extent-tree.c 216 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/sort.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/kthread.h>
  25. #include <linux/slab.h>
  26. #include <linux/ratelimit.h>
  27. #include "compat.h"
  28. #include "hash.h"
  29. #include "ctree.h"
  30. #include "disk-io.h"
  31. #include "print-tree.h"
  32. #include "transaction.h"
  33. #include "volumes.h"
  34. #include "locking.h"
  35. #include "free-space-cache.h"
  36. #undef SCRAMBLE_DELAYED_REFS
  37. /*
  38. * control flags for do_chunk_alloc's force field
  39. * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  40. * if we really need one.
  41. *
  42. * CHUNK_ALLOC_LIMITED means to only try and allocate one
  43. * if we have very few chunks already allocated. This is
  44. * used as part of the clustering code to help make sure
  45. * we have a good pool of storage to cluster in, without
  46. * filling the FS with empty chunks
  47. *
  48. * CHUNK_ALLOC_FORCE means it must try to allocate one
  49. *
  50. */
  51. enum {
  52. CHUNK_ALLOC_NO_FORCE = 0,
  53. CHUNK_ALLOC_LIMITED = 1,
  54. CHUNK_ALLOC_FORCE = 2,
  55. };
  56. /*
  57. * Control how reservations are dealt with.
  58. *
  59. * RESERVE_FREE - freeing a reservation.
  60. * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  61. * ENOSPC accounting
  62. * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  63. * bytes_may_use as the ENOSPC accounting is done elsewhere
  64. */
  65. enum {
  66. RESERVE_FREE = 0,
  67. RESERVE_ALLOC = 1,
  68. RESERVE_ALLOC_NO_ACCOUNT = 2,
  69. };
  70. static int update_block_group(struct btrfs_trans_handle *trans,
  71. struct btrfs_root *root,
  72. u64 bytenr, u64 num_bytes, int alloc);
  73. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  74. struct btrfs_root *root,
  75. u64 bytenr, u64 num_bytes, u64 parent,
  76. u64 root_objectid, u64 owner_objectid,
  77. u64 owner_offset, int refs_to_drop,
  78. struct btrfs_delayed_extent_op *extra_op);
  79. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  80. struct extent_buffer *leaf,
  81. struct btrfs_extent_item *ei);
  82. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  83. struct btrfs_root *root,
  84. u64 parent, u64 root_objectid,
  85. u64 flags, u64 owner, u64 offset,
  86. struct btrfs_key *ins, int ref_mod);
  87. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  88. struct btrfs_root *root,
  89. u64 parent, u64 root_objectid,
  90. u64 flags, struct btrfs_disk_key *key,
  91. int level, struct btrfs_key *ins);
  92. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  93. struct btrfs_root *extent_root, u64 alloc_bytes,
  94. u64 flags, int force);
  95. static int find_next_key(struct btrfs_path *path, int level,
  96. struct btrfs_key *key);
  97. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  98. int dump_block_groups);
  99. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  100. u64 num_bytes, int reserve);
  101. static noinline int
  102. block_group_cache_done(struct btrfs_block_group_cache *cache)
  103. {
  104. smp_mb();
  105. return cache->cached == BTRFS_CACHE_FINISHED;
  106. }
  107. static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  108. {
  109. return (cache->flags & bits) == bits;
  110. }
  111. static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  112. {
  113. atomic_inc(&cache->count);
  114. }
  115. void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  116. {
  117. if (atomic_dec_and_test(&cache->count)) {
  118. WARN_ON(cache->pinned > 0);
  119. WARN_ON(cache->reserved > 0);
  120. kfree(cache->free_space_ctl);
  121. kfree(cache);
  122. }
  123. }
  124. /*
  125. * this adds the block group to the fs_info rb tree for the block group
  126. * cache
  127. */
  128. static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  129. struct btrfs_block_group_cache *block_group)
  130. {
  131. struct rb_node **p;
  132. struct rb_node *parent = NULL;
  133. struct btrfs_block_group_cache *cache;
  134. spin_lock(&info->block_group_cache_lock);
  135. p = &info->block_group_cache_tree.rb_node;
  136. while (*p) {
  137. parent = *p;
  138. cache = rb_entry(parent, struct btrfs_block_group_cache,
  139. cache_node);
  140. if (block_group->key.objectid < cache->key.objectid) {
  141. p = &(*p)->rb_left;
  142. } else if (block_group->key.objectid > cache->key.objectid) {
  143. p = &(*p)->rb_right;
  144. } else {
  145. spin_unlock(&info->block_group_cache_lock);
  146. return -EEXIST;
  147. }
  148. }
  149. rb_link_node(&block_group->cache_node, parent, p);
  150. rb_insert_color(&block_group->cache_node,
  151. &info->block_group_cache_tree);
  152. spin_unlock(&info->block_group_cache_lock);
  153. return 0;
  154. }
  155. /*
  156. * This will return the block group at or after bytenr if contains is 0, else
  157. * it will return the block group that contains the bytenr
  158. */
  159. static struct btrfs_block_group_cache *
  160. block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  161. int contains)
  162. {
  163. struct btrfs_block_group_cache *cache, *ret = NULL;
  164. struct rb_node *n;
  165. u64 end, start;
  166. spin_lock(&info->block_group_cache_lock);
  167. n = info->block_group_cache_tree.rb_node;
  168. while (n) {
  169. cache = rb_entry(n, struct btrfs_block_group_cache,
  170. cache_node);
  171. end = cache->key.objectid + cache->key.offset - 1;
  172. start = cache->key.objectid;
  173. if (bytenr < start) {
  174. if (!contains && (!ret || start < ret->key.objectid))
  175. ret = cache;
  176. n = n->rb_left;
  177. } else if (bytenr > start) {
  178. if (contains && bytenr <= end) {
  179. ret = cache;
  180. break;
  181. }
  182. n = n->rb_right;
  183. } else {
  184. ret = cache;
  185. break;
  186. }
  187. }
  188. if (ret)
  189. btrfs_get_block_group(ret);
  190. spin_unlock(&info->block_group_cache_lock);
  191. return ret;
  192. }
  193. static int add_excluded_extent(struct btrfs_root *root,
  194. u64 start, u64 num_bytes)
  195. {
  196. u64 end = start + num_bytes - 1;
  197. set_extent_bits(&root->fs_info->freed_extents[0],
  198. start, end, EXTENT_UPTODATE, GFP_NOFS);
  199. set_extent_bits(&root->fs_info->freed_extents[1],
  200. start, end, EXTENT_UPTODATE, GFP_NOFS);
  201. return 0;
  202. }
  203. static void free_excluded_extents(struct btrfs_root *root,
  204. struct btrfs_block_group_cache *cache)
  205. {
  206. u64 start, end;
  207. start = cache->key.objectid;
  208. end = start + cache->key.offset - 1;
  209. clear_extent_bits(&root->fs_info->freed_extents[0],
  210. start, end, EXTENT_UPTODATE, GFP_NOFS);
  211. clear_extent_bits(&root->fs_info->freed_extents[1],
  212. start, end, EXTENT_UPTODATE, GFP_NOFS);
  213. }
  214. static int exclude_super_stripes(struct btrfs_root *root,
  215. struct btrfs_block_group_cache *cache)
  216. {
  217. u64 bytenr;
  218. u64 *logical;
  219. int stripe_len;
  220. int i, nr, ret;
  221. if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  222. stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  223. cache->bytes_super += stripe_len;
  224. ret = add_excluded_extent(root, cache->key.objectid,
  225. stripe_len);
  226. BUG_ON(ret); /* -ENOMEM */
  227. }
  228. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  229. bytenr = btrfs_sb_offset(i);
  230. ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  231. cache->key.objectid, bytenr,
  232. 0, &logical, &nr, &stripe_len);
  233. BUG_ON(ret); /* -ENOMEM */
  234. while (nr--) {
  235. cache->bytes_super += stripe_len;
  236. ret = add_excluded_extent(root, logical[nr],
  237. stripe_len);
  238. BUG_ON(ret); /* -ENOMEM */
  239. }
  240. kfree(logical);
  241. }
  242. return 0;
  243. }
  244. static struct btrfs_caching_control *
  245. get_caching_control(struct btrfs_block_group_cache *cache)
  246. {
  247. struct btrfs_caching_control *ctl;
  248. spin_lock(&cache->lock);
  249. if (cache->cached != BTRFS_CACHE_STARTED) {
  250. spin_unlock(&cache->lock);
  251. return NULL;
  252. }
  253. /* We're loading it the fast way, so we don't have a caching_ctl. */
  254. if (!cache->caching_ctl) {
  255. spin_unlock(&cache->lock);
  256. return NULL;
  257. }
  258. ctl = cache->caching_ctl;
  259. atomic_inc(&ctl->count);
  260. spin_unlock(&cache->lock);
  261. return ctl;
  262. }
  263. static void put_caching_control(struct btrfs_caching_control *ctl)
  264. {
  265. if (atomic_dec_and_test(&ctl->count))
  266. kfree(ctl);
  267. }
  268. /*
  269. * this is only called by cache_block_group, since we could have freed extents
  270. * we need to check the pinned_extents for any extents that can't be used yet
  271. * since their free space will be released as soon as the transaction commits.
  272. */
  273. static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  274. struct btrfs_fs_info *info, u64 start, u64 end)
  275. {
  276. u64 extent_start, extent_end, size, total_added = 0;
  277. int ret;
  278. while (start < end) {
  279. ret = find_first_extent_bit(info->pinned_extents, start,
  280. &extent_start, &extent_end,
  281. EXTENT_DIRTY | EXTENT_UPTODATE);
  282. if (ret)
  283. break;
  284. if (extent_start <= start) {
  285. start = extent_end + 1;
  286. } else if (extent_start > start && extent_start < end) {
  287. size = extent_start - start;
  288. total_added += size;
  289. ret = btrfs_add_free_space(block_group, start,
  290. size);
  291. BUG_ON(ret); /* -ENOMEM or logic error */
  292. start = extent_end + 1;
  293. } else {
  294. break;
  295. }
  296. }
  297. if (start < end) {
  298. size = end - start;
  299. total_added += size;
  300. ret = btrfs_add_free_space(block_group, start, size);
  301. BUG_ON(ret); /* -ENOMEM or logic error */
  302. }
  303. return total_added;
  304. }
  305. static noinline void caching_thread(struct btrfs_work *work)
  306. {
  307. struct btrfs_block_group_cache *block_group;
  308. struct btrfs_fs_info *fs_info;
  309. struct btrfs_caching_control *caching_ctl;
  310. struct btrfs_root *extent_root;
  311. struct btrfs_path *path;
  312. struct extent_buffer *leaf;
  313. struct btrfs_key key;
  314. u64 total_found = 0;
  315. u64 last = 0;
  316. u32 nritems;
  317. int ret = 0;
  318. caching_ctl = container_of(work, struct btrfs_caching_control, work);
  319. block_group = caching_ctl->block_group;
  320. fs_info = block_group->fs_info;
  321. extent_root = fs_info->extent_root;
  322. path = btrfs_alloc_path();
  323. if (!path)
  324. goto out;
  325. last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  326. /*
  327. * We don't want to deadlock with somebody trying to allocate a new
  328. * extent for the extent root while also trying to search the extent
  329. * root to add free space. So we skip locking and search the commit
  330. * root, since its read-only
  331. */
  332. path->skip_locking = 1;
  333. path->search_commit_root = 1;
  334. path->reada = 1;
  335. key.objectid = last;
  336. key.offset = 0;
  337. key.type = BTRFS_EXTENT_ITEM_KEY;
  338. again:
  339. mutex_lock(&caching_ctl->mutex);
  340. /* need to make sure the commit_root doesn't disappear */
  341. down_read(&fs_info->extent_commit_sem);
  342. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  343. if (ret < 0)
  344. goto err;
  345. leaf = path->nodes[0];
  346. nritems = btrfs_header_nritems(leaf);
  347. while (1) {
  348. if (btrfs_fs_closing(fs_info) > 1) {
  349. last = (u64)-1;
  350. break;
  351. }
  352. if (path->slots[0] < nritems) {
  353. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  354. } else {
  355. ret = find_next_key(path, 0, &key);
  356. if (ret)
  357. break;
  358. if (need_resched() ||
  359. btrfs_next_leaf(extent_root, path)) {
  360. caching_ctl->progress = last;
  361. btrfs_release_path(path);
  362. up_read(&fs_info->extent_commit_sem);
  363. mutex_unlock(&caching_ctl->mutex);
  364. cond_resched();
  365. goto again;
  366. }
  367. leaf = path->nodes[0];
  368. nritems = btrfs_header_nritems(leaf);
  369. continue;
  370. }
  371. if (key.objectid < block_group->key.objectid) {
  372. path->slots[0]++;
  373. continue;
  374. }
  375. if (key.objectid >= block_group->key.objectid +
  376. block_group->key.offset)
  377. break;
  378. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  379. total_found += add_new_free_space(block_group,
  380. fs_info, last,
  381. key.objectid);
  382. last = key.objectid + key.offset;
  383. if (total_found > (1024 * 1024 * 2)) {
  384. total_found = 0;
  385. wake_up(&caching_ctl->wait);
  386. }
  387. }
  388. path->slots[0]++;
  389. }
  390. ret = 0;
  391. total_found += add_new_free_space(block_group, fs_info, last,
  392. block_group->key.objectid +
  393. block_group->key.offset);
  394. caching_ctl->progress = (u64)-1;
  395. spin_lock(&block_group->lock);
  396. block_group->caching_ctl = NULL;
  397. block_group->cached = BTRFS_CACHE_FINISHED;
  398. spin_unlock(&block_group->lock);
  399. err:
  400. btrfs_free_path(path);
  401. up_read(&fs_info->extent_commit_sem);
  402. free_excluded_extents(extent_root, block_group);
  403. mutex_unlock(&caching_ctl->mutex);
  404. out:
  405. wake_up(&caching_ctl->wait);
  406. put_caching_control(caching_ctl);
  407. btrfs_put_block_group(block_group);
  408. }
  409. static int cache_block_group(struct btrfs_block_group_cache *cache,
  410. struct btrfs_trans_handle *trans,
  411. struct btrfs_root *root,
  412. int load_cache_only)
  413. {
  414. DEFINE_WAIT(wait);
  415. struct btrfs_fs_info *fs_info = cache->fs_info;
  416. struct btrfs_caching_control *caching_ctl;
  417. int ret = 0;
  418. caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  419. if (!caching_ctl)
  420. return -ENOMEM;
  421. INIT_LIST_HEAD(&caching_ctl->list);
  422. mutex_init(&caching_ctl->mutex);
  423. init_waitqueue_head(&caching_ctl->wait);
  424. caching_ctl->block_group = cache;
  425. caching_ctl->progress = cache->key.objectid;
  426. atomic_set(&caching_ctl->count, 1);
  427. caching_ctl->work.func = caching_thread;
  428. spin_lock(&cache->lock);
  429. /*
  430. * This should be a rare occasion, but this could happen I think in the
  431. * case where one thread starts to load the space cache info, and then
  432. * some other thread starts a transaction commit which tries to do an
  433. * allocation while the other thread is still loading the space cache
  434. * info. The previous loop should have kept us from choosing this block
  435. * group, but if we've moved to the state where we will wait on caching
  436. * block groups we need to first check if we're doing a fast load here,
  437. * so we can wait for it to finish, otherwise we could end up allocating
  438. * from a block group who's cache gets evicted for one reason or
  439. * another.
  440. */
  441. while (cache->cached == BTRFS_CACHE_FAST) {
  442. struct btrfs_caching_control *ctl;
  443. ctl = cache->caching_ctl;
  444. atomic_inc(&ctl->count);
  445. prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  446. spin_unlock(&cache->lock);
  447. schedule();
  448. finish_wait(&ctl->wait, &wait);
  449. put_caching_control(ctl);
  450. spin_lock(&cache->lock);
  451. }
  452. if (cache->cached != BTRFS_CACHE_NO) {
  453. spin_unlock(&cache->lock);
  454. kfree(caching_ctl);
  455. return 0;
  456. }
  457. WARN_ON(cache->caching_ctl);
  458. cache->caching_ctl = caching_ctl;
  459. cache->cached = BTRFS_CACHE_FAST;
  460. spin_unlock(&cache->lock);
  461. /*
  462. * We can't do the read from on-disk cache during a commit since we need
  463. * to have the normal tree locking. Also if we are currently trying to
  464. * allocate blocks for the tree root we can't do the fast caching since
  465. * we likely hold important locks.
  466. */
  467. if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
  468. ret = load_free_space_cache(fs_info, cache);
  469. spin_lock(&cache->lock);
  470. if (ret == 1) {
  471. cache->caching_ctl = NULL;
  472. cache->cached = BTRFS_CACHE_FINISHED;
  473. cache->last_byte_to_unpin = (u64)-1;
  474. } else {
  475. if (load_cache_only) {
  476. cache->caching_ctl = NULL;
  477. cache->cached = BTRFS_CACHE_NO;
  478. } else {
  479. cache->cached = BTRFS_CACHE_STARTED;
  480. }
  481. }
  482. spin_unlock(&cache->lock);
  483. wake_up(&caching_ctl->wait);
  484. if (ret == 1) {
  485. put_caching_control(caching_ctl);
  486. free_excluded_extents(fs_info->extent_root, cache);
  487. return 0;
  488. }
  489. } else {
  490. /*
  491. * We are not going to do the fast caching, set cached to the
  492. * appropriate value and wakeup any waiters.
  493. */
  494. spin_lock(&cache->lock);
  495. if (load_cache_only) {
  496. cache->caching_ctl = NULL;
  497. cache->cached = BTRFS_CACHE_NO;
  498. } else {
  499. cache->cached = BTRFS_CACHE_STARTED;
  500. }
  501. spin_unlock(&cache->lock);
  502. wake_up(&caching_ctl->wait);
  503. }
  504. if (load_cache_only) {
  505. put_caching_control(caching_ctl);
  506. return 0;
  507. }
  508. down_write(&fs_info->extent_commit_sem);
  509. atomic_inc(&caching_ctl->count);
  510. list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  511. up_write(&fs_info->extent_commit_sem);
  512. btrfs_get_block_group(cache);
  513. btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
  514. return ret;
  515. }
  516. /*
  517. * return the block group that starts at or after bytenr
  518. */
  519. static struct btrfs_block_group_cache *
  520. btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  521. {
  522. struct btrfs_block_group_cache *cache;
  523. cache = block_group_cache_tree_search(info, bytenr, 0);
  524. return cache;
  525. }
  526. /*
  527. * return the block group that contains the given bytenr
  528. */
  529. struct btrfs_block_group_cache *btrfs_lookup_block_group(
  530. struct btrfs_fs_info *info,
  531. u64 bytenr)
  532. {
  533. struct btrfs_block_group_cache *cache;
  534. cache = block_group_cache_tree_search(info, bytenr, 1);
  535. return cache;
  536. }
  537. static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  538. u64 flags)
  539. {
  540. struct list_head *head = &info->space_info;
  541. struct btrfs_space_info *found;
  542. flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
  543. rcu_read_lock();
  544. list_for_each_entry_rcu(found, head, list) {
  545. if (found->flags & flags) {
  546. rcu_read_unlock();
  547. return found;
  548. }
  549. }
  550. rcu_read_unlock();
  551. return NULL;
  552. }
  553. /*
  554. * after adding space to the filesystem, we need to clear the full flags
  555. * on all the space infos.
  556. */
  557. void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  558. {
  559. struct list_head *head = &info->space_info;
  560. struct btrfs_space_info *found;
  561. rcu_read_lock();
  562. list_for_each_entry_rcu(found, head, list)
  563. found->full = 0;
  564. rcu_read_unlock();
  565. }
  566. static u64 div_factor(u64 num, int factor)
  567. {
  568. if (factor == 10)
  569. return num;
  570. num *= factor;
  571. do_div(num, 10);
  572. return num;
  573. }
  574. static u64 div_factor_fine(u64 num, int factor)
  575. {
  576. if (factor == 100)
  577. return num;
  578. num *= factor;
  579. do_div(num, 100);
  580. return num;
  581. }
  582. u64 btrfs_find_block_group(struct btrfs_root *root,
  583. u64 search_start, u64 search_hint, int owner)
  584. {
  585. struct btrfs_block_group_cache *cache;
  586. u64 used;
  587. u64 last = max(search_hint, search_start);
  588. u64 group_start = 0;
  589. int full_search = 0;
  590. int factor = 9;
  591. int wrapped = 0;
  592. again:
  593. while (1) {
  594. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  595. if (!cache)
  596. break;
  597. spin_lock(&cache->lock);
  598. last = cache->key.objectid + cache->key.offset;
  599. used = btrfs_block_group_used(&cache->item);
  600. if ((full_search || !cache->ro) &&
  601. block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
  602. if (used + cache->pinned + cache->reserved <
  603. div_factor(cache->key.offset, factor)) {
  604. group_start = cache->key.objectid;
  605. spin_unlock(&cache->lock);
  606. btrfs_put_block_group(cache);
  607. goto found;
  608. }
  609. }
  610. spin_unlock(&cache->lock);
  611. btrfs_put_block_group(cache);
  612. cond_resched();
  613. }
  614. if (!wrapped) {
  615. last = search_start;
  616. wrapped = 1;
  617. goto again;
  618. }
  619. if (!full_search && factor < 10) {
  620. last = search_start;
  621. full_search = 1;
  622. factor = 10;
  623. goto again;
  624. }
  625. found:
  626. return group_start;
  627. }
  628. /* simple helper to search for an existing extent at a given offset */
  629. int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
  630. {
  631. int ret;
  632. struct btrfs_key key;
  633. struct btrfs_path *path;
  634. path = btrfs_alloc_path();
  635. if (!path)
  636. return -ENOMEM;
  637. key.objectid = start;
  638. key.offset = len;
  639. btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
  640. ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  641. 0, 0);
  642. btrfs_free_path(path);
  643. return ret;
  644. }
  645. /*
  646. * helper function to lookup reference count and flags of extent.
  647. *
  648. * the head node for delayed ref is used to store the sum of all the
  649. * reference count modifications queued up in the rbtree. the head
  650. * node may also store the extent flags to set. This way you can check
  651. * to see what the reference count and extent flags would be if all of
  652. * the delayed refs are not processed.
  653. */
  654. int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  655. struct btrfs_root *root, u64 bytenr,
  656. u64 num_bytes, u64 *refs, u64 *flags)
  657. {
  658. struct btrfs_delayed_ref_head *head;
  659. struct btrfs_delayed_ref_root *delayed_refs;
  660. struct btrfs_path *path;
  661. struct btrfs_extent_item *ei;
  662. struct extent_buffer *leaf;
  663. struct btrfs_key key;
  664. u32 item_size;
  665. u64 num_refs;
  666. u64 extent_flags;
  667. int ret;
  668. path = btrfs_alloc_path();
  669. if (!path)
  670. return -ENOMEM;
  671. key.objectid = bytenr;
  672. key.type = BTRFS_EXTENT_ITEM_KEY;
  673. key.offset = num_bytes;
  674. if (!trans) {
  675. path->skip_locking = 1;
  676. path->search_commit_root = 1;
  677. }
  678. again:
  679. ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  680. &key, path, 0, 0);
  681. if (ret < 0)
  682. goto out_free;
  683. if (ret == 0) {
  684. leaf = path->nodes[0];
  685. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  686. if (item_size >= sizeof(*ei)) {
  687. ei = btrfs_item_ptr(leaf, path->slots[0],
  688. struct btrfs_extent_item);
  689. num_refs = btrfs_extent_refs(leaf, ei);
  690. extent_flags = btrfs_extent_flags(leaf, ei);
  691. } else {
  692. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  693. struct btrfs_extent_item_v0 *ei0;
  694. BUG_ON(item_size != sizeof(*ei0));
  695. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  696. struct btrfs_extent_item_v0);
  697. num_refs = btrfs_extent_refs_v0(leaf, ei0);
  698. /* FIXME: this isn't correct for data */
  699. extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  700. #else
  701. BUG();
  702. #endif
  703. }
  704. BUG_ON(num_refs == 0);
  705. } else {
  706. num_refs = 0;
  707. extent_flags = 0;
  708. ret = 0;
  709. }
  710. if (!trans)
  711. goto out;
  712. delayed_refs = &trans->transaction->delayed_refs;
  713. spin_lock(&delayed_refs->lock);
  714. head = btrfs_find_delayed_ref_head(trans, bytenr);
  715. if (head) {
  716. if (!mutex_trylock(&head->mutex)) {
  717. atomic_inc(&head->node.refs);
  718. spin_unlock(&delayed_refs->lock);
  719. btrfs_release_path(path);
  720. /*
  721. * Mutex was contended, block until it's released and try
  722. * again
  723. */
  724. mutex_lock(&head->mutex);
  725. mutex_unlock(&head->mutex);
  726. btrfs_put_delayed_ref(&head->node);
  727. goto again;
  728. }
  729. if (head->extent_op && head->extent_op->update_flags)
  730. extent_flags |= head->extent_op->flags_to_set;
  731. else
  732. BUG_ON(num_refs == 0);
  733. num_refs += head->node.ref_mod;
  734. mutex_unlock(&head->mutex);
  735. }
  736. spin_unlock(&delayed_refs->lock);
  737. out:
  738. WARN_ON(num_refs == 0);
  739. if (refs)
  740. *refs = num_refs;
  741. if (flags)
  742. *flags = extent_flags;
  743. out_free:
  744. btrfs_free_path(path);
  745. return ret;
  746. }
  747. /*
  748. * Back reference rules. Back refs have three main goals:
  749. *
  750. * 1) differentiate between all holders of references to an extent so that
  751. * when a reference is dropped we can make sure it was a valid reference
  752. * before freeing the extent.
  753. *
  754. * 2) Provide enough information to quickly find the holders of an extent
  755. * if we notice a given block is corrupted or bad.
  756. *
  757. * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  758. * maintenance. This is actually the same as #2, but with a slightly
  759. * different use case.
  760. *
  761. * There are two kinds of back refs. The implicit back refs is optimized
  762. * for pointers in non-shared tree blocks. For a given pointer in a block,
  763. * back refs of this kind provide information about the block's owner tree
  764. * and the pointer's key. These information allow us to find the block by
  765. * b-tree searching. The full back refs is for pointers in tree blocks not
  766. * referenced by their owner trees. The location of tree block is recorded
  767. * in the back refs. Actually the full back refs is generic, and can be
  768. * used in all cases the implicit back refs is used. The major shortcoming
  769. * of the full back refs is its overhead. Every time a tree block gets
  770. * COWed, we have to update back refs entry for all pointers in it.
  771. *
  772. * For a newly allocated tree block, we use implicit back refs for
  773. * pointers in it. This means most tree related operations only involve
  774. * implicit back refs. For a tree block created in old transaction, the
  775. * only way to drop a reference to it is COW it. So we can detect the
  776. * event that tree block loses its owner tree's reference and do the
  777. * back refs conversion.
  778. *
  779. * When a tree block is COW'd through a tree, there are four cases:
  780. *
  781. * The reference count of the block is one and the tree is the block's
  782. * owner tree. Nothing to do in this case.
  783. *
  784. * The reference count of the block is one and the tree is not the
  785. * block's owner tree. In this case, full back refs is used for pointers
  786. * in the block. Remove these full back refs, add implicit back refs for
  787. * every pointers in the new block.
  788. *
  789. * The reference count of the block is greater than one and the tree is
  790. * the block's owner tree. In this case, implicit back refs is used for
  791. * pointers in the block. Add full back refs for every pointers in the
  792. * block, increase lower level extents' reference counts. The original
  793. * implicit back refs are entailed to the new block.
  794. *
  795. * The reference count of the block is greater than one and the tree is
  796. * not the block's owner tree. Add implicit back refs for every pointer in
  797. * the new block, increase lower level extents' reference count.
  798. *
  799. * Back Reference Key composing:
  800. *
  801. * The key objectid corresponds to the first byte in the extent,
  802. * The key type is used to differentiate between types of back refs.
  803. * There are different meanings of the key offset for different types
  804. * of back refs.
  805. *
  806. * File extents can be referenced by:
  807. *
  808. * - multiple snapshots, subvolumes, or different generations in one subvol
  809. * - different files inside a single subvolume
  810. * - different offsets inside a file (bookend extents in file.c)
  811. *
  812. * The extent ref structure for the implicit back refs has fields for:
  813. *
  814. * - Objectid of the subvolume root
  815. * - objectid of the file holding the reference
  816. * - original offset in the file
  817. * - how many bookend extents
  818. *
  819. * The key offset for the implicit back refs is hash of the first
  820. * three fields.
  821. *
  822. * The extent ref structure for the full back refs has field for:
  823. *
  824. * - number of pointers in the tree leaf
  825. *
  826. * The key offset for the implicit back refs is the first byte of
  827. * the tree leaf
  828. *
  829. * When a file extent is allocated, The implicit back refs is used.
  830. * the fields are filled in:
  831. *
  832. * (root_key.objectid, inode objectid, offset in file, 1)
  833. *
  834. * When a file extent is removed file truncation, we find the
  835. * corresponding implicit back refs and check the following fields:
  836. *
  837. * (btrfs_header_owner(leaf), inode objectid, offset in file)
  838. *
  839. * Btree extents can be referenced by:
  840. *
  841. * - Different subvolumes
  842. *
  843. * Both the implicit back refs and the full back refs for tree blocks
  844. * only consist of key. The key offset for the implicit back refs is
  845. * objectid of block's owner tree. The key offset for the full back refs
  846. * is the first byte of parent block.
  847. *
  848. * When implicit back refs is used, information about the lowest key and
  849. * level of the tree block are required. These information are stored in
  850. * tree block info structure.
  851. */
  852. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  853. static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
  854. struct btrfs_root *root,
  855. struct btrfs_path *path,
  856. u64 owner, u32 extra_size)
  857. {
  858. struct btrfs_extent_item *item;
  859. struct btrfs_extent_item_v0 *ei0;
  860. struct btrfs_extent_ref_v0 *ref0;
  861. struct btrfs_tree_block_info *bi;
  862. struct extent_buffer *leaf;
  863. struct btrfs_key key;
  864. struct btrfs_key found_key;
  865. u32 new_size = sizeof(*item);
  866. u64 refs;
  867. int ret;
  868. leaf = path->nodes[0];
  869. BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
  870. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  871. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  872. struct btrfs_extent_item_v0);
  873. refs = btrfs_extent_refs_v0(leaf, ei0);
  874. if (owner == (u64)-1) {
  875. while (1) {
  876. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  877. ret = btrfs_next_leaf(root, path);
  878. if (ret < 0)
  879. return ret;
  880. BUG_ON(ret > 0); /* Corruption */
  881. leaf = path->nodes[0];
  882. }
  883. btrfs_item_key_to_cpu(leaf, &found_key,
  884. path->slots[0]);
  885. BUG_ON(key.objectid != found_key.objectid);
  886. if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
  887. path->slots[0]++;
  888. continue;
  889. }
  890. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  891. struct btrfs_extent_ref_v0);
  892. owner = btrfs_ref_objectid_v0(leaf, ref0);
  893. break;
  894. }
  895. }
  896. btrfs_release_path(path);
  897. if (owner < BTRFS_FIRST_FREE_OBJECTID)
  898. new_size += sizeof(*bi);
  899. new_size -= sizeof(*ei0);
  900. ret = btrfs_search_slot(trans, root, &key, path,
  901. new_size + extra_size, 1);
  902. if (ret < 0)
  903. return ret;
  904. BUG_ON(ret); /* Corruption */
  905. btrfs_extend_item(trans, root, path, new_size);
  906. leaf = path->nodes[0];
  907. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  908. btrfs_set_extent_refs(leaf, item, refs);
  909. /* FIXME: get real generation */
  910. btrfs_set_extent_generation(leaf, item, 0);
  911. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  912. btrfs_set_extent_flags(leaf, item,
  913. BTRFS_EXTENT_FLAG_TREE_BLOCK |
  914. BTRFS_BLOCK_FLAG_FULL_BACKREF);
  915. bi = (struct btrfs_tree_block_info *)(item + 1);
  916. /* FIXME: get first key of the block */
  917. memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
  918. btrfs_set_tree_block_level(leaf, bi, (int)owner);
  919. } else {
  920. btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
  921. }
  922. btrfs_mark_buffer_dirty(leaf);
  923. return 0;
  924. }
  925. #endif
  926. static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
  927. {
  928. u32 high_crc = ~(u32)0;
  929. u32 low_crc = ~(u32)0;
  930. __le64 lenum;
  931. lenum = cpu_to_le64(root_objectid);
  932. high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
  933. lenum = cpu_to_le64(owner);
  934. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  935. lenum = cpu_to_le64(offset);
  936. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  937. return ((u64)high_crc << 31) ^ (u64)low_crc;
  938. }
  939. static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
  940. struct btrfs_extent_data_ref *ref)
  941. {
  942. return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
  943. btrfs_extent_data_ref_objectid(leaf, ref),
  944. btrfs_extent_data_ref_offset(leaf, ref));
  945. }
  946. static int match_extent_data_ref(struct extent_buffer *leaf,
  947. struct btrfs_extent_data_ref *ref,
  948. u64 root_objectid, u64 owner, u64 offset)
  949. {
  950. if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
  951. btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
  952. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  953. return 0;
  954. return 1;
  955. }
  956. static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
  957. struct btrfs_root *root,
  958. struct btrfs_path *path,
  959. u64 bytenr, u64 parent,
  960. u64 root_objectid,
  961. u64 owner, u64 offset)
  962. {
  963. struct btrfs_key key;
  964. struct btrfs_extent_data_ref *ref;
  965. struct extent_buffer *leaf;
  966. u32 nritems;
  967. int ret;
  968. int recow;
  969. int err = -ENOENT;
  970. key.objectid = bytenr;
  971. if (parent) {
  972. key.type = BTRFS_SHARED_DATA_REF_KEY;
  973. key.offset = parent;
  974. } else {
  975. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  976. key.offset = hash_extent_data_ref(root_objectid,
  977. owner, offset);
  978. }
  979. again:
  980. recow = 0;
  981. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  982. if (ret < 0) {
  983. err = ret;
  984. goto fail;
  985. }
  986. if (parent) {
  987. if (!ret)
  988. return 0;
  989. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  990. key.type = BTRFS_EXTENT_REF_V0_KEY;
  991. btrfs_release_path(path);
  992. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  993. if (ret < 0) {
  994. err = ret;
  995. goto fail;
  996. }
  997. if (!ret)
  998. return 0;
  999. #endif
  1000. goto fail;
  1001. }
  1002. leaf = path->nodes[0];
  1003. nritems = btrfs_header_nritems(leaf);
  1004. while (1) {
  1005. if (path->slots[0] >= nritems) {
  1006. ret = btrfs_next_leaf(root, path);
  1007. if (ret < 0)
  1008. err = ret;
  1009. if (ret)
  1010. goto fail;
  1011. leaf = path->nodes[0];
  1012. nritems = btrfs_header_nritems(leaf);
  1013. recow = 1;
  1014. }
  1015. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1016. if (key.objectid != bytenr ||
  1017. key.type != BTRFS_EXTENT_DATA_REF_KEY)
  1018. goto fail;
  1019. ref = btrfs_item_ptr(leaf, path->slots[0],
  1020. struct btrfs_extent_data_ref);
  1021. if (match_extent_data_ref(leaf, ref, root_objectid,
  1022. owner, offset)) {
  1023. if (recow) {
  1024. btrfs_release_path(path);
  1025. goto again;
  1026. }
  1027. err = 0;
  1028. break;
  1029. }
  1030. path->slots[0]++;
  1031. }
  1032. fail:
  1033. return err;
  1034. }
  1035. static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
  1036. struct btrfs_root *root,
  1037. struct btrfs_path *path,
  1038. u64 bytenr, u64 parent,
  1039. u64 root_objectid, u64 owner,
  1040. u64 offset, int refs_to_add)
  1041. {
  1042. struct btrfs_key key;
  1043. struct extent_buffer *leaf;
  1044. u32 size;
  1045. u32 num_refs;
  1046. int ret;
  1047. key.objectid = bytenr;
  1048. if (parent) {
  1049. key.type = BTRFS_SHARED_DATA_REF_KEY;
  1050. key.offset = parent;
  1051. size = sizeof(struct btrfs_shared_data_ref);
  1052. } else {
  1053. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1054. key.offset = hash_extent_data_ref(root_objectid,
  1055. owner, offset);
  1056. size = sizeof(struct btrfs_extent_data_ref);
  1057. }
  1058. ret = btrfs_insert_empty_item(trans, root, path, &key, size);
  1059. if (ret && ret != -EEXIST)
  1060. goto fail;
  1061. leaf = path->nodes[0];
  1062. if (parent) {
  1063. struct btrfs_shared_data_ref *ref;
  1064. ref = btrfs_item_ptr(leaf, path->slots[0],
  1065. struct btrfs_shared_data_ref);
  1066. if (ret == 0) {
  1067. btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
  1068. } else {
  1069. num_refs = btrfs_shared_data_ref_count(leaf, ref);
  1070. num_refs += refs_to_add;
  1071. btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
  1072. }
  1073. } else {
  1074. struct btrfs_extent_data_ref *ref;
  1075. while (ret == -EEXIST) {
  1076. ref = btrfs_item_ptr(leaf, path->slots[0],
  1077. struct btrfs_extent_data_ref);
  1078. if (match_extent_data_ref(leaf, ref, root_objectid,
  1079. owner, offset))
  1080. break;
  1081. btrfs_release_path(path);
  1082. key.offset++;
  1083. ret = btrfs_insert_empty_item(trans, root, path, &key,
  1084. size);
  1085. if (ret && ret != -EEXIST)
  1086. goto fail;
  1087. leaf = path->nodes[0];
  1088. }
  1089. ref = btrfs_item_ptr(leaf, path->slots[0],
  1090. struct btrfs_extent_data_ref);
  1091. if (ret == 0) {
  1092. btrfs_set_extent_data_ref_root(leaf, ref,
  1093. root_objectid);
  1094. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  1095. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  1096. btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
  1097. } else {
  1098. num_refs = btrfs_extent_data_ref_count(leaf, ref);
  1099. num_refs += refs_to_add;
  1100. btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
  1101. }
  1102. }
  1103. btrfs_mark_buffer_dirty(leaf);
  1104. ret = 0;
  1105. fail:
  1106. btrfs_release_path(path);
  1107. return ret;
  1108. }
  1109. static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
  1110. struct btrfs_root *root,
  1111. struct btrfs_path *path,
  1112. int refs_to_drop)
  1113. {
  1114. struct btrfs_key key;
  1115. struct btrfs_extent_data_ref *ref1 = NULL;
  1116. struct btrfs_shared_data_ref *ref2 = NULL;
  1117. struct extent_buffer *leaf;
  1118. u32 num_refs = 0;
  1119. int ret = 0;
  1120. leaf = path->nodes[0];
  1121. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1122. if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1123. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1124. struct btrfs_extent_data_ref);
  1125. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1126. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1127. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1128. struct btrfs_shared_data_ref);
  1129. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1130. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1131. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1132. struct btrfs_extent_ref_v0 *ref0;
  1133. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1134. struct btrfs_extent_ref_v0);
  1135. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1136. #endif
  1137. } else {
  1138. BUG();
  1139. }
  1140. BUG_ON(num_refs < refs_to_drop);
  1141. num_refs -= refs_to_drop;
  1142. if (num_refs == 0) {
  1143. ret = btrfs_del_item(trans, root, path);
  1144. } else {
  1145. if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
  1146. btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
  1147. else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
  1148. btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
  1149. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1150. else {
  1151. struct btrfs_extent_ref_v0 *ref0;
  1152. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1153. struct btrfs_extent_ref_v0);
  1154. btrfs_set_ref_count_v0(leaf, ref0, num_refs);
  1155. }
  1156. #endif
  1157. btrfs_mark_buffer_dirty(leaf);
  1158. }
  1159. return ret;
  1160. }
  1161. static noinline u32 extent_data_ref_count(struct btrfs_root *root,
  1162. struct btrfs_path *path,
  1163. struct btrfs_extent_inline_ref *iref)
  1164. {
  1165. struct btrfs_key key;
  1166. struct extent_buffer *leaf;
  1167. struct btrfs_extent_data_ref *ref1;
  1168. struct btrfs_shared_data_ref *ref2;
  1169. u32 num_refs = 0;
  1170. leaf = path->nodes[0];
  1171. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1172. if (iref) {
  1173. if (btrfs_extent_inline_ref_type(leaf, iref) ==
  1174. BTRFS_EXTENT_DATA_REF_KEY) {
  1175. ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
  1176. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1177. } else {
  1178. ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
  1179. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1180. }
  1181. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1182. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1183. struct btrfs_extent_data_ref);
  1184. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1185. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1186. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1187. struct btrfs_shared_data_ref);
  1188. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1189. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1190. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1191. struct btrfs_extent_ref_v0 *ref0;
  1192. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1193. struct btrfs_extent_ref_v0);
  1194. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1195. #endif
  1196. } else {
  1197. WARN_ON(1);
  1198. }
  1199. return num_refs;
  1200. }
  1201. static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
  1202. struct btrfs_root *root,
  1203. struct btrfs_path *path,
  1204. u64 bytenr, u64 parent,
  1205. u64 root_objectid)
  1206. {
  1207. struct btrfs_key key;
  1208. int ret;
  1209. key.objectid = bytenr;
  1210. if (parent) {
  1211. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1212. key.offset = parent;
  1213. } else {
  1214. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1215. key.offset = root_objectid;
  1216. }
  1217. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1218. if (ret > 0)
  1219. ret = -ENOENT;
  1220. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1221. if (ret == -ENOENT && parent) {
  1222. btrfs_release_path(path);
  1223. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1224. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1225. if (ret > 0)
  1226. ret = -ENOENT;
  1227. }
  1228. #endif
  1229. return ret;
  1230. }
  1231. static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
  1232. struct btrfs_root *root,
  1233. struct btrfs_path *path,
  1234. u64 bytenr, u64 parent,
  1235. u64 root_objectid)
  1236. {
  1237. struct btrfs_key key;
  1238. int ret;
  1239. key.objectid = bytenr;
  1240. if (parent) {
  1241. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1242. key.offset = parent;
  1243. } else {
  1244. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1245. key.offset = root_objectid;
  1246. }
  1247. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1248. btrfs_release_path(path);
  1249. return ret;
  1250. }
  1251. static inline int extent_ref_type(u64 parent, u64 owner)
  1252. {
  1253. int type;
  1254. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1255. if (parent > 0)
  1256. type = BTRFS_SHARED_BLOCK_REF_KEY;
  1257. else
  1258. type = BTRFS_TREE_BLOCK_REF_KEY;
  1259. } else {
  1260. if (parent > 0)
  1261. type = BTRFS_SHARED_DATA_REF_KEY;
  1262. else
  1263. type = BTRFS_EXTENT_DATA_REF_KEY;
  1264. }
  1265. return type;
  1266. }
  1267. static int find_next_key(struct btrfs_path *path, int level,
  1268. struct btrfs_key *key)
  1269. {
  1270. for (; level < BTRFS_MAX_LEVEL; level++) {
  1271. if (!path->nodes[level])
  1272. break;
  1273. if (path->slots[level] + 1 >=
  1274. btrfs_header_nritems(path->nodes[level]))
  1275. continue;
  1276. if (level == 0)
  1277. btrfs_item_key_to_cpu(path->nodes[level], key,
  1278. path->slots[level] + 1);
  1279. else
  1280. btrfs_node_key_to_cpu(path->nodes[level], key,
  1281. path->slots[level] + 1);
  1282. return 0;
  1283. }
  1284. return 1;
  1285. }
  1286. /*
  1287. * look for inline back ref. if back ref is found, *ref_ret is set
  1288. * to the address of inline back ref, and 0 is returned.
  1289. *
  1290. * if back ref isn't found, *ref_ret is set to the address where it
  1291. * should be inserted, and -ENOENT is returned.
  1292. *
  1293. * if insert is true and there are too many inline back refs, the path
  1294. * points to the extent item, and -EAGAIN is returned.
  1295. *
  1296. * NOTE: inline back refs are ordered in the same way that back ref
  1297. * items in the tree are ordered.
  1298. */
  1299. static noinline_for_stack
  1300. int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1301. struct btrfs_root *root,
  1302. struct btrfs_path *path,
  1303. struct btrfs_extent_inline_ref **ref_ret,
  1304. u64 bytenr, u64 num_bytes,
  1305. u64 parent, u64 root_objectid,
  1306. u64 owner, u64 offset, int insert)
  1307. {
  1308. struct btrfs_key key;
  1309. struct extent_buffer *leaf;
  1310. struct btrfs_extent_item *ei;
  1311. struct btrfs_extent_inline_ref *iref;
  1312. u64 flags;
  1313. u64 item_size;
  1314. unsigned long ptr;
  1315. unsigned long end;
  1316. int extra_size;
  1317. int type;
  1318. int want;
  1319. int ret;
  1320. int err = 0;
  1321. key.objectid = bytenr;
  1322. key.type = BTRFS_EXTENT_ITEM_KEY;
  1323. key.offset = num_bytes;
  1324. want = extent_ref_type(parent, owner);
  1325. if (insert) {
  1326. extra_size = btrfs_extent_inline_ref_size(want);
  1327. path->keep_locks = 1;
  1328. } else
  1329. extra_size = -1;
  1330. ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
  1331. if (ret < 0) {
  1332. err = ret;
  1333. goto out;
  1334. }
  1335. if (ret && !insert) {
  1336. err = -ENOENT;
  1337. goto out;
  1338. }
  1339. BUG_ON(ret); /* Corruption */
  1340. leaf = path->nodes[0];
  1341. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1342. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1343. if (item_size < sizeof(*ei)) {
  1344. if (!insert) {
  1345. err = -ENOENT;
  1346. goto out;
  1347. }
  1348. ret = convert_extent_item_v0(trans, root, path, owner,
  1349. extra_size);
  1350. if (ret < 0) {
  1351. err = ret;
  1352. goto out;
  1353. }
  1354. leaf = path->nodes[0];
  1355. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1356. }
  1357. #endif
  1358. BUG_ON(item_size < sizeof(*ei));
  1359. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1360. flags = btrfs_extent_flags(leaf, ei);
  1361. ptr = (unsigned long)(ei + 1);
  1362. end = (unsigned long)ei + item_size;
  1363. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1364. ptr += sizeof(struct btrfs_tree_block_info);
  1365. BUG_ON(ptr > end);
  1366. } else {
  1367. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  1368. }
  1369. err = -ENOENT;
  1370. while (1) {
  1371. if (ptr >= end) {
  1372. WARN_ON(ptr > end);
  1373. break;
  1374. }
  1375. iref = (struct btrfs_extent_inline_ref *)ptr;
  1376. type = btrfs_extent_inline_ref_type(leaf, iref);
  1377. if (want < type)
  1378. break;
  1379. if (want > type) {
  1380. ptr += btrfs_extent_inline_ref_size(type);
  1381. continue;
  1382. }
  1383. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1384. struct btrfs_extent_data_ref *dref;
  1385. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1386. if (match_extent_data_ref(leaf, dref, root_objectid,
  1387. owner, offset)) {
  1388. err = 0;
  1389. break;
  1390. }
  1391. if (hash_extent_data_ref_item(leaf, dref) <
  1392. hash_extent_data_ref(root_objectid, owner, offset))
  1393. break;
  1394. } else {
  1395. u64 ref_offset;
  1396. ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
  1397. if (parent > 0) {
  1398. if (parent == ref_offset) {
  1399. err = 0;
  1400. break;
  1401. }
  1402. if (ref_offset < parent)
  1403. break;
  1404. } else {
  1405. if (root_objectid == ref_offset) {
  1406. err = 0;
  1407. break;
  1408. }
  1409. if (ref_offset < root_objectid)
  1410. break;
  1411. }
  1412. }
  1413. ptr += btrfs_extent_inline_ref_size(type);
  1414. }
  1415. if (err == -ENOENT && insert) {
  1416. if (item_size + extra_size >=
  1417. BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
  1418. err = -EAGAIN;
  1419. goto out;
  1420. }
  1421. /*
  1422. * To add new inline back ref, we have to make sure
  1423. * there is no corresponding back ref item.
  1424. * For simplicity, we just do not add new inline back
  1425. * ref if there is any kind of item for this block
  1426. */
  1427. if (find_next_key(path, 0, &key) == 0 &&
  1428. key.objectid == bytenr &&
  1429. key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
  1430. err = -EAGAIN;
  1431. goto out;
  1432. }
  1433. }
  1434. *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
  1435. out:
  1436. if (insert) {
  1437. path->keep_locks = 0;
  1438. btrfs_unlock_up_safe(path, 1);
  1439. }
  1440. return err;
  1441. }
  1442. /*
  1443. * helper to add new inline back ref
  1444. */
  1445. static noinline_for_stack
  1446. void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1447. struct btrfs_root *root,
  1448. struct btrfs_path *path,
  1449. struct btrfs_extent_inline_ref *iref,
  1450. u64 parent, u64 root_objectid,
  1451. u64 owner, u64 offset, int refs_to_add,
  1452. struct btrfs_delayed_extent_op *extent_op)
  1453. {
  1454. struct extent_buffer *leaf;
  1455. struct btrfs_extent_item *ei;
  1456. unsigned long ptr;
  1457. unsigned long end;
  1458. unsigned long item_offset;
  1459. u64 refs;
  1460. int size;
  1461. int type;
  1462. leaf = path->nodes[0];
  1463. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1464. item_offset = (unsigned long)iref - (unsigned long)ei;
  1465. type = extent_ref_type(parent, owner);
  1466. size = btrfs_extent_inline_ref_size(type);
  1467. btrfs_extend_item(trans, root, path, size);
  1468. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1469. refs = btrfs_extent_refs(leaf, ei);
  1470. refs += refs_to_add;
  1471. btrfs_set_extent_refs(leaf, ei, refs);
  1472. if (extent_op)
  1473. __run_delayed_extent_op(extent_op, leaf, ei);
  1474. ptr = (unsigned long)ei + item_offset;
  1475. end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
  1476. if (ptr < end - size)
  1477. memmove_extent_buffer(leaf, ptr + size, ptr,
  1478. end - size - ptr);
  1479. iref = (struct btrfs_extent_inline_ref *)ptr;
  1480. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  1481. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1482. struct btrfs_extent_data_ref *dref;
  1483. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1484. btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
  1485. btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
  1486. btrfs_set_extent_data_ref_offset(leaf, dref, offset);
  1487. btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
  1488. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1489. struct btrfs_shared_data_ref *sref;
  1490. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1491. btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
  1492. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1493. } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
  1494. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1495. } else {
  1496. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  1497. }
  1498. btrfs_mark_buffer_dirty(leaf);
  1499. }
  1500. static int lookup_extent_backref(struct btrfs_trans_handle *trans,
  1501. struct btrfs_root *root,
  1502. struct btrfs_path *path,
  1503. struct btrfs_extent_inline_ref **ref_ret,
  1504. u64 bytenr, u64 num_bytes, u64 parent,
  1505. u64 root_objectid, u64 owner, u64 offset)
  1506. {
  1507. int ret;
  1508. ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
  1509. bytenr, num_bytes, parent,
  1510. root_objectid, owner, offset, 0);
  1511. if (ret != -ENOENT)
  1512. return ret;
  1513. btrfs_release_path(path);
  1514. *ref_ret = NULL;
  1515. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1516. ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
  1517. root_objectid);
  1518. } else {
  1519. ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
  1520. root_objectid, owner, offset);
  1521. }
  1522. return ret;
  1523. }
  1524. /*
  1525. * helper to update/remove inline back ref
  1526. */
  1527. static noinline_for_stack
  1528. void update_inline_extent_backref(struct btrfs_trans_handle *trans,
  1529. struct btrfs_root *root,
  1530. struct btrfs_path *path,
  1531. struct btrfs_extent_inline_ref *iref,
  1532. int refs_to_mod,
  1533. struct btrfs_delayed_extent_op *extent_op)
  1534. {
  1535. struct extent_buffer *leaf;
  1536. struct btrfs_extent_item *ei;
  1537. struct btrfs_extent_data_ref *dref = NULL;
  1538. struct btrfs_shared_data_ref *sref = NULL;
  1539. unsigned long ptr;
  1540. unsigned long end;
  1541. u32 item_size;
  1542. int size;
  1543. int type;
  1544. u64 refs;
  1545. leaf = path->nodes[0];
  1546. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1547. refs = btrfs_extent_refs(leaf, ei);
  1548. WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
  1549. refs += refs_to_mod;
  1550. btrfs_set_extent_refs(leaf, ei, refs);
  1551. if (extent_op)
  1552. __run_delayed_extent_op(extent_op, leaf, ei);
  1553. type = btrfs_extent_inline_ref_type(leaf, iref);
  1554. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1555. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1556. refs = btrfs_extent_data_ref_count(leaf, dref);
  1557. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1558. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1559. refs = btrfs_shared_data_ref_count(leaf, sref);
  1560. } else {
  1561. refs = 1;
  1562. BUG_ON(refs_to_mod != -1);
  1563. }
  1564. BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
  1565. refs += refs_to_mod;
  1566. if (refs > 0) {
  1567. if (type == BTRFS_EXTENT_DATA_REF_KEY)
  1568. btrfs_set_extent_data_ref_count(leaf, dref, refs);
  1569. else
  1570. btrfs_set_shared_data_ref_count(leaf, sref, refs);
  1571. } else {
  1572. size = btrfs_extent_inline_ref_size(type);
  1573. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1574. ptr = (unsigned long)iref;
  1575. end = (unsigned long)ei + item_size;
  1576. if (ptr + size < end)
  1577. memmove_extent_buffer(leaf, ptr, ptr + size,
  1578. end - ptr - size);
  1579. item_size -= size;
  1580. btrfs_truncate_item(trans, root, path, item_size, 1);
  1581. }
  1582. btrfs_mark_buffer_dirty(leaf);
  1583. }
  1584. static noinline_for_stack
  1585. int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
  1586. struct btrfs_root *root,
  1587. struct btrfs_path *path,
  1588. u64 bytenr, u64 num_bytes, u64 parent,
  1589. u64 root_objectid, u64 owner,
  1590. u64 offset, int refs_to_add,
  1591. struct btrfs_delayed_extent_op *extent_op)
  1592. {
  1593. struct btrfs_extent_inline_ref *iref;
  1594. int ret;
  1595. ret = lookup_inline_extent_backref(trans, root, path, &iref,
  1596. bytenr, num_bytes, parent,
  1597. root_objectid, owner, offset, 1);
  1598. if (ret == 0) {
  1599. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
  1600. update_inline_extent_backref(trans, root, path, iref,
  1601. refs_to_add, extent_op);
  1602. } else if (ret == -ENOENT) {
  1603. setup_inline_extent_backref(trans, root, path, iref, parent,
  1604. root_objectid, owner, offset,
  1605. refs_to_add, extent_op);
  1606. ret = 0;
  1607. }
  1608. return ret;
  1609. }
  1610. static int insert_extent_backref(struct btrfs_trans_handle *trans,
  1611. struct btrfs_root *root,
  1612. struct btrfs_path *path,
  1613. u64 bytenr, u64 parent, u64 root_objectid,
  1614. u64 owner, u64 offset, int refs_to_add)
  1615. {
  1616. int ret;
  1617. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1618. BUG_ON(refs_to_add != 1);
  1619. ret = insert_tree_block_ref(trans, root, path, bytenr,
  1620. parent, root_objectid);
  1621. } else {
  1622. ret = insert_extent_data_ref(trans, root, path, bytenr,
  1623. parent, root_objectid,
  1624. owner, offset, refs_to_add);
  1625. }
  1626. return ret;
  1627. }
  1628. static int remove_extent_backref(struct btrfs_trans_handle *trans,
  1629. struct btrfs_root *root,
  1630. struct btrfs_path *path,
  1631. struct btrfs_extent_inline_ref *iref,
  1632. int refs_to_drop, int is_data)
  1633. {
  1634. int ret = 0;
  1635. BUG_ON(!is_data && refs_to_drop != 1);
  1636. if (iref) {
  1637. update_inline_extent_backref(trans, root, path, iref,
  1638. -refs_to_drop, NULL);
  1639. } else if (is_data) {
  1640. ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
  1641. } else {
  1642. ret = btrfs_del_item(trans, root, path);
  1643. }
  1644. return ret;
  1645. }
  1646. static int btrfs_issue_discard(struct block_device *bdev,
  1647. u64 start, u64 len)
  1648. {
  1649. return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
  1650. }
  1651. static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
  1652. u64 num_bytes, u64 *actual_bytes)
  1653. {
  1654. int ret;
  1655. u64 discarded_bytes = 0;
  1656. struct btrfs_bio *bbio = NULL;
  1657. /* Tell the block device(s) that the sectors can be discarded */
  1658. ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
  1659. bytenr, &num_bytes, &bbio, 0);
  1660. /* Error condition is -ENOMEM */
  1661. if (!ret) {
  1662. struct btrfs_bio_stripe *stripe = bbio->stripes;
  1663. int i;
  1664. for (i = 0; i < bbio->num_stripes; i++, stripe++) {
  1665. if (!stripe->dev->can_discard)
  1666. continue;
  1667. ret = btrfs_issue_discard(stripe->dev->bdev,
  1668. stripe->physical,
  1669. stripe->length);
  1670. if (!ret)
  1671. discarded_bytes += stripe->length;
  1672. else if (ret != -EOPNOTSUPP)
  1673. break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
  1674. /*
  1675. * Just in case we get back EOPNOTSUPP for some reason,
  1676. * just ignore the return value so we don't screw up
  1677. * people calling discard_extent.
  1678. */
  1679. ret = 0;
  1680. }
  1681. kfree(bbio);
  1682. }
  1683. if (actual_bytes)
  1684. *actual_bytes = discarded_bytes;
  1685. return ret;
  1686. }
  1687. /* Can return -ENOMEM */
  1688. int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1689. struct btrfs_root *root,
  1690. u64 bytenr, u64 num_bytes, u64 parent,
  1691. u64 root_objectid, u64 owner, u64 offset, int for_cow)
  1692. {
  1693. int ret;
  1694. struct btrfs_fs_info *fs_info = root->fs_info;
  1695. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
  1696. root_objectid == BTRFS_TREE_LOG_OBJECTID);
  1697. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1698. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  1699. num_bytes,
  1700. parent, root_objectid, (int)owner,
  1701. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1702. } else {
  1703. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  1704. num_bytes,
  1705. parent, root_objectid, owner, offset,
  1706. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1707. }
  1708. return ret;
  1709. }
  1710. static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1711. struct btrfs_root *root,
  1712. u64 bytenr, u64 num_bytes,
  1713. u64 parent, u64 root_objectid,
  1714. u64 owner, u64 offset, int refs_to_add,
  1715. struct btrfs_delayed_extent_op *extent_op)
  1716. {
  1717. struct btrfs_path *path;
  1718. struct extent_buffer *leaf;
  1719. struct btrfs_extent_item *item;
  1720. u64 refs;
  1721. int ret;
  1722. int err = 0;
  1723. path = btrfs_alloc_path();
  1724. if (!path)
  1725. return -ENOMEM;
  1726. path->reada = 1;
  1727. path->leave_spinning = 1;
  1728. /* this will setup the path even if it fails to insert the back ref */
  1729. ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
  1730. path, bytenr, num_bytes, parent,
  1731. root_objectid, owner, offset,
  1732. refs_to_add, extent_op);
  1733. if (ret == 0)
  1734. goto out;
  1735. if (ret != -EAGAIN) {
  1736. err = ret;
  1737. goto out;
  1738. }
  1739. leaf = path->nodes[0];
  1740. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1741. refs = btrfs_extent_refs(leaf, item);
  1742. btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
  1743. if (extent_op)
  1744. __run_delayed_extent_op(extent_op, leaf, item);
  1745. btrfs_mark_buffer_dirty(leaf);
  1746. btrfs_release_path(path);
  1747. path->reada = 1;
  1748. path->leave_spinning = 1;
  1749. /* now insert the actual backref */
  1750. ret = insert_extent_backref(trans, root->fs_info->extent_root,
  1751. path, bytenr, parent, root_objectid,
  1752. owner, offset, refs_to_add);
  1753. if (ret)
  1754. btrfs_abort_transaction(trans, root, ret);
  1755. out:
  1756. btrfs_free_path(path);
  1757. return err;
  1758. }
  1759. static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
  1760. struct btrfs_root *root,
  1761. struct btrfs_delayed_ref_node *node,
  1762. struct btrfs_delayed_extent_op *extent_op,
  1763. int insert_reserved)
  1764. {
  1765. int ret = 0;
  1766. struct btrfs_delayed_data_ref *ref;
  1767. struct btrfs_key ins;
  1768. u64 parent = 0;
  1769. u64 ref_root = 0;
  1770. u64 flags = 0;
  1771. ins.objectid = node->bytenr;
  1772. ins.offset = node->num_bytes;
  1773. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1774. ref = btrfs_delayed_node_to_data_ref(node);
  1775. if (node->type == BTRFS_SHARED_DATA_REF_KEY)
  1776. parent = ref->parent;
  1777. else
  1778. ref_root = ref->root;
  1779. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1780. if (extent_op) {
  1781. BUG_ON(extent_op->update_key);
  1782. flags |= extent_op->flags_to_set;
  1783. }
  1784. ret = alloc_reserved_file_extent(trans, root,
  1785. parent, ref_root, flags,
  1786. ref->objectid, ref->offset,
  1787. &ins, node->ref_mod);
  1788. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1789. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1790. node->num_bytes, parent,
  1791. ref_root, ref->objectid,
  1792. ref->offset, node->ref_mod,
  1793. extent_op);
  1794. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1795. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1796. node->num_bytes, parent,
  1797. ref_root, ref->objectid,
  1798. ref->offset, node->ref_mod,
  1799. extent_op);
  1800. } else {
  1801. BUG();
  1802. }
  1803. return ret;
  1804. }
  1805. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  1806. struct extent_buffer *leaf,
  1807. struct btrfs_extent_item *ei)
  1808. {
  1809. u64 flags = btrfs_extent_flags(leaf, ei);
  1810. if (extent_op->update_flags) {
  1811. flags |= extent_op->flags_to_set;
  1812. btrfs_set_extent_flags(leaf, ei, flags);
  1813. }
  1814. if (extent_op->update_key) {
  1815. struct btrfs_tree_block_info *bi;
  1816. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  1817. bi = (struct btrfs_tree_block_info *)(ei + 1);
  1818. btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
  1819. }
  1820. }
  1821. static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
  1822. struct btrfs_root *root,
  1823. struct btrfs_delayed_ref_node *node,
  1824. struct btrfs_delayed_extent_op *extent_op)
  1825. {
  1826. struct btrfs_key key;
  1827. struct btrfs_path *path;
  1828. struct btrfs_extent_item *ei;
  1829. struct extent_buffer *leaf;
  1830. u32 item_size;
  1831. int ret;
  1832. int err = 0;
  1833. if (trans->aborted)
  1834. return 0;
  1835. path = btrfs_alloc_path();
  1836. if (!path)
  1837. return -ENOMEM;
  1838. key.objectid = node->bytenr;
  1839. key.type = BTRFS_EXTENT_ITEM_KEY;
  1840. key.offset = node->num_bytes;
  1841. path->reada = 1;
  1842. path->leave_spinning = 1;
  1843. ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
  1844. path, 0, 1);
  1845. if (ret < 0) {
  1846. err = ret;
  1847. goto out;
  1848. }
  1849. if (ret > 0) {
  1850. err = -EIO;
  1851. goto out;
  1852. }
  1853. leaf = path->nodes[0];
  1854. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1855. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1856. if (item_size < sizeof(*ei)) {
  1857. ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
  1858. path, (u64)-1, 0);
  1859. if (ret < 0) {
  1860. err = ret;
  1861. goto out;
  1862. }
  1863. leaf = path->nodes[0];
  1864. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1865. }
  1866. #endif
  1867. BUG_ON(item_size < sizeof(*ei));
  1868. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1869. __run_delayed_extent_op(extent_op, leaf, ei);
  1870. btrfs_mark_buffer_dirty(leaf);
  1871. out:
  1872. btrfs_free_path(path);
  1873. return err;
  1874. }
  1875. static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
  1876. struct btrfs_root *root,
  1877. struct btrfs_delayed_ref_node *node,
  1878. struct btrfs_delayed_extent_op *extent_op,
  1879. int insert_reserved)
  1880. {
  1881. int ret = 0;
  1882. struct btrfs_delayed_tree_ref *ref;
  1883. struct btrfs_key ins;
  1884. u64 parent = 0;
  1885. u64 ref_root = 0;
  1886. ins.objectid = node->bytenr;
  1887. ins.offset = node->num_bytes;
  1888. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1889. ref = btrfs_delayed_node_to_tree_ref(node);
  1890. if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1891. parent = ref->parent;
  1892. else
  1893. ref_root = ref->root;
  1894. BUG_ON(node->ref_mod != 1);
  1895. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1896. BUG_ON(!extent_op || !extent_op->update_flags ||
  1897. !extent_op->update_key);
  1898. ret = alloc_reserved_tree_block(trans, root,
  1899. parent, ref_root,
  1900. extent_op->flags_to_set,
  1901. &extent_op->key,
  1902. ref->level, &ins);
  1903. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1904. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1905. node->num_bytes, parent, ref_root,
  1906. ref->level, 0, 1, extent_op);
  1907. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1908. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1909. node->num_bytes, parent, ref_root,
  1910. ref->level, 0, 1, extent_op);
  1911. } else {
  1912. BUG();
  1913. }
  1914. return ret;
  1915. }
  1916. /* helper function to actually process a single delayed ref entry */
  1917. static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
  1918. struct btrfs_root *root,
  1919. struct btrfs_delayed_ref_node *node,
  1920. struct btrfs_delayed_extent_op *extent_op,
  1921. int insert_reserved)
  1922. {
  1923. int ret = 0;
  1924. if (trans->aborted)
  1925. return 0;
  1926. if (btrfs_delayed_ref_is_head(node)) {
  1927. struct btrfs_delayed_ref_head *head;
  1928. /*
  1929. * we've hit the end of the chain and we were supposed
  1930. * to insert this extent into the tree. But, it got
  1931. * deleted before we ever needed to insert it, so all
  1932. * we have to do is clean up the accounting
  1933. */
  1934. BUG_ON(extent_op);
  1935. head = btrfs_delayed_node_to_head(node);
  1936. if (insert_reserved) {
  1937. btrfs_pin_extent(root, node->bytenr,
  1938. node->num_bytes, 1);
  1939. if (head->is_data) {
  1940. ret = btrfs_del_csums(trans, root,
  1941. node->bytenr,
  1942. node->num_bytes);
  1943. }
  1944. }
  1945. mutex_unlock(&head->mutex);
  1946. return ret;
  1947. }
  1948. if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
  1949. node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1950. ret = run_delayed_tree_ref(trans, root, node, extent_op,
  1951. insert_reserved);
  1952. else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
  1953. node->type == BTRFS_SHARED_DATA_REF_KEY)
  1954. ret = run_delayed_data_ref(trans, root, node, extent_op,
  1955. insert_reserved);
  1956. else
  1957. BUG();
  1958. return ret;
  1959. }
  1960. static noinline struct btrfs_delayed_ref_node *
  1961. select_delayed_ref(struct btrfs_delayed_ref_head *head)
  1962. {
  1963. struct rb_node *node;
  1964. struct btrfs_delayed_ref_node *ref;
  1965. int action = BTRFS_ADD_DELAYED_REF;
  1966. again:
  1967. /*
  1968. * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
  1969. * this prevents ref count from going down to zero when
  1970. * there still are pending delayed ref.
  1971. */
  1972. node = rb_prev(&head->node.rb_node);
  1973. while (1) {
  1974. if (!node)
  1975. break;
  1976. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  1977. rb_node);
  1978. if (ref->bytenr != head->node.bytenr)
  1979. break;
  1980. if (ref->action == action)
  1981. return ref;
  1982. node = rb_prev(node);
  1983. }
  1984. if (action == BTRFS_ADD_DELAYED_REF) {
  1985. action = BTRFS_DROP_DELAYED_REF;
  1986. goto again;
  1987. }
  1988. return NULL;
  1989. }
  1990. /*
  1991. * Returns 0 on success or if called with an already aborted transaction.
  1992. * Returns -ENOMEM or -EIO on failure and will abort the transaction.
  1993. */
  1994. static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
  1995. struct btrfs_root *root,
  1996. struct list_head *cluster)
  1997. {
  1998. struct btrfs_delayed_ref_root *delayed_refs;
  1999. struct btrfs_delayed_ref_node *ref;
  2000. struct btrfs_delayed_ref_head *locked_ref = NULL;
  2001. struct btrfs_delayed_extent_op *extent_op;
  2002. struct btrfs_fs_info *fs_info = root->fs_info;
  2003. int ret;
  2004. int count = 0;
  2005. int must_insert_reserved = 0;
  2006. delayed_refs = &trans->transaction->delayed_refs;
  2007. while (1) {
  2008. if (!locked_ref) {
  2009. /* pick a new head ref from the cluster list */
  2010. if (list_empty(cluster))
  2011. break;
  2012. locked_ref = list_entry(cluster->next,
  2013. struct btrfs_delayed_ref_head, cluster);
  2014. /* grab the lock that says we are going to process
  2015. * all the refs for this head */
  2016. ret = btrfs_delayed_ref_lock(trans, locked_ref);
  2017. /*
  2018. * we may have dropped the spin lock to get the head
  2019. * mutex lock, and that might have given someone else
  2020. * time to free the head. If that's true, it has been
  2021. * removed from our list and we can move on.
  2022. */
  2023. if (ret == -EAGAIN) {
  2024. locked_ref = NULL;
  2025. count++;
  2026. continue;
  2027. }
  2028. }
  2029. /*
  2030. * locked_ref is the head node, so we have to go one
  2031. * node back for any delayed ref updates
  2032. */
  2033. ref = select_delayed_ref(locked_ref);
  2034. if (ref && ref->seq &&
  2035. btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
  2036. /*
  2037. * there are still refs with lower seq numbers in the
  2038. * process of being added. Don't run this ref yet.
  2039. */
  2040. list_del_init(&locked_ref->cluster);
  2041. mutex_unlock(&locked_ref->mutex);
  2042. locked_ref = NULL;
  2043. delayed_refs->num_heads_ready++;
  2044. spin_unlock(&delayed_refs->lock);
  2045. cond_resched();
  2046. spin_lock(&delayed_refs->lock);
  2047. continue;
  2048. }
  2049. /*
  2050. * record the must insert reserved flag before we
  2051. * drop the spin lock.
  2052. */
  2053. must_insert_reserved = locked_ref->must_insert_reserved;
  2054. locked_ref->must_insert_reserved = 0;
  2055. extent_op = locked_ref->extent_op;
  2056. locked_ref->extent_op = NULL;
  2057. if (!ref) {
  2058. /* All delayed refs have been processed, Go ahead
  2059. * and send the head node to run_one_delayed_ref,
  2060. * so that any accounting fixes can happen
  2061. */
  2062. ref = &locked_ref->node;
  2063. if (extent_op && must_insert_reserved) {
  2064. kfree(extent_op);
  2065. extent_op = NULL;
  2066. }
  2067. if (extent_op) {
  2068. spin_unlock(&delayed_refs->lock);
  2069. ret = run_delayed_extent_op(trans, root,
  2070. ref, extent_op);
  2071. kfree(extent_op);
  2072. if (ret) {
  2073. printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
  2074. spin_lock(&delayed_refs->lock);
  2075. return ret;
  2076. }
  2077. goto next;
  2078. }
  2079. list_del_init(&locked_ref->cluster);
  2080. locked_ref = NULL;
  2081. }
  2082. ref->in_tree = 0;
  2083. rb_erase(&ref->rb_node, &delayed_refs->root);
  2084. delayed_refs->num_entries--;
  2085. /*
  2086. * we modified num_entries, but as we're currently running
  2087. * delayed refs, skip
  2088. * wake_up(&delayed_refs->seq_wait);
  2089. * here.
  2090. */
  2091. spin_unlock(&delayed_refs->lock);
  2092. ret = run_one_delayed_ref(trans, root, ref, extent_op,
  2093. must_insert_reserved);
  2094. btrfs_put_delayed_ref(ref);
  2095. kfree(extent_op);
  2096. count++;
  2097. if (ret) {
  2098. printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
  2099. spin_lock(&delayed_refs->lock);
  2100. return ret;
  2101. }
  2102. next:
  2103. do_chunk_alloc(trans, fs_info->extent_root,
  2104. 2 * 1024 * 1024,
  2105. btrfs_get_alloc_profile(root, 0),
  2106. CHUNK_ALLOC_NO_FORCE);
  2107. cond_resched();
  2108. spin_lock(&delayed_refs->lock);
  2109. }
  2110. return count;
  2111. }
  2112. static void wait_for_more_refs(struct btrfs_fs_info *fs_info,
  2113. struct btrfs_delayed_ref_root *delayed_refs,
  2114. unsigned long num_refs,
  2115. struct list_head *first_seq)
  2116. {
  2117. spin_unlock(&delayed_refs->lock);
  2118. pr_debug("waiting for more refs (num %ld, first %p)\n",
  2119. num_refs, first_seq);
  2120. wait_event(fs_info->tree_mod_seq_wait,
  2121. num_refs != delayed_refs->num_entries ||
  2122. fs_info->tree_mod_seq_list.next != first_seq);
  2123. pr_debug("done waiting for more refs (num %ld, first %p)\n",
  2124. delayed_refs->num_entries, fs_info->tree_mod_seq_list.next);
  2125. spin_lock(&delayed_refs->lock);
  2126. }
  2127. #ifdef SCRAMBLE_DELAYED_REFS
  2128. /*
  2129. * Normally delayed refs get processed in ascending bytenr order. This
  2130. * correlates in most cases to the order added. To expose dependencies on this
  2131. * order, we start to process the tree in the middle instead of the beginning
  2132. */
  2133. static u64 find_middle(struct rb_root *root)
  2134. {
  2135. struct rb_node *n = root->rb_node;
  2136. struct btrfs_delayed_ref_node *entry;
  2137. int alt = 1;
  2138. u64 middle;
  2139. u64 first = 0, last = 0;
  2140. n = rb_first(root);
  2141. if (n) {
  2142. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2143. first = entry->bytenr;
  2144. }
  2145. n = rb_last(root);
  2146. if (n) {
  2147. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2148. last = entry->bytenr;
  2149. }
  2150. n = root->rb_node;
  2151. while (n) {
  2152. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2153. WARN_ON(!entry->in_tree);
  2154. middle = entry->bytenr;
  2155. if (alt)
  2156. n = n->rb_left;
  2157. else
  2158. n = n->rb_right;
  2159. alt = 1 - alt;
  2160. }
  2161. return middle;
  2162. }
  2163. #endif
  2164. int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
  2165. struct btrfs_fs_info *fs_info)
  2166. {
  2167. struct qgroup_update *qgroup_update;
  2168. int ret = 0;
  2169. if (list_empty(&trans->qgroup_ref_list) !=
  2170. !trans->delayed_ref_elem.seq) {
  2171. /* list without seq or seq without list */
  2172. printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
  2173. list_empty(&trans->qgroup_ref_list) ? "" : " not",
  2174. trans->delayed_ref_elem.seq);
  2175. BUG();
  2176. }
  2177. if (!trans->delayed_ref_elem.seq)
  2178. return 0;
  2179. while (!list_empty(&trans->qgroup_ref_list)) {
  2180. qgroup_update = list_first_entry(&trans->qgroup_ref_list,
  2181. struct qgroup_update, list);
  2182. list_del(&qgroup_update->list);
  2183. if (!ret)
  2184. ret = btrfs_qgroup_account_ref(
  2185. trans, fs_info, qgroup_update->node,
  2186. qgroup_update->extent_op);
  2187. kfree(qgroup_update);
  2188. }
  2189. btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
  2190. return ret;
  2191. }
  2192. /*
  2193. * this starts processing the delayed reference count updates and
  2194. * extent insertions we have queued up so far. count can be
  2195. * 0, which means to process everything in the tree at the start
  2196. * of the run (but not newly added entries), or it can be some target
  2197. * number you'd like to process.
  2198. *
  2199. * Returns 0 on success or if called with an aborted transaction
  2200. * Returns <0 on error and aborts the transaction
  2201. */
  2202. int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2203. struct btrfs_root *root, unsigned long count)
  2204. {
  2205. struct rb_node *node;
  2206. struct btrfs_delayed_ref_root *delayed_refs;
  2207. struct btrfs_delayed_ref_node *ref;
  2208. struct list_head cluster;
  2209. struct list_head *first_seq = NULL;
  2210. int ret;
  2211. u64 delayed_start;
  2212. int run_all = count == (unsigned long)-1;
  2213. int run_most = 0;
  2214. unsigned long num_refs = 0;
  2215. int consider_waiting;
  2216. /* We'll clean this up in btrfs_cleanup_transaction */
  2217. if (trans->aborted)
  2218. return 0;
  2219. if (root == root->fs_info->extent_root)
  2220. root = root->fs_info->tree_root;
  2221. do_chunk_alloc(trans, root->fs_info->extent_root,
  2222. 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
  2223. CHUNK_ALLOC_NO_FORCE);
  2224. btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
  2225. delayed_refs = &trans->transaction->delayed_refs;
  2226. INIT_LIST_HEAD(&cluster);
  2227. again:
  2228. consider_waiting = 0;
  2229. spin_lock(&delayed_refs->lock);
  2230. #ifdef SCRAMBLE_DELAYED_REFS
  2231. delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
  2232. #endif
  2233. if (count == 0) {
  2234. count = delayed_refs->num_entries * 2;
  2235. run_most = 1;
  2236. }
  2237. while (1) {
  2238. if (!(run_all || run_most) &&
  2239. delayed_refs->num_heads_ready < 64)
  2240. break;
  2241. /*
  2242. * go find something we can process in the rbtree. We start at
  2243. * the beginning of the tree, and then build a cluster
  2244. * of refs to process starting at the first one we are able to
  2245. * lock
  2246. */
  2247. delayed_start = delayed_refs->run_delayed_start;
  2248. ret = btrfs_find_ref_cluster(trans, &cluster,
  2249. delayed_refs->run_delayed_start);
  2250. if (ret)
  2251. break;
  2252. if (delayed_start >= delayed_refs->run_delayed_start) {
  2253. if (consider_waiting == 0) {
  2254. /*
  2255. * btrfs_find_ref_cluster looped. let's do one
  2256. * more cycle. if we don't run any delayed ref
  2257. * during that cycle (because we can't because
  2258. * all of them are blocked) and if the number of
  2259. * refs doesn't change, we avoid busy waiting.
  2260. */
  2261. consider_waiting = 1;
  2262. num_refs = delayed_refs->num_entries;
  2263. first_seq = root->fs_info->tree_mod_seq_list.next;
  2264. } else {
  2265. wait_for_more_refs(root->fs_info, delayed_refs,
  2266. num_refs, first_seq);
  2267. /*
  2268. * after waiting, things have changed. we
  2269. * dropped the lock and someone else might have
  2270. * run some refs, built new clusters and so on.
  2271. * therefore, we restart staleness detection.
  2272. */
  2273. consider_waiting = 0;
  2274. }
  2275. }
  2276. ret = run_clustered_refs(trans, root, &cluster);
  2277. if (ret < 0) {
  2278. spin_unlock(&delayed_refs->lock);
  2279. btrfs_abort_transaction(trans, root, ret);
  2280. return ret;
  2281. }
  2282. count -= min_t(unsigned long, ret, count);
  2283. if (count == 0)
  2284. break;
  2285. if (ret || delayed_refs->run_delayed_start == 0) {
  2286. /* refs were run, let's reset staleness detection */
  2287. consider_waiting = 0;
  2288. }
  2289. }
  2290. if (run_all) {
  2291. node = rb_first(&delayed_refs->root);
  2292. if (!node)
  2293. goto out;
  2294. count = (unsigned long)-1;
  2295. while (node) {
  2296. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  2297. rb_node);
  2298. if (btrfs_delayed_ref_is_head(ref)) {
  2299. struct btrfs_delayed_ref_head *head;
  2300. head = btrfs_delayed_node_to_head(ref);
  2301. atomic_inc(&ref->refs);
  2302. spin_unlock(&delayed_refs->lock);
  2303. /*
  2304. * Mutex was contended, block until it's
  2305. * released and try again
  2306. */
  2307. mutex_lock(&head->mutex);
  2308. mutex_unlock(&head->mutex);
  2309. btrfs_put_delayed_ref(ref);
  2310. cond_resched();
  2311. goto again;
  2312. }
  2313. node = rb_next(node);
  2314. }
  2315. spin_unlock(&delayed_refs->lock);
  2316. schedule_timeout(1);
  2317. goto again;
  2318. }
  2319. out:
  2320. spin_unlock(&delayed_refs->lock);
  2321. assert_qgroups_uptodate(trans);
  2322. return 0;
  2323. }
  2324. int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
  2325. struct btrfs_root *root,
  2326. u64 bytenr, u64 num_bytes, u64 flags,
  2327. int is_data)
  2328. {
  2329. struct btrfs_delayed_extent_op *extent_op;
  2330. int ret;
  2331. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  2332. if (!extent_op)
  2333. return -ENOMEM;
  2334. extent_op->flags_to_set = flags;
  2335. extent_op->update_flags = 1;
  2336. extent_op->update_key = 0;
  2337. extent_op->is_data = is_data ? 1 : 0;
  2338. ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
  2339. num_bytes, extent_op);
  2340. if (ret)
  2341. kfree(extent_op);
  2342. return ret;
  2343. }
  2344. static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
  2345. struct btrfs_root *root,
  2346. struct btrfs_path *path,
  2347. u64 objectid, u64 offset, u64 bytenr)
  2348. {
  2349. struct btrfs_delayed_ref_head *head;
  2350. struct btrfs_delayed_ref_node *ref;
  2351. struct btrfs_delayed_data_ref *data_ref;
  2352. struct btrfs_delayed_ref_root *delayed_refs;
  2353. struct rb_node *node;
  2354. int ret = 0;
  2355. ret = -ENOENT;
  2356. delayed_refs = &trans->transaction->delayed_refs;
  2357. spin_lock(&delayed_refs->lock);
  2358. head = btrfs_find_delayed_ref_head(trans, bytenr);
  2359. if (!head)
  2360. goto out;
  2361. if (!mutex_trylock(&head->mutex)) {
  2362. atomic_inc(&head->node.refs);
  2363. spin_unlock(&delayed_refs->lock);
  2364. btrfs_release_path(path);
  2365. /*
  2366. * Mutex was contended, block until it's released and let
  2367. * caller try again
  2368. */
  2369. mutex_lock(&head->mutex);
  2370. mutex_unlock(&head->mutex);
  2371. btrfs_put_delayed_ref(&head->node);
  2372. return -EAGAIN;
  2373. }
  2374. node = rb_prev(&head->node.rb_node);
  2375. if (!node)
  2376. goto out_unlock;
  2377. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2378. if (ref->bytenr != bytenr)
  2379. goto out_unlock;
  2380. ret = 1;
  2381. if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
  2382. goto out_unlock;
  2383. data_ref = btrfs_delayed_node_to_data_ref(ref);
  2384. node = rb_prev(node);
  2385. if (node) {
  2386. int seq = ref->seq;
  2387. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2388. if (ref->bytenr == bytenr && ref->seq == seq)
  2389. goto out_unlock;
  2390. }
  2391. if (data_ref->root != root->root_key.objectid ||
  2392. data_ref->objectid != objectid || data_ref->offset != offset)
  2393. goto out_unlock;
  2394. ret = 0;
  2395. out_unlock:
  2396. mutex_unlock(&head->mutex);
  2397. out:
  2398. spin_unlock(&delayed_refs->lock);
  2399. return ret;
  2400. }
  2401. static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
  2402. struct btrfs_root *root,
  2403. struct btrfs_path *path,
  2404. u64 objectid, u64 offset, u64 bytenr)
  2405. {
  2406. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2407. struct extent_buffer *leaf;
  2408. struct btrfs_extent_data_ref *ref;
  2409. struct btrfs_extent_inline_ref *iref;
  2410. struct btrfs_extent_item *ei;
  2411. struct btrfs_key key;
  2412. u32 item_size;
  2413. int ret;
  2414. key.objectid = bytenr;
  2415. key.offset = (u64)-1;
  2416. key.type = BTRFS_EXTENT_ITEM_KEY;
  2417. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  2418. if (ret < 0)
  2419. goto out;
  2420. BUG_ON(ret == 0); /* Corruption */
  2421. ret = -ENOENT;
  2422. if (path->slots[0] == 0)
  2423. goto out;
  2424. path->slots[0]--;
  2425. leaf = path->nodes[0];
  2426. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2427. if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
  2428. goto out;
  2429. ret = 1;
  2430. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2431. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2432. if (item_size < sizeof(*ei)) {
  2433. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2434. goto out;
  2435. }
  2436. #endif
  2437. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2438. if (item_size != sizeof(*ei) +
  2439. btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
  2440. goto out;
  2441. if (btrfs_extent_generation(leaf, ei) <=
  2442. btrfs_root_last_snapshot(&root->root_item))
  2443. goto out;
  2444. iref = (struct btrfs_extent_inline_ref *)(ei + 1);
  2445. if (btrfs_extent_inline_ref_type(leaf, iref) !=
  2446. BTRFS_EXTENT_DATA_REF_KEY)
  2447. goto out;
  2448. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2449. if (btrfs_extent_refs(leaf, ei) !=
  2450. btrfs_extent_data_ref_count(leaf, ref) ||
  2451. btrfs_extent_data_ref_root(leaf, ref) !=
  2452. root->root_key.objectid ||
  2453. btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
  2454. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  2455. goto out;
  2456. ret = 0;
  2457. out:
  2458. return ret;
  2459. }
  2460. int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
  2461. struct btrfs_root *root,
  2462. u64 objectid, u64 offset, u64 bytenr)
  2463. {
  2464. struct btrfs_path *path;
  2465. int ret;
  2466. int ret2;
  2467. path = btrfs_alloc_path();
  2468. if (!path)
  2469. return -ENOENT;
  2470. do {
  2471. ret = check_committed_ref(trans, root, path, objectid,
  2472. offset, bytenr);
  2473. if (ret && ret != -ENOENT)
  2474. goto out;
  2475. ret2 = check_delayed_ref(trans, root, path, objectid,
  2476. offset, bytenr);
  2477. } while (ret2 == -EAGAIN);
  2478. if (ret2 && ret2 != -ENOENT) {
  2479. ret = ret2;
  2480. goto out;
  2481. }
  2482. if (ret != -ENOENT || ret2 != -ENOENT)
  2483. ret = 0;
  2484. out:
  2485. btrfs_free_path(path);
  2486. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  2487. WARN_ON(ret > 0);
  2488. return ret;
  2489. }
  2490. static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
  2491. struct btrfs_root *root,
  2492. struct extent_buffer *buf,
  2493. int full_backref, int inc, int for_cow)
  2494. {
  2495. u64 bytenr;
  2496. u64 num_bytes;
  2497. u64 parent;
  2498. u64 ref_root;
  2499. u32 nritems;
  2500. struct btrfs_key key;
  2501. struct btrfs_file_extent_item *fi;
  2502. int i;
  2503. int level;
  2504. int ret = 0;
  2505. int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
  2506. u64, u64, u64, u64, u64, u64, int);
  2507. ref_root = btrfs_header_owner(buf);
  2508. nritems = btrfs_header_nritems(buf);
  2509. level = btrfs_header_level(buf);
  2510. if (!root->ref_cows && level == 0)
  2511. return 0;
  2512. if (inc)
  2513. process_func = btrfs_inc_extent_ref;
  2514. else
  2515. process_func = btrfs_free_extent;
  2516. if (full_backref)
  2517. parent = buf->start;
  2518. else
  2519. parent = 0;
  2520. for (i = 0; i < nritems; i++) {
  2521. if (level == 0) {
  2522. btrfs_item_key_to_cpu(buf, &key, i);
  2523. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  2524. continue;
  2525. fi = btrfs_item_ptr(buf, i,
  2526. struct btrfs_file_extent_item);
  2527. if (btrfs_file_extent_type(buf, fi) ==
  2528. BTRFS_FILE_EXTENT_INLINE)
  2529. continue;
  2530. bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2531. if (bytenr == 0)
  2532. continue;
  2533. num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
  2534. key.offset -= btrfs_file_extent_offset(buf, fi);
  2535. ret = process_func(trans, root, bytenr, num_bytes,
  2536. parent, ref_root, key.objectid,
  2537. key.offset, for_cow);
  2538. if (ret)
  2539. goto fail;
  2540. } else {
  2541. bytenr = btrfs_node_blockptr(buf, i);
  2542. num_bytes = btrfs_level_size(root, level - 1);
  2543. ret = process_func(trans, root, bytenr, num_bytes,
  2544. parent, ref_root, level - 1, 0,
  2545. for_cow);
  2546. if (ret)
  2547. goto fail;
  2548. }
  2549. }
  2550. return 0;
  2551. fail:
  2552. return ret;
  2553. }
  2554. int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2555. struct extent_buffer *buf, int full_backref, int for_cow)
  2556. {
  2557. return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
  2558. }
  2559. int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2560. struct extent_buffer *buf, int full_backref, int for_cow)
  2561. {
  2562. return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
  2563. }
  2564. static int write_one_cache_group(struct btrfs_trans_handle *trans,
  2565. struct btrfs_root *root,
  2566. struct btrfs_path *path,
  2567. struct btrfs_block_group_cache *cache)
  2568. {
  2569. int ret;
  2570. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2571. unsigned long bi;
  2572. struct extent_buffer *leaf;
  2573. ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
  2574. if (ret < 0)
  2575. goto fail;
  2576. BUG_ON(ret); /* Corruption */
  2577. leaf = path->nodes[0];
  2578. bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2579. write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
  2580. btrfs_mark_buffer_dirty(leaf);
  2581. btrfs_release_path(path);
  2582. fail:
  2583. if (ret) {
  2584. btrfs_abort_transaction(trans, root, ret);
  2585. return ret;
  2586. }
  2587. return 0;
  2588. }
  2589. static struct btrfs_block_group_cache *
  2590. next_block_group(struct btrfs_root *root,
  2591. struct btrfs_block_group_cache *cache)
  2592. {
  2593. struct rb_node *node;
  2594. spin_lock(&root->fs_info->block_group_cache_lock);
  2595. node = rb_next(&cache->cache_node);
  2596. btrfs_put_block_group(cache);
  2597. if (node) {
  2598. cache = rb_entry(node, struct btrfs_block_group_cache,
  2599. cache_node);
  2600. btrfs_get_block_group(cache);
  2601. } else
  2602. cache = NULL;
  2603. spin_unlock(&root->fs_info->block_group_cache_lock);
  2604. return cache;
  2605. }
  2606. static int cache_save_setup(struct btrfs_block_group_cache *block_group,
  2607. struct btrfs_trans_handle *trans,
  2608. struct btrfs_path *path)
  2609. {
  2610. struct btrfs_root *root = block_group->fs_info->tree_root;
  2611. struct inode *inode = NULL;
  2612. u64 alloc_hint = 0;
  2613. int dcs = BTRFS_DC_ERROR;
  2614. int num_pages = 0;
  2615. int retries = 0;
  2616. int ret = 0;
  2617. /*
  2618. * If this block group is smaller than 100 megs don't bother caching the
  2619. * block group.
  2620. */
  2621. if (block_group->key.offset < (100 * 1024 * 1024)) {
  2622. spin_lock(&block_group->lock);
  2623. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  2624. spin_unlock(&block_group->lock);
  2625. return 0;
  2626. }
  2627. again:
  2628. inode = lookup_free_space_inode(root, block_group, path);
  2629. if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
  2630. ret = PTR_ERR(inode);
  2631. btrfs_release_path(path);
  2632. goto out;
  2633. }
  2634. if (IS_ERR(inode)) {
  2635. BUG_ON(retries);
  2636. retries++;
  2637. if (block_group->ro)
  2638. goto out_free;
  2639. ret = create_free_space_inode(root, trans, block_group, path);
  2640. if (ret)
  2641. goto out_free;
  2642. goto again;
  2643. }
  2644. /* We've already setup this transaction, go ahead and exit */
  2645. if (block_group->cache_generation == trans->transid &&
  2646. i_size_read(inode)) {
  2647. dcs = BTRFS_DC_SETUP;
  2648. goto out_put;
  2649. }
  2650. /*
  2651. * We want to set the generation to 0, that way if anything goes wrong
  2652. * from here on out we know not to trust this cache when we load up next
  2653. * time.
  2654. */
  2655. BTRFS_I(inode)->generation = 0;
  2656. ret = btrfs_update_inode(trans, root, inode);
  2657. WARN_ON(ret);
  2658. if (i_size_read(inode) > 0) {
  2659. ret = btrfs_truncate_free_space_cache(root, trans, path,
  2660. inode);
  2661. if (ret)
  2662. goto out_put;
  2663. }
  2664. spin_lock(&block_group->lock);
  2665. if (block_group->cached != BTRFS_CACHE_FINISHED ||
  2666. !btrfs_test_opt(root, SPACE_CACHE)) {
  2667. /*
  2668. * don't bother trying to write stuff out _if_
  2669. * a) we're not cached,
  2670. * b) we're with nospace_cache mount option.
  2671. */
  2672. dcs = BTRFS_DC_WRITTEN;
  2673. spin_unlock(&block_group->lock);
  2674. goto out_put;
  2675. }
  2676. spin_unlock(&block_group->lock);
  2677. num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
  2678. if (!num_pages)
  2679. num_pages = 1;
  2680. /*
  2681. * Just to make absolutely sure we have enough space, we're going to
  2682. * preallocate 12 pages worth of space for each block group. In
  2683. * practice we ought to use at most 8, but we need extra space so we can
  2684. * add our header and have a terminator between the extents and the
  2685. * bitmaps.
  2686. */
  2687. num_pages *= 16;
  2688. num_pages *= PAGE_CACHE_SIZE;
  2689. ret = btrfs_check_data_free_space(inode, num_pages);
  2690. if (ret)
  2691. goto out_put;
  2692. ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
  2693. num_pages, num_pages,
  2694. &alloc_hint);
  2695. if (!ret)
  2696. dcs = BTRFS_DC_SETUP;
  2697. btrfs_free_reserved_data_space(inode, num_pages);
  2698. out_put:
  2699. iput(inode);
  2700. out_free:
  2701. btrfs_release_path(path);
  2702. out:
  2703. spin_lock(&block_group->lock);
  2704. if (!ret && dcs == BTRFS_DC_SETUP)
  2705. block_group->cache_generation = trans->transid;
  2706. block_group->disk_cache_state = dcs;
  2707. spin_unlock(&block_group->lock);
  2708. return ret;
  2709. }
  2710. int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
  2711. struct btrfs_root *root)
  2712. {
  2713. struct btrfs_block_group_cache *cache;
  2714. int err = 0;
  2715. struct btrfs_path *path;
  2716. u64 last = 0;
  2717. path = btrfs_alloc_path();
  2718. if (!path)
  2719. return -ENOMEM;
  2720. again:
  2721. while (1) {
  2722. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2723. while (cache) {
  2724. if (cache->disk_cache_state == BTRFS_DC_CLEAR)
  2725. break;
  2726. cache = next_block_group(root, cache);
  2727. }
  2728. if (!cache) {
  2729. if (last == 0)
  2730. break;
  2731. last = 0;
  2732. continue;
  2733. }
  2734. err = cache_save_setup(cache, trans, path);
  2735. last = cache->key.objectid + cache->key.offset;
  2736. btrfs_put_block_group(cache);
  2737. }
  2738. while (1) {
  2739. if (last == 0) {
  2740. err = btrfs_run_delayed_refs(trans, root,
  2741. (unsigned long)-1);
  2742. if (err) /* File system offline */
  2743. goto out;
  2744. }
  2745. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2746. while (cache) {
  2747. if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
  2748. btrfs_put_block_group(cache);
  2749. goto again;
  2750. }
  2751. if (cache->dirty)
  2752. break;
  2753. cache = next_block_group(root, cache);
  2754. }
  2755. if (!cache) {
  2756. if (last == 0)
  2757. break;
  2758. last = 0;
  2759. continue;
  2760. }
  2761. if (cache->disk_cache_state == BTRFS_DC_SETUP)
  2762. cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
  2763. cache->dirty = 0;
  2764. last = cache->key.objectid + cache->key.offset;
  2765. err = write_one_cache_group(trans, root, path, cache);
  2766. if (err) /* File system offline */
  2767. goto out;
  2768. btrfs_put_block_group(cache);
  2769. }
  2770. while (1) {
  2771. /*
  2772. * I don't think this is needed since we're just marking our
  2773. * preallocated extent as written, but just in case it can't
  2774. * hurt.
  2775. */
  2776. if (last == 0) {
  2777. err = btrfs_run_delayed_refs(trans, root,
  2778. (unsigned long)-1);
  2779. if (err) /* File system offline */
  2780. goto out;
  2781. }
  2782. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2783. while (cache) {
  2784. /*
  2785. * Really this shouldn't happen, but it could if we
  2786. * couldn't write the entire preallocated extent and
  2787. * splitting the extent resulted in a new block.
  2788. */
  2789. if (cache->dirty) {
  2790. btrfs_put_block_group(cache);
  2791. goto again;
  2792. }
  2793. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2794. break;
  2795. cache = next_block_group(root, cache);
  2796. }
  2797. if (!cache) {
  2798. if (last == 0)
  2799. break;
  2800. last = 0;
  2801. continue;
  2802. }
  2803. err = btrfs_write_out_cache(root, trans, cache, path);
  2804. /*
  2805. * If we didn't have an error then the cache state is still
  2806. * NEED_WRITE, so we can set it to WRITTEN.
  2807. */
  2808. if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2809. cache->disk_cache_state = BTRFS_DC_WRITTEN;
  2810. last = cache->key.objectid + cache->key.offset;
  2811. btrfs_put_block_group(cache);
  2812. }
  2813. out:
  2814. btrfs_free_path(path);
  2815. return err;
  2816. }
  2817. int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
  2818. {
  2819. struct btrfs_block_group_cache *block_group;
  2820. int readonly = 0;
  2821. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  2822. if (!block_group || block_group->ro)
  2823. readonly = 1;
  2824. if (block_group)
  2825. btrfs_put_block_group(block_group);
  2826. return readonly;
  2827. }
  2828. static int update_space_info(struct btrfs_fs_info *info, u64 flags,
  2829. u64 total_bytes, u64 bytes_used,
  2830. struct btrfs_space_info **space_info)
  2831. {
  2832. struct btrfs_space_info *found;
  2833. int i;
  2834. int factor;
  2835. if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
  2836. BTRFS_BLOCK_GROUP_RAID10))
  2837. factor = 2;
  2838. else
  2839. factor = 1;
  2840. found = __find_space_info(info, flags);
  2841. if (found) {
  2842. spin_lock(&found->lock);
  2843. found->total_bytes += total_bytes;
  2844. found->disk_total += total_bytes * factor;
  2845. found->bytes_used += bytes_used;
  2846. found->disk_used += bytes_used * factor;
  2847. found->full = 0;
  2848. spin_unlock(&found->lock);
  2849. *space_info = found;
  2850. return 0;
  2851. }
  2852. found = kzalloc(sizeof(*found), GFP_NOFS);
  2853. if (!found)
  2854. return -ENOMEM;
  2855. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  2856. INIT_LIST_HEAD(&found->block_groups[i]);
  2857. init_rwsem(&found->groups_sem);
  2858. spin_lock_init(&found->lock);
  2859. found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  2860. found->total_bytes = total_bytes;
  2861. found->disk_total = total_bytes * factor;
  2862. found->bytes_used = bytes_used;
  2863. found->disk_used = bytes_used * factor;
  2864. found->bytes_pinned = 0;
  2865. found->bytes_reserved = 0;
  2866. found->bytes_readonly = 0;
  2867. found->bytes_may_use = 0;
  2868. found->full = 0;
  2869. found->force_alloc = CHUNK_ALLOC_NO_FORCE;
  2870. found->chunk_alloc = 0;
  2871. found->flush = 0;
  2872. init_waitqueue_head(&found->wait);
  2873. *space_info = found;
  2874. list_add_rcu(&found->list, &info->space_info);
  2875. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2876. info->data_sinfo = found;
  2877. return 0;
  2878. }
  2879. static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  2880. {
  2881. u64 extra_flags = chunk_to_extended(flags) &
  2882. BTRFS_EXTENDED_PROFILE_MASK;
  2883. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2884. fs_info->avail_data_alloc_bits |= extra_flags;
  2885. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2886. fs_info->avail_metadata_alloc_bits |= extra_flags;
  2887. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2888. fs_info->avail_system_alloc_bits |= extra_flags;
  2889. }
  2890. /*
  2891. * returns target flags in extended format or 0 if restripe for this
  2892. * chunk_type is not in progress
  2893. *
  2894. * should be called with either volume_mutex or balance_lock held
  2895. */
  2896. static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  2897. {
  2898. struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  2899. u64 target = 0;
  2900. if (!bctl)
  2901. return 0;
  2902. if (flags & BTRFS_BLOCK_GROUP_DATA &&
  2903. bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  2904. target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  2905. } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  2906. bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  2907. target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  2908. } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  2909. bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  2910. target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  2911. }
  2912. return target;
  2913. }
  2914. /*
  2915. * @flags: available profiles in extended format (see ctree.h)
  2916. *
  2917. * Returns reduced profile in chunk format. If profile changing is in
  2918. * progress (either running or paused) picks the target profile (if it's
  2919. * already available), otherwise falls back to plain reducing.
  2920. */
  2921. u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
  2922. {
  2923. /*
  2924. * we add in the count of missing devices because we want
  2925. * to make sure that any RAID levels on a degraded FS
  2926. * continue to be honored.
  2927. */
  2928. u64 num_devices = root->fs_info->fs_devices->rw_devices +
  2929. root->fs_info->fs_devices->missing_devices;
  2930. u64 target;
  2931. /*
  2932. * see if restripe for this chunk_type is in progress, if so
  2933. * try to reduce to the target profile
  2934. */
  2935. spin_lock(&root->fs_info->balance_lock);
  2936. target = get_restripe_target(root->fs_info, flags);
  2937. if (target) {
  2938. /* pick target profile only if it's already available */
  2939. if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
  2940. spin_unlock(&root->fs_info->balance_lock);
  2941. return extended_to_chunk(target);
  2942. }
  2943. }
  2944. spin_unlock(&root->fs_info->balance_lock);
  2945. if (num_devices == 1)
  2946. flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
  2947. if (num_devices < 4)
  2948. flags &= ~BTRFS_BLOCK_GROUP_RAID10;
  2949. if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
  2950. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2951. BTRFS_BLOCK_GROUP_RAID10))) {
  2952. flags &= ~BTRFS_BLOCK_GROUP_DUP;
  2953. }
  2954. if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
  2955. (flags & BTRFS_BLOCK_GROUP_RAID10)) {
  2956. flags &= ~BTRFS_BLOCK_GROUP_RAID1;
  2957. }
  2958. if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
  2959. ((flags & BTRFS_BLOCK_GROUP_RAID1) |
  2960. (flags & BTRFS_BLOCK_GROUP_RAID10) |
  2961. (flags & BTRFS_BLOCK_GROUP_DUP))) {
  2962. flags &= ~BTRFS_BLOCK_GROUP_RAID0;
  2963. }
  2964. return extended_to_chunk(flags);
  2965. }
  2966. static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
  2967. {
  2968. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2969. flags |= root->fs_info->avail_data_alloc_bits;
  2970. else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2971. flags |= root->fs_info->avail_system_alloc_bits;
  2972. else if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2973. flags |= root->fs_info->avail_metadata_alloc_bits;
  2974. return btrfs_reduce_alloc_profile(root, flags);
  2975. }
  2976. u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
  2977. {
  2978. u64 flags;
  2979. if (data)
  2980. flags = BTRFS_BLOCK_GROUP_DATA;
  2981. else if (root == root->fs_info->chunk_root)
  2982. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  2983. else
  2984. flags = BTRFS_BLOCK_GROUP_METADATA;
  2985. return get_alloc_profile(root, flags);
  2986. }
  2987. /*
  2988. * This will check the space that the inode allocates from to make sure we have
  2989. * enough space for bytes.
  2990. */
  2991. int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
  2992. {
  2993. struct btrfs_space_info *data_sinfo;
  2994. struct btrfs_root *root = BTRFS_I(inode)->root;
  2995. struct btrfs_fs_info *fs_info = root->fs_info;
  2996. u64 used;
  2997. int ret = 0, committed = 0, alloc_chunk = 1;
  2998. /* make sure bytes are sectorsize aligned */
  2999. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  3000. if (root == root->fs_info->tree_root ||
  3001. BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
  3002. alloc_chunk = 0;
  3003. committed = 1;
  3004. }
  3005. data_sinfo = fs_info->data_sinfo;
  3006. if (!data_sinfo)
  3007. goto alloc;
  3008. again:
  3009. /* make sure we have enough space to handle the data first */
  3010. spin_lock(&data_sinfo->lock);
  3011. used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
  3012. data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
  3013. data_sinfo->bytes_may_use;
  3014. if (used + bytes > data_sinfo->total_bytes) {
  3015. struct btrfs_trans_handle *trans;
  3016. /*
  3017. * if we don't have enough free bytes in this space then we need
  3018. * to alloc a new chunk.
  3019. */
  3020. if (!data_sinfo->full && alloc_chunk) {
  3021. u64 alloc_target;
  3022. data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
  3023. spin_unlock(&data_sinfo->lock);
  3024. alloc:
  3025. alloc_target = btrfs_get_alloc_profile(root, 1);
  3026. trans = btrfs_join_transaction(root);
  3027. if (IS_ERR(trans))
  3028. return PTR_ERR(trans);
  3029. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  3030. bytes + 2 * 1024 * 1024,
  3031. alloc_target,
  3032. CHUNK_ALLOC_NO_FORCE);
  3033. btrfs_end_transaction(trans, root);
  3034. if (ret < 0) {
  3035. if (ret != -ENOSPC)
  3036. return ret;
  3037. else
  3038. goto commit_trans;
  3039. }
  3040. if (!data_sinfo)
  3041. data_sinfo = fs_info->data_sinfo;
  3042. goto again;
  3043. }
  3044. /*
  3045. * If we have less pinned bytes than we want to allocate then
  3046. * don't bother committing the transaction, it won't help us.
  3047. */
  3048. if (data_sinfo->bytes_pinned < bytes)
  3049. committed = 1;
  3050. spin_unlock(&data_sinfo->lock);
  3051. /* commit the current transaction and try again */
  3052. commit_trans:
  3053. if (!committed &&
  3054. !atomic_read(&root->fs_info->open_ioctl_trans)) {
  3055. committed = 1;
  3056. trans = btrfs_join_transaction(root);
  3057. if (IS_ERR(trans))
  3058. return PTR_ERR(trans);
  3059. ret = btrfs_commit_transaction(trans, root);
  3060. if (ret)
  3061. return ret;
  3062. goto again;
  3063. }
  3064. return -ENOSPC;
  3065. }
  3066. data_sinfo->bytes_may_use += bytes;
  3067. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3068. data_sinfo->flags, bytes, 1);
  3069. spin_unlock(&data_sinfo->lock);
  3070. return 0;
  3071. }
  3072. /*
  3073. * Called if we need to clear a data reservation for this inode.
  3074. */
  3075. void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
  3076. {
  3077. struct btrfs_root *root = BTRFS_I(inode)->root;
  3078. struct btrfs_space_info *data_sinfo;
  3079. /* make sure bytes are sectorsize aligned */
  3080. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  3081. data_sinfo = root->fs_info->data_sinfo;
  3082. spin_lock(&data_sinfo->lock);
  3083. data_sinfo->bytes_may_use -= bytes;
  3084. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3085. data_sinfo->flags, bytes, 0);
  3086. spin_unlock(&data_sinfo->lock);
  3087. }
  3088. static void force_metadata_allocation(struct btrfs_fs_info *info)
  3089. {
  3090. struct list_head *head = &info->space_info;
  3091. struct btrfs_space_info *found;
  3092. rcu_read_lock();
  3093. list_for_each_entry_rcu(found, head, list) {
  3094. if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
  3095. found->force_alloc = CHUNK_ALLOC_FORCE;
  3096. }
  3097. rcu_read_unlock();
  3098. }
  3099. static int should_alloc_chunk(struct btrfs_root *root,
  3100. struct btrfs_space_info *sinfo, u64 alloc_bytes,
  3101. int force)
  3102. {
  3103. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3104. u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
  3105. u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
  3106. u64 thresh;
  3107. if (force == CHUNK_ALLOC_FORCE)
  3108. return 1;
  3109. /*
  3110. * We need to take into account the global rsv because for all intents
  3111. * and purposes it's used space. Don't worry about locking the
  3112. * global_rsv, it doesn't change except when the transaction commits.
  3113. */
  3114. num_allocated += global_rsv->size;
  3115. /*
  3116. * in limited mode, we want to have some free space up to
  3117. * about 1% of the FS size.
  3118. */
  3119. if (force == CHUNK_ALLOC_LIMITED) {
  3120. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  3121. thresh = max_t(u64, 64 * 1024 * 1024,
  3122. div_factor_fine(thresh, 1));
  3123. if (num_bytes - num_allocated < thresh)
  3124. return 1;
  3125. }
  3126. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  3127. /* 256MB or 2% of the FS */
  3128. thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
  3129. /* system chunks need a much small threshold */
  3130. if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
  3131. thresh = 32 * 1024 * 1024;
  3132. if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
  3133. return 0;
  3134. return 1;
  3135. }
  3136. static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
  3137. {
  3138. u64 num_dev;
  3139. if (type & BTRFS_BLOCK_GROUP_RAID10 ||
  3140. type & BTRFS_BLOCK_GROUP_RAID0)
  3141. num_dev = root->fs_info->fs_devices->rw_devices;
  3142. else if (type & BTRFS_BLOCK_GROUP_RAID1)
  3143. num_dev = 2;
  3144. else
  3145. num_dev = 1; /* DUP or single */
  3146. /* metadata for updaing devices and chunk tree */
  3147. return btrfs_calc_trans_metadata_size(root, num_dev + 1);
  3148. }
  3149. static void check_system_chunk(struct btrfs_trans_handle *trans,
  3150. struct btrfs_root *root, u64 type)
  3151. {
  3152. struct btrfs_space_info *info;
  3153. u64 left;
  3154. u64 thresh;
  3155. info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3156. spin_lock(&info->lock);
  3157. left = info->total_bytes - info->bytes_used - info->bytes_pinned -
  3158. info->bytes_reserved - info->bytes_readonly;
  3159. spin_unlock(&info->lock);
  3160. thresh = get_system_chunk_thresh(root, type);
  3161. if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
  3162. printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
  3163. left, thresh, type);
  3164. dump_space_info(info, 0, 0);
  3165. }
  3166. if (left < thresh) {
  3167. u64 flags;
  3168. flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
  3169. btrfs_alloc_chunk(trans, root, flags);
  3170. }
  3171. }
  3172. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  3173. struct btrfs_root *extent_root, u64 alloc_bytes,
  3174. u64 flags, int force)
  3175. {
  3176. struct btrfs_space_info *space_info;
  3177. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  3178. int wait_for_alloc = 0;
  3179. int ret = 0;
  3180. space_info = __find_space_info(extent_root->fs_info, flags);
  3181. if (!space_info) {
  3182. ret = update_space_info(extent_root->fs_info, flags,
  3183. 0, 0, &space_info);
  3184. BUG_ON(ret); /* -ENOMEM */
  3185. }
  3186. BUG_ON(!space_info); /* Logic error */
  3187. again:
  3188. spin_lock(&space_info->lock);
  3189. if (force < space_info->force_alloc)
  3190. force = space_info->force_alloc;
  3191. if (space_info->full) {
  3192. spin_unlock(&space_info->lock);
  3193. return 0;
  3194. }
  3195. if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
  3196. spin_unlock(&space_info->lock);
  3197. return 0;
  3198. } else if (space_info->chunk_alloc) {
  3199. wait_for_alloc = 1;
  3200. } else {
  3201. space_info->chunk_alloc = 1;
  3202. }
  3203. spin_unlock(&space_info->lock);
  3204. mutex_lock(&fs_info->chunk_mutex);
  3205. /*
  3206. * The chunk_mutex is held throughout the entirety of a chunk
  3207. * allocation, so once we've acquired the chunk_mutex we know that the
  3208. * other guy is done and we need to recheck and see if we should
  3209. * allocate.
  3210. */
  3211. if (wait_for_alloc) {
  3212. mutex_unlock(&fs_info->chunk_mutex);
  3213. wait_for_alloc = 0;
  3214. goto again;
  3215. }
  3216. /*
  3217. * If we have mixed data/metadata chunks we want to make sure we keep
  3218. * allocating mixed chunks instead of individual chunks.
  3219. */
  3220. if (btrfs_mixed_space_info(space_info))
  3221. flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
  3222. /*
  3223. * if we're doing a data chunk, go ahead and make sure that
  3224. * we keep a reasonable number of metadata chunks allocated in the
  3225. * FS as well.
  3226. */
  3227. if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
  3228. fs_info->data_chunk_allocations++;
  3229. if (!(fs_info->data_chunk_allocations %
  3230. fs_info->metadata_ratio))
  3231. force_metadata_allocation(fs_info);
  3232. }
  3233. /*
  3234. * Check if we have enough space in SYSTEM chunk because we may need
  3235. * to update devices.
  3236. */
  3237. check_system_chunk(trans, extent_root, flags);
  3238. ret = btrfs_alloc_chunk(trans, extent_root, flags);
  3239. if (ret < 0 && ret != -ENOSPC)
  3240. goto out;
  3241. spin_lock(&space_info->lock);
  3242. if (ret)
  3243. space_info->full = 1;
  3244. else
  3245. ret = 1;
  3246. space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  3247. space_info->chunk_alloc = 0;
  3248. spin_unlock(&space_info->lock);
  3249. out:
  3250. mutex_unlock(&fs_info->chunk_mutex);
  3251. return ret;
  3252. }
  3253. /*
  3254. * shrink metadata reservation for delalloc
  3255. */
  3256. static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
  3257. bool wait_ordered)
  3258. {
  3259. struct btrfs_block_rsv *block_rsv;
  3260. struct btrfs_space_info *space_info;
  3261. struct btrfs_trans_handle *trans;
  3262. u64 delalloc_bytes;
  3263. u64 max_reclaim;
  3264. long time_left;
  3265. unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
  3266. int loops = 0;
  3267. trans = (struct btrfs_trans_handle *)current->journal_info;
  3268. block_rsv = &root->fs_info->delalloc_block_rsv;
  3269. space_info = block_rsv->space_info;
  3270. smp_mb();
  3271. delalloc_bytes = root->fs_info->delalloc_bytes;
  3272. if (delalloc_bytes == 0) {
  3273. if (trans)
  3274. return;
  3275. btrfs_wait_ordered_extents(root, 0, 0);
  3276. return;
  3277. }
  3278. while (delalloc_bytes && loops < 3) {
  3279. max_reclaim = min(delalloc_bytes, to_reclaim);
  3280. nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
  3281. writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
  3282. WB_REASON_FS_FREE_SPACE);
  3283. spin_lock(&space_info->lock);
  3284. if (space_info->bytes_used + space_info->bytes_reserved +
  3285. space_info->bytes_pinned + space_info->bytes_readonly +
  3286. space_info->bytes_may_use + orig <=
  3287. space_info->total_bytes) {
  3288. spin_unlock(&space_info->lock);
  3289. break;
  3290. }
  3291. spin_unlock(&space_info->lock);
  3292. loops++;
  3293. if (wait_ordered && !trans) {
  3294. btrfs_wait_ordered_extents(root, 0, 0);
  3295. } else {
  3296. time_left = schedule_timeout_killable(1);
  3297. if (time_left)
  3298. break;
  3299. }
  3300. smp_mb();
  3301. delalloc_bytes = root->fs_info->delalloc_bytes;
  3302. }
  3303. }
  3304. /**
  3305. * maybe_commit_transaction - possibly commit the transaction if its ok to
  3306. * @root - the root we're allocating for
  3307. * @bytes - the number of bytes we want to reserve
  3308. * @force - force the commit
  3309. *
  3310. * This will check to make sure that committing the transaction will actually
  3311. * get us somewhere and then commit the transaction if it does. Otherwise it
  3312. * will return -ENOSPC.
  3313. */
  3314. static int may_commit_transaction(struct btrfs_root *root,
  3315. struct btrfs_space_info *space_info,
  3316. u64 bytes, int force)
  3317. {
  3318. struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
  3319. struct btrfs_trans_handle *trans;
  3320. trans = (struct btrfs_trans_handle *)current->journal_info;
  3321. if (trans)
  3322. return -EAGAIN;
  3323. if (force)
  3324. goto commit;
  3325. /* See if there is enough pinned space to make this reservation */
  3326. spin_lock(&space_info->lock);
  3327. if (space_info->bytes_pinned >= bytes) {
  3328. spin_unlock(&space_info->lock);
  3329. goto commit;
  3330. }
  3331. spin_unlock(&space_info->lock);
  3332. /*
  3333. * See if there is some space in the delayed insertion reservation for
  3334. * this reservation.
  3335. */
  3336. if (space_info != delayed_rsv->space_info)
  3337. return -ENOSPC;
  3338. spin_lock(&space_info->lock);
  3339. spin_lock(&delayed_rsv->lock);
  3340. if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
  3341. spin_unlock(&delayed_rsv->lock);
  3342. spin_unlock(&space_info->lock);
  3343. return -ENOSPC;
  3344. }
  3345. spin_unlock(&delayed_rsv->lock);
  3346. spin_unlock(&space_info->lock);
  3347. commit:
  3348. trans = btrfs_join_transaction(root);
  3349. if (IS_ERR(trans))
  3350. return -ENOSPC;
  3351. return btrfs_commit_transaction(trans, root);
  3352. }
  3353. enum flush_state {
  3354. FLUSH_DELALLOC = 1,
  3355. FLUSH_DELALLOC_WAIT = 2,
  3356. FLUSH_DELAYED_ITEMS_NR = 3,
  3357. FLUSH_DELAYED_ITEMS = 4,
  3358. COMMIT_TRANS = 5,
  3359. };
  3360. static int flush_space(struct btrfs_root *root,
  3361. struct btrfs_space_info *space_info, u64 num_bytes,
  3362. u64 orig_bytes, int state)
  3363. {
  3364. struct btrfs_trans_handle *trans;
  3365. int nr;
  3366. int ret = 0;
  3367. switch (state) {
  3368. case FLUSH_DELALLOC:
  3369. case FLUSH_DELALLOC_WAIT:
  3370. shrink_delalloc(root, num_bytes, orig_bytes,
  3371. state == FLUSH_DELALLOC_WAIT);
  3372. break;
  3373. case FLUSH_DELAYED_ITEMS_NR:
  3374. case FLUSH_DELAYED_ITEMS:
  3375. if (state == FLUSH_DELAYED_ITEMS_NR) {
  3376. u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
  3377. nr = (int)div64_u64(num_bytes, bytes);
  3378. if (!nr)
  3379. nr = 1;
  3380. nr *= 2;
  3381. } else {
  3382. nr = -1;
  3383. }
  3384. trans = btrfs_join_transaction(root);
  3385. if (IS_ERR(trans)) {
  3386. ret = PTR_ERR(trans);
  3387. break;
  3388. }
  3389. ret = btrfs_run_delayed_items_nr(trans, root, nr);
  3390. btrfs_end_transaction(trans, root);
  3391. break;
  3392. case COMMIT_TRANS:
  3393. ret = may_commit_transaction(root, space_info, orig_bytes, 0);
  3394. break;
  3395. default:
  3396. ret = -ENOSPC;
  3397. break;
  3398. }
  3399. return ret;
  3400. }
  3401. /**
  3402. * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
  3403. * @root - the root we're allocating for
  3404. * @block_rsv - the block_rsv we're allocating for
  3405. * @orig_bytes - the number of bytes we want
  3406. * @flush - wether or not we can flush to make our reservation
  3407. *
  3408. * This will reserve orgi_bytes number of bytes from the space info associated
  3409. * with the block_rsv. If there is not enough space it will make an attempt to
  3410. * flush out space to make room. It will do this by flushing delalloc if
  3411. * possible or committing the transaction. If flush is 0 then no attempts to
  3412. * regain reservations will be made and this will fail if there is not enough
  3413. * space already.
  3414. */
  3415. static int reserve_metadata_bytes(struct btrfs_root *root,
  3416. struct btrfs_block_rsv *block_rsv,
  3417. u64 orig_bytes, int flush)
  3418. {
  3419. struct btrfs_space_info *space_info = block_rsv->space_info;
  3420. u64 used;
  3421. u64 num_bytes = orig_bytes;
  3422. int flush_state = FLUSH_DELALLOC;
  3423. int ret = 0;
  3424. bool flushing = false;
  3425. bool committed = false;
  3426. again:
  3427. ret = 0;
  3428. spin_lock(&space_info->lock);
  3429. /*
  3430. * We only want to wait if somebody other than us is flushing and we are
  3431. * actually alloed to flush.
  3432. */
  3433. while (flush && !flushing && space_info->flush) {
  3434. spin_unlock(&space_info->lock);
  3435. /*
  3436. * If we have a trans handle we can't wait because the flusher
  3437. * may have to commit the transaction, which would mean we would
  3438. * deadlock since we are waiting for the flusher to finish, but
  3439. * hold the current transaction open.
  3440. */
  3441. if (current->journal_info)
  3442. return -EAGAIN;
  3443. ret = wait_event_killable(space_info->wait, !space_info->flush);
  3444. /* Must have been killed, return */
  3445. if (ret)
  3446. return -EINTR;
  3447. spin_lock(&space_info->lock);
  3448. }
  3449. ret = -ENOSPC;
  3450. used = space_info->bytes_used + space_info->bytes_reserved +
  3451. space_info->bytes_pinned + space_info->bytes_readonly +
  3452. space_info->bytes_may_use;
  3453. /*
  3454. * The idea here is that we've not already over-reserved the block group
  3455. * then we can go ahead and save our reservation first and then start
  3456. * flushing if we need to. Otherwise if we've already overcommitted
  3457. * lets start flushing stuff first and then come back and try to make
  3458. * our reservation.
  3459. */
  3460. if (used <= space_info->total_bytes) {
  3461. if (used + orig_bytes <= space_info->total_bytes) {
  3462. space_info->bytes_may_use += orig_bytes;
  3463. trace_btrfs_space_reservation(root->fs_info,
  3464. "space_info", space_info->flags, orig_bytes, 1);
  3465. ret = 0;
  3466. } else {
  3467. /*
  3468. * Ok set num_bytes to orig_bytes since we aren't
  3469. * overocmmitted, this way we only try and reclaim what
  3470. * we need.
  3471. */
  3472. num_bytes = orig_bytes;
  3473. }
  3474. } else {
  3475. /*
  3476. * Ok we're over committed, set num_bytes to the overcommitted
  3477. * amount plus the amount of bytes that we need for this
  3478. * reservation.
  3479. */
  3480. num_bytes = used - space_info->total_bytes +
  3481. (orig_bytes * 2);
  3482. }
  3483. if (ret) {
  3484. u64 profile = btrfs_get_alloc_profile(root, 0);
  3485. u64 avail;
  3486. /*
  3487. * If we have a lot of space that's pinned, don't bother doing
  3488. * the overcommit dance yet and just commit the transaction.
  3489. */
  3490. avail = (space_info->total_bytes - space_info->bytes_used) * 8;
  3491. do_div(avail, 10);
  3492. if (space_info->bytes_pinned >= avail && flush && !committed) {
  3493. space_info->flush = 1;
  3494. flushing = true;
  3495. spin_unlock(&space_info->lock);
  3496. ret = may_commit_transaction(root, space_info,
  3497. orig_bytes, 1);
  3498. if (ret)
  3499. goto out;
  3500. committed = true;
  3501. goto again;
  3502. }
  3503. spin_lock(&root->fs_info->free_chunk_lock);
  3504. avail = root->fs_info->free_chunk_space;
  3505. /*
  3506. * If we have dup, raid1 or raid10 then only half of the free
  3507. * space is actually useable.
  3508. */
  3509. if (profile & (BTRFS_BLOCK_GROUP_DUP |
  3510. BTRFS_BLOCK_GROUP_RAID1 |
  3511. BTRFS_BLOCK_GROUP_RAID10))
  3512. avail >>= 1;
  3513. /*
  3514. * If we aren't flushing don't let us overcommit too much, say
  3515. * 1/8th of the space. If we can flush, let it overcommit up to
  3516. * 1/2 of the space.
  3517. */
  3518. if (flush)
  3519. avail >>= 3;
  3520. else
  3521. avail >>= 1;
  3522. spin_unlock(&root->fs_info->free_chunk_lock);
  3523. if (used + num_bytes < space_info->total_bytes + avail) {
  3524. space_info->bytes_may_use += orig_bytes;
  3525. trace_btrfs_space_reservation(root->fs_info,
  3526. "space_info", space_info->flags, orig_bytes, 1);
  3527. ret = 0;
  3528. }
  3529. }
  3530. /*
  3531. * Couldn't make our reservation, save our place so while we're trying
  3532. * to reclaim space we can actually use it instead of somebody else
  3533. * stealing it from us.
  3534. */
  3535. if (ret && flush) {
  3536. flushing = true;
  3537. space_info->flush = 1;
  3538. }
  3539. spin_unlock(&space_info->lock);
  3540. if (!ret || !flush)
  3541. goto out;
  3542. ret = flush_space(root, space_info, num_bytes, orig_bytes,
  3543. flush_state);
  3544. flush_state++;
  3545. if (!ret)
  3546. goto again;
  3547. else if (flush_state <= COMMIT_TRANS)
  3548. goto again;
  3549. out:
  3550. if (flushing) {
  3551. spin_lock(&space_info->lock);
  3552. space_info->flush = 0;
  3553. wake_up_all(&space_info->wait);
  3554. spin_unlock(&space_info->lock);
  3555. }
  3556. return ret;
  3557. }
  3558. static struct btrfs_block_rsv *get_block_rsv(
  3559. const struct btrfs_trans_handle *trans,
  3560. const struct btrfs_root *root)
  3561. {
  3562. struct btrfs_block_rsv *block_rsv = NULL;
  3563. if (root->ref_cows)
  3564. block_rsv = trans->block_rsv;
  3565. if (root == root->fs_info->csum_root && trans->adding_csums)
  3566. block_rsv = trans->block_rsv;
  3567. if (!block_rsv)
  3568. block_rsv = root->block_rsv;
  3569. if (!block_rsv)
  3570. block_rsv = &root->fs_info->empty_block_rsv;
  3571. return block_rsv;
  3572. }
  3573. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  3574. u64 num_bytes)
  3575. {
  3576. int ret = -ENOSPC;
  3577. spin_lock(&block_rsv->lock);
  3578. if (block_rsv->reserved >= num_bytes) {
  3579. block_rsv->reserved -= num_bytes;
  3580. if (block_rsv->reserved < block_rsv->size)
  3581. block_rsv->full = 0;
  3582. ret = 0;
  3583. }
  3584. spin_unlock(&block_rsv->lock);
  3585. return ret;
  3586. }
  3587. static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
  3588. u64 num_bytes, int update_size)
  3589. {
  3590. spin_lock(&block_rsv->lock);
  3591. block_rsv->reserved += num_bytes;
  3592. if (update_size)
  3593. block_rsv->size += num_bytes;
  3594. else if (block_rsv->reserved >= block_rsv->size)
  3595. block_rsv->full = 1;
  3596. spin_unlock(&block_rsv->lock);
  3597. }
  3598. static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
  3599. struct btrfs_block_rsv *block_rsv,
  3600. struct btrfs_block_rsv *dest, u64 num_bytes)
  3601. {
  3602. struct btrfs_space_info *space_info = block_rsv->space_info;
  3603. spin_lock(&block_rsv->lock);
  3604. if (num_bytes == (u64)-1)
  3605. num_bytes = block_rsv->size;
  3606. block_rsv->size -= num_bytes;
  3607. if (block_rsv->reserved >= block_rsv->size) {
  3608. num_bytes = block_rsv->reserved - block_rsv->size;
  3609. block_rsv->reserved = block_rsv->size;
  3610. block_rsv->full = 1;
  3611. } else {
  3612. num_bytes = 0;
  3613. }
  3614. spin_unlock(&block_rsv->lock);
  3615. if (num_bytes > 0) {
  3616. if (dest) {
  3617. spin_lock(&dest->lock);
  3618. if (!dest->full) {
  3619. u64 bytes_to_add;
  3620. bytes_to_add = dest->size - dest->reserved;
  3621. bytes_to_add = min(num_bytes, bytes_to_add);
  3622. dest->reserved += bytes_to_add;
  3623. if (dest->reserved >= dest->size)
  3624. dest->full = 1;
  3625. num_bytes -= bytes_to_add;
  3626. }
  3627. spin_unlock(&dest->lock);
  3628. }
  3629. if (num_bytes) {
  3630. spin_lock(&space_info->lock);
  3631. space_info->bytes_may_use -= num_bytes;
  3632. trace_btrfs_space_reservation(fs_info, "space_info",
  3633. space_info->flags, num_bytes, 0);
  3634. space_info->reservation_progress++;
  3635. spin_unlock(&space_info->lock);
  3636. }
  3637. }
  3638. }
  3639. static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
  3640. struct btrfs_block_rsv *dst, u64 num_bytes)
  3641. {
  3642. int ret;
  3643. ret = block_rsv_use_bytes(src, num_bytes);
  3644. if (ret)
  3645. return ret;
  3646. block_rsv_add_bytes(dst, num_bytes, 1);
  3647. return 0;
  3648. }
  3649. void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
  3650. {
  3651. memset(rsv, 0, sizeof(*rsv));
  3652. spin_lock_init(&rsv->lock);
  3653. }
  3654. struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
  3655. {
  3656. struct btrfs_block_rsv *block_rsv;
  3657. struct btrfs_fs_info *fs_info = root->fs_info;
  3658. block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
  3659. if (!block_rsv)
  3660. return NULL;
  3661. btrfs_init_block_rsv(block_rsv);
  3662. block_rsv->space_info = __find_space_info(fs_info,
  3663. BTRFS_BLOCK_GROUP_METADATA);
  3664. return block_rsv;
  3665. }
  3666. void btrfs_free_block_rsv(struct btrfs_root *root,
  3667. struct btrfs_block_rsv *rsv)
  3668. {
  3669. btrfs_block_rsv_release(root, rsv, (u64)-1);
  3670. kfree(rsv);
  3671. }
  3672. static inline int __block_rsv_add(struct btrfs_root *root,
  3673. struct btrfs_block_rsv *block_rsv,
  3674. u64 num_bytes, int flush)
  3675. {
  3676. int ret;
  3677. if (num_bytes == 0)
  3678. return 0;
  3679. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3680. if (!ret) {
  3681. block_rsv_add_bytes(block_rsv, num_bytes, 1);
  3682. return 0;
  3683. }
  3684. return ret;
  3685. }
  3686. int btrfs_block_rsv_add(struct btrfs_root *root,
  3687. struct btrfs_block_rsv *block_rsv,
  3688. u64 num_bytes)
  3689. {
  3690. return __block_rsv_add(root, block_rsv, num_bytes, 1);
  3691. }
  3692. int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
  3693. struct btrfs_block_rsv *block_rsv,
  3694. u64 num_bytes)
  3695. {
  3696. return __block_rsv_add(root, block_rsv, num_bytes, 0);
  3697. }
  3698. int btrfs_block_rsv_check(struct btrfs_root *root,
  3699. struct btrfs_block_rsv *block_rsv, int min_factor)
  3700. {
  3701. u64 num_bytes = 0;
  3702. int ret = -ENOSPC;
  3703. if (!block_rsv)
  3704. return 0;
  3705. spin_lock(&block_rsv->lock);
  3706. num_bytes = div_factor(block_rsv->size, min_factor);
  3707. if (block_rsv->reserved >= num_bytes)
  3708. ret = 0;
  3709. spin_unlock(&block_rsv->lock);
  3710. return ret;
  3711. }
  3712. static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
  3713. struct btrfs_block_rsv *block_rsv,
  3714. u64 min_reserved, int flush)
  3715. {
  3716. u64 num_bytes = 0;
  3717. int ret = -ENOSPC;
  3718. if (!block_rsv)
  3719. return 0;
  3720. spin_lock(&block_rsv->lock);
  3721. num_bytes = min_reserved;
  3722. if (block_rsv->reserved >= num_bytes)
  3723. ret = 0;
  3724. else
  3725. num_bytes -= block_rsv->reserved;
  3726. spin_unlock(&block_rsv->lock);
  3727. if (!ret)
  3728. return 0;
  3729. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3730. if (!ret) {
  3731. block_rsv_add_bytes(block_rsv, num_bytes, 0);
  3732. return 0;
  3733. }
  3734. return ret;
  3735. }
  3736. int btrfs_block_rsv_refill(struct btrfs_root *root,
  3737. struct btrfs_block_rsv *block_rsv,
  3738. u64 min_reserved)
  3739. {
  3740. return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
  3741. }
  3742. int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
  3743. struct btrfs_block_rsv *block_rsv,
  3744. u64 min_reserved)
  3745. {
  3746. return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
  3747. }
  3748. int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
  3749. struct btrfs_block_rsv *dst_rsv,
  3750. u64 num_bytes)
  3751. {
  3752. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3753. }
  3754. void btrfs_block_rsv_release(struct btrfs_root *root,
  3755. struct btrfs_block_rsv *block_rsv,
  3756. u64 num_bytes)
  3757. {
  3758. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3759. if (global_rsv->full || global_rsv == block_rsv ||
  3760. block_rsv->space_info != global_rsv->space_info)
  3761. global_rsv = NULL;
  3762. block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
  3763. num_bytes);
  3764. }
  3765. /*
  3766. * helper to calculate size of global block reservation.
  3767. * the desired value is sum of space used by extent tree,
  3768. * checksum tree and root tree
  3769. */
  3770. static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
  3771. {
  3772. struct btrfs_space_info *sinfo;
  3773. u64 num_bytes;
  3774. u64 meta_used;
  3775. u64 data_used;
  3776. int csum_size = btrfs_super_csum_size(fs_info->super_copy);
  3777. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
  3778. spin_lock(&sinfo->lock);
  3779. data_used = sinfo->bytes_used;
  3780. spin_unlock(&sinfo->lock);
  3781. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3782. spin_lock(&sinfo->lock);
  3783. if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
  3784. data_used = 0;
  3785. meta_used = sinfo->bytes_used;
  3786. spin_unlock(&sinfo->lock);
  3787. num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
  3788. csum_size * 2;
  3789. num_bytes += div64_u64(data_used + meta_used, 50);
  3790. if (num_bytes * 3 > meta_used)
  3791. num_bytes = div64_u64(meta_used, 3);
  3792. return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
  3793. }
  3794. static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
  3795. {
  3796. struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
  3797. struct btrfs_space_info *sinfo = block_rsv->space_info;
  3798. u64 num_bytes;
  3799. num_bytes = calc_global_metadata_size(fs_info);
  3800. spin_lock(&sinfo->lock);
  3801. spin_lock(&block_rsv->lock);
  3802. block_rsv->size = num_bytes;
  3803. num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
  3804. sinfo->bytes_reserved + sinfo->bytes_readonly +
  3805. sinfo->bytes_may_use;
  3806. if (sinfo->total_bytes > num_bytes) {
  3807. num_bytes = sinfo->total_bytes - num_bytes;
  3808. block_rsv->reserved += num_bytes;
  3809. sinfo->bytes_may_use += num_bytes;
  3810. trace_btrfs_space_reservation(fs_info, "space_info",
  3811. sinfo->flags, num_bytes, 1);
  3812. }
  3813. if (block_rsv->reserved >= block_rsv->size) {
  3814. num_bytes = block_rsv->reserved - block_rsv->size;
  3815. sinfo->bytes_may_use -= num_bytes;
  3816. trace_btrfs_space_reservation(fs_info, "space_info",
  3817. sinfo->flags, num_bytes, 0);
  3818. sinfo->reservation_progress++;
  3819. block_rsv->reserved = block_rsv->size;
  3820. block_rsv->full = 1;
  3821. }
  3822. spin_unlock(&block_rsv->lock);
  3823. spin_unlock(&sinfo->lock);
  3824. }
  3825. static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
  3826. {
  3827. struct btrfs_space_info *space_info;
  3828. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3829. fs_info->chunk_block_rsv.space_info = space_info;
  3830. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3831. fs_info->global_block_rsv.space_info = space_info;
  3832. fs_info->delalloc_block_rsv.space_info = space_info;
  3833. fs_info->trans_block_rsv.space_info = space_info;
  3834. fs_info->empty_block_rsv.space_info = space_info;
  3835. fs_info->delayed_block_rsv.space_info = space_info;
  3836. fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
  3837. fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
  3838. fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
  3839. fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
  3840. fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
  3841. update_global_block_rsv(fs_info);
  3842. }
  3843. static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
  3844. {
  3845. block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
  3846. (u64)-1);
  3847. WARN_ON(fs_info->delalloc_block_rsv.size > 0);
  3848. WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
  3849. WARN_ON(fs_info->trans_block_rsv.size > 0);
  3850. WARN_ON(fs_info->trans_block_rsv.reserved > 0);
  3851. WARN_ON(fs_info->chunk_block_rsv.size > 0);
  3852. WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
  3853. WARN_ON(fs_info->delayed_block_rsv.size > 0);
  3854. WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
  3855. }
  3856. void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
  3857. struct btrfs_root *root)
  3858. {
  3859. if (!trans->block_rsv)
  3860. return;
  3861. if (!trans->bytes_reserved)
  3862. return;
  3863. trace_btrfs_space_reservation(root->fs_info, "transaction",
  3864. trans->transid, trans->bytes_reserved, 0);
  3865. btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
  3866. trans->bytes_reserved = 0;
  3867. }
  3868. /* Can only return 0 or -ENOSPC */
  3869. int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
  3870. struct inode *inode)
  3871. {
  3872. struct btrfs_root *root = BTRFS_I(inode)->root;
  3873. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3874. struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
  3875. /*
  3876. * We need to hold space in order to delete our orphan item once we've
  3877. * added it, so this takes the reservation so we can release it later
  3878. * when we are truly done with the orphan item.
  3879. */
  3880. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3881. trace_btrfs_space_reservation(root->fs_info, "orphan",
  3882. btrfs_ino(inode), num_bytes, 1);
  3883. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3884. }
  3885. void btrfs_orphan_release_metadata(struct inode *inode)
  3886. {
  3887. struct btrfs_root *root = BTRFS_I(inode)->root;
  3888. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3889. trace_btrfs_space_reservation(root->fs_info, "orphan",
  3890. btrfs_ino(inode), num_bytes, 0);
  3891. btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
  3892. }
  3893. int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
  3894. struct btrfs_pending_snapshot *pending)
  3895. {
  3896. struct btrfs_root *root = pending->root;
  3897. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3898. struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
  3899. /*
  3900. * two for root back/forward refs, two for directory entries
  3901. * and one for root of the snapshot.
  3902. */
  3903. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
  3904. dst_rsv->space_info = src_rsv->space_info;
  3905. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3906. }
  3907. /**
  3908. * drop_outstanding_extent - drop an outstanding extent
  3909. * @inode: the inode we're dropping the extent for
  3910. *
  3911. * This is called when we are freeing up an outstanding extent, either called
  3912. * after an error or after an extent is written. This will return the number of
  3913. * reserved extents that need to be freed. This must be called with
  3914. * BTRFS_I(inode)->lock held.
  3915. */
  3916. static unsigned drop_outstanding_extent(struct inode *inode)
  3917. {
  3918. unsigned drop_inode_space = 0;
  3919. unsigned dropped_extents = 0;
  3920. BUG_ON(!BTRFS_I(inode)->outstanding_extents);
  3921. BTRFS_I(inode)->outstanding_extents--;
  3922. if (BTRFS_I(inode)->outstanding_extents == 0 &&
  3923. test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  3924. &BTRFS_I(inode)->runtime_flags))
  3925. drop_inode_space = 1;
  3926. /*
  3927. * If we have more or the same amount of outsanding extents than we have
  3928. * reserved then we need to leave the reserved extents count alone.
  3929. */
  3930. if (BTRFS_I(inode)->outstanding_extents >=
  3931. BTRFS_I(inode)->reserved_extents)
  3932. return drop_inode_space;
  3933. dropped_extents = BTRFS_I(inode)->reserved_extents -
  3934. BTRFS_I(inode)->outstanding_extents;
  3935. BTRFS_I(inode)->reserved_extents -= dropped_extents;
  3936. return dropped_extents + drop_inode_space;
  3937. }
  3938. /**
  3939. * calc_csum_metadata_size - return the amount of metada space that must be
  3940. * reserved/free'd for the given bytes.
  3941. * @inode: the inode we're manipulating
  3942. * @num_bytes: the number of bytes in question
  3943. * @reserve: 1 if we are reserving space, 0 if we are freeing space
  3944. *
  3945. * This adjusts the number of csum_bytes in the inode and then returns the
  3946. * correct amount of metadata that must either be reserved or freed. We
  3947. * calculate how many checksums we can fit into one leaf and then divide the
  3948. * number of bytes that will need to be checksumed by this value to figure out
  3949. * how many checksums will be required. If we are adding bytes then the number
  3950. * may go up and we will return the number of additional bytes that must be
  3951. * reserved. If it is going down we will return the number of bytes that must
  3952. * be freed.
  3953. *
  3954. * This must be called with BTRFS_I(inode)->lock held.
  3955. */
  3956. static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
  3957. int reserve)
  3958. {
  3959. struct btrfs_root *root = BTRFS_I(inode)->root;
  3960. u64 csum_size;
  3961. int num_csums_per_leaf;
  3962. int num_csums;
  3963. int old_csums;
  3964. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
  3965. BTRFS_I(inode)->csum_bytes == 0)
  3966. return 0;
  3967. old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3968. if (reserve)
  3969. BTRFS_I(inode)->csum_bytes += num_bytes;
  3970. else
  3971. BTRFS_I(inode)->csum_bytes -= num_bytes;
  3972. csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
  3973. num_csums_per_leaf = (int)div64_u64(csum_size,
  3974. sizeof(struct btrfs_csum_item) +
  3975. sizeof(struct btrfs_disk_key));
  3976. num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3977. num_csums = num_csums + num_csums_per_leaf - 1;
  3978. num_csums = num_csums / num_csums_per_leaf;
  3979. old_csums = old_csums + num_csums_per_leaf - 1;
  3980. old_csums = old_csums / num_csums_per_leaf;
  3981. /* No change, no need to reserve more */
  3982. if (old_csums == num_csums)
  3983. return 0;
  3984. if (reserve)
  3985. return btrfs_calc_trans_metadata_size(root,
  3986. num_csums - old_csums);
  3987. return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
  3988. }
  3989. int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
  3990. {
  3991. struct btrfs_root *root = BTRFS_I(inode)->root;
  3992. struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
  3993. u64 to_reserve = 0;
  3994. u64 csum_bytes;
  3995. unsigned nr_extents = 0;
  3996. int extra_reserve = 0;
  3997. int flush = 1;
  3998. int ret;
  3999. /* Need to be holding the i_mutex here if we aren't free space cache */
  4000. if (btrfs_is_free_space_inode(inode))
  4001. flush = 0;
  4002. if (flush && btrfs_transaction_in_commit(root->fs_info))
  4003. schedule_timeout(1);
  4004. mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
  4005. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4006. spin_lock(&BTRFS_I(inode)->lock);
  4007. BTRFS_I(inode)->outstanding_extents++;
  4008. if (BTRFS_I(inode)->outstanding_extents >
  4009. BTRFS_I(inode)->reserved_extents)
  4010. nr_extents = BTRFS_I(inode)->outstanding_extents -
  4011. BTRFS_I(inode)->reserved_extents;
  4012. /*
  4013. * Add an item to reserve for updating the inode when we complete the
  4014. * delalloc io.
  4015. */
  4016. if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4017. &BTRFS_I(inode)->runtime_flags)) {
  4018. nr_extents++;
  4019. extra_reserve = 1;
  4020. }
  4021. to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
  4022. to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
  4023. csum_bytes = BTRFS_I(inode)->csum_bytes;
  4024. spin_unlock(&BTRFS_I(inode)->lock);
  4025. if (root->fs_info->quota_enabled) {
  4026. ret = btrfs_qgroup_reserve(root, num_bytes +
  4027. nr_extents * root->leafsize);
  4028. if (ret) {
  4029. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4030. return ret;
  4031. }
  4032. }
  4033. ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
  4034. if (ret) {
  4035. u64 to_free = 0;
  4036. unsigned dropped;
  4037. spin_lock(&BTRFS_I(inode)->lock);
  4038. dropped = drop_outstanding_extent(inode);
  4039. /*
  4040. * If the inodes csum_bytes is the same as the original
  4041. * csum_bytes then we know we haven't raced with any free()ers
  4042. * so we can just reduce our inodes csum bytes and carry on.
  4043. * Otherwise we have to do the normal free thing to account for
  4044. * the case that the free side didn't free up its reserve
  4045. * because of this outstanding reservation.
  4046. */
  4047. if (BTRFS_I(inode)->csum_bytes == csum_bytes)
  4048. calc_csum_metadata_size(inode, num_bytes, 0);
  4049. else
  4050. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  4051. spin_unlock(&BTRFS_I(inode)->lock);
  4052. if (dropped)
  4053. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4054. if (to_free) {
  4055. btrfs_block_rsv_release(root, block_rsv, to_free);
  4056. trace_btrfs_space_reservation(root->fs_info,
  4057. "delalloc",
  4058. btrfs_ino(inode),
  4059. to_free, 0);
  4060. }
  4061. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4062. return ret;
  4063. }
  4064. spin_lock(&BTRFS_I(inode)->lock);
  4065. if (extra_reserve) {
  4066. set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4067. &BTRFS_I(inode)->runtime_flags);
  4068. nr_extents--;
  4069. }
  4070. BTRFS_I(inode)->reserved_extents += nr_extents;
  4071. spin_unlock(&BTRFS_I(inode)->lock);
  4072. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4073. if (to_reserve)
  4074. trace_btrfs_space_reservation(root->fs_info,"delalloc",
  4075. btrfs_ino(inode), to_reserve, 1);
  4076. block_rsv_add_bytes(block_rsv, to_reserve, 1);
  4077. return 0;
  4078. }
  4079. /**
  4080. * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
  4081. * @inode: the inode to release the reservation for
  4082. * @num_bytes: the number of bytes we're releasing
  4083. *
  4084. * This will release the metadata reservation for an inode. This can be called
  4085. * once we complete IO for a given set of bytes to release their metadata
  4086. * reservations.
  4087. */
  4088. void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
  4089. {
  4090. struct btrfs_root *root = BTRFS_I(inode)->root;
  4091. u64 to_free = 0;
  4092. unsigned dropped;
  4093. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4094. spin_lock(&BTRFS_I(inode)->lock);
  4095. dropped = drop_outstanding_extent(inode);
  4096. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  4097. spin_unlock(&BTRFS_I(inode)->lock);
  4098. if (dropped > 0)
  4099. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4100. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  4101. btrfs_ino(inode), to_free, 0);
  4102. if (root->fs_info->quota_enabled) {
  4103. btrfs_qgroup_free(root, num_bytes +
  4104. dropped * root->leafsize);
  4105. }
  4106. btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
  4107. to_free);
  4108. }
  4109. /**
  4110. * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
  4111. * @inode: inode we're writing to
  4112. * @num_bytes: the number of bytes we want to allocate
  4113. *
  4114. * This will do the following things
  4115. *
  4116. * o reserve space in the data space info for num_bytes
  4117. * o reserve space in the metadata space info based on number of outstanding
  4118. * extents and how much csums will be needed
  4119. * o add to the inodes ->delalloc_bytes
  4120. * o add it to the fs_info's delalloc inodes list.
  4121. *
  4122. * This will return 0 for success and -ENOSPC if there is no space left.
  4123. */
  4124. int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
  4125. {
  4126. int ret;
  4127. ret = btrfs_check_data_free_space(inode, num_bytes);
  4128. if (ret)
  4129. return ret;
  4130. ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
  4131. if (ret) {
  4132. btrfs_free_reserved_data_space(inode, num_bytes);
  4133. return ret;
  4134. }
  4135. return 0;
  4136. }
  4137. /**
  4138. * btrfs_delalloc_release_space - release data and metadata space for delalloc
  4139. * @inode: inode we're releasing space for
  4140. * @num_bytes: the number of bytes we want to free up
  4141. *
  4142. * This must be matched with a call to btrfs_delalloc_reserve_space. This is
  4143. * called in the case that we don't need the metadata AND data reservations
  4144. * anymore. So if there is an error or we insert an inline extent.
  4145. *
  4146. * This function will release the metadata space that was not used and will
  4147. * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
  4148. * list if there are no delalloc bytes left.
  4149. */
  4150. void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
  4151. {
  4152. btrfs_delalloc_release_metadata(inode, num_bytes);
  4153. btrfs_free_reserved_data_space(inode, num_bytes);
  4154. }
  4155. static int update_block_group(struct btrfs_trans_handle *trans,
  4156. struct btrfs_root *root,
  4157. u64 bytenr, u64 num_bytes, int alloc)
  4158. {
  4159. struct btrfs_block_group_cache *cache = NULL;
  4160. struct btrfs_fs_info *info = root->fs_info;
  4161. u64 total = num_bytes;
  4162. u64 old_val;
  4163. u64 byte_in_group;
  4164. int factor;
  4165. /* block accounting for super block */
  4166. spin_lock(&info->delalloc_lock);
  4167. old_val = btrfs_super_bytes_used(info->super_copy);
  4168. if (alloc)
  4169. old_val += num_bytes;
  4170. else
  4171. old_val -= num_bytes;
  4172. btrfs_set_super_bytes_used(info->super_copy, old_val);
  4173. spin_unlock(&info->delalloc_lock);
  4174. while (total) {
  4175. cache = btrfs_lookup_block_group(info, bytenr);
  4176. if (!cache)
  4177. return -ENOENT;
  4178. if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
  4179. BTRFS_BLOCK_GROUP_RAID1 |
  4180. BTRFS_BLOCK_GROUP_RAID10))
  4181. factor = 2;
  4182. else
  4183. factor = 1;
  4184. /*
  4185. * If this block group has free space cache written out, we
  4186. * need to make sure to load it if we are removing space. This
  4187. * is because we need the unpinning stage to actually add the
  4188. * space back to the block group, otherwise we will leak space.
  4189. */
  4190. if (!alloc && cache->cached == BTRFS_CACHE_NO)
  4191. cache_block_group(cache, trans, NULL, 1);
  4192. byte_in_group = bytenr - cache->key.objectid;
  4193. WARN_ON(byte_in_group > cache->key.offset);
  4194. spin_lock(&cache->space_info->lock);
  4195. spin_lock(&cache->lock);
  4196. if (btrfs_test_opt(root, SPACE_CACHE) &&
  4197. cache->disk_cache_state < BTRFS_DC_CLEAR)
  4198. cache->disk_cache_state = BTRFS_DC_CLEAR;
  4199. cache->dirty = 1;
  4200. old_val = btrfs_block_group_used(&cache->item);
  4201. num_bytes = min(total, cache->key.offset - byte_in_group);
  4202. if (alloc) {
  4203. old_val += num_bytes;
  4204. btrfs_set_block_group_used(&cache->item, old_val);
  4205. cache->reserved -= num_bytes;
  4206. cache->space_info->bytes_reserved -= num_bytes;
  4207. cache->space_info->bytes_used += num_bytes;
  4208. cache->space_info->disk_used += num_bytes * factor;
  4209. spin_unlock(&cache->lock);
  4210. spin_unlock(&cache->space_info->lock);
  4211. } else {
  4212. old_val -= num_bytes;
  4213. btrfs_set_block_group_used(&cache->item, old_val);
  4214. cache->pinned += num_bytes;
  4215. cache->space_info->bytes_pinned += num_bytes;
  4216. cache->space_info->bytes_used -= num_bytes;
  4217. cache->space_info->disk_used -= num_bytes * factor;
  4218. spin_unlock(&cache->lock);
  4219. spin_unlock(&cache->space_info->lock);
  4220. set_extent_dirty(info->pinned_extents,
  4221. bytenr, bytenr + num_bytes - 1,
  4222. GFP_NOFS | __GFP_NOFAIL);
  4223. }
  4224. btrfs_put_block_group(cache);
  4225. total -= num_bytes;
  4226. bytenr += num_bytes;
  4227. }
  4228. return 0;
  4229. }
  4230. static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
  4231. {
  4232. struct btrfs_block_group_cache *cache;
  4233. u64 bytenr;
  4234. cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
  4235. if (!cache)
  4236. return 0;
  4237. bytenr = cache->key.objectid;
  4238. btrfs_put_block_group(cache);
  4239. return bytenr;
  4240. }
  4241. static int pin_down_extent(struct btrfs_root *root,
  4242. struct btrfs_block_group_cache *cache,
  4243. u64 bytenr, u64 num_bytes, int reserved)
  4244. {
  4245. spin_lock(&cache->space_info->lock);
  4246. spin_lock(&cache->lock);
  4247. cache->pinned += num_bytes;
  4248. cache->space_info->bytes_pinned += num_bytes;
  4249. if (reserved) {
  4250. cache->reserved -= num_bytes;
  4251. cache->space_info->bytes_reserved -= num_bytes;
  4252. }
  4253. spin_unlock(&cache->lock);
  4254. spin_unlock(&cache->space_info->lock);
  4255. set_extent_dirty(root->fs_info->pinned_extents, bytenr,
  4256. bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
  4257. return 0;
  4258. }
  4259. /*
  4260. * this function must be called within transaction
  4261. */
  4262. int btrfs_pin_extent(struct btrfs_root *root,
  4263. u64 bytenr, u64 num_bytes, int reserved)
  4264. {
  4265. struct btrfs_block_group_cache *cache;
  4266. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4267. BUG_ON(!cache); /* Logic error */
  4268. pin_down_extent(root, cache, bytenr, num_bytes, reserved);
  4269. btrfs_put_block_group(cache);
  4270. return 0;
  4271. }
  4272. /*
  4273. * this function must be called within transaction
  4274. */
  4275. int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
  4276. struct btrfs_root *root,
  4277. u64 bytenr, u64 num_bytes)
  4278. {
  4279. struct btrfs_block_group_cache *cache;
  4280. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4281. BUG_ON(!cache); /* Logic error */
  4282. /*
  4283. * pull in the free space cache (if any) so that our pin
  4284. * removes the free space from the cache. We have load_only set
  4285. * to one because the slow code to read in the free extents does check
  4286. * the pinned extents.
  4287. */
  4288. cache_block_group(cache, trans, root, 1);
  4289. pin_down_extent(root, cache, bytenr, num_bytes, 0);
  4290. /* remove us from the free space cache (if we're there at all) */
  4291. btrfs_remove_free_space(cache, bytenr, num_bytes);
  4292. btrfs_put_block_group(cache);
  4293. return 0;
  4294. }
  4295. /**
  4296. * btrfs_update_reserved_bytes - update the block_group and space info counters
  4297. * @cache: The cache we are manipulating
  4298. * @num_bytes: The number of bytes in question
  4299. * @reserve: One of the reservation enums
  4300. *
  4301. * This is called by the allocator when it reserves space, or by somebody who is
  4302. * freeing space that was never actually used on disk. For example if you
  4303. * reserve some space for a new leaf in transaction A and before transaction A
  4304. * commits you free that leaf, you call this with reserve set to 0 in order to
  4305. * clear the reservation.
  4306. *
  4307. * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
  4308. * ENOSPC accounting. For data we handle the reservation through clearing the
  4309. * delalloc bits in the io_tree. We have to do this since we could end up
  4310. * allocating less disk space for the amount of data we have reserved in the
  4311. * case of compression.
  4312. *
  4313. * If this is a reservation and the block group has become read only we cannot
  4314. * make the reservation and return -EAGAIN, otherwise this function always
  4315. * succeeds.
  4316. */
  4317. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  4318. u64 num_bytes, int reserve)
  4319. {
  4320. struct btrfs_space_info *space_info = cache->space_info;
  4321. int ret = 0;
  4322. spin_lock(&space_info->lock);
  4323. spin_lock(&cache->lock);
  4324. if (reserve != RESERVE_FREE) {
  4325. if (cache->ro) {
  4326. ret = -EAGAIN;
  4327. } else {
  4328. cache->reserved += num_bytes;
  4329. space_info->bytes_reserved += num_bytes;
  4330. if (reserve == RESERVE_ALLOC) {
  4331. trace_btrfs_space_reservation(cache->fs_info,
  4332. "space_info", space_info->flags,
  4333. num_bytes, 0);
  4334. space_info->bytes_may_use -= num_bytes;
  4335. }
  4336. }
  4337. } else {
  4338. if (cache->ro)
  4339. space_info->bytes_readonly += num_bytes;
  4340. cache->reserved -= num_bytes;
  4341. space_info->bytes_reserved -= num_bytes;
  4342. space_info->reservation_progress++;
  4343. }
  4344. spin_unlock(&cache->lock);
  4345. spin_unlock(&space_info->lock);
  4346. return ret;
  4347. }
  4348. void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
  4349. struct btrfs_root *root)
  4350. {
  4351. struct btrfs_fs_info *fs_info = root->fs_info;
  4352. struct btrfs_caching_control *next;
  4353. struct btrfs_caching_control *caching_ctl;
  4354. struct btrfs_block_group_cache *cache;
  4355. down_write(&fs_info->extent_commit_sem);
  4356. list_for_each_entry_safe(caching_ctl, next,
  4357. &fs_info->caching_block_groups, list) {
  4358. cache = caching_ctl->block_group;
  4359. if (block_group_cache_done(cache)) {
  4360. cache->last_byte_to_unpin = (u64)-1;
  4361. list_del_init(&caching_ctl->list);
  4362. put_caching_control(caching_ctl);
  4363. } else {
  4364. cache->last_byte_to_unpin = caching_ctl->progress;
  4365. }
  4366. }
  4367. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4368. fs_info->pinned_extents = &fs_info->freed_extents[1];
  4369. else
  4370. fs_info->pinned_extents = &fs_info->freed_extents[0];
  4371. up_write(&fs_info->extent_commit_sem);
  4372. update_global_block_rsv(fs_info);
  4373. }
  4374. static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  4375. {
  4376. struct btrfs_fs_info *fs_info = root->fs_info;
  4377. struct btrfs_block_group_cache *cache = NULL;
  4378. u64 len;
  4379. while (start <= end) {
  4380. if (!cache ||
  4381. start >= cache->key.objectid + cache->key.offset) {
  4382. if (cache)
  4383. btrfs_put_block_group(cache);
  4384. cache = btrfs_lookup_block_group(fs_info, start);
  4385. BUG_ON(!cache); /* Logic error */
  4386. }
  4387. len = cache->key.objectid + cache->key.offset - start;
  4388. len = min(len, end + 1 - start);
  4389. if (start < cache->last_byte_to_unpin) {
  4390. len = min(len, cache->last_byte_to_unpin - start);
  4391. btrfs_add_free_space(cache, start, len);
  4392. }
  4393. start += len;
  4394. spin_lock(&cache->space_info->lock);
  4395. spin_lock(&cache->lock);
  4396. cache->pinned -= len;
  4397. cache->space_info->bytes_pinned -= len;
  4398. if (cache->ro)
  4399. cache->space_info->bytes_readonly += len;
  4400. spin_unlock(&cache->lock);
  4401. spin_unlock(&cache->space_info->lock);
  4402. }
  4403. if (cache)
  4404. btrfs_put_block_group(cache);
  4405. return 0;
  4406. }
  4407. int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
  4408. struct btrfs_root *root)
  4409. {
  4410. struct btrfs_fs_info *fs_info = root->fs_info;
  4411. struct extent_io_tree *unpin;
  4412. u64 start;
  4413. u64 end;
  4414. int ret;
  4415. if (trans->aborted)
  4416. return 0;
  4417. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4418. unpin = &fs_info->freed_extents[1];
  4419. else
  4420. unpin = &fs_info->freed_extents[0];
  4421. while (1) {
  4422. ret = find_first_extent_bit(unpin, 0, &start, &end,
  4423. EXTENT_DIRTY);
  4424. if (ret)
  4425. break;
  4426. if (btrfs_test_opt(root, DISCARD))
  4427. ret = btrfs_discard_extent(root, start,
  4428. end + 1 - start, NULL);
  4429. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  4430. unpin_extent_range(root, start, end);
  4431. cond_resched();
  4432. }
  4433. return 0;
  4434. }
  4435. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  4436. struct btrfs_root *root,
  4437. u64 bytenr, u64 num_bytes, u64 parent,
  4438. u64 root_objectid, u64 owner_objectid,
  4439. u64 owner_offset, int refs_to_drop,
  4440. struct btrfs_delayed_extent_op *extent_op)
  4441. {
  4442. struct btrfs_key key;
  4443. struct btrfs_path *path;
  4444. struct btrfs_fs_info *info = root->fs_info;
  4445. struct btrfs_root *extent_root = info->extent_root;
  4446. struct extent_buffer *leaf;
  4447. struct btrfs_extent_item *ei;
  4448. struct btrfs_extent_inline_ref *iref;
  4449. int ret;
  4450. int is_data;
  4451. int extent_slot = 0;
  4452. int found_extent = 0;
  4453. int num_to_del = 1;
  4454. u32 item_size;
  4455. u64 refs;
  4456. path = btrfs_alloc_path();
  4457. if (!path)
  4458. return -ENOMEM;
  4459. path->reada = 1;
  4460. path->leave_spinning = 1;
  4461. is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
  4462. BUG_ON(!is_data && refs_to_drop != 1);
  4463. ret = lookup_extent_backref(trans, extent_root, path, &iref,
  4464. bytenr, num_bytes, parent,
  4465. root_objectid, owner_objectid,
  4466. owner_offset);
  4467. if (ret == 0) {
  4468. extent_slot = path->slots[0];
  4469. while (extent_slot >= 0) {
  4470. btrfs_item_key_to_cpu(path->nodes[0], &key,
  4471. extent_slot);
  4472. if (key.objectid != bytenr)
  4473. break;
  4474. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  4475. key.offset == num_bytes) {
  4476. found_extent = 1;
  4477. break;
  4478. }
  4479. if (path->slots[0] - extent_slot > 5)
  4480. break;
  4481. extent_slot--;
  4482. }
  4483. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4484. item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
  4485. if (found_extent && item_size < sizeof(*ei))
  4486. found_extent = 0;
  4487. #endif
  4488. if (!found_extent) {
  4489. BUG_ON(iref);
  4490. ret = remove_extent_backref(trans, extent_root, path,
  4491. NULL, refs_to_drop,
  4492. is_data);
  4493. if (ret)
  4494. goto abort;
  4495. btrfs_release_path(path);
  4496. path->leave_spinning = 1;
  4497. key.objectid = bytenr;
  4498. key.type = BTRFS_EXTENT_ITEM_KEY;
  4499. key.offset = num_bytes;
  4500. ret = btrfs_search_slot(trans, extent_root,
  4501. &key, path, -1, 1);
  4502. if (ret) {
  4503. printk(KERN_ERR "umm, got %d back from search"
  4504. ", was looking for %llu\n", ret,
  4505. (unsigned long long)bytenr);
  4506. if (ret > 0)
  4507. btrfs_print_leaf(extent_root,
  4508. path->nodes[0]);
  4509. }
  4510. if (ret < 0)
  4511. goto abort;
  4512. extent_slot = path->slots[0];
  4513. }
  4514. } else if (ret == -ENOENT) {
  4515. btrfs_print_leaf(extent_root, path->nodes[0]);
  4516. WARN_ON(1);
  4517. printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
  4518. "parent %llu root %llu owner %llu offset %llu\n",
  4519. (unsigned long long)bytenr,
  4520. (unsigned long long)parent,
  4521. (unsigned long long)root_objectid,
  4522. (unsigned long long)owner_objectid,
  4523. (unsigned long long)owner_offset);
  4524. } else {
  4525. goto abort;
  4526. }
  4527. leaf = path->nodes[0];
  4528. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4529. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4530. if (item_size < sizeof(*ei)) {
  4531. BUG_ON(found_extent || extent_slot != path->slots[0]);
  4532. ret = convert_extent_item_v0(trans, extent_root, path,
  4533. owner_objectid, 0);
  4534. if (ret < 0)
  4535. goto abort;
  4536. btrfs_release_path(path);
  4537. path->leave_spinning = 1;
  4538. key.objectid = bytenr;
  4539. key.type = BTRFS_EXTENT_ITEM_KEY;
  4540. key.offset = num_bytes;
  4541. ret = btrfs_search_slot(trans, extent_root, &key, path,
  4542. -1, 1);
  4543. if (ret) {
  4544. printk(KERN_ERR "umm, got %d back from search"
  4545. ", was looking for %llu\n", ret,
  4546. (unsigned long long)bytenr);
  4547. btrfs_print_leaf(extent_root, path->nodes[0]);
  4548. }
  4549. if (ret < 0)
  4550. goto abort;
  4551. extent_slot = path->slots[0];
  4552. leaf = path->nodes[0];
  4553. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4554. }
  4555. #endif
  4556. BUG_ON(item_size < sizeof(*ei));
  4557. ei = btrfs_item_ptr(leaf, extent_slot,
  4558. struct btrfs_extent_item);
  4559. if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
  4560. struct btrfs_tree_block_info *bi;
  4561. BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
  4562. bi = (struct btrfs_tree_block_info *)(ei + 1);
  4563. WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
  4564. }
  4565. refs = btrfs_extent_refs(leaf, ei);
  4566. BUG_ON(refs < refs_to_drop);
  4567. refs -= refs_to_drop;
  4568. if (refs > 0) {
  4569. if (extent_op)
  4570. __run_delayed_extent_op(extent_op, leaf, ei);
  4571. /*
  4572. * In the case of inline back ref, reference count will
  4573. * be updated by remove_extent_backref
  4574. */
  4575. if (iref) {
  4576. BUG_ON(!found_extent);
  4577. } else {
  4578. btrfs_set_extent_refs(leaf, ei, refs);
  4579. btrfs_mark_buffer_dirty(leaf);
  4580. }
  4581. if (found_extent) {
  4582. ret = remove_extent_backref(trans, extent_root, path,
  4583. iref, refs_to_drop,
  4584. is_data);
  4585. if (ret)
  4586. goto abort;
  4587. }
  4588. } else {
  4589. if (found_extent) {
  4590. BUG_ON(is_data && refs_to_drop !=
  4591. extent_data_ref_count(root, path, iref));
  4592. if (iref) {
  4593. BUG_ON(path->slots[0] != extent_slot);
  4594. } else {
  4595. BUG_ON(path->slots[0] != extent_slot + 1);
  4596. path->slots[0] = extent_slot;
  4597. num_to_del = 2;
  4598. }
  4599. }
  4600. ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
  4601. num_to_del);
  4602. if (ret)
  4603. goto abort;
  4604. btrfs_release_path(path);
  4605. if (is_data) {
  4606. ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
  4607. if (ret)
  4608. goto abort;
  4609. }
  4610. ret = update_block_group(trans, root, bytenr, num_bytes, 0);
  4611. if (ret)
  4612. goto abort;
  4613. }
  4614. out:
  4615. btrfs_free_path(path);
  4616. return ret;
  4617. abort:
  4618. btrfs_abort_transaction(trans, extent_root, ret);
  4619. goto out;
  4620. }
  4621. /*
  4622. * when we free an block, it is possible (and likely) that we free the last
  4623. * delayed ref for that extent as well. This searches the delayed ref tree for
  4624. * a given extent, and if there are no other delayed refs to be processed, it
  4625. * removes it from the tree.
  4626. */
  4627. static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
  4628. struct btrfs_root *root, u64 bytenr)
  4629. {
  4630. struct btrfs_delayed_ref_head *head;
  4631. struct btrfs_delayed_ref_root *delayed_refs;
  4632. struct btrfs_delayed_ref_node *ref;
  4633. struct rb_node *node;
  4634. int ret = 0;
  4635. delayed_refs = &trans->transaction->delayed_refs;
  4636. spin_lock(&delayed_refs->lock);
  4637. head = btrfs_find_delayed_ref_head(trans, bytenr);
  4638. if (!head)
  4639. goto out;
  4640. node = rb_prev(&head->node.rb_node);
  4641. if (!node)
  4642. goto out;
  4643. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  4644. /* there are still entries for this ref, we can't drop it */
  4645. if (ref->bytenr == bytenr)
  4646. goto out;
  4647. if (head->extent_op) {
  4648. if (!head->must_insert_reserved)
  4649. goto out;
  4650. kfree(head->extent_op);
  4651. head->extent_op = NULL;
  4652. }
  4653. /*
  4654. * waiting for the lock here would deadlock. If someone else has it
  4655. * locked they are already in the process of dropping it anyway
  4656. */
  4657. if (!mutex_trylock(&head->mutex))
  4658. goto out;
  4659. /*
  4660. * at this point we have a head with no other entries. Go
  4661. * ahead and process it.
  4662. */
  4663. head->node.in_tree = 0;
  4664. rb_erase(&head->node.rb_node, &delayed_refs->root);
  4665. delayed_refs->num_entries--;
  4666. smp_mb();
  4667. if (waitqueue_active(&root->fs_info->tree_mod_seq_wait))
  4668. wake_up(&root->fs_info->tree_mod_seq_wait);
  4669. /*
  4670. * we don't take a ref on the node because we're removing it from the
  4671. * tree, so we just steal the ref the tree was holding.
  4672. */
  4673. delayed_refs->num_heads--;
  4674. if (list_empty(&head->cluster))
  4675. delayed_refs->num_heads_ready--;
  4676. list_del_init(&head->cluster);
  4677. spin_unlock(&delayed_refs->lock);
  4678. BUG_ON(head->extent_op);
  4679. if (head->must_insert_reserved)
  4680. ret = 1;
  4681. mutex_unlock(&head->mutex);
  4682. btrfs_put_delayed_ref(&head->node);
  4683. return ret;
  4684. out:
  4685. spin_unlock(&delayed_refs->lock);
  4686. return 0;
  4687. }
  4688. void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
  4689. struct btrfs_root *root,
  4690. struct extent_buffer *buf,
  4691. u64 parent, int last_ref)
  4692. {
  4693. struct btrfs_block_group_cache *cache = NULL;
  4694. int ret;
  4695. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4696. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  4697. buf->start, buf->len,
  4698. parent, root->root_key.objectid,
  4699. btrfs_header_level(buf),
  4700. BTRFS_DROP_DELAYED_REF, NULL, 0);
  4701. BUG_ON(ret); /* -ENOMEM */
  4702. }
  4703. if (!last_ref)
  4704. return;
  4705. cache = btrfs_lookup_block_group(root->fs_info, buf->start);
  4706. if (btrfs_header_generation(buf) == trans->transid) {
  4707. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4708. ret = check_ref_cleanup(trans, root, buf->start);
  4709. if (!ret)
  4710. goto out;
  4711. }
  4712. if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  4713. pin_down_extent(root, cache, buf->start, buf->len, 1);
  4714. goto out;
  4715. }
  4716. WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
  4717. btrfs_add_free_space(cache, buf->start, buf->len);
  4718. btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
  4719. }
  4720. out:
  4721. /*
  4722. * Deleting the buffer, clear the corrupt flag since it doesn't matter
  4723. * anymore.
  4724. */
  4725. clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
  4726. btrfs_put_block_group(cache);
  4727. }
  4728. /* Can return -ENOMEM */
  4729. int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  4730. u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
  4731. u64 owner, u64 offset, int for_cow)
  4732. {
  4733. int ret;
  4734. struct btrfs_fs_info *fs_info = root->fs_info;
  4735. /*
  4736. * tree log blocks never actually go into the extent allocation
  4737. * tree, just update pinning info and exit early.
  4738. */
  4739. if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
  4740. WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
  4741. /* unlocks the pinned mutex */
  4742. btrfs_pin_extent(root, bytenr, num_bytes, 1);
  4743. ret = 0;
  4744. } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  4745. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  4746. num_bytes,
  4747. parent, root_objectid, (int)owner,
  4748. BTRFS_DROP_DELAYED_REF, NULL, for_cow);
  4749. } else {
  4750. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  4751. num_bytes,
  4752. parent, root_objectid, owner,
  4753. offset, BTRFS_DROP_DELAYED_REF,
  4754. NULL, for_cow);
  4755. }
  4756. return ret;
  4757. }
  4758. static u64 stripe_align(struct btrfs_root *root, u64 val)
  4759. {
  4760. u64 mask = ((u64)root->stripesize - 1);
  4761. u64 ret = (val + mask) & ~mask;
  4762. return ret;
  4763. }
  4764. /*
  4765. * when we wait for progress in the block group caching, its because
  4766. * our allocation attempt failed at least once. So, we must sleep
  4767. * and let some progress happen before we try again.
  4768. *
  4769. * This function will sleep at least once waiting for new free space to
  4770. * show up, and then it will check the block group free space numbers
  4771. * for our min num_bytes. Another option is to have it go ahead
  4772. * and look in the rbtree for a free extent of a given size, but this
  4773. * is a good start.
  4774. */
  4775. static noinline int
  4776. wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
  4777. u64 num_bytes)
  4778. {
  4779. struct btrfs_caching_control *caching_ctl;
  4780. DEFINE_WAIT(wait);
  4781. caching_ctl = get_caching_control(cache);
  4782. if (!caching_ctl)
  4783. return 0;
  4784. wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
  4785. (cache->free_space_ctl->free_space >= num_bytes));
  4786. put_caching_control(caching_ctl);
  4787. return 0;
  4788. }
  4789. static noinline int
  4790. wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
  4791. {
  4792. struct btrfs_caching_control *caching_ctl;
  4793. DEFINE_WAIT(wait);
  4794. caching_ctl = get_caching_control(cache);
  4795. if (!caching_ctl)
  4796. return 0;
  4797. wait_event(caching_ctl->wait, block_group_cache_done(cache));
  4798. put_caching_control(caching_ctl);
  4799. return 0;
  4800. }
  4801. static int __get_block_group_index(u64 flags)
  4802. {
  4803. int index;
  4804. if (flags & BTRFS_BLOCK_GROUP_RAID10)
  4805. index = 0;
  4806. else if (flags & BTRFS_BLOCK_GROUP_RAID1)
  4807. index = 1;
  4808. else if (flags & BTRFS_BLOCK_GROUP_DUP)
  4809. index = 2;
  4810. else if (flags & BTRFS_BLOCK_GROUP_RAID0)
  4811. index = 3;
  4812. else
  4813. index = 4;
  4814. return index;
  4815. }
  4816. static int get_block_group_index(struct btrfs_block_group_cache *cache)
  4817. {
  4818. return __get_block_group_index(cache->flags);
  4819. }
  4820. enum btrfs_loop_type {
  4821. LOOP_CACHING_NOWAIT = 0,
  4822. LOOP_CACHING_WAIT = 1,
  4823. LOOP_ALLOC_CHUNK = 2,
  4824. LOOP_NO_EMPTY_SIZE = 3,
  4825. };
  4826. /*
  4827. * walks the btree of allocated extents and find a hole of a given size.
  4828. * The key ins is changed to record the hole:
  4829. * ins->objectid == block start
  4830. * ins->flags = BTRFS_EXTENT_ITEM_KEY
  4831. * ins->offset == number of blocks
  4832. * Any available blocks before search_start are skipped.
  4833. */
  4834. static noinline int find_free_extent(struct btrfs_trans_handle *trans,
  4835. struct btrfs_root *orig_root,
  4836. u64 num_bytes, u64 empty_size,
  4837. u64 hint_byte, struct btrfs_key *ins,
  4838. u64 data)
  4839. {
  4840. int ret = 0;
  4841. struct btrfs_root *root = orig_root->fs_info->extent_root;
  4842. struct btrfs_free_cluster *last_ptr = NULL;
  4843. struct btrfs_block_group_cache *block_group = NULL;
  4844. struct btrfs_block_group_cache *used_block_group;
  4845. u64 search_start = 0;
  4846. int empty_cluster = 2 * 1024 * 1024;
  4847. int allowed_chunk_alloc = 0;
  4848. int done_chunk_alloc = 0;
  4849. struct btrfs_space_info *space_info;
  4850. int loop = 0;
  4851. int index = 0;
  4852. int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
  4853. RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
  4854. bool found_uncached_bg = false;
  4855. bool failed_cluster_refill = false;
  4856. bool failed_alloc = false;
  4857. bool use_cluster = true;
  4858. bool have_caching_bg = false;
  4859. WARN_ON(num_bytes < root->sectorsize);
  4860. btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
  4861. ins->objectid = 0;
  4862. ins->offset = 0;
  4863. trace_find_free_extent(orig_root, num_bytes, empty_size, data);
  4864. space_info = __find_space_info(root->fs_info, data);
  4865. if (!space_info) {
  4866. printk(KERN_ERR "No space info for %llu\n", data);
  4867. return -ENOSPC;
  4868. }
  4869. /*
  4870. * If the space info is for both data and metadata it means we have a
  4871. * small filesystem and we can't use the clustering stuff.
  4872. */
  4873. if (btrfs_mixed_space_info(space_info))
  4874. use_cluster = false;
  4875. if (orig_root->ref_cows || empty_size)
  4876. allowed_chunk_alloc = 1;
  4877. if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
  4878. last_ptr = &root->fs_info->meta_alloc_cluster;
  4879. if (!btrfs_test_opt(root, SSD))
  4880. empty_cluster = 64 * 1024;
  4881. }
  4882. if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
  4883. btrfs_test_opt(root, SSD)) {
  4884. last_ptr = &root->fs_info->data_alloc_cluster;
  4885. }
  4886. if (last_ptr) {
  4887. spin_lock(&last_ptr->lock);
  4888. if (last_ptr->block_group)
  4889. hint_byte = last_ptr->window_start;
  4890. spin_unlock(&last_ptr->lock);
  4891. }
  4892. search_start = max(search_start, first_logical_byte(root, 0));
  4893. search_start = max(search_start, hint_byte);
  4894. if (!last_ptr)
  4895. empty_cluster = 0;
  4896. if (search_start == hint_byte) {
  4897. block_group = btrfs_lookup_block_group(root->fs_info,
  4898. search_start);
  4899. used_block_group = block_group;
  4900. /*
  4901. * we don't want to use the block group if it doesn't match our
  4902. * allocation bits, or if its not cached.
  4903. *
  4904. * However if we are re-searching with an ideal block group
  4905. * picked out then we don't care that the block group is cached.
  4906. */
  4907. if (block_group && block_group_bits(block_group, data) &&
  4908. block_group->cached != BTRFS_CACHE_NO) {
  4909. down_read(&space_info->groups_sem);
  4910. if (list_empty(&block_group->list) ||
  4911. block_group->ro) {
  4912. /*
  4913. * someone is removing this block group,
  4914. * we can't jump into the have_block_group
  4915. * target because our list pointers are not
  4916. * valid
  4917. */
  4918. btrfs_put_block_group(block_group);
  4919. up_read(&space_info->groups_sem);
  4920. } else {
  4921. index = get_block_group_index(block_group);
  4922. goto have_block_group;
  4923. }
  4924. } else if (block_group) {
  4925. btrfs_put_block_group(block_group);
  4926. }
  4927. }
  4928. search:
  4929. have_caching_bg = false;
  4930. down_read(&space_info->groups_sem);
  4931. list_for_each_entry(block_group, &space_info->block_groups[index],
  4932. list) {
  4933. u64 offset;
  4934. int cached;
  4935. used_block_group = block_group;
  4936. btrfs_get_block_group(block_group);
  4937. search_start = block_group->key.objectid;
  4938. /*
  4939. * this can happen if we end up cycling through all the
  4940. * raid types, but we want to make sure we only allocate
  4941. * for the proper type.
  4942. */
  4943. if (!block_group_bits(block_group, data)) {
  4944. u64 extra = BTRFS_BLOCK_GROUP_DUP |
  4945. BTRFS_BLOCK_GROUP_RAID1 |
  4946. BTRFS_BLOCK_GROUP_RAID10;
  4947. /*
  4948. * if they asked for extra copies and this block group
  4949. * doesn't provide them, bail. This does allow us to
  4950. * fill raid0 from raid1.
  4951. */
  4952. if ((data & extra) && !(block_group->flags & extra))
  4953. goto loop;
  4954. }
  4955. have_block_group:
  4956. cached = block_group_cache_done(block_group);
  4957. if (unlikely(!cached)) {
  4958. found_uncached_bg = true;
  4959. ret = cache_block_group(block_group, trans,
  4960. orig_root, 0);
  4961. BUG_ON(ret < 0);
  4962. ret = 0;
  4963. }
  4964. if (unlikely(block_group->ro))
  4965. goto loop;
  4966. /*
  4967. * Ok we want to try and use the cluster allocator, so
  4968. * lets look there
  4969. */
  4970. if (last_ptr) {
  4971. /*
  4972. * the refill lock keeps out other
  4973. * people trying to start a new cluster
  4974. */
  4975. spin_lock(&last_ptr->refill_lock);
  4976. used_block_group = last_ptr->block_group;
  4977. if (used_block_group != block_group &&
  4978. (!used_block_group ||
  4979. used_block_group->ro ||
  4980. !block_group_bits(used_block_group, data))) {
  4981. used_block_group = block_group;
  4982. goto refill_cluster;
  4983. }
  4984. if (used_block_group != block_group)
  4985. btrfs_get_block_group(used_block_group);
  4986. offset = btrfs_alloc_from_cluster(used_block_group,
  4987. last_ptr, num_bytes, used_block_group->key.objectid);
  4988. if (offset) {
  4989. /* we have a block, we're done */
  4990. spin_unlock(&last_ptr->refill_lock);
  4991. trace_btrfs_reserve_extent_cluster(root,
  4992. block_group, search_start, num_bytes);
  4993. goto checks;
  4994. }
  4995. WARN_ON(last_ptr->block_group != used_block_group);
  4996. if (used_block_group != block_group) {
  4997. btrfs_put_block_group(used_block_group);
  4998. used_block_group = block_group;
  4999. }
  5000. refill_cluster:
  5001. BUG_ON(used_block_group != block_group);
  5002. /* If we are on LOOP_NO_EMPTY_SIZE, we can't
  5003. * set up a new clusters, so lets just skip it
  5004. * and let the allocator find whatever block
  5005. * it can find. If we reach this point, we
  5006. * will have tried the cluster allocator
  5007. * plenty of times and not have found
  5008. * anything, so we are likely way too
  5009. * fragmented for the clustering stuff to find
  5010. * anything.
  5011. *
  5012. * However, if the cluster is taken from the
  5013. * current block group, release the cluster
  5014. * first, so that we stand a better chance of
  5015. * succeeding in the unclustered
  5016. * allocation. */
  5017. if (loop >= LOOP_NO_EMPTY_SIZE &&
  5018. last_ptr->block_group != block_group) {
  5019. spin_unlock(&last_ptr->refill_lock);
  5020. goto unclustered_alloc;
  5021. }
  5022. /*
  5023. * this cluster didn't work out, free it and
  5024. * start over
  5025. */
  5026. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5027. if (loop >= LOOP_NO_EMPTY_SIZE) {
  5028. spin_unlock(&last_ptr->refill_lock);
  5029. goto unclustered_alloc;
  5030. }
  5031. /* allocate a cluster in this block group */
  5032. ret = btrfs_find_space_cluster(trans, root,
  5033. block_group, last_ptr,
  5034. search_start, num_bytes,
  5035. empty_cluster + empty_size);
  5036. if (ret == 0) {
  5037. /*
  5038. * now pull our allocation out of this
  5039. * cluster
  5040. */
  5041. offset = btrfs_alloc_from_cluster(block_group,
  5042. last_ptr, num_bytes,
  5043. search_start);
  5044. if (offset) {
  5045. /* we found one, proceed */
  5046. spin_unlock(&last_ptr->refill_lock);
  5047. trace_btrfs_reserve_extent_cluster(root,
  5048. block_group, search_start,
  5049. num_bytes);
  5050. goto checks;
  5051. }
  5052. } else if (!cached && loop > LOOP_CACHING_NOWAIT
  5053. && !failed_cluster_refill) {
  5054. spin_unlock(&last_ptr->refill_lock);
  5055. failed_cluster_refill = true;
  5056. wait_block_group_cache_progress(block_group,
  5057. num_bytes + empty_cluster + empty_size);
  5058. goto have_block_group;
  5059. }
  5060. /*
  5061. * at this point we either didn't find a cluster
  5062. * or we weren't able to allocate a block from our
  5063. * cluster. Free the cluster we've been trying
  5064. * to use, and go to the next block group
  5065. */
  5066. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5067. spin_unlock(&last_ptr->refill_lock);
  5068. goto loop;
  5069. }
  5070. unclustered_alloc:
  5071. spin_lock(&block_group->free_space_ctl->tree_lock);
  5072. if (cached &&
  5073. block_group->free_space_ctl->free_space <
  5074. num_bytes + empty_cluster + empty_size) {
  5075. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5076. goto loop;
  5077. }
  5078. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5079. offset = btrfs_find_space_for_alloc(block_group, search_start,
  5080. num_bytes, empty_size);
  5081. /*
  5082. * If we didn't find a chunk, and we haven't failed on this
  5083. * block group before, and this block group is in the middle of
  5084. * caching and we are ok with waiting, then go ahead and wait
  5085. * for progress to be made, and set failed_alloc to true.
  5086. *
  5087. * If failed_alloc is true then we've already waited on this
  5088. * block group once and should move on to the next block group.
  5089. */
  5090. if (!offset && !failed_alloc && !cached &&
  5091. loop > LOOP_CACHING_NOWAIT) {
  5092. wait_block_group_cache_progress(block_group,
  5093. num_bytes + empty_size);
  5094. failed_alloc = true;
  5095. goto have_block_group;
  5096. } else if (!offset) {
  5097. if (!cached)
  5098. have_caching_bg = true;
  5099. goto loop;
  5100. }
  5101. checks:
  5102. search_start = stripe_align(root, offset);
  5103. /* move on to the next group */
  5104. if (search_start + num_bytes >
  5105. used_block_group->key.objectid + used_block_group->key.offset) {
  5106. btrfs_add_free_space(used_block_group, offset, num_bytes);
  5107. goto loop;
  5108. }
  5109. if (offset < search_start)
  5110. btrfs_add_free_space(used_block_group, offset,
  5111. search_start - offset);
  5112. BUG_ON(offset > search_start);
  5113. ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
  5114. alloc_type);
  5115. if (ret == -EAGAIN) {
  5116. btrfs_add_free_space(used_block_group, offset, num_bytes);
  5117. goto loop;
  5118. }
  5119. /* we are all good, lets return */
  5120. ins->objectid = search_start;
  5121. ins->offset = num_bytes;
  5122. trace_btrfs_reserve_extent(orig_root, block_group,
  5123. search_start, num_bytes);
  5124. if (offset < search_start)
  5125. btrfs_add_free_space(used_block_group, offset,
  5126. search_start - offset);
  5127. BUG_ON(offset > search_start);
  5128. if (used_block_group != block_group)
  5129. btrfs_put_block_group(used_block_group);
  5130. btrfs_put_block_group(block_group);
  5131. break;
  5132. loop:
  5133. failed_cluster_refill = false;
  5134. failed_alloc = false;
  5135. BUG_ON(index != get_block_group_index(block_group));
  5136. if (used_block_group != block_group)
  5137. btrfs_put_block_group(used_block_group);
  5138. btrfs_put_block_group(block_group);
  5139. }
  5140. up_read(&space_info->groups_sem);
  5141. if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
  5142. goto search;
  5143. if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
  5144. goto search;
  5145. /*
  5146. * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
  5147. * caching kthreads as we move along
  5148. * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
  5149. * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
  5150. * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
  5151. * again
  5152. */
  5153. if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
  5154. index = 0;
  5155. loop++;
  5156. if (loop == LOOP_ALLOC_CHUNK) {
  5157. if (allowed_chunk_alloc) {
  5158. ret = do_chunk_alloc(trans, root, num_bytes +
  5159. 2 * 1024 * 1024, data,
  5160. CHUNK_ALLOC_LIMITED);
  5161. /*
  5162. * Do not bail out on ENOSPC since we
  5163. * can do more things.
  5164. */
  5165. if (ret < 0 && ret != -ENOSPC) {
  5166. btrfs_abort_transaction(trans,
  5167. root, ret);
  5168. goto out;
  5169. }
  5170. allowed_chunk_alloc = 0;
  5171. if (ret == 1)
  5172. done_chunk_alloc = 1;
  5173. } else if (!done_chunk_alloc &&
  5174. space_info->force_alloc ==
  5175. CHUNK_ALLOC_NO_FORCE) {
  5176. space_info->force_alloc = CHUNK_ALLOC_LIMITED;
  5177. }
  5178. /*
  5179. * We didn't allocate a chunk, go ahead and drop the
  5180. * empty size and loop again.
  5181. */
  5182. if (!done_chunk_alloc)
  5183. loop = LOOP_NO_EMPTY_SIZE;
  5184. }
  5185. if (loop == LOOP_NO_EMPTY_SIZE) {
  5186. empty_size = 0;
  5187. empty_cluster = 0;
  5188. }
  5189. goto search;
  5190. } else if (!ins->objectid) {
  5191. ret = -ENOSPC;
  5192. } else if (ins->objectid) {
  5193. ret = 0;
  5194. }
  5195. out:
  5196. return ret;
  5197. }
  5198. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  5199. int dump_block_groups)
  5200. {
  5201. struct btrfs_block_group_cache *cache;
  5202. int index = 0;
  5203. spin_lock(&info->lock);
  5204. printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
  5205. (unsigned long long)info->flags,
  5206. (unsigned long long)(info->total_bytes - info->bytes_used -
  5207. info->bytes_pinned - info->bytes_reserved -
  5208. info->bytes_readonly),
  5209. (info->full) ? "" : "not ");
  5210. printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
  5211. "reserved=%llu, may_use=%llu, readonly=%llu\n",
  5212. (unsigned long long)info->total_bytes,
  5213. (unsigned long long)info->bytes_used,
  5214. (unsigned long long)info->bytes_pinned,
  5215. (unsigned long long)info->bytes_reserved,
  5216. (unsigned long long)info->bytes_may_use,
  5217. (unsigned long long)info->bytes_readonly);
  5218. spin_unlock(&info->lock);
  5219. if (!dump_block_groups)
  5220. return;
  5221. down_read(&info->groups_sem);
  5222. again:
  5223. list_for_each_entry(cache, &info->block_groups[index], list) {
  5224. spin_lock(&cache->lock);
  5225. printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
  5226. (unsigned long long)cache->key.objectid,
  5227. (unsigned long long)cache->key.offset,
  5228. (unsigned long long)btrfs_block_group_used(&cache->item),
  5229. (unsigned long long)cache->pinned,
  5230. (unsigned long long)cache->reserved,
  5231. cache->ro ? "[readonly]" : "");
  5232. btrfs_dump_free_space(cache, bytes);
  5233. spin_unlock(&cache->lock);
  5234. }
  5235. if (++index < BTRFS_NR_RAID_TYPES)
  5236. goto again;
  5237. up_read(&info->groups_sem);
  5238. }
  5239. int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
  5240. struct btrfs_root *root,
  5241. u64 num_bytes, u64 min_alloc_size,
  5242. u64 empty_size, u64 hint_byte,
  5243. struct btrfs_key *ins, u64 data)
  5244. {
  5245. bool final_tried = false;
  5246. int ret;
  5247. data = btrfs_get_alloc_profile(root, data);
  5248. again:
  5249. /*
  5250. * the only place that sets empty_size is btrfs_realloc_node, which
  5251. * is not called recursively on allocations
  5252. */
  5253. if (empty_size || root->ref_cows) {
  5254. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  5255. num_bytes + 2 * 1024 * 1024, data,
  5256. CHUNK_ALLOC_NO_FORCE);
  5257. if (ret < 0 && ret != -ENOSPC) {
  5258. btrfs_abort_transaction(trans, root, ret);
  5259. return ret;
  5260. }
  5261. }
  5262. WARN_ON(num_bytes < root->sectorsize);
  5263. ret = find_free_extent(trans, root, num_bytes, empty_size,
  5264. hint_byte, ins, data);
  5265. if (ret == -ENOSPC) {
  5266. if (!final_tried) {
  5267. num_bytes = num_bytes >> 1;
  5268. num_bytes = num_bytes & ~(root->sectorsize - 1);
  5269. num_bytes = max(num_bytes, min_alloc_size);
  5270. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  5271. num_bytes, data, CHUNK_ALLOC_FORCE);
  5272. if (ret < 0 && ret != -ENOSPC) {
  5273. btrfs_abort_transaction(trans, root, ret);
  5274. return ret;
  5275. }
  5276. if (num_bytes == min_alloc_size)
  5277. final_tried = true;
  5278. goto again;
  5279. } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  5280. struct btrfs_space_info *sinfo;
  5281. sinfo = __find_space_info(root->fs_info, data);
  5282. printk(KERN_ERR "btrfs allocation failed flags %llu, "
  5283. "wanted %llu\n", (unsigned long long)data,
  5284. (unsigned long long)num_bytes);
  5285. if (sinfo)
  5286. dump_space_info(sinfo, num_bytes, 1);
  5287. }
  5288. }
  5289. trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
  5290. return ret;
  5291. }
  5292. static int __btrfs_free_reserved_extent(struct btrfs_root *root,
  5293. u64 start, u64 len, int pin)
  5294. {
  5295. struct btrfs_block_group_cache *cache;
  5296. int ret = 0;
  5297. cache = btrfs_lookup_block_group(root->fs_info, start);
  5298. if (!cache) {
  5299. printk(KERN_ERR "Unable to find block group for %llu\n",
  5300. (unsigned long long)start);
  5301. return -ENOSPC;
  5302. }
  5303. if (btrfs_test_opt(root, DISCARD))
  5304. ret = btrfs_discard_extent(root, start, len, NULL);
  5305. if (pin)
  5306. pin_down_extent(root, cache, start, len, 1);
  5307. else {
  5308. btrfs_add_free_space(cache, start, len);
  5309. btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
  5310. }
  5311. btrfs_put_block_group(cache);
  5312. trace_btrfs_reserved_extent_free(root, start, len);
  5313. return ret;
  5314. }
  5315. int btrfs_free_reserved_extent(struct btrfs_root *root,
  5316. u64 start, u64 len)
  5317. {
  5318. return __btrfs_free_reserved_extent(root, start, len, 0);
  5319. }
  5320. int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
  5321. u64 start, u64 len)
  5322. {
  5323. return __btrfs_free_reserved_extent(root, start, len, 1);
  5324. }
  5325. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5326. struct btrfs_root *root,
  5327. u64 parent, u64 root_objectid,
  5328. u64 flags, u64 owner, u64 offset,
  5329. struct btrfs_key *ins, int ref_mod)
  5330. {
  5331. int ret;
  5332. struct btrfs_fs_info *fs_info = root->fs_info;
  5333. struct btrfs_extent_item *extent_item;
  5334. struct btrfs_extent_inline_ref *iref;
  5335. struct btrfs_path *path;
  5336. struct extent_buffer *leaf;
  5337. int type;
  5338. u32 size;
  5339. if (parent > 0)
  5340. type = BTRFS_SHARED_DATA_REF_KEY;
  5341. else
  5342. type = BTRFS_EXTENT_DATA_REF_KEY;
  5343. size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
  5344. path = btrfs_alloc_path();
  5345. if (!path)
  5346. return -ENOMEM;
  5347. path->leave_spinning = 1;
  5348. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5349. ins, size);
  5350. if (ret) {
  5351. btrfs_free_path(path);
  5352. return ret;
  5353. }
  5354. leaf = path->nodes[0];
  5355. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5356. struct btrfs_extent_item);
  5357. btrfs_set_extent_refs(leaf, extent_item, ref_mod);
  5358. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5359. btrfs_set_extent_flags(leaf, extent_item,
  5360. flags | BTRFS_EXTENT_FLAG_DATA);
  5361. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  5362. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  5363. if (parent > 0) {
  5364. struct btrfs_shared_data_ref *ref;
  5365. ref = (struct btrfs_shared_data_ref *)(iref + 1);
  5366. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5367. btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
  5368. } else {
  5369. struct btrfs_extent_data_ref *ref;
  5370. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  5371. btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
  5372. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  5373. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  5374. btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
  5375. }
  5376. btrfs_mark_buffer_dirty(path->nodes[0]);
  5377. btrfs_free_path(path);
  5378. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5379. if (ret) { /* -ENOENT, logic error */
  5380. printk(KERN_ERR "btrfs update block group failed for %llu "
  5381. "%llu\n", (unsigned long long)ins->objectid,
  5382. (unsigned long long)ins->offset);
  5383. BUG();
  5384. }
  5385. return ret;
  5386. }
  5387. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  5388. struct btrfs_root *root,
  5389. u64 parent, u64 root_objectid,
  5390. u64 flags, struct btrfs_disk_key *key,
  5391. int level, struct btrfs_key *ins)
  5392. {
  5393. int ret;
  5394. struct btrfs_fs_info *fs_info = root->fs_info;
  5395. struct btrfs_extent_item *extent_item;
  5396. struct btrfs_tree_block_info *block_info;
  5397. struct btrfs_extent_inline_ref *iref;
  5398. struct btrfs_path *path;
  5399. struct extent_buffer *leaf;
  5400. u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
  5401. path = btrfs_alloc_path();
  5402. if (!path)
  5403. return -ENOMEM;
  5404. path->leave_spinning = 1;
  5405. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5406. ins, size);
  5407. if (ret) {
  5408. btrfs_free_path(path);
  5409. return ret;
  5410. }
  5411. leaf = path->nodes[0];
  5412. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5413. struct btrfs_extent_item);
  5414. btrfs_set_extent_refs(leaf, extent_item, 1);
  5415. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5416. btrfs_set_extent_flags(leaf, extent_item,
  5417. flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
  5418. block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
  5419. btrfs_set_tree_block_key(leaf, block_info, key);
  5420. btrfs_set_tree_block_level(leaf, block_info, level);
  5421. iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
  5422. if (parent > 0) {
  5423. BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  5424. btrfs_set_extent_inline_ref_type(leaf, iref,
  5425. BTRFS_SHARED_BLOCK_REF_KEY);
  5426. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5427. } else {
  5428. btrfs_set_extent_inline_ref_type(leaf, iref,
  5429. BTRFS_TREE_BLOCK_REF_KEY);
  5430. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  5431. }
  5432. btrfs_mark_buffer_dirty(leaf);
  5433. btrfs_free_path(path);
  5434. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5435. if (ret) { /* -ENOENT, logic error */
  5436. printk(KERN_ERR "btrfs update block group failed for %llu "
  5437. "%llu\n", (unsigned long long)ins->objectid,
  5438. (unsigned long long)ins->offset);
  5439. BUG();
  5440. }
  5441. return ret;
  5442. }
  5443. int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5444. struct btrfs_root *root,
  5445. u64 root_objectid, u64 owner,
  5446. u64 offset, struct btrfs_key *ins)
  5447. {
  5448. int ret;
  5449. BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
  5450. ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
  5451. ins->offset, 0,
  5452. root_objectid, owner, offset,
  5453. BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
  5454. return ret;
  5455. }
  5456. /*
  5457. * this is used by the tree logging recovery code. It records that
  5458. * an extent has been allocated and makes sure to clear the free
  5459. * space cache bits as well
  5460. */
  5461. int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
  5462. struct btrfs_root *root,
  5463. u64 root_objectid, u64 owner, u64 offset,
  5464. struct btrfs_key *ins)
  5465. {
  5466. int ret;
  5467. struct btrfs_block_group_cache *block_group;
  5468. struct btrfs_caching_control *caching_ctl;
  5469. u64 start = ins->objectid;
  5470. u64 num_bytes = ins->offset;
  5471. block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
  5472. cache_block_group(block_group, trans, NULL, 0);
  5473. caching_ctl = get_caching_control(block_group);
  5474. if (!caching_ctl) {
  5475. BUG_ON(!block_group_cache_done(block_group));
  5476. ret = btrfs_remove_free_space(block_group, start, num_bytes);
  5477. BUG_ON(ret); /* -ENOMEM */
  5478. } else {
  5479. mutex_lock(&caching_ctl->mutex);
  5480. if (start >= caching_ctl->progress) {
  5481. ret = add_excluded_extent(root, start, num_bytes);
  5482. BUG_ON(ret); /* -ENOMEM */
  5483. } else if (start + num_bytes <= caching_ctl->progress) {
  5484. ret = btrfs_remove_free_space(block_group,
  5485. start, num_bytes);
  5486. BUG_ON(ret); /* -ENOMEM */
  5487. } else {
  5488. num_bytes = caching_ctl->progress - start;
  5489. ret = btrfs_remove_free_space(block_group,
  5490. start, num_bytes);
  5491. BUG_ON(ret); /* -ENOMEM */
  5492. start = caching_ctl->progress;
  5493. num_bytes = ins->objectid + ins->offset -
  5494. caching_ctl->progress;
  5495. ret = add_excluded_extent(root, start, num_bytes);
  5496. BUG_ON(ret); /* -ENOMEM */
  5497. }
  5498. mutex_unlock(&caching_ctl->mutex);
  5499. put_caching_control(caching_ctl);
  5500. }
  5501. ret = btrfs_update_reserved_bytes(block_group, ins->offset,
  5502. RESERVE_ALLOC_NO_ACCOUNT);
  5503. BUG_ON(ret); /* logic error */
  5504. btrfs_put_block_group(block_group);
  5505. ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
  5506. 0, owner, offset, ins, 1);
  5507. return ret;
  5508. }
  5509. struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
  5510. struct btrfs_root *root,
  5511. u64 bytenr, u32 blocksize,
  5512. int level)
  5513. {
  5514. struct extent_buffer *buf;
  5515. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5516. if (!buf)
  5517. return ERR_PTR(-ENOMEM);
  5518. btrfs_set_header_generation(buf, trans->transid);
  5519. btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
  5520. btrfs_tree_lock(buf);
  5521. clean_tree_block(trans, root, buf);
  5522. clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
  5523. btrfs_set_lock_blocking(buf);
  5524. btrfs_set_buffer_uptodate(buf);
  5525. if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
  5526. /*
  5527. * we allow two log transactions at a time, use different
  5528. * EXENT bit to differentiate dirty pages.
  5529. */
  5530. if (root->log_transid % 2 == 0)
  5531. set_extent_dirty(&root->dirty_log_pages, buf->start,
  5532. buf->start + buf->len - 1, GFP_NOFS);
  5533. else
  5534. set_extent_new(&root->dirty_log_pages, buf->start,
  5535. buf->start + buf->len - 1, GFP_NOFS);
  5536. } else {
  5537. set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
  5538. buf->start + buf->len - 1, GFP_NOFS);
  5539. }
  5540. trans->blocks_used++;
  5541. /* this returns a buffer locked for blocking */
  5542. return buf;
  5543. }
  5544. static struct btrfs_block_rsv *
  5545. use_block_rsv(struct btrfs_trans_handle *trans,
  5546. struct btrfs_root *root, u32 blocksize)
  5547. {
  5548. struct btrfs_block_rsv *block_rsv;
  5549. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  5550. int ret;
  5551. block_rsv = get_block_rsv(trans, root);
  5552. if (block_rsv->size == 0) {
  5553. ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
  5554. /*
  5555. * If we couldn't reserve metadata bytes try and use some from
  5556. * the global reserve.
  5557. */
  5558. if (ret && block_rsv != global_rsv) {
  5559. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5560. if (!ret)
  5561. return global_rsv;
  5562. return ERR_PTR(ret);
  5563. } else if (ret) {
  5564. return ERR_PTR(ret);
  5565. }
  5566. return block_rsv;
  5567. }
  5568. ret = block_rsv_use_bytes(block_rsv, blocksize);
  5569. if (!ret)
  5570. return block_rsv;
  5571. if (ret) {
  5572. static DEFINE_RATELIMIT_STATE(_rs,
  5573. DEFAULT_RATELIMIT_INTERVAL,
  5574. /*DEFAULT_RATELIMIT_BURST*/ 2);
  5575. if (__ratelimit(&_rs)) {
  5576. printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
  5577. WARN_ON(1);
  5578. }
  5579. ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
  5580. if (!ret) {
  5581. return block_rsv;
  5582. } else if (ret && block_rsv != global_rsv) {
  5583. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5584. if (!ret)
  5585. return global_rsv;
  5586. }
  5587. }
  5588. return ERR_PTR(-ENOSPC);
  5589. }
  5590. static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
  5591. struct btrfs_block_rsv *block_rsv, u32 blocksize)
  5592. {
  5593. block_rsv_add_bytes(block_rsv, blocksize, 0);
  5594. block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
  5595. }
  5596. /*
  5597. * finds a free extent and does all the dirty work required for allocation
  5598. * returns the key for the extent through ins, and a tree buffer for
  5599. * the first block of the extent through buf.
  5600. *
  5601. * returns the tree buffer or NULL.
  5602. */
  5603. struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
  5604. struct btrfs_root *root, u32 blocksize,
  5605. u64 parent, u64 root_objectid,
  5606. struct btrfs_disk_key *key, int level,
  5607. u64 hint, u64 empty_size)
  5608. {
  5609. struct btrfs_key ins;
  5610. struct btrfs_block_rsv *block_rsv;
  5611. struct extent_buffer *buf;
  5612. u64 flags = 0;
  5613. int ret;
  5614. block_rsv = use_block_rsv(trans, root, blocksize);
  5615. if (IS_ERR(block_rsv))
  5616. return ERR_CAST(block_rsv);
  5617. ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
  5618. empty_size, hint, &ins, 0);
  5619. if (ret) {
  5620. unuse_block_rsv(root->fs_info, block_rsv, blocksize);
  5621. return ERR_PTR(ret);
  5622. }
  5623. buf = btrfs_init_new_buffer(trans, root, ins.objectid,
  5624. blocksize, level);
  5625. BUG_ON(IS_ERR(buf)); /* -ENOMEM */
  5626. if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
  5627. if (parent == 0)
  5628. parent = ins.objectid;
  5629. flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5630. } else
  5631. BUG_ON(parent > 0);
  5632. if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
  5633. struct btrfs_delayed_extent_op *extent_op;
  5634. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  5635. BUG_ON(!extent_op); /* -ENOMEM */
  5636. if (key)
  5637. memcpy(&extent_op->key, key, sizeof(extent_op->key));
  5638. else
  5639. memset(&extent_op->key, 0, sizeof(extent_op->key));
  5640. extent_op->flags_to_set = flags;
  5641. extent_op->update_key = 1;
  5642. extent_op->update_flags = 1;
  5643. extent_op->is_data = 0;
  5644. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  5645. ins.objectid,
  5646. ins.offset, parent, root_objectid,
  5647. level, BTRFS_ADD_DELAYED_EXTENT,
  5648. extent_op, 0);
  5649. BUG_ON(ret); /* -ENOMEM */
  5650. }
  5651. return buf;
  5652. }
  5653. struct walk_control {
  5654. u64 refs[BTRFS_MAX_LEVEL];
  5655. u64 flags[BTRFS_MAX_LEVEL];
  5656. struct btrfs_key update_progress;
  5657. int stage;
  5658. int level;
  5659. int shared_level;
  5660. int update_ref;
  5661. int keep_locks;
  5662. int reada_slot;
  5663. int reada_count;
  5664. int for_reloc;
  5665. };
  5666. #define DROP_REFERENCE 1
  5667. #define UPDATE_BACKREF 2
  5668. static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
  5669. struct btrfs_root *root,
  5670. struct walk_control *wc,
  5671. struct btrfs_path *path)
  5672. {
  5673. u64 bytenr;
  5674. u64 generation;
  5675. u64 refs;
  5676. u64 flags;
  5677. u32 nritems;
  5678. u32 blocksize;
  5679. struct btrfs_key key;
  5680. struct extent_buffer *eb;
  5681. int ret;
  5682. int slot;
  5683. int nread = 0;
  5684. if (path->slots[wc->level] < wc->reada_slot) {
  5685. wc->reada_count = wc->reada_count * 2 / 3;
  5686. wc->reada_count = max(wc->reada_count, 2);
  5687. } else {
  5688. wc->reada_count = wc->reada_count * 3 / 2;
  5689. wc->reada_count = min_t(int, wc->reada_count,
  5690. BTRFS_NODEPTRS_PER_BLOCK(root));
  5691. }
  5692. eb = path->nodes[wc->level];
  5693. nritems = btrfs_header_nritems(eb);
  5694. blocksize = btrfs_level_size(root, wc->level - 1);
  5695. for (slot = path->slots[wc->level]; slot < nritems; slot++) {
  5696. if (nread >= wc->reada_count)
  5697. break;
  5698. cond_resched();
  5699. bytenr = btrfs_node_blockptr(eb, slot);
  5700. generation = btrfs_node_ptr_generation(eb, slot);
  5701. if (slot == path->slots[wc->level])
  5702. goto reada;
  5703. if (wc->stage == UPDATE_BACKREF &&
  5704. generation <= root->root_key.offset)
  5705. continue;
  5706. /* We don't lock the tree block, it's OK to be racy here */
  5707. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5708. &refs, &flags);
  5709. /* We don't care about errors in readahead. */
  5710. if (ret < 0)
  5711. continue;
  5712. BUG_ON(refs == 0);
  5713. if (wc->stage == DROP_REFERENCE) {
  5714. if (refs == 1)
  5715. goto reada;
  5716. if (wc->level == 1 &&
  5717. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5718. continue;
  5719. if (!wc->update_ref ||
  5720. generation <= root->root_key.offset)
  5721. continue;
  5722. btrfs_node_key_to_cpu(eb, &key, slot);
  5723. ret = btrfs_comp_cpu_keys(&key,
  5724. &wc->update_progress);
  5725. if (ret < 0)
  5726. continue;
  5727. } else {
  5728. if (wc->level == 1 &&
  5729. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5730. continue;
  5731. }
  5732. reada:
  5733. ret = readahead_tree_block(root, bytenr, blocksize,
  5734. generation);
  5735. if (ret)
  5736. break;
  5737. nread++;
  5738. }
  5739. wc->reada_slot = slot;
  5740. }
  5741. /*
  5742. * hepler to process tree block while walking down the tree.
  5743. *
  5744. * when wc->stage == UPDATE_BACKREF, this function updates
  5745. * back refs for pointers in the block.
  5746. *
  5747. * NOTE: return value 1 means we should stop walking down.
  5748. */
  5749. static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
  5750. struct btrfs_root *root,
  5751. struct btrfs_path *path,
  5752. struct walk_control *wc, int lookup_info)
  5753. {
  5754. int level = wc->level;
  5755. struct extent_buffer *eb = path->nodes[level];
  5756. u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5757. int ret;
  5758. if (wc->stage == UPDATE_BACKREF &&
  5759. btrfs_header_owner(eb) != root->root_key.objectid)
  5760. return 1;
  5761. /*
  5762. * when reference count of tree block is 1, it won't increase
  5763. * again. once full backref flag is set, we never clear it.
  5764. */
  5765. if (lookup_info &&
  5766. ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
  5767. (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
  5768. BUG_ON(!path->locks[level]);
  5769. ret = btrfs_lookup_extent_info(trans, root,
  5770. eb->start, eb->len,
  5771. &wc->refs[level],
  5772. &wc->flags[level]);
  5773. BUG_ON(ret == -ENOMEM);
  5774. if (ret)
  5775. return ret;
  5776. BUG_ON(wc->refs[level] == 0);
  5777. }
  5778. if (wc->stage == DROP_REFERENCE) {
  5779. if (wc->refs[level] > 1)
  5780. return 1;
  5781. if (path->locks[level] && !wc->keep_locks) {
  5782. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5783. path->locks[level] = 0;
  5784. }
  5785. return 0;
  5786. }
  5787. /* wc->stage == UPDATE_BACKREF */
  5788. if (!(wc->flags[level] & flag)) {
  5789. BUG_ON(!path->locks[level]);
  5790. ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
  5791. BUG_ON(ret); /* -ENOMEM */
  5792. ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
  5793. BUG_ON(ret); /* -ENOMEM */
  5794. ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
  5795. eb->len, flag, 0);
  5796. BUG_ON(ret); /* -ENOMEM */
  5797. wc->flags[level] |= flag;
  5798. }
  5799. /*
  5800. * the block is shared by multiple trees, so it's not good to
  5801. * keep the tree lock
  5802. */
  5803. if (path->locks[level] && level > 0) {
  5804. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5805. path->locks[level] = 0;
  5806. }
  5807. return 0;
  5808. }
  5809. /*
  5810. * hepler to process tree block pointer.
  5811. *
  5812. * when wc->stage == DROP_REFERENCE, this function checks
  5813. * reference count of the block pointed to. if the block
  5814. * is shared and we need update back refs for the subtree
  5815. * rooted at the block, this function changes wc->stage to
  5816. * UPDATE_BACKREF. if the block is shared and there is no
  5817. * need to update back, this function drops the reference
  5818. * to the block.
  5819. *
  5820. * NOTE: return value 1 means we should stop walking down.
  5821. */
  5822. static noinline int do_walk_down(struct btrfs_trans_handle *trans,
  5823. struct btrfs_root *root,
  5824. struct btrfs_path *path,
  5825. struct walk_control *wc, int *lookup_info)
  5826. {
  5827. u64 bytenr;
  5828. u64 generation;
  5829. u64 parent;
  5830. u32 blocksize;
  5831. struct btrfs_key key;
  5832. struct extent_buffer *next;
  5833. int level = wc->level;
  5834. int reada = 0;
  5835. int ret = 0;
  5836. generation = btrfs_node_ptr_generation(path->nodes[level],
  5837. path->slots[level]);
  5838. /*
  5839. * if the lower level block was created before the snapshot
  5840. * was created, we know there is no need to update back refs
  5841. * for the subtree
  5842. */
  5843. if (wc->stage == UPDATE_BACKREF &&
  5844. generation <= root->root_key.offset) {
  5845. *lookup_info = 1;
  5846. return 1;
  5847. }
  5848. bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
  5849. blocksize = btrfs_level_size(root, level - 1);
  5850. next = btrfs_find_tree_block(root, bytenr, blocksize);
  5851. if (!next) {
  5852. next = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5853. if (!next)
  5854. return -ENOMEM;
  5855. reada = 1;
  5856. }
  5857. btrfs_tree_lock(next);
  5858. btrfs_set_lock_blocking(next);
  5859. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5860. &wc->refs[level - 1],
  5861. &wc->flags[level - 1]);
  5862. if (ret < 0) {
  5863. btrfs_tree_unlock(next);
  5864. return ret;
  5865. }
  5866. BUG_ON(wc->refs[level - 1] == 0);
  5867. *lookup_info = 0;
  5868. if (wc->stage == DROP_REFERENCE) {
  5869. if (wc->refs[level - 1] > 1) {
  5870. if (level == 1 &&
  5871. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5872. goto skip;
  5873. if (!wc->update_ref ||
  5874. generation <= root->root_key.offset)
  5875. goto skip;
  5876. btrfs_node_key_to_cpu(path->nodes[level], &key,
  5877. path->slots[level]);
  5878. ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
  5879. if (ret < 0)
  5880. goto skip;
  5881. wc->stage = UPDATE_BACKREF;
  5882. wc->shared_level = level - 1;
  5883. }
  5884. } else {
  5885. if (level == 1 &&
  5886. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5887. goto skip;
  5888. }
  5889. if (!btrfs_buffer_uptodate(next, generation, 0)) {
  5890. btrfs_tree_unlock(next);
  5891. free_extent_buffer(next);
  5892. next = NULL;
  5893. *lookup_info = 1;
  5894. }
  5895. if (!next) {
  5896. if (reada && level == 1)
  5897. reada_walk_down(trans, root, wc, path);
  5898. next = read_tree_block(root, bytenr, blocksize, generation);
  5899. if (!next)
  5900. return -EIO;
  5901. btrfs_tree_lock(next);
  5902. btrfs_set_lock_blocking(next);
  5903. }
  5904. level--;
  5905. BUG_ON(level != btrfs_header_level(next));
  5906. path->nodes[level] = next;
  5907. path->slots[level] = 0;
  5908. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5909. wc->level = level;
  5910. if (wc->level == 1)
  5911. wc->reada_slot = 0;
  5912. return 0;
  5913. skip:
  5914. wc->refs[level - 1] = 0;
  5915. wc->flags[level - 1] = 0;
  5916. if (wc->stage == DROP_REFERENCE) {
  5917. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  5918. parent = path->nodes[level]->start;
  5919. } else {
  5920. BUG_ON(root->root_key.objectid !=
  5921. btrfs_header_owner(path->nodes[level]));
  5922. parent = 0;
  5923. }
  5924. ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
  5925. root->root_key.objectid, level - 1, 0, 0);
  5926. BUG_ON(ret); /* -ENOMEM */
  5927. }
  5928. btrfs_tree_unlock(next);
  5929. free_extent_buffer(next);
  5930. *lookup_info = 1;
  5931. return 1;
  5932. }
  5933. /*
  5934. * hepler to process tree block while walking up the tree.
  5935. *
  5936. * when wc->stage == DROP_REFERENCE, this function drops
  5937. * reference count on the block.
  5938. *
  5939. * when wc->stage == UPDATE_BACKREF, this function changes
  5940. * wc->stage back to DROP_REFERENCE if we changed wc->stage
  5941. * to UPDATE_BACKREF previously while processing the block.
  5942. *
  5943. * NOTE: return value 1 means we should stop walking up.
  5944. */
  5945. static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
  5946. struct btrfs_root *root,
  5947. struct btrfs_path *path,
  5948. struct walk_control *wc)
  5949. {
  5950. int ret;
  5951. int level = wc->level;
  5952. struct extent_buffer *eb = path->nodes[level];
  5953. u64 parent = 0;
  5954. if (wc->stage == UPDATE_BACKREF) {
  5955. BUG_ON(wc->shared_level < level);
  5956. if (level < wc->shared_level)
  5957. goto out;
  5958. ret = find_next_key(path, level + 1, &wc->update_progress);
  5959. if (ret > 0)
  5960. wc->update_ref = 0;
  5961. wc->stage = DROP_REFERENCE;
  5962. wc->shared_level = -1;
  5963. path->slots[level] = 0;
  5964. /*
  5965. * check reference count again if the block isn't locked.
  5966. * we should start walking down the tree again if reference
  5967. * count is one.
  5968. */
  5969. if (!path->locks[level]) {
  5970. BUG_ON(level == 0);
  5971. btrfs_tree_lock(eb);
  5972. btrfs_set_lock_blocking(eb);
  5973. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5974. ret = btrfs_lookup_extent_info(trans, root,
  5975. eb->start, eb->len,
  5976. &wc->refs[level],
  5977. &wc->flags[level]);
  5978. if (ret < 0) {
  5979. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5980. return ret;
  5981. }
  5982. BUG_ON(wc->refs[level] == 0);
  5983. if (wc->refs[level] == 1) {
  5984. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5985. return 1;
  5986. }
  5987. }
  5988. }
  5989. /* wc->stage == DROP_REFERENCE */
  5990. BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
  5991. if (wc->refs[level] == 1) {
  5992. if (level == 0) {
  5993. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5994. ret = btrfs_dec_ref(trans, root, eb, 1,
  5995. wc->for_reloc);
  5996. else
  5997. ret = btrfs_dec_ref(trans, root, eb, 0,
  5998. wc->for_reloc);
  5999. BUG_ON(ret); /* -ENOMEM */
  6000. }
  6001. /* make block locked assertion in clean_tree_block happy */
  6002. if (!path->locks[level] &&
  6003. btrfs_header_generation(eb) == trans->transid) {
  6004. btrfs_tree_lock(eb);
  6005. btrfs_set_lock_blocking(eb);
  6006. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6007. }
  6008. clean_tree_block(trans, root, eb);
  6009. }
  6010. if (eb == root->node) {
  6011. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6012. parent = eb->start;
  6013. else
  6014. BUG_ON(root->root_key.objectid !=
  6015. btrfs_header_owner(eb));
  6016. } else {
  6017. if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6018. parent = path->nodes[level + 1]->start;
  6019. else
  6020. BUG_ON(root->root_key.objectid !=
  6021. btrfs_header_owner(path->nodes[level + 1]));
  6022. }
  6023. btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
  6024. out:
  6025. wc->refs[level] = 0;
  6026. wc->flags[level] = 0;
  6027. return 0;
  6028. }
  6029. static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
  6030. struct btrfs_root *root,
  6031. struct btrfs_path *path,
  6032. struct walk_control *wc)
  6033. {
  6034. int level = wc->level;
  6035. int lookup_info = 1;
  6036. int ret;
  6037. while (level >= 0) {
  6038. ret = walk_down_proc(trans, root, path, wc, lookup_info);
  6039. if (ret > 0)
  6040. break;
  6041. if (level == 0)
  6042. break;
  6043. if (path->slots[level] >=
  6044. btrfs_header_nritems(path->nodes[level]))
  6045. break;
  6046. ret = do_walk_down(trans, root, path, wc, &lookup_info);
  6047. if (ret > 0) {
  6048. path->slots[level]++;
  6049. continue;
  6050. } else if (ret < 0)
  6051. return ret;
  6052. level = wc->level;
  6053. }
  6054. return 0;
  6055. }
  6056. static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
  6057. struct btrfs_root *root,
  6058. struct btrfs_path *path,
  6059. struct walk_control *wc, int max_level)
  6060. {
  6061. int level = wc->level;
  6062. int ret;
  6063. path->slots[level] = btrfs_header_nritems(path->nodes[level]);
  6064. while (level < max_level && path->nodes[level]) {
  6065. wc->level = level;
  6066. if (path->slots[level] + 1 <
  6067. btrfs_header_nritems(path->nodes[level])) {
  6068. path->slots[level]++;
  6069. return 0;
  6070. } else {
  6071. ret = walk_up_proc(trans, root, path, wc);
  6072. if (ret > 0)
  6073. return 0;
  6074. if (path->locks[level]) {
  6075. btrfs_tree_unlock_rw(path->nodes[level],
  6076. path->locks[level]);
  6077. path->locks[level] = 0;
  6078. }
  6079. free_extent_buffer(path->nodes[level]);
  6080. path->nodes[level] = NULL;
  6081. level++;
  6082. }
  6083. }
  6084. return 1;
  6085. }
  6086. /*
  6087. * drop a subvolume tree.
  6088. *
  6089. * this function traverses the tree freeing any blocks that only
  6090. * referenced by the tree.
  6091. *
  6092. * when a shared tree block is found. this function decreases its
  6093. * reference count by one. if update_ref is true, this function
  6094. * also make sure backrefs for the shared block and all lower level
  6095. * blocks are properly updated.
  6096. */
  6097. int btrfs_drop_snapshot(struct btrfs_root *root,
  6098. struct btrfs_block_rsv *block_rsv, int update_ref,
  6099. int for_reloc)
  6100. {
  6101. struct btrfs_path *path;
  6102. struct btrfs_trans_handle *trans;
  6103. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6104. struct btrfs_root_item *root_item = &root->root_item;
  6105. struct walk_control *wc;
  6106. struct btrfs_key key;
  6107. int err = 0;
  6108. int ret;
  6109. int level;
  6110. path = btrfs_alloc_path();
  6111. if (!path) {
  6112. err = -ENOMEM;
  6113. goto out;
  6114. }
  6115. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6116. if (!wc) {
  6117. btrfs_free_path(path);
  6118. err = -ENOMEM;
  6119. goto out;
  6120. }
  6121. trans = btrfs_start_transaction(tree_root, 0);
  6122. if (IS_ERR(trans)) {
  6123. err = PTR_ERR(trans);
  6124. goto out_free;
  6125. }
  6126. if (block_rsv)
  6127. trans->block_rsv = block_rsv;
  6128. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  6129. level = btrfs_header_level(root->node);
  6130. path->nodes[level] = btrfs_lock_root_node(root);
  6131. btrfs_set_lock_blocking(path->nodes[level]);
  6132. path->slots[level] = 0;
  6133. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6134. memset(&wc->update_progress, 0,
  6135. sizeof(wc->update_progress));
  6136. } else {
  6137. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  6138. memcpy(&wc->update_progress, &key,
  6139. sizeof(wc->update_progress));
  6140. level = root_item->drop_level;
  6141. BUG_ON(level == 0);
  6142. path->lowest_level = level;
  6143. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  6144. path->lowest_level = 0;
  6145. if (ret < 0) {
  6146. err = ret;
  6147. goto out_end_trans;
  6148. }
  6149. WARN_ON(ret > 0);
  6150. /*
  6151. * unlock our path, this is safe because only this
  6152. * function is allowed to delete this snapshot
  6153. */
  6154. btrfs_unlock_up_safe(path, 0);
  6155. level = btrfs_header_level(root->node);
  6156. while (1) {
  6157. btrfs_tree_lock(path->nodes[level]);
  6158. btrfs_set_lock_blocking(path->nodes[level]);
  6159. ret = btrfs_lookup_extent_info(trans, root,
  6160. path->nodes[level]->start,
  6161. path->nodes[level]->len,
  6162. &wc->refs[level],
  6163. &wc->flags[level]);
  6164. if (ret < 0) {
  6165. err = ret;
  6166. goto out_end_trans;
  6167. }
  6168. BUG_ON(wc->refs[level] == 0);
  6169. if (level == root_item->drop_level)
  6170. break;
  6171. btrfs_tree_unlock(path->nodes[level]);
  6172. WARN_ON(wc->refs[level] != 1);
  6173. level--;
  6174. }
  6175. }
  6176. wc->level = level;
  6177. wc->shared_level = -1;
  6178. wc->stage = DROP_REFERENCE;
  6179. wc->update_ref = update_ref;
  6180. wc->keep_locks = 0;
  6181. wc->for_reloc = for_reloc;
  6182. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6183. while (1) {
  6184. ret = walk_down_tree(trans, root, path, wc);
  6185. if (ret < 0) {
  6186. err = ret;
  6187. break;
  6188. }
  6189. ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
  6190. if (ret < 0) {
  6191. err = ret;
  6192. break;
  6193. }
  6194. if (ret > 0) {
  6195. BUG_ON(wc->stage != DROP_REFERENCE);
  6196. break;
  6197. }
  6198. if (wc->stage == DROP_REFERENCE) {
  6199. level = wc->level;
  6200. btrfs_node_key(path->nodes[level],
  6201. &root_item->drop_progress,
  6202. path->slots[level]);
  6203. root_item->drop_level = level;
  6204. }
  6205. BUG_ON(wc->level == 0);
  6206. if (btrfs_should_end_transaction(trans, tree_root)) {
  6207. ret = btrfs_update_root(trans, tree_root,
  6208. &root->root_key,
  6209. root_item);
  6210. if (ret) {
  6211. btrfs_abort_transaction(trans, tree_root, ret);
  6212. err = ret;
  6213. goto out_end_trans;
  6214. }
  6215. btrfs_end_transaction_throttle(trans, tree_root);
  6216. trans = btrfs_start_transaction(tree_root, 0);
  6217. if (IS_ERR(trans)) {
  6218. err = PTR_ERR(trans);
  6219. goto out_free;
  6220. }
  6221. if (block_rsv)
  6222. trans->block_rsv = block_rsv;
  6223. }
  6224. }
  6225. btrfs_release_path(path);
  6226. if (err)
  6227. goto out_end_trans;
  6228. ret = btrfs_del_root(trans, tree_root, &root->root_key);
  6229. if (ret) {
  6230. btrfs_abort_transaction(trans, tree_root, ret);
  6231. goto out_end_trans;
  6232. }
  6233. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  6234. ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
  6235. NULL, NULL);
  6236. if (ret < 0) {
  6237. btrfs_abort_transaction(trans, tree_root, ret);
  6238. err = ret;
  6239. goto out_end_trans;
  6240. } else if (ret > 0) {
  6241. /* if we fail to delete the orphan item this time
  6242. * around, it'll get picked up the next time.
  6243. *
  6244. * The most common failure here is just -ENOENT.
  6245. */
  6246. btrfs_del_orphan_item(trans, tree_root,
  6247. root->root_key.objectid);
  6248. }
  6249. }
  6250. if (root->in_radix) {
  6251. btrfs_free_fs_root(tree_root->fs_info, root);
  6252. } else {
  6253. free_extent_buffer(root->node);
  6254. free_extent_buffer(root->commit_root);
  6255. kfree(root);
  6256. }
  6257. out_end_trans:
  6258. btrfs_end_transaction_throttle(trans, tree_root);
  6259. out_free:
  6260. kfree(wc);
  6261. btrfs_free_path(path);
  6262. out:
  6263. if (err)
  6264. btrfs_std_error(root->fs_info, err);
  6265. return err;
  6266. }
  6267. /*
  6268. * drop subtree rooted at tree block 'node'.
  6269. *
  6270. * NOTE: this function will unlock and release tree block 'node'
  6271. * only used by relocation code
  6272. */
  6273. int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
  6274. struct btrfs_root *root,
  6275. struct extent_buffer *node,
  6276. struct extent_buffer *parent)
  6277. {
  6278. struct btrfs_path *path;
  6279. struct walk_control *wc;
  6280. int level;
  6281. int parent_level;
  6282. int ret = 0;
  6283. int wret;
  6284. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  6285. path = btrfs_alloc_path();
  6286. if (!path)
  6287. return -ENOMEM;
  6288. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6289. if (!wc) {
  6290. btrfs_free_path(path);
  6291. return -ENOMEM;
  6292. }
  6293. btrfs_assert_tree_locked(parent);
  6294. parent_level = btrfs_header_level(parent);
  6295. extent_buffer_get(parent);
  6296. path->nodes[parent_level] = parent;
  6297. path->slots[parent_level] = btrfs_header_nritems(parent);
  6298. btrfs_assert_tree_locked(node);
  6299. level = btrfs_header_level(node);
  6300. path->nodes[level] = node;
  6301. path->slots[level] = 0;
  6302. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6303. wc->refs[parent_level] = 1;
  6304. wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  6305. wc->level = level;
  6306. wc->shared_level = -1;
  6307. wc->stage = DROP_REFERENCE;
  6308. wc->update_ref = 0;
  6309. wc->keep_locks = 1;
  6310. wc->for_reloc = 1;
  6311. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6312. while (1) {
  6313. wret = walk_down_tree(trans, root, path, wc);
  6314. if (wret < 0) {
  6315. ret = wret;
  6316. break;
  6317. }
  6318. wret = walk_up_tree(trans, root, path, wc, parent_level);
  6319. if (wret < 0)
  6320. ret = wret;
  6321. if (wret != 0)
  6322. break;
  6323. }
  6324. kfree(wc);
  6325. btrfs_free_path(path);
  6326. return ret;
  6327. }
  6328. static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
  6329. {
  6330. u64 num_devices;
  6331. u64 stripped;
  6332. /*
  6333. * if restripe for this chunk_type is on pick target profile and
  6334. * return, otherwise do the usual balance
  6335. */
  6336. stripped = get_restripe_target(root->fs_info, flags);
  6337. if (stripped)
  6338. return extended_to_chunk(stripped);
  6339. /*
  6340. * we add in the count of missing devices because we want
  6341. * to make sure that any RAID levels on a degraded FS
  6342. * continue to be honored.
  6343. */
  6344. num_devices = root->fs_info->fs_devices->rw_devices +
  6345. root->fs_info->fs_devices->missing_devices;
  6346. stripped = BTRFS_BLOCK_GROUP_RAID0 |
  6347. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
  6348. if (num_devices == 1) {
  6349. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6350. stripped = flags & ~stripped;
  6351. /* turn raid0 into single device chunks */
  6352. if (flags & BTRFS_BLOCK_GROUP_RAID0)
  6353. return stripped;
  6354. /* turn mirroring into duplication */
  6355. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6356. BTRFS_BLOCK_GROUP_RAID10))
  6357. return stripped | BTRFS_BLOCK_GROUP_DUP;
  6358. } else {
  6359. /* they already had raid on here, just return */
  6360. if (flags & stripped)
  6361. return flags;
  6362. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6363. stripped = flags & ~stripped;
  6364. /* switch duplicated blocks with raid1 */
  6365. if (flags & BTRFS_BLOCK_GROUP_DUP)
  6366. return stripped | BTRFS_BLOCK_GROUP_RAID1;
  6367. /* this is drive concat, leave it alone */
  6368. }
  6369. return flags;
  6370. }
  6371. static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
  6372. {
  6373. struct btrfs_space_info *sinfo = cache->space_info;
  6374. u64 num_bytes;
  6375. u64 min_allocable_bytes;
  6376. int ret = -ENOSPC;
  6377. /*
  6378. * We need some metadata space and system metadata space for
  6379. * allocating chunks in some corner cases until we force to set
  6380. * it to be readonly.
  6381. */
  6382. if ((sinfo->flags &
  6383. (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
  6384. !force)
  6385. min_allocable_bytes = 1 * 1024 * 1024;
  6386. else
  6387. min_allocable_bytes = 0;
  6388. spin_lock(&sinfo->lock);
  6389. spin_lock(&cache->lock);
  6390. if (cache->ro) {
  6391. ret = 0;
  6392. goto out;
  6393. }
  6394. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6395. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6396. if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
  6397. sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
  6398. min_allocable_bytes <= sinfo->total_bytes) {
  6399. sinfo->bytes_readonly += num_bytes;
  6400. cache->ro = 1;
  6401. ret = 0;
  6402. }
  6403. out:
  6404. spin_unlock(&cache->lock);
  6405. spin_unlock(&sinfo->lock);
  6406. return ret;
  6407. }
  6408. int btrfs_set_block_group_ro(struct btrfs_root *root,
  6409. struct btrfs_block_group_cache *cache)
  6410. {
  6411. struct btrfs_trans_handle *trans;
  6412. u64 alloc_flags;
  6413. int ret;
  6414. BUG_ON(cache->ro);
  6415. trans = btrfs_join_transaction(root);
  6416. if (IS_ERR(trans))
  6417. return PTR_ERR(trans);
  6418. alloc_flags = update_block_group_flags(root, cache->flags);
  6419. if (alloc_flags != cache->flags) {
  6420. ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6421. CHUNK_ALLOC_FORCE);
  6422. if (ret < 0)
  6423. goto out;
  6424. }
  6425. ret = set_block_group_ro(cache, 0);
  6426. if (!ret)
  6427. goto out;
  6428. alloc_flags = get_alloc_profile(root, cache->space_info->flags);
  6429. ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6430. CHUNK_ALLOC_FORCE);
  6431. if (ret < 0)
  6432. goto out;
  6433. ret = set_block_group_ro(cache, 0);
  6434. out:
  6435. btrfs_end_transaction(trans, root);
  6436. return ret;
  6437. }
  6438. int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
  6439. struct btrfs_root *root, u64 type)
  6440. {
  6441. u64 alloc_flags = get_alloc_profile(root, type);
  6442. return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6443. CHUNK_ALLOC_FORCE);
  6444. }
  6445. /*
  6446. * helper to account the unused space of all the readonly block group in the
  6447. * list. takes mirrors into account.
  6448. */
  6449. static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
  6450. {
  6451. struct btrfs_block_group_cache *block_group;
  6452. u64 free_bytes = 0;
  6453. int factor;
  6454. list_for_each_entry(block_group, groups_list, list) {
  6455. spin_lock(&block_group->lock);
  6456. if (!block_group->ro) {
  6457. spin_unlock(&block_group->lock);
  6458. continue;
  6459. }
  6460. if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6461. BTRFS_BLOCK_GROUP_RAID10 |
  6462. BTRFS_BLOCK_GROUP_DUP))
  6463. factor = 2;
  6464. else
  6465. factor = 1;
  6466. free_bytes += (block_group->key.offset -
  6467. btrfs_block_group_used(&block_group->item)) *
  6468. factor;
  6469. spin_unlock(&block_group->lock);
  6470. }
  6471. return free_bytes;
  6472. }
  6473. /*
  6474. * helper to account the unused space of all the readonly block group in the
  6475. * space_info. takes mirrors into account.
  6476. */
  6477. u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
  6478. {
  6479. int i;
  6480. u64 free_bytes = 0;
  6481. spin_lock(&sinfo->lock);
  6482. for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  6483. if (!list_empty(&sinfo->block_groups[i]))
  6484. free_bytes += __btrfs_get_ro_block_group_free_space(
  6485. &sinfo->block_groups[i]);
  6486. spin_unlock(&sinfo->lock);
  6487. return free_bytes;
  6488. }
  6489. void btrfs_set_block_group_rw(struct btrfs_root *root,
  6490. struct btrfs_block_group_cache *cache)
  6491. {
  6492. struct btrfs_space_info *sinfo = cache->space_info;
  6493. u64 num_bytes;
  6494. BUG_ON(!cache->ro);
  6495. spin_lock(&sinfo->lock);
  6496. spin_lock(&cache->lock);
  6497. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6498. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6499. sinfo->bytes_readonly -= num_bytes;
  6500. cache->ro = 0;
  6501. spin_unlock(&cache->lock);
  6502. spin_unlock(&sinfo->lock);
  6503. }
  6504. /*
  6505. * checks to see if its even possible to relocate this block group.
  6506. *
  6507. * @return - -1 if it's not a good idea to relocate this block group, 0 if its
  6508. * ok to go ahead and try.
  6509. */
  6510. int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
  6511. {
  6512. struct btrfs_block_group_cache *block_group;
  6513. struct btrfs_space_info *space_info;
  6514. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  6515. struct btrfs_device *device;
  6516. u64 min_free;
  6517. u64 dev_min = 1;
  6518. u64 dev_nr = 0;
  6519. u64 target;
  6520. int index;
  6521. int full = 0;
  6522. int ret = 0;
  6523. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  6524. /* odd, couldn't find the block group, leave it alone */
  6525. if (!block_group)
  6526. return -1;
  6527. min_free = btrfs_block_group_used(&block_group->item);
  6528. /* no bytes used, we're good */
  6529. if (!min_free)
  6530. goto out;
  6531. space_info = block_group->space_info;
  6532. spin_lock(&space_info->lock);
  6533. full = space_info->full;
  6534. /*
  6535. * if this is the last block group we have in this space, we can't
  6536. * relocate it unless we're able to allocate a new chunk below.
  6537. *
  6538. * Otherwise, we need to make sure we have room in the space to handle
  6539. * all of the extents from this block group. If we can, we're good
  6540. */
  6541. if ((space_info->total_bytes != block_group->key.offset) &&
  6542. (space_info->bytes_used + space_info->bytes_reserved +
  6543. space_info->bytes_pinned + space_info->bytes_readonly +
  6544. min_free < space_info->total_bytes)) {
  6545. spin_unlock(&space_info->lock);
  6546. goto out;
  6547. }
  6548. spin_unlock(&space_info->lock);
  6549. /*
  6550. * ok we don't have enough space, but maybe we have free space on our
  6551. * devices to allocate new chunks for relocation, so loop through our
  6552. * alloc devices and guess if we have enough space. if this block
  6553. * group is going to be restriped, run checks against the target
  6554. * profile instead of the current one.
  6555. */
  6556. ret = -1;
  6557. /*
  6558. * index:
  6559. * 0: raid10
  6560. * 1: raid1
  6561. * 2: dup
  6562. * 3: raid0
  6563. * 4: single
  6564. */
  6565. target = get_restripe_target(root->fs_info, block_group->flags);
  6566. if (target) {
  6567. index = __get_block_group_index(extended_to_chunk(target));
  6568. } else {
  6569. /*
  6570. * this is just a balance, so if we were marked as full
  6571. * we know there is no space for a new chunk
  6572. */
  6573. if (full)
  6574. goto out;
  6575. index = get_block_group_index(block_group);
  6576. }
  6577. if (index == 0) {
  6578. dev_min = 4;
  6579. /* Divide by 2 */
  6580. min_free >>= 1;
  6581. } else if (index == 1) {
  6582. dev_min = 2;
  6583. } else if (index == 2) {
  6584. /* Multiply by 2 */
  6585. min_free <<= 1;
  6586. } else if (index == 3) {
  6587. dev_min = fs_devices->rw_devices;
  6588. do_div(min_free, dev_min);
  6589. }
  6590. mutex_lock(&root->fs_info->chunk_mutex);
  6591. list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
  6592. u64 dev_offset;
  6593. /*
  6594. * check to make sure we can actually find a chunk with enough
  6595. * space to fit our block group in.
  6596. */
  6597. if (device->total_bytes > device->bytes_used + min_free) {
  6598. ret = find_free_dev_extent(device, min_free,
  6599. &dev_offset, NULL);
  6600. if (!ret)
  6601. dev_nr++;
  6602. if (dev_nr >= dev_min)
  6603. break;
  6604. ret = -1;
  6605. }
  6606. }
  6607. mutex_unlock(&root->fs_info->chunk_mutex);
  6608. out:
  6609. btrfs_put_block_group(block_group);
  6610. return ret;
  6611. }
  6612. static int find_first_block_group(struct btrfs_root *root,
  6613. struct btrfs_path *path, struct btrfs_key *key)
  6614. {
  6615. int ret = 0;
  6616. struct btrfs_key found_key;
  6617. struct extent_buffer *leaf;
  6618. int slot;
  6619. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  6620. if (ret < 0)
  6621. goto out;
  6622. while (1) {
  6623. slot = path->slots[0];
  6624. leaf = path->nodes[0];
  6625. if (slot >= btrfs_header_nritems(leaf)) {
  6626. ret = btrfs_next_leaf(root, path);
  6627. if (ret == 0)
  6628. continue;
  6629. if (ret < 0)
  6630. goto out;
  6631. break;
  6632. }
  6633. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  6634. if (found_key.objectid >= key->objectid &&
  6635. found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
  6636. ret = 0;
  6637. goto out;
  6638. }
  6639. path->slots[0]++;
  6640. }
  6641. out:
  6642. return ret;
  6643. }
  6644. void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
  6645. {
  6646. struct btrfs_block_group_cache *block_group;
  6647. u64 last = 0;
  6648. while (1) {
  6649. struct inode *inode;
  6650. block_group = btrfs_lookup_first_block_group(info, last);
  6651. while (block_group) {
  6652. spin_lock(&block_group->lock);
  6653. if (block_group->iref)
  6654. break;
  6655. spin_unlock(&block_group->lock);
  6656. block_group = next_block_group(info->tree_root,
  6657. block_group);
  6658. }
  6659. if (!block_group) {
  6660. if (last == 0)
  6661. break;
  6662. last = 0;
  6663. continue;
  6664. }
  6665. inode = block_group->inode;
  6666. block_group->iref = 0;
  6667. block_group->inode = NULL;
  6668. spin_unlock(&block_group->lock);
  6669. iput(inode);
  6670. last = block_group->key.objectid + block_group->key.offset;
  6671. btrfs_put_block_group(block_group);
  6672. }
  6673. }
  6674. int btrfs_free_block_groups(struct btrfs_fs_info *info)
  6675. {
  6676. struct btrfs_block_group_cache *block_group;
  6677. struct btrfs_space_info *space_info;
  6678. struct btrfs_caching_control *caching_ctl;
  6679. struct rb_node *n;
  6680. down_write(&info->extent_commit_sem);
  6681. while (!list_empty(&info->caching_block_groups)) {
  6682. caching_ctl = list_entry(info->caching_block_groups.next,
  6683. struct btrfs_caching_control, list);
  6684. list_del(&caching_ctl->list);
  6685. put_caching_control(caching_ctl);
  6686. }
  6687. up_write(&info->extent_commit_sem);
  6688. spin_lock(&info->block_group_cache_lock);
  6689. while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
  6690. block_group = rb_entry(n, struct btrfs_block_group_cache,
  6691. cache_node);
  6692. rb_erase(&block_group->cache_node,
  6693. &info->block_group_cache_tree);
  6694. spin_unlock(&info->block_group_cache_lock);
  6695. down_write(&block_group->space_info->groups_sem);
  6696. list_del(&block_group->list);
  6697. up_write(&block_group->space_info->groups_sem);
  6698. if (block_group->cached == BTRFS_CACHE_STARTED)
  6699. wait_block_group_cache_done(block_group);
  6700. /*
  6701. * We haven't cached this block group, which means we could
  6702. * possibly have excluded extents on this block group.
  6703. */
  6704. if (block_group->cached == BTRFS_CACHE_NO)
  6705. free_excluded_extents(info->extent_root, block_group);
  6706. btrfs_remove_free_space_cache(block_group);
  6707. btrfs_put_block_group(block_group);
  6708. spin_lock(&info->block_group_cache_lock);
  6709. }
  6710. spin_unlock(&info->block_group_cache_lock);
  6711. /* now that all the block groups are freed, go through and
  6712. * free all the space_info structs. This is only called during
  6713. * the final stages of unmount, and so we know nobody is
  6714. * using them. We call synchronize_rcu() once before we start,
  6715. * just to be on the safe side.
  6716. */
  6717. synchronize_rcu();
  6718. release_global_block_rsv(info);
  6719. while(!list_empty(&info->space_info)) {
  6720. space_info = list_entry(info->space_info.next,
  6721. struct btrfs_space_info,
  6722. list);
  6723. if (space_info->bytes_pinned > 0 ||
  6724. space_info->bytes_reserved > 0 ||
  6725. space_info->bytes_may_use > 0) {
  6726. WARN_ON(1);
  6727. dump_space_info(space_info, 0, 0);
  6728. }
  6729. list_del(&space_info->list);
  6730. kfree(space_info);
  6731. }
  6732. return 0;
  6733. }
  6734. static void __link_block_group(struct btrfs_space_info *space_info,
  6735. struct btrfs_block_group_cache *cache)
  6736. {
  6737. int index = get_block_group_index(cache);
  6738. down_write(&space_info->groups_sem);
  6739. list_add_tail(&cache->list, &space_info->block_groups[index]);
  6740. up_write(&space_info->groups_sem);
  6741. }
  6742. int btrfs_read_block_groups(struct btrfs_root *root)
  6743. {
  6744. struct btrfs_path *path;
  6745. int ret;
  6746. struct btrfs_block_group_cache *cache;
  6747. struct btrfs_fs_info *info = root->fs_info;
  6748. struct btrfs_space_info *space_info;
  6749. struct btrfs_key key;
  6750. struct btrfs_key found_key;
  6751. struct extent_buffer *leaf;
  6752. int need_clear = 0;
  6753. u64 cache_gen;
  6754. root = info->extent_root;
  6755. key.objectid = 0;
  6756. key.offset = 0;
  6757. btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
  6758. path = btrfs_alloc_path();
  6759. if (!path)
  6760. return -ENOMEM;
  6761. path->reada = 1;
  6762. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  6763. if (btrfs_test_opt(root, SPACE_CACHE) &&
  6764. btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
  6765. need_clear = 1;
  6766. if (btrfs_test_opt(root, CLEAR_CACHE))
  6767. need_clear = 1;
  6768. while (1) {
  6769. ret = find_first_block_group(root, path, &key);
  6770. if (ret > 0)
  6771. break;
  6772. if (ret != 0)
  6773. goto error;
  6774. leaf = path->nodes[0];
  6775. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  6776. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6777. if (!cache) {
  6778. ret = -ENOMEM;
  6779. goto error;
  6780. }
  6781. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6782. GFP_NOFS);
  6783. if (!cache->free_space_ctl) {
  6784. kfree(cache);
  6785. ret = -ENOMEM;
  6786. goto error;
  6787. }
  6788. atomic_set(&cache->count, 1);
  6789. spin_lock_init(&cache->lock);
  6790. cache->fs_info = info;
  6791. INIT_LIST_HEAD(&cache->list);
  6792. INIT_LIST_HEAD(&cache->cluster_list);
  6793. if (need_clear) {
  6794. /*
  6795. * When we mount with old space cache, we need to
  6796. * set BTRFS_DC_CLEAR and set dirty flag.
  6797. *
  6798. * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
  6799. * truncate the old free space cache inode and
  6800. * setup a new one.
  6801. * b) Setting 'dirty flag' makes sure that we flush
  6802. * the new space cache info onto disk.
  6803. */
  6804. cache->disk_cache_state = BTRFS_DC_CLEAR;
  6805. if (btrfs_test_opt(root, SPACE_CACHE))
  6806. cache->dirty = 1;
  6807. }
  6808. read_extent_buffer(leaf, &cache->item,
  6809. btrfs_item_ptr_offset(leaf, path->slots[0]),
  6810. sizeof(cache->item));
  6811. memcpy(&cache->key, &found_key, sizeof(found_key));
  6812. key.objectid = found_key.objectid + found_key.offset;
  6813. btrfs_release_path(path);
  6814. cache->flags = btrfs_block_group_flags(&cache->item);
  6815. cache->sectorsize = root->sectorsize;
  6816. btrfs_init_free_space_ctl(cache);
  6817. /*
  6818. * We need to exclude the super stripes now so that the space
  6819. * info has super bytes accounted for, otherwise we'll think
  6820. * we have more space than we actually do.
  6821. */
  6822. exclude_super_stripes(root, cache);
  6823. /*
  6824. * check for two cases, either we are full, and therefore
  6825. * don't need to bother with the caching work since we won't
  6826. * find any space, or we are empty, and we can just add all
  6827. * the space in and be done with it. This saves us _alot_ of
  6828. * time, particularly in the full case.
  6829. */
  6830. if (found_key.offset == btrfs_block_group_used(&cache->item)) {
  6831. cache->last_byte_to_unpin = (u64)-1;
  6832. cache->cached = BTRFS_CACHE_FINISHED;
  6833. free_excluded_extents(root, cache);
  6834. } else if (btrfs_block_group_used(&cache->item) == 0) {
  6835. cache->last_byte_to_unpin = (u64)-1;
  6836. cache->cached = BTRFS_CACHE_FINISHED;
  6837. add_new_free_space(cache, root->fs_info,
  6838. found_key.objectid,
  6839. found_key.objectid +
  6840. found_key.offset);
  6841. free_excluded_extents(root, cache);
  6842. }
  6843. ret = update_space_info(info, cache->flags, found_key.offset,
  6844. btrfs_block_group_used(&cache->item),
  6845. &space_info);
  6846. BUG_ON(ret); /* -ENOMEM */
  6847. cache->space_info = space_info;
  6848. spin_lock(&cache->space_info->lock);
  6849. cache->space_info->bytes_readonly += cache->bytes_super;
  6850. spin_unlock(&cache->space_info->lock);
  6851. __link_block_group(space_info, cache);
  6852. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6853. BUG_ON(ret); /* Logic error */
  6854. set_avail_alloc_bits(root->fs_info, cache->flags);
  6855. if (btrfs_chunk_readonly(root, cache->key.objectid))
  6856. set_block_group_ro(cache, 1);
  6857. }
  6858. list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
  6859. if (!(get_alloc_profile(root, space_info->flags) &
  6860. (BTRFS_BLOCK_GROUP_RAID10 |
  6861. BTRFS_BLOCK_GROUP_RAID1 |
  6862. BTRFS_BLOCK_GROUP_DUP)))
  6863. continue;
  6864. /*
  6865. * avoid allocating from un-mirrored block group if there are
  6866. * mirrored block groups.
  6867. */
  6868. list_for_each_entry(cache, &space_info->block_groups[3], list)
  6869. set_block_group_ro(cache, 1);
  6870. list_for_each_entry(cache, &space_info->block_groups[4], list)
  6871. set_block_group_ro(cache, 1);
  6872. }
  6873. init_global_block_rsv(info);
  6874. ret = 0;
  6875. error:
  6876. btrfs_free_path(path);
  6877. return ret;
  6878. }
  6879. int btrfs_make_block_group(struct btrfs_trans_handle *trans,
  6880. struct btrfs_root *root, u64 bytes_used,
  6881. u64 type, u64 chunk_objectid, u64 chunk_offset,
  6882. u64 size)
  6883. {
  6884. int ret;
  6885. struct btrfs_root *extent_root;
  6886. struct btrfs_block_group_cache *cache;
  6887. extent_root = root->fs_info->extent_root;
  6888. root->fs_info->last_trans_log_full_commit = trans->transid;
  6889. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6890. if (!cache)
  6891. return -ENOMEM;
  6892. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6893. GFP_NOFS);
  6894. if (!cache->free_space_ctl) {
  6895. kfree(cache);
  6896. return -ENOMEM;
  6897. }
  6898. cache->key.objectid = chunk_offset;
  6899. cache->key.offset = size;
  6900. cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  6901. cache->sectorsize = root->sectorsize;
  6902. cache->fs_info = root->fs_info;
  6903. atomic_set(&cache->count, 1);
  6904. spin_lock_init(&cache->lock);
  6905. INIT_LIST_HEAD(&cache->list);
  6906. INIT_LIST_HEAD(&cache->cluster_list);
  6907. btrfs_init_free_space_ctl(cache);
  6908. btrfs_set_block_group_used(&cache->item, bytes_used);
  6909. btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
  6910. cache->flags = type;
  6911. btrfs_set_block_group_flags(&cache->item, type);
  6912. cache->last_byte_to_unpin = (u64)-1;
  6913. cache->cached = BTRFS_CACHE_FINISHED;
  6914. exclude_super_stripes(root, cache);
  6915. add_new_free_space(cache, root->fs_info, chunk_offset,
  6916. chunk_offset + size);
  6917. free_excluded_extents(root, cache);
  6918. ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
  6919. &cache->space_info);
  6920. BUG_ON(ret); /* -ENOMEM */
  6921. update_global_block_rsv(root->fs_info);
  6922. spin_lock(&cache->space_info->lock);
  6923. cache->space_info->bytes_readonly += cache->bytes_super;
  6924. spin_unlock(&cache->space_info->lock);
  6925. __link_block_group(cache->space_info, cache);
  6926. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6927. BUG_ON(ret); /* Logic error */
  6928. ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
  6929. sizeof(cache->item));
  6930. if (ret) {
  6931. btrfs_abort_transaction(trans, extent_root, ret);
  6932. return ret;
  6933. }
  6934. set_avail_alloc_bits(extent_root->fs_info, type);
  6935. return 0;
  6936. }
  6937. static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  6938. {
  6939. u64 extra_flags = chunk_to_extended(flags) &
  6940. BTRFS_EXTENDED_PROFILE_MASK;
  6941. if (flags & BTRFS_BLOCK_GROUP_DATA)
  6942. fs_info->avail_data_alloc_bits &= ~extra_flags;
  6943. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  6944. fs_info->avail_metadata_alloc_bits &= ~extra_flags;
  6945. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  6946. fs_info->avail_system_alloc_bits &= ~extra_flags;
  6947. }
  6948. int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
  6949. struct btrfs_root *root, u64 group_start)
  6950. {
  6951. struct btrfs_path *path;
  6952. struct btrfs_block_group_cache *block_group;
  6953. struct btrfs_free_cluster *cluster;
  6954. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6955. struct btrfs_key key;
  6956. struct inode *inode;
  6957. int ret;
  6958. int index;
  6959. int factor;
  6960. root = root->fs_info->extent_root;
  6961. block_group = btrfs_lookup_block_group(root->fs_info, group_start);
  6962. BUG_ON(!block_group);
  6963. BUG_ON(!block_group->ro);
  6964. /*
  6965. * Free the reserved super bytes from this block group before
  6966. * remove it.
  6967. */
  6968. free_excluded_extents(root, block_group);
  6969. memcpy(&key, &block_group->key, sizeof(key));
  6970. index = get_block_group_index(block_group);
  6971. if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
  6972. BTRFS_BLOCK_GROUP_RAID1 |
  6973. BTRFS_BLOCK_GROUP_RAID10))
  6974. factor = 2;
  6975. else
  6976. factor = 1;
  6977. /* make sure this block group isn't part of an allocation cluster */
  6978. cluster = &root->fs_info->data_alloc_cluster;
  6979. spin_lock(&cluster->refill_lock);
  6980. btrfs_return_cluster_to_free_space(block_group, cluster);
  6981. spin_unlock(&cluster->refill_lock);
  6982. /*
  6983. * make sure this block group isn't part of a metadata
  6984. * allocation cluster
  6985. */
  6986. cluster = &root->fs_info->meta_alloc_cluster;
  6987. spin_lock(&cluster->refill_lock);
  6988. btrfs_return_cluster_to_free_space(block_group, cluster);
  6989. spin_unlock(&cluster->refill_lock);
  6990. path = btrfs_alloc_path();
  6991. if (!path) {
  6992. ret = -ENOMEM;
  6993. goto out;
  6994. }
  6995. inode = lookup_free_space_inode(tree_root, block_group, path);
  6996. if (!IS_ERR(inode)) {
  6997. ret = btrfs_orphan_add(trans, inode);
  6998. if (ret) {
  6999. btrfs_add_delayed_iput(inode);
  7000. goto out;
  7001. }
  7002. clear_nlink(inode);
  7003. /* One for the block groups ref */
  7004. spin_lock(&block_group->lock);
  7005. if (block_group->iref) {
  7006. block_group->iref = 0;
  7007. block_group->inode = NULL;
  7008. spin_unlock(&block_group->lock);
  7009. iput(inode);
  7010. } else {
  7011. spin_unlock(&block_group->lock);
  7012. }
  7013. /* One for our lookup ref */
  7014. btrfs_add_delayed_iput(inode);
  7015. }
  7016. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  7017. key.offset = block_group->key.objectid;
  7018. key.type = 0;
  7019. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  7020. if (ret < 0)
  7021. goto out;
  7022. if (ret > 0)
  7023. btrfs_release_path(path);
  7024. if (ret == 0) {
  7025. ret = btrfs_del_item(trans, tree_root, path);
  7026. if (ret)
  7027. goto out;
  7028. btrfs_release_path(path);
  7029. }
  7030. spin_lock(&root->fs_info->block_group_cache_lock);
  7031. rb_erase(&block_group->cache_node,
  7032. &root->fs_info->block_group_cache_tree);
  7033. spin_unlock(&root->fs_info->block_group_cache_lock);
  7034. down_write(&block_group->space_info->groups_sem);
  7035. /*
  7036. * we must use list_del_init so people can check to see if they
  7037. * are still on the list after taking the semaphore
  7038. */
  7039. list_del_init(&block_group->list);
  7040. if (list_empty(&block_group->space_info->block_groups[index]))
  7041. clear_avail_alloc_bits(root->fs_info, block_group->flags);
  7042. up_write(&block_group->space_info->groups_sem);
  7043. if (block_group->cached == BTRFS_CACHE_STARTED)
  7044. wait_block_group_cache_done(block_group);
  7045. btrfs_remove_free_space_cache(block_group);
  7046. spin_lock(&block_group->space_info->lock);
  7047. block_group->space_info->total_bytes -= block_group->key.offset;
  7048. block_group->space_info->bytes_readonly -= block_group->key.offset;
  7049. block_group->space_info->disk_total -= block_group->key.offset * factor;
  7050. spin_unlock(&block_group->space_info->lock);
  7051. memcpy(&key, &block_group->key, sizeof(key));
  7052. btrfs_clear_space_info_full(root->fs_info);
  7053. btrfs_put_block_group(block_group);
  7054. btrfs_put_block_group(block_group);
  7055. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  7056. if (ret > 0)
  7057. ret = -EIO;
  7058. if (ret < 0)
  7059. goto out;
  7060. ret = btrfs_del_item(trans, root, path);
  7061. out:
  7062. btrfs_free_path(path);
  7063. return ret;
  7064. }
  7065. int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  7066. {
  7067. struct btrfs_space_info *space_info;
  7068. struct btrfs_super_block *disk_super;
  7069. u64 features;
  7070. u64 flags;
  7071. int mixed = 0;
  7072. int ret;
  7073. disk_super = fs_info->super_copy;
  7074. if (!btrfs_super_root(disk_super))
  7075. return 1;
  7076. features = btrfs_super_incompat_flags(disk_super);
  7077. if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  7078. mixed = 1;
  7079. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  7080. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7081. if (ret)
  7082. goto out;
  7083. if (mixed) {
  7084. flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
  7085. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7086. } else {
  7087. flags = BTRFS_BLOCK_GROUP_METADATA;
  7088. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7089. if (ret)
  7090. goto out;
  7091. flags = BTRFS_BLOCK_GROUP_DATA;
  7092. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7093. }
  7094. out:
  7095. return ret;
  7096. }
  7097. int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  7098. {
  7099. return unpin_extent_range(root, start, end);
  7100. }
  7101. int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
  7102. u64 num_bytes, u64 *actual_bytes)
  7103. {
  7104. return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
  7105. }
  7106. int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
  7107. {
  7108. struct btrfs_fs_info *fs_info = root->fs_info;
  7109. struct btrfs_block_group_cache *cache = NULL;
  7110. u64 group_trimmed;
  7111. u64 start;
  7112. u64 end;
  7113. u64 trimmed = 0;
  7114. u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
  7115. int ret = 0;
  7116. /*
  7117. * try to trim all FS space, our block group may start from non-zero.
  7118. */
  7119. if (range->len == total_bytes)
  7120. cache = btrfs_lookup_first_block_group(fs_info, range->start);
  7121. else
  7122. cache = btrfs_lookup_block_group(fs_info, range->start);
  7123. while (cache) {
  7124. if (cache->key.objectid >= (range->start + range->len)) {
  7125. btrfs_put_block_group(cache);
  7126. break;
  7127. }
  7128. start = max(range->start, cache->key.objectid);
  7129. end = min(range->start + range->len,
  7130. cache->key.objectid + cache->key.offset);
  7131. if (end - start >= range->minlen) {
  7132. if (!block_group_cache_done(cache)) {
  7133. ret = cache_block_group(cache, NULL, root, 0);
  7134. if (!ret)
  7135. wait_block_group_cache_done(cache);
  7136. }
  7137. ret = btrfs_trim_block_group(cache,
  7138. &group_trimmed,
  7139. start,
  7140. end,
  7141. range->minlen);
  7142. trimmed += group_trimmed;
  7143. if (ret) {
  7144. btrfs_put_block_group(cache);
  7145. break;
  7146. }
  7147. }
  7148. cache = next_block_group(fs_info->tree_root, cache);
  7149. }
  7150. range->len = trimmed;
  7151. return ret;
  7152. }