  2200. ti->error = "Couldn't open thin internal device";
  2201. goto bad_thin_open;
  2202. }
  2203. r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
  2204. if (r)
  2205. goto bad_thin_open;
  2206. ti->num_flush_requests = 1;
  2207. /* In case the pool supports discards, pass them on. */
  2208. if (tc->pool->pf.discard_enabled) {
  2209. ti->discards_supported = 1;
  2210. ti->num_discard_requests = 1;
  2211. ti->discard_zeroes_data_unsupported = 1;
  2212. }
  2213. dm_put(pool_md);
  2214. mutex_unlock(&dm_thin_pool_table.mutex);
  2215. return 0;
  2216. bad_thin_open:
  2217. __pool_dec(tc->pool);
  2218. bad_pool_lookup:
  2219. dm_put(pool_md);
  2220. bad_common:
  2221. dm_put_device(ti, tc->pool_dev);
  2222. bad_pool_dev:
  2223. if (tc->origin_dev)
  2224. dm_put_device(ti, tc->origin_dev);
  2225. bad_origin_dev:
  2226. kfree(tc);
  2227. out_unlock:
  2228. mutex_unlock(&dm_thin_pool_table.mutex);
  2229. return r;
  2230. }
  2231. static int thin_map(struct dm_target *ti, struct bio *bio,
  2232. union map_info *map_context)
  2233. {
  2234. bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
  2235. return thin_bio_map(ti, bio, map_context);
  2236. }
  2237. static int thin_endio(struct dm_target *ti,
  2238. struct bio *bio, int err,
  2239. union map_info *map_context)
  2240. {
  2241. unsigned long flags;
  2242. struct dm_thin_endio_hook *h = map_context->ptr;
  2243. struct list_head work;
  2244. struct dm_thin_new_mapping *m, *tmp;
  2245. struct pool *pool = h->tc->pool;
  2246. if (h->shared_read_entry) {
  2247. INIT_LIST_HEAD(&work);
  2248. ds_dec(h->shared_read_entry, &work);
  2249. spin_lock_irqsave(&pool->lock, flags);
  2250. list_for_each_entry_safe(m, tmp, &work, list) {
  2251. list_del(&m->list);
  2252. m->quiesced = 1;
  2253. __maybe_add_mapping(m);
  2254. }
  2255. spin_unlock_irqrestore(&pool->lock, flags);
  2256. }
  2257. if (h->all_io_entry) {
  2258. INIT_LIST_HEAD(&work);
  2259. ds_dec(h->all_io_entry, &work);
  2260. spin_lock_irqsave(&pool->lock, flags);
  2261. list_for_each_entry_safe(m, tmp, &work, list)
  2262. list_add(&m->list, &pool->prepared_discards);
  2263. spin_unlock_irqrestore(&pool->lock, flags);
  2264. }
  2265. mempool_free(h, pool->endio_hook_pool);
  2266. return 0;
  2267. }
  2268. static void thin_postsuspend(struct dm_target *ti)
  2269. {
  2270. if (dm_noflush_suspending(ti))
  2271. requeue_io((struct thin_c *)ti->private);
  2272. }
  2273. /*
  2274. * <nr mapped sectors> <highest mapped sector>
  2275. */
  2276. static int thin_status(struct dm_target *ti, status_type_t type,
  2277. char *result, unsigned maxlen)
  2278. {
  2279. int r;
  2280. ssize_t sz = 0;
  2281. dm_block_t mapped, highest;
  2282. char buf[BDEVNAME_SIZE];
  2283. struct thin_c *tc = ti->private;
  2284. if (!tc->td)
  2285. DMEMIT("-");
  2286. else {
  2287. switch (type) {
  2288. case STATUSTYPE_INFO:
  2289. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2290. if (r)
  2291. return r;
  2292. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2293. if (r < 0)
  2294. return r;
  2295. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2296. if (r)
  2297. DMEMIT("%llu", ((highest + 1) *
  2298. tc->pool->sectors_per_block) - 1);
  2299. else
  2300. DMEMIT("-");
  2301. break;
  2302. case STATUSTYPE_TABLE:
  2303. DMEMIT("%s %lu",
  2304. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2305. (unsigned long) tc->dev_id);
  2306. if (tc->origin_dev)
  2307. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2308. break;
  2309. }
  2310. }
  2311. return 0;
  2312. }
  2313. static int thin_iterate_devices(struct dm_target *ti,
  2314. iterate_devices_callout_fn fn, void *data)
  2315. {
  2316. sector_t blocks;
  2317. struct thin_c *tc = ti->private;
  2318. struct pool *pool = tc->pool;
  2319. /*
  2320. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2321. * we follow a more convoluted path through to the pool's target.
  2322. */
  2323. if (!pool->ti)
  2324. return 0; /* nothing is bound */
  2325. blocks = pool->ti->len;
  2326. (void) sector_div(blocks, pool->sectors_per_block);
  2327. if (blocks)
  2328. return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
  2329. return 0;
  2330. }
  2331. static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2332. {
  2333. struct thin_c *tc = ti->private;
  2334. struct pool *pool = tc->pool;
  2335. blk_limits_io_min(limits, 0);
  2336. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2337. set_discard_limits(pool, limits);
  2338. }
  2339. static struct target_type thin_target = {
  2340. .name = "thin",
  2341. .version = {1, 2, 0},
  2342. .module = THIS_MODULE,
  2343. .ctr = thin_ctr,
  2344. .dtr = thin_dtr,
  2345. .map = thin_map,
  2346. .end_io = thin_endio,
  2347. .postsuspend = thin_postsuspend,
  2348. .status = thin_status,
  2349. .iterate_devices = thin_iterate_devices,
  2350. .io_hints = thin_io_hints,
  2351. };
  2352. /*----------------------------------------------------------------*/
  2353. static int __init dm_thin_init(void)
  2354. {
  2355. int r;
  2356. pool_table_init();
  2357. r = dm_register_target(&thin_target);
  2358. if (r)
  2359. return r;
  2360. r = dm_register_target(&pool_target);
  2361. if (r)
  2362. goto bad_pool_target;
  2363. r = -ENOMEM;
  2364. _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
  2365. if (!_cell_cache)
  2366. goto bad_cell_cache;
  2367. _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
  2368. if (!_new_mapping_cache)
  2369. goto bad_new_mapping_cache;
  2370. _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
  2371. if (!_endio_hook_cache)
  2372. goto bad_endio_hook_cache;
  2373. return 0;
  2374. bad_endio_hook_cache:
  2375. kmem_cache_destroy(_new_mapping_cache);
  2376. bad_new_mapping_cache:
  2377. kmem_cache_destroy(_cell_cache);
  2378. bad_cell_cache:
  2379. dm_unregister_target(&pool_target);
  2380. bad_pool_target:
  2381. dm_unregister_target(&thin_target);
  2382. return r;
  2383. }
  2384. static void dm_thin_exit(void)
  2385. {
  2386. dm_unregister_target(&thin_target);
  2387. dm_unregister_target(&pool_target);
  2388. kmem_cache_destroy(_cell_cache);
  2389. kmem_cache_destroy(_new_mapping_cache);
  2390. kmem_cache_destroy(_endio_hook_cache);
  2391. }
  2392. module_init(dm_thin_init);
  2393. module_exit(dm_thin_exit);
  2394. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2395. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2396. MODULE_LICENSE("GPL");