intr_remapping.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. #include <linux/interrupt.h>
  2. #include <linux/dmar.h>
  3. #include <linux/spinlock.h>
  4. #include <linux/jiffies.h>
  5. #include <linux/pci.h>
  6. #include <linux/irq.h>
  7. #include <asm/io_apic.h>
  8. #include <asm/smp.h>
  9. #include <asm/cpu.h>
  10. #include <linux/intel-iommu.h>
  11. #include "intr_remapping.h"
  12. static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
  13. static int ir_ioapic_num;
  14. int intr_remapping_enabled;
  15. struct irq_2_iommu {
  16. struct intel_iommu *iommu;
  17. u16 irte_index;
  18. u16 sub_handle;
  19. u8 irte_mask;
  20. };
  21. #ifdef CONFIG_SPARSE_IRQ
  22. static struct irq_2_iommu *get_one_free_irq_2_iommu(int cpu)
  23. {
  24. struct irq_2_iommu *iommu;
  25. int node;
  26. node = cpu_to_node(cpu);
  27. iommu = kzalloc_node(sizeof(*iommu), GFP_ATOMIC, node);
  28. printk(KERN_DEBUG "alloc irq_2_iommu on cpu %d node %d\n", cpu, node);
  29. return iommu;
  30. }
  31. static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
  32. {
  33. struct irq_desc *desc;
  34. desc = irq_to_desc(irq);
  35. if (WARN_ON_ONCE(!desc))
  36. return NULL;
  37. return desc->irq_2_iommu;
  38. }
  39. static struct irq_2_iommu *irq_2_iommu_alloc_cpu(unsigned int irq, int cpu)
  40. {
  41. struct irq_desc *desc;
  42. struct irq_2_iommu *irq_iommu;
  43. /*
  44. * alloc irq desc if not allocated already.
  45. */
  46. desc = irq_to_desc_alloc_cpu(irq, cpu);
  47. if (!desc) {
  48. printk(KERN_INFO "can not get irq_desc for %d\n", irq);
  49. return NULL;
  50. }
  51. irq_iommu = desc->irq_2_iommu;
  52. if (!irq_iommu)
  53. desc->irq_2_iommu = get_one_free_irq_2_iommu(cpu);
  54. return desc->irq_2_iommu;
  55. }
  56. static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq)
  57. {
  58. return irq_2_iommu_alloc_cpu(irq, boot_cpu_id);
  59. }
  60. #else /* !CONFIG_SPARSE_IRQ */
  61. static struct irq_2_iommu irq_2_iommuX[NR_IRQS];
  62. static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
  63. {
  64. if (irq < nr_irqs)
  65. return &irq_2_iommuX[irq];
  66. return NULL;
  67. }
  68. static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq)
  69. {
  70. return irq_2_iommu(irq);
  71. }
  72. #endif
  73. static DEFINE_SPINLOCK(irq_2_ir_lock);
  74. static struct irq_2_iommu *valid_irq_2_iommu(unsigned int irq)
  75. {
  76. struct irq_2_iommu *irq_iommu;
  77. irq_iommu = irq_2_iommu(irq);
  78. if (!irq_iommu)
  79. return NULL;
  80. if (!irq_iommu->iommu)
  81. return NULL;
  82. return irq_iommu;
  83. }
  84. int irq_remapped(int irq)
  85. {
  86. return valid_irq_2_iommu(irq) != NULL;
  87. }
  88. int get_irte(int irq, struct irte *entry)
  89. {
  90. int index;
  91. struct irq_2_iommu *irq_iommu;
  92. if (!entry)
  93. return -1;
  94. spin_lock(&irq_2_ir_lock);
  95. irq_iommu = valid_irq_2_iommu(irq);
  96. if (!irq_iommu) {
  97. spin_unlock(&irq_2_ir_lock);
  98. return -1;
  99. }
  100. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  101. *entry = *(irq_iommu->iommu->ir_table->base + index);
  102. spin_unlock(&irq_2_ir_lock);
  103. return 0;
  104. }
  105. int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
  106. {
  107. struct ir_table *table = iommu->ir_table;
  108. struct irq_2_iommu *irq_iommu;
  109. u16 index, start_index;
  110. unsigned int mask = 0;
  111. int i;
  112. if (!count)
  113. return -1;
  114. #ifndef CONFIG_SPARSE_IRQ
  115. /* protect irq_2_iommu_alloc later */
  116. if (irq >= nr_irqs)
  117. return -1;
  118. #endif
  119. /*
  120. * start the IRTE search from index 0.
  121. */
  122. index = start_index = 0;
  123. if (count > 1) {
  124. count = __roundup_pow_of_two(count);
  125. mask = ilog2(count);
  126. }
  127. if (mask > ecap_max_handle_mask(iommu->ecap)) {
  128. printk(KERN_ERR
  129. "Requested mask %x exceeds the max invalidation handle"
  130. " mask value %Lx\n", mask,
  131. ecap_max_handle_mask(iommu->ecap));
  132. return -1;
  133. }
  134. spin_lock(&irq_2_ir_lock);
  135. do {
  136. for (i = index; i < index + count; i++)
  137. if (table->base[i].present)
  138. break;
  139. /* empty index found */
  140. if (i == index + count)
  141. break;
  142. index = (index + count) % INTR_REMAP_TABLE_ENTRIES;
  143. if (index == start_index) {
  144. spin_unlock(&irq_2_ir_lock);
  145. printk(KERN_ERR "can't allocate an IRTE\n");
  146. return -1;
  147. }
  148. } while (1);
  149. for (i = index; i < index + count; i++)
  150. table->base[i].present = 1;
  151. irq_iommu = irq_2_iommu_alloc(irq);
  152. if (!irq_iommu) {
  153. spin_unlock(&irq_2_ir_lock);
  154. printk(KERN_ERR "can't allocate irq_2_iommu\n");
  155. return -1;
  156. }
  157. irq_iommu->iommu = iommu;
  158. irq_iommu->irte_index = index;
  159. irq_iommu->sub_handle = 0;
  160. irq_iommu->irte_mask = mask;
  161. spin_unlock(&irq_2_ir_lock);
  162. return index;
  163. }
  164. static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
  165. {
  166. struct qi_desc desc;
  167. desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
  168. | QI_IEC_SELECTIVE;
  169. desc.high = 0;
  170. return qi_submit_sync(&desc, iommu);
  171. }
  172. int map_irq_to_irte_handle(int irq, u16 *sub_handle)
  173. {
  174. int index;
  175. struct irq_2_iommu *irq_iommu;
  176. spin_lock(&irq_2_ir_lock);
  177. irq_iommu = valid_irq_2_iommu(irq);
  178. if (!irq_iommu) {
  179. spin_unlock(&irq_2_ir_lock);
  180. return -1;
  181. }
  182. *sub_handle = irq_iommu->sub_handle;
  183. index = irq_iommu->irte_index;
  184. spin_unlock(&irq_2_ir_lock);
  185. return index;
  186. }
  187. int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
  188. {
  189. struct irq_2_iommu *irq_iommu;
  190. spin_lock(&irq_2_ir_lock);
  191. irq_iommu = irq_2_iommu_alloc(irq);
  192. if (!irq_iommu) {
  193. spin_unlock(&irq_2_ir_lock);
  194. printk(KERN_ERR "can't allocate irq_2_iommu\n");
  195. return -1;
  196. }
  197. irq_iommu->iommu = iommu;
  198. irq_iommu->irte_index = index;
  199. irq_iommu->sub_handle = subhandle;
  200. irq_iommu->irte_mask = 0;
  201. spin_unlock(&irq_2_ir_lock);
  202. return 0;
  203. }
  204. int clear_irte_irq(int irq, struct intel_iommu *iommu, u16 index)
  205. {
  206. struct irq_2_iommu *irq_iommu;
  207. spin_lock(&irq_2_ir_lock);
  208. irq_iommu = valid_irq_2_iommu(irq);
  209. if (!irq_iommu) {
  210. spin_unlock(&irq_2_ir_lock);
  211. return -1;
  212. }
  213. irq_iommu->iommu = NULL;
  214. irq_iommu->irte_index = 0;
  215. irq_iommu->sub_handle = 0;
  216. irq_2_iommu(irq)->irte_mask = 0;
  217. spin_unlock(&irq_2_ir_lock);
  218. return 0;
  219. }
  220. int modify_irte(int irq, struct irte *irte_modified)
  221. {
  222. int rc;
  223. int index;
  224. struct irte *irte;
  225. struct intel_iommu *iommu;
  226. struct irq_2_iommu *irq_iommu;
  227. spin_lock(&irq_2_ir_lock);
  228. irq_iommu = valid_irq_2_iommu(irq);
  229. if (!irq_iommu) {
  230. spin_unlock(&irq_2_ir_lock);
  231. return -1;
  232. }
  233. iommu = irq_iommu->iommu;
  234. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  235. irte = &iommu->ir_table->base[index];
  236. set_64bit((unsigned long *)irte, irte_modified->low | (1 << 1));
  237. __iommu_flush_cache(iommu, irte, sizeof(*irte));
  238. rc = qi_flush_iec(iommu, index, 0);
  239. spin_unlock(&irq_2_ir_lock);
  240. return rc;
  241. }
  242. int flush_irte(int irq)
  243. {
  244. int rc;
  245. int index;
  246. struct intel_iommu *iommu;
  247. struct irq_2_iommu *irq_iommu;
  248. spin_lock(&irq_2_ir_lock);
  249. irq_iommu = valid_irq_2_iommu(irq);
  250. if (!irq_iommu) {
  251. spin_unlock(&irq_2_ir_lock);
  252. return -1;
  253. }
  254. iommu = irq_iommu->iommu;
  255. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  256. rc = qi_flush_iec(iommu, index, irq_iommu->irte_mask);
  257. spin_unlock(&irq_2_ir_lock);
  258. return rc;
  259. }
  260. struct intel_iommu *map_ioapic_to_ir(int apic)
  261. {
  262. int i;
  263. for (i = 0; i < MAX_IO_APICS; i++)
  264. if (ir_ioapic[i].id == apic)
  265. return ir_ioapic[i].iommu;
  266. return NULL;
  267. }
  268. struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
  269. {
  270. struct dmar_drhd_unit *drhd;
  271. drhd = dmar_find_matched_drhd_unit(dev);
  272. if (!drhd)
  273. return NULL;
  274. return drhd->iommu;
  275. }
  276. int free_irte(int irq)
  277. {
  278. int rc = 0;
  279. int index, i;
  280. struct irte *irte;
  281. struct intel_iommu *iommu;
  282. struct irq_2_iommu *irq_iommu;
  283. spin_lock(&irq_2_ir_lock);
  284. irq_iommu = valid_irq_2_iommu(irq);
  285. if (!irq_iommu) {
  286. spin_unlock(&irq_2_ir_lock);
  287. return -1;
  288. }
  289. iommu = irq_iommu->iommu;
  290. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  291. irte = &iommu->ir_table->base[index];
  292. if (!irq_iommu->sub_handle) {
  293. for (i = 0; i < (1 << irq_iommu->irte_mask); i++)
  294. set_64bit((unsigned long *)irte, 0);
  295. rc = qi_flush_iec(iommu, index, irq_iommu->irte_mask);
  296. }
  297. irq_iommu->iommu = NULL;
  298. irq_iommu->irte_index = 0;
  299. irq_iommu->sub_handle = 0;
  300. irq_iommu->irte_mask = 0;
  301. spin_unlock(&irq_2_ir_lock);
  302. return rc;
  303. }
  304. static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode)
  305. {
  306. u64 addr;
  307. u32 cmd, sts;
  308. unsigned long flags;
  309. addr = virt_to_phys((void *)iommu->ir_table->base);
  310. spin_lock_irqsave(&iommu->register_lock, flags);
  311. dmar_writeq(iommu->reg + DMAR_IRTA_REG,
  312. (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
  313. /* Set interrupt-remapping table pointer */
  314. cmd = iommu->gcmd | DMA_GCMD_SIRTP;
  315. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  316. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  317. readl, (sts & DMA_GSTS_IRTPS), sts);
  318. spin_unlock_irqrestore(&iommu->register_lock, flags);
  319. /*
  320. * global invalidation of interrupt entry cache before enabling
  321. * interrupt-remapping.
  322. */
  323. qi_global_iec(iommu);
  324. spin_lock_irqsave(&iommu->register_lock, flags);
  325. /* Enable interrupt-remapping */
  326. cmd = iommu->gcmd | DMA_GCMD_IRE;
  327. iommu->gcmd |= DMA_GCMD_IRE;
  328. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  329. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  330. readl, (sts & DMA_GSTS_IRES), sts);
  331. spin_unlock_irqrestore(&iommu->register_lock, flags);
  332. }
  333. static int setup_intr_remapping(struct intel_iommu *iommu, int mode)
  334. {
  335. struct ir_table *ir_table;
  336. struct page *pages;
  337. ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
  338. GFP_KERNEL);
  339. if (!iommu->ir_table)
  340. return -ENOMEM;
  341. pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, INTR_REMAP_PAGE_ORDER);
  342. if (!pages) {
  343. printk(KERN_ERR "failed to allocate pages of order %d\n",
  344. INTR_REMAP_PAGE_ORDER);
  345. kfree(iommu->ir_table);
  346. return -ENOMEM;
  347. }
  348. ir_table->base = page_address(pages);
  349. iommu_set_intr_remapping(iommu, mode);
  350. return 0;
  351. }
  352. int __init enable_intr_remapping(int eim)
  353. {
  354. struct dmar_drhd_unit *drhd;
  355. int setup = 0;
  356. /*
  357. * check for the Interrupt-remapping support
  358. */
  359. for_each_drhd_unit(drhd) {
  360. struct intel_iommu *iommu = drhd->iommu;
  361. if (!ecap_ir_support(iommu->ecap))
  362. continue;
  363. if (eim && !ecap_eim_support(iommu->ecap)) {
  364. printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
  365. " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
  366. return -1;
  367. }
  368. }
  369. /*
  370. * Enable queued invalidation for all the DRHD's.
  371. */
  372. for_each_drhd_unit(drhd) {
  373. int ret;
  374. struct intel_iommu *iommu = drhd->iommu;
  375. ret = dmar_enable_qi(iommu);
  376. if (ret) {
  377. printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
  378. " invalidation, ecap %Lx, ret %d\n",
  379. drhd->reg_base_addr, iommu->ecap, ret);
  380. return -1;
  381. }
  382. }
  383. /*
  384. * Setup Interrupt-remapping for all the DRHD's now.
  385. */
  386. for_each_drhd_unit(drhd) {
  387. struct intel_iommu *iommu = drhd->iommu;
  388. if (!ecap_ir_support(iommu->ecap))
  389. continue;
  390. if (setup_intr_remapping(iommu, eim))
  391. goto error;
  392. setup = 1;
  393. }
  394. if (!setup)
  395. goto error;
  396. intr_remapping_enabled = 1;
  397. return 0;
  398. error:
  399. /*
  400. * handle error condition gracefully here!
  401. */
  402. return -1;
  403. }
  404. static int ir_parse_ioapic_scope(struct acpi_dmar_header *header,
  405. struct intel_iommu *iommu)
  406. {
  407. struct acpi_dmar_hardware_unit *drhd;
  408. struct acpi_dmar_device_scope *scope;
  409. void *start, *end;
  410. drhd = (struct acpi_dmar_hardware_unit *)header;
  411. start = (void *)(drhd + 1);
  412. end = ((void *)drhd) + header->length;
  413. while (start < end) {
  414. scope = start;
  415. if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
  416. if (ir_ioapic_num == MAX_IO_APICS) {
  417. printk(KERN_WARNING "Exceeded Max IO APICS\n");
  418. return -1;
  419. }
  420. printk(KERN_INFO "IOAPIC id %d under DRHD base"
  421. " 0x%Lx\n", scope->enumeration_id,
  422. drhd->address);
  423. ir_ioapic[ir_ioapic_num].iommu = iommu;
  424. ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
  425. ir_ioapic_num++;
  426. }
  427. start += scope->length;
  428. }
  429. return 0;
  430. }
  431. /*
  432. * Finds the assocaition between IOAPIC's and its Interrupt-remapping
  433. * hardware unit.
  434. */
  435. int __init parse_ioapics_under_ir(void)
  436. {
  437. struct dmar_drhd_unit *drhd;
  438. int ir_supported = 0;
  439. for_each_drhd_unit(drhd) {
  440. struct intel_iommu *iommu = drhd->iommu;
  441. if (ecap_ir_support(iommu->ecap)) {
  442. if (ir_parse_ioapic_scope(drhd->hdr, iommu))
  443. return -1;
  444. ir_supported = 1;
  445. }
  446. }
  447. if (ir_supported && ir_ioapic_num != nr_ioapics) {
  448. printk(KERN_WARNING
  449. "Not all IO-APIC's listed under remapping hardware\n");
  450. return -1;
  451. }
  452. return ir_supported;
  453. }