intel_dp.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. /**
  39. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  40. * @intel_dp: DP struct
  41. *
  42. * If a CPU or PCH DP output is attached to an eDP panel, this function
  43. * will return true, and false otherwise.
  44. */
  45. static bool is_edp(struct intel_dp *intel_dp)
  46. {
  47. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  48. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  49. }
  50. /**
  51. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  52. * @intel_dp: DP struct
  53. *
  54. * Returns true if the given DP struct corresponds to a PCH DP port attached
  55. * to an eDP panel, false otherwise. Helpful for determining whether we
  56. * may need FDI resources for a given DP output or not.
  57. */
  58. static bool is_pch_edp(struct intel_dp *intel_dp)
  59. {
  60. return intel_dp->is_pch_edp;
  61. }
  62. /**
  63. * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
  64. * @intel_dp: DP struct
  65. *
  66. * Returns true if the given DP struct corresponds to a CPU eDP port.
  67. */
  68. static bool is_cpu_edp(struct intel_dp *intel_dp)
  69. {
  70. return is_edp(intel_dp) && !is_pch_edp(intel_dp);
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. /**
  82. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  83. * @encoder: DRM encoder
  84. *
  85. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  86. * by intel_display.c.
  87. */
  88. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  89. {
  90. struct intel_dp *intel_dp;
  91. if (!encoder)
  92. return false;
  93. intel_dp = enc_to_intel_dp(encoder);
  94. return is_pch_edp(intel_dp);
  95. }
  96. static void intel_dp_link_down(struct intel_dp *intel_dp);
  97. void
  98. intel_edp_link_config(struct intel_encoder *intel_encoder,
  99. int *lane_num, int *link_bw)
  100. {
  101. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  102. *lane_num = intel_dp->lane_count;
  103. *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  104. }
  105. int
  106. intel_edp_target_clock(struct intel_encoder *intel_encoder,
  107. struct drm_display_mode *mode)
  108. {
  109. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  110. struct intel_connector *intel_connector = intel_dp->attached_connector;
  111. if (intel_connector->panel.fixed_mode)
  112. return intel_connector->panel.fixed_mode->clock;
  113. else
  114. return mode->clock;
  115. }
  116. static int
  117. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  118. {
  119. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  120. switch (max_link_bw) {
  121. case DP_LINK_BW_1_62:
  122. case DP_LINK_BW_2_7:
  123. break;
  124. default:
  125. max_link_bw = DP_LINK_BW_1_62;
  126. break;
  127. }
  128. return max_link_bw;
  129. }
  130. /*
  131. * The units on the numbers in the next two are... bizarre. Examples will
  132. * make it clearer; this one parallels an example in the eDP spec.
  133. *
  134. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  135. *
  136. * 270000 * 1 * 8 / 10 == 216000
  137. *
  138. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  139. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  140. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  141. * 119000. At 18bpp that's 2142000 kilobits per second.
  142. *
  143. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  144. * get the result in decakilobits instead of kilobits.
  145. */
  146. static int
  147. intel_dp_link_required(int pixel_clock, int bpp)
  148. {
  149. return (pixel_clock * bpp + 9) / 10;
  150. }
  151. static int
  152. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  153. {
  154. return (max_link_clock * max_lanes * 8) / 10;
  155. }
  156. static bool
  157. intel_dp_adjust_dithering(struct intel_dp *intel_dp,
  158. struct drm_display_mode *mode,
  159. bool adjust_mode)
  160. {
  161. int max_link_clock =
  162. drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  163. int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  164. int max_rate, mode_rate;
  165. mode_rate = intel_dp_link_required(mode->clock, 24);
  166. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  167. if (mode_rate > max_rate) {
  168. mode_rate = intel_dp_link_required(mode->clock, 18);
  169. if (mode_rate > max_rate)
  170. return false;
  171. if (adjust_mode)
  172. mode->private_flags
  173. |= INTEL_MODE_DP_FORCE_6BPC;
  174. return true;
  175. }
  176. return true;
  177. }
  178. static int
  179. intel_dp_mode_valid(struct drm_connector *connector,
  180. struct drm_display_mode *mode)
  181. {
  182. struct intel_dp *intel_dp = intel_attached_dp(connector);
  183. struct intel_connector *intel_connector = to_intel_connector(connector);
  184. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  185. if (is_edp(intel_dp) && fixed_mode) {
  186. if (mode->hdisplay > fixed_mode->hdisplay)
  187. return MODE_PANEL;
  188. if (mode->vdisplay > fixed_mode->vdisplay)
  189. return MODE_PANEL;
  190. }
  191. if (!intel_dp_adjust_dithering(intel_dp, mode, false))
  192. return MODE_CLOCK_HIGH;
  193. if (mode->clock < 10000)
  194. return MODE_CLOCK_LOW;
  195. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  196. return MODE_H_ILLEGAL;
  197. return MODE_OK;
  198. }
  199. static uint32_t
  200. pack_aux(uint8_t *src, int src_bytes)
  201. {
  202. int i;
  203. uint32_t v = 0;
  204. if (src_bytes > 4)
  205. src_bytes = 4;
  206. for (i = 0; i < src_bytes; i++)
  207. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  208. return v;
  209. }
  210. static void
  211. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  212. {
  213. int i;
  214. if (dst_bytes > 4)
  215. dst_bytes = 4;
  216. for (i = 0; i < dst_bytes; i++)
  217. dst[i] = src >> ((3-i) * 8);
  218. }
  219. /* hrawclock is 1/4 the FSB frequency */
  220. static int
  221. intel_hrawclk(struct drm_device *dev)
  222. {
  223. struct drm_i915_private *dev_priv = dev->dev_private;
  224. uint32_t clkcfg;
  225. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  226. if (IS_VALLEYVIEW(dev))
  227. return 200;
  228. clkcfg = I915_READ(CLKCFG);
  229. switch (clkcfg & CLKCFG_FSB_MASK) {
  230. case CLKCFG_FSB_400:
  231. return 100;
  232. case CLKCFG_FSB_533:
  233. return 133;
  234. case CLKCFG_FSB_667:
  235. return 166;
  236. case CLKCFG_FSB_800:
  237. return 200;
  238. case CLKCFG_FSB_1067:
  239. return 266;
  240. case CLKCFG_FSB_1333:
  241. return 333;
  242. /* these two are just a guess; one of them might be right */
  243. case CLKCFG_FSB_1600:
  244. case CLKCFG_FSB_1600_ALT:
  245. return 400;
  246. default:
  247. return 133;
  248. }
  249. }
  250. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  251. {
  252. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  253. struct drm_i915_private *dev_priv = dev->dev_private;
  254. return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
  255. }
  256. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  257. {
  258. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  259. struct drm_i915_private *dev_priv = dev->dev_private;
  260. return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
  261. }
  262. static void
  263. intel_dp_check_edp(struct intel_dp *intel_dp)
  264. {
  265. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  266. struct drm_i915_private *dev_priv = dev->dev_private;
  267. if (!is_edp(intel_dp))
  268. return;
  269. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  270. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  271. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  272. I915_READ(PCH_PP_STATUS),
  273. I915_READ(PCH_PP_CONTROL));
  274. }
  275. }
  276. static uint32_t
  277. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  278. {
  279. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  280. struct drm_device *dev = intel_dig_port->base.base.dev;
  281. struct drm_i915_private *dev_priv = dev->dev_private;
  282. uint32_t ch_ctl = intel_dp->output_reg + 0x10;
  283. uint32_t status;
  284. bool done;
  285. if (IS_HASWELL(dev)) {
  286. switch (intel_dig_port->port) {
  287. case PORT_A:
  288. ch_ctl = DPA_AUX_CH_CTL;
  289. break;
  290. case PORT_B:
  291. ch_ctl = PCH_DPB_AUX_CH_CTL;
  292. break;
  293. case PORT_C:
  294. ch_ctl = PCH_DPC_AUX_CH_CTL;
  295. break;
  296. case PORT_D:
  297. ch_ctl = PCH_DPD_AUX_CH_CTL;
  298. break;
  299. default:
  300. BUG();
  301. }
  302. }
  303. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  304. if (has_aux_irq)
  305. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, 10);
  306. else
  307. done = wait_for_atomic(C, 10) == 0;
  308. if (!done)
  309. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  310. has_aux_irq);
  311. #undef C
  312. return status;
  313. }
  314. static int
  315. intel_dp_aux_ch(struct intel_dp *intel_dp,
  316. uint8_t *send, int send_bytes,
  317. uint8_t *recv, int recv_size)
  318. {
  319. uint32_t output_reg = intel_dp->output_reg;
  320. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  321. struct drm_device *dev = intel_dig_port->base.base.dev;
  322. struct drm_i915_private *dev_priv = dev->dev_private;
  323. uint32_t ch_ctl = output_reg + 0x10;
  324. uint32_t ch_data = ch_ctl + 4;
  325. int i, ret, recv_bytes;
  326. uint32_t status;
  327. uint32_t aux_clock_divider;
  328. int try, precharge;
  329. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  330. /* dp aux is extremely sensitive to irq latency, hence request the
  331. * lowest possible wakeup latency and so prevent the cpu from going into
  332. * deep sleep states.
  333. */
  334. pm_qos_update_request(&dev_priv->pm_qos, 0);
  335. if (IS_HASWELL(dev)) {
  336. switch (intel_dig_port->port) {
  337. case PORT_A:
  338. ch_ctl = DPA_AUX_CH_CTL;
  339. ch_data = DPA_AUX_CH_DATA1;
  340. break;
  341. case PORT_B:
  342. ch_ctl = PCH_DPB_AUX_CH_CTL;
  343. ch_data = PCH_DPB_AUX_CH_DATA1;
  344. break;
  345. case PORT_C:
  346. ch_ctl = PCH_DPC_AUX_CH_CTL;
  347. ch_data = PCH_DPC_AUX_CH_DATA1;
  348. break;
  349. case PORT_D:
  350. ch_ctl = PCH_DPD_AUX_CH_CTL;
  351. ch_data = PCH_DPD_AUX_CH_DATA1;
  352. break;
  353. default:
  354. BUG();
  355. }
  356. }
  357. intel_dp_check_edp(intel_dp);
  358. /* The clock divider is based off the hrawclk,
  359. * and would like to run at 2MHz. So, take the
  360. * hrawclk value and divide by 2 and use that
  361. *
  362. * Note that PCH attached eDP panels should use a 125MHz input
  363. * clock divider.
  364. */
  365. if (is_cpu_edp(intel_dp)) {
  366. if (HAS_DDI(dev))
  367. aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
  368. else if (IS_VALLEYVIEW(dev))
  369. aux_clock_divider = 100;
  370. else if (IS_GEN6(dev) || IS_GEN7(dev))
  371. aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
  372. else
  373. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  374. } else if (HAS_PCH_SPLIT(dev))
  375. aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  376. else
  377. aux_clock_divider = intel_hrawclk(dev) / 2;
  378. if (IS_GEN6(dev))
  379. precharge = 3;
  380. else
  381. precharge = 5;
  382. /* Try to wait for any previous AUX channel activity */
  383. for (try = 0; try < 3; try++) {
  384. status = I915_READ_NOTRACE(ch_ctl);
  385. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  386. break;
  387. msleep(1);
  388. }
  389. if (try == 3) {
  390. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  391. I915_READ(ch_ctl));
  392. ret = -EBUSY;
  393. goto out;
  394. }
  395. /* Must try at least 3 times according to DP spec */
  396. for (try = 0; try < 5; try++) {
  397. /* Load the send data into the aux channel data registers */
  398. for (i = 0; i < send_bytes; i += 4)
  399. I915_WRITE(ch_data + i,
  400. pack_aux(send + i, send_bytes - i));
  401. /* Send the command and wait for it to complete */
  402. I915_WRITE(ch_ctl,
  403. DP_AUX_CH_CTL_SEND_BUSY |
  404. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  405. DP_AUX_CH_CTL_TIME_OUT_400us |
  406. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  407. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  408. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  409. DP_AUX_CH_CTL_DONE |
  410. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  411. DP_AUX_CH_CTL_RECEIVE_ERROR);
  412. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  413. /* Clear done status and any errors */
  414. I915_WRITE(ch_ctl,
  415. status |
  416. DP_AUX_CH_CTL_DONE |
  417. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  418. DP_AUX_CH_CTL_RECEIVE_ERROR);
  419. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  420. DP_AUX_CH_CTL_RECEIVE_ERROR))
  421. continue;
  422. if (status & DP_AUX_CH_CTL_DONE)
  423. break;
  424. }
  425. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  426. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  427. ret = -EBUSY;
  428. goto out;
  429. }
  430. /* Check for timeout or receive error.
  431. * Timeouts occur when the sink is not connected
  432. */
  433. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  434. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  435. ret = -EIO;
  436. goto out;
  437. }
  438. /* Timeouts occur when the device isn't connected, so they're
  439. * "normal" -- don't fill the kernel log with these */
  440. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  441. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  442. ret = -ETIMEDOUT;
  443. goto out;
  444. }
  445. /* Unload any bytes sent back from the other side */
  446. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  447. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  448. if (recv_bytes > recv_size)
  449. recv_bytes = recv_size;
  450. for (i = 0; i < recv_bytes; i += 4)
  451. unpack_aux(I915_READ(ch_data + i),
  452. recv + i, recv_bytes - i);
  453. ret = recv_bytes;
  454. out:
  455. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  456. return ret;
  457. }
  458. /* Write data to the aux channel in native mode */
  459. static int
  460. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  461. uint16_t address, uint8_t *send, int send_bytes)
  462. {
  463. int ret;
  464. uint8_t msg[20];
  465. int msg_bytes;
  466. uint8_t ack;
  467. intel_dp_check_edp(intel_dp);
  468. if (send_bytes > 16)
  469. return -1;
  470. msg[0] = AUX_NATIVE_WRITE << 4;
  471. msg[1] = address >> 8;
  472. msg[2] = address & 0xff;
  473. msg[3] = send_bytes - 1;
  474. memcpy(&msg[4], send, send_bytes);
  475. msg_bytes = send_bytes + 4;
  476. for (;;) {
  477. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  478. if (ret < 0)
  479. return ret;
  480. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  481. break;
  482. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  483. udelay(100);
  484. else
  485. return -EIO;
  486. }
  487. return send_bytes;
  488. }
  489. /* Write a single byte to the aux channel in native mode */
  490. static int
  491. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  492. uint16_t address, uint8_t byte)
  493. {
  494. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  495. }
  496. /* read bytes from a native aux channel */
  497. static int
  498. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  499. uint16_t address, uint8_t *recv, int recv_bytes)
  500. {
  501. uint8_t msg[4];
  502. int msg_bytes;
  503. uint8_t reply[20];
  504. int reply_bytes;
  505. uint8_t ack;
  506. int ret;
  507. intel_dp_check_edp(intel_dp);
  508. msg[0] = AUX_NATIVE_READ << 4;
  509. msg[1] = address >> 8;
  510. msg[2] = address & 0xff;
  511. msg[3] = recv_bytes - 1;
  512. msg_bytes = 4;
  513. reply_bytes = recv_bytes + 1;
  514. for (;;) {
  515. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  516. reply, reply_bytes);
  517. if (ret == 0)
  518. return -EPROTO;
  519. if (ret < 0)
  520. return ret;
  521. ack = reply[0];
  522. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  523. memcpy(recv, reply + 1, ret - 1);
  524. return ret - 1;
  525. }
  526. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  527. udelay(100);
  528. else
  529. return -EIO;
  530. }
  531. }
  532. static int
  533. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  534. uint8_t write_byte, uint8_t *read_byte)
  535. {
  536. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  537. struct intel_dp *intel_dp = container_of(adapter,
  538. struct intel_dp,
  539. adapter);
  540. uint16_t address = algo_data->address;
  541. uint8_t msg[5];
  542. uint8_t reply[2];
  543. unsigned retry;
  544. int msg_bytes;
  545. int reply_bytes;
  546. int ret;
  547. intel_dp_check_edp(intel_dp);
  548. /* Set up the command byte */
  549. if (mode & MODE_I2C_READ)
  550. msg[0] = AUX_I2C_READ << 4;
  551. else
  552. msg[0] = AUX_I2C_WRITE << 4;
  553. if (!(mode & MODE_I2C_STOP))
  554. msg[0] |= AUX_I2C_MOT << 4;
  555. msg[1] = address >> 8;
  556. msg[2] = address;
  557. switch (mode) {
  558. case MODE_I2C_WRITE:
  559. msg[3] = 0;
  560. msg[4] = write_byte;
  561. msg_bytes = 5;
  562. reply_bytes = 1;
  563. break;
  564. case MODE_I2C_READ:
  565. msg[3] = 0;
  566. msg_bytes = 4;
  567. reply_bytes = 2;
  568. break;
  569. default:
  570. msg_bytes = 3;
  571. reply_bytes = 1;
  572. break;
  573. }
  574. for (retry = 0; retry < 5; retry++) {
  575. ret = intel_dp_aux_ch(intel_dp,
  576. msg, msg_bytes,
  577. reply, reply_bytes);
  578. if (ret < 0) {
  579. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  580. return ret;
  581. }
  582. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  583. case AUX_NATIVE_REPLY_ACK:
  584. /* I2C-over-AUX Reply field is only valid
  585. * when paired with AUX ACK.
  586. */
  587. break;
  588. case AUX_NATIVE_REPLY_NACK:
  589. DRM_DEBUG_KMS("aux_ch native nack\n");
  590. return -EREMOTEIO;
  591. case AUX_NATIVE_REPLY_DEFER:
  592. udelay(100);
  593. continue;
  594. default:
  595. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  596. reply[0]);
  597. return -EREMOTEIO;
  598. }
  599. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  600. case AUX_I2C_REPLY_ACK:
  601. if (mode == MODE_I2C_READ) {
  602. *read_byte = reply[1];
  603. }
  604. return reply_bytes - 1;
  605. case AUX_I2C_REPLY_NACK:
  606. DRM_DEBUG_KMS("aux_i2c nack\n");
  607. return -EREMOTEIO;
  608. case AUX_I2C_REPLY_DEFER:
  609. DRM_DEBUG_KMS("aux_i2c defer\n");
  610. udelay(100);
  611. break;
  612. default:
  613. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  614. return -EREMOTEIO;
  615. }
  616. }
  617. DRM_ERROR("too many retries, giving up\n");
  618. return -EREMOTEIO;
  619. }
  620. static int
  621. intel_dp_i2c_init(struct intel_dp *intel_dp,
  622. struct intel_connector *intel_connector, const char *name)
  623. {
  624. int ret;
  625. DRM_DEBUG_KMS("i2c_init %s\n", name);
  626. intel_dp->algo.running = false;
  627. intel_dp->algo.address = 0;
  628. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  629. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  630. intel_dp->adapter.owner = THIS_MODULE;
  631. intel_dp->adapter.class = I2C_CLASS_DDC;
  632. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  633. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  634. intel_dp->adapter.algo_data = &intel_dp->algo;
  635. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  636. ironlake_edp_panel_vdd_on(intel_dp);
  637. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  638. ironlake_edp_panel_vdd_off(intel_dp, false);
  639. return ret;
  640. }
  641. bool
  642. intel_dp_mode_fixup(struct drm_encoder *encoder,
  643. const struct drm_display_mode *mode,
  644. struct drm_display_mode *adjusted_mode)
  645. {
  646. struct drm_device *dev = encoder->dev;
  647. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  648. struct intel_connector *intel_connector = intel_dp->attached_connector;
  649. int lane_count, clock;
  650. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  651. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  652. int bpp, mode_rate;
  653. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  654. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  655. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  656. adjusted_mode);
  657. intel_pch_panel_fitting(dev,
  658. intel_connector->panel.fitting_mode,
  659. mode, adjusted_mode);
  660. }
  661. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  662. return false;
  663. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  664. "max bw %02x pixel clock %iKHz\n",
  665. max_lane_count, bws[max_clock], adjusted_mode->clock);
  666. if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
  667. return false;
  668. bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
  669. if (intel_dp->color_range_auto) {
  670. /*
  671. * See:
  672. * CEA-861-E - 5.1 Default Encoding Parameters
  673. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  674. */
  675. if (bpp != 18 && drm_mode_cea_vic(adjusted_mode) > 1)
  676. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  677. else
  678. intel_dp->color_range = 0;
  679. }
  680. if (intel_dp->color_range)
  681. adjusted_mode->private_flags |= INTEL_MODE_LIMITED_COLOR_RANGE;
  682. mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
  683. for (clock = 0; clock <= max_clock; clock++) {
  684. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  685. int link_bw_clock =
  686. drm_dp_bw_code_to_link_rate(bws[clock]);
  687. int link_avail = intel_dp_max_data_rate(link_bw_clock,
  688. lane_count);
  689. if (mode_rate <= link_avail) {
  690. intel_dp->link_bw = bws[clock];
  691. intel_dp->lane_count = lane_count;
  692. adjusted_mode->clock = link_bw_clock;
  693. DRM_DEBUG_KMS("DP link bw %02x lane "
  694. "count %d clock %d bpp %d\n",
  695. intel_dp->link_bw, intel_dp->lane_count,
  696. adjusted_mode->clock, bpp);
  697. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  698. mode_rate, link_avail);
  699. return true;
  700. }
  701. }
  702. }
  703. return false;
  704. }
  705. void
  706. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  707. struct drm_display_mode *adjusted_mode)
  708. {
  709. struct drm_device *dev = crtc->dev;
  710. struct intel_encoder *intel_encoder;
  711. struct intel_dp *intel_dp;
  712. struct drm_i915_private *dev_priv = dev->dev_private;
  713. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  714. int lane_count = 4;
  715. struct intel_link_m_n m_n;
  716. int pipe = intel_crtc->pipe;
  717. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  718. /*
  719. * Find the lane count in the intel_encoder private
  720. */
  721. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  722. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  723. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  724. intel_encoder->type == INTEL_OUTPUT_EDP)
  725. {
  726. lane_count = intel_dp->lane_count;
  727. break;
  728. }
  729. }
  730. /*
  731. * Compute the GMCH and Link ratios. The '3' here is
  732. * the number of bytes_per_pixel post-LUT, which we always
  733. * set up for 8-bits of R/G/B, or 3 bytes total.
  734. */
  735. intel_link_compute_m_n(intel_crtc->bpp, lane_count,
  736. mode->clock, adjusted_mode->clock, &m_n);
  737. if (IS_HASWELL(dev)) {
  738. I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
  739. TU_SIZE(m_n.tu) | m_n.gmch_m);
  740. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  741. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  742. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  743. } else if (HAS_PCH_SPLIT(dev)) {
  744. I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  745. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  746. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  747. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  748. } else if (IS_VALLEYVIEW(dev)) {
  749. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  750. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  751. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  752. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  753. } else {
  754. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  755. TU_SIZE(m_n.tu) | m_n.gmch_m);
  756. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  757. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  758. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  759. }
  760. }
  761. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  762. {
  763. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  764. intel_dp->link_configuration[0] = intel_dp->link_bw;
  765. intel_dp->link_configuration[1] = intel_dp->lane_count;
  766. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  767. /*
  768. * Check for DPCD version > 1.1 and enhanced framing support
  769. */
  770. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  771. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  772. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  773. }
  774. }
  775. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  776. {
  777. struct drm_device *dev = crtc->dev;
  778. struct drm_i915_private *dev_priv = dev->dev_private;
  779. u32 dpa_ctl;
  780. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  781. dpa_ctl = I915_READ(DP_A);
  782. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  783. if (clock < 200000) {
  784. /* For a long time we've carried around a ILK-DevA w/a for the
  785. * 160MHz clock. If we're really unlucky, it's still required.
  786. */
  787. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  788. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  789. } else {
  790. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  791. }
  792. I915_WRITE(DP_A, dpa_ctl);
  793. POSTING_READ(DP_A);
  794. udelay(500);
  795. }
  796. static void
  797. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  798. struct drm_display_mode *adjusted_mode)
  799. {
  800. struct drm_device *dev = encoder->dev;
  801. struct drm_i915_private *dev_priv = dev->dev_private;
  802. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  803. struct drm_crtc *crtc = encoder->crtc;
  804. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  805. /*
  806. * There are four kinds of DP registers:
  807. *
  808. * IBX PCH
  809. * SNB CPU
  810. * IVB CPU
  811. * CPT PCH
  812. *
  813. * IBX PCH and CPU are the same for almost everything,
  814. * except that the CPU DP PLL is configured in this
  815. * register
  816. *
  817. * CPT PCH is quite different, having many bits moved
  818. * to the TRANS_DP_CTL register instead. That
  819. * configuration happens (oddly) in ironlake_pch_enable
  820. */
  821. /* Preserve the BIOS-computed detected bit. This is
  822. * supposed to be read-only.
  823. */
  824. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  825. /* Handle DP bits in common between all three register formats */
  826. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  827. switch (intel_dp->lane_count) {
  828. case 1:
  829. intel_dp->DP |= DP_PORT_WIDTH_1;
  830. break;
  831. case 2:
  832. intel_dp->DP |= DP_PORT_WIDTH_2;
  833. break;
  834. case 4:
  835. intel_dp->DP |= DP_PORT_WIDTH_4;
  836. break;
  837. }
  838. if (intel_dp->has_audio) {
  839. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  840. pipe_name(intel_crtc->pipe));
  841. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  842. intel_write_eld(encoder, adjusted_mode);
  843. }
  844. intel_dp_init_link_config(intel_dp);
  845. /* Split out the IBX/CPU vs CPT settings */
  846. if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  847. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  848. intel_dp->DP |= DP_SYNC_HS_HIGH;
  849. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  850. intel_dp->DP |= DP_SYNC_VS_HIGH;
  851. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  852. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  853. intel_dp->DP |= DP_ENHANCED_FRAMING;
  854. intel_dp->DP |= intel_crtc->pipe << 29;
  855. /* don't miss out required setting for eDP */
  856. if (adjusted_mode->clock < 200000)
  857. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  858. else
  859. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  860. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  861. if (!HAS_PCH_SPLIT(dev))
  862. intel_dp->DP |= intel_dp->color_range;
  863. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  864. intel_dp->DP |= DP_SYNC_HS_HIGH;
  865. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  866. intel_dp->DP |= DP_SYNC_VS_HIGH;
  867. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  868. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  869. intel_dp->DP |= DP_ENHANCED_FRAMING;
  870. if (intel_crtc->pipe == 1)
  871. intel_dp->DP |= DP_PIPEB_SELECT;
  872. if (is_cpu_edp(intel_dp)) {
  873. /* don't miss out required setting for eDP */
  874. if (adjusted_mode->clock < 200000)
  875. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  876. else
  877. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  878. }
  879. } else {
  880. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  881. }
  882. if (is_cpu_edp(intel_dp))
  883. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  884. }
  885. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  886. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  887. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  888. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  889. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  890. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  891. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  892. u32 mask,
  893. u32 value)
  894. {
  895. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  896. struct drm_i915_private *dev_priv = dev->dev_private;
  897. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  898. mask, value,
  899. I915_READ(PCH_PP_STATUS),
  900. I915_READ(PCH_PP_CONTROL));
  901. if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
  902. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  903. I915_READ(PCH_PP_STATUS),
  904. I915_READ(PCH_PP_CONTROL));
  905. }
  906. }
  907. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  908. {
  909. DRM_DEBUG_KMS("Wait for panel power on\n");
  910. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  911. }
  912. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  913. {
  914. DRM_DEBUG_KMS("Wait for panel power off time\n");
  915. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  916. }
  917. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  918. {
  919. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  920. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  921. }
  922. /* Read the current pp_control value, unlocking the register if it
  923. * is locked
  924. */
  925. static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
  926. {
  927. u32 control = I915_READ(PCH_PP_CONTROL);
  928. control &= ~PANEL_UNLOCK_MASK;
  929. control |= PANEL_UNLOCK_REGS;
  930. return control;
  931. }
  932. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  933. {
  934. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  935. struct drm_i915_private *dev_priv = dev->dev_private;
  936. u32 pp;
  937. if (!is_edp(intel_dp))
  938. return;
  939. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  940. WARN(intel_dp->want_panel_vdd,
  941. "eDP VDD already requested on\n");
  942. intel_dp->want_panel_vdd = true;
  943. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  944. DRM_DEBUG_KMS("eDP VDD already on\n");
  945. return;
  946. }
  947. if (!ironlake_edp_have_panel_power(intel_dp))
  948. ironlake_wait_panel_power_cycle(intel_dp);
  949. pp = ironlake_get_pp_control(dev_priv);
  950. pp |= EDP_FORCE_VDD;
  951. I915_WRITE(PCH_PP_CONTROL, pp);
  952. POSTING_READ(PCH_PP_CONTROL);
  953. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  954. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  955. /*
  956. * If the panel wasn't on, delay before accessing aux channel
  957. */
  958. if (!ironlake_edp_have_panel_power(intel_dp)) {
  959. DRM_DEBUG_KMS("eDP was not running\n");
  960. msleep(intel_dp->panel_power_up_delay);
  961. }
  962. }
  963. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  964. {
  965. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  966. struct drm_i915_private *dev_priv = dev->dev_private;
  967. u32 pp;
  968. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  969. pp = ironlake_get_pp_control(dev_priv);
  970. pp &= ~EDP_FORCE_VDD;
  971. I915_WRITE(PCH_PP_CONTROL, pp);
  972. POSTING_READ(PCH_PP_CONTROL);
  973. /* Make sure sequencer is idle before allowing subsequent activity */
  974. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  975. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  976. msleep(intel_dp->panel_power_down_delay);
  977. }
  978. }
  979. static void ironlake_panel_vdd_work(struct work_struct *__work)
  980. {
  981. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  982. struct intel_dp, panel_vdd_work);
  983. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  984. mutex_lock(&dev->mode_config.mutex);
  985. ironlake_panel_vdd_off_sync(intel_dp);
  986. mutex_unlock(&dev->mode_config.mutex);
  987. }
  988. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  989. {
  990. if (!is_edp(intel_dp))
  991. return;
  992. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  993. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  994. intel_dp->want_panel_vdd = false;
  995. if (sync) {
  996. ironlake_panel_vdd_off_sync(intel_dp);
  997. } else {
  998. /*
  999. * Queue the timer to fire a long
  1000. * time from now (relative to the power down delay)
  1001. * to keep the panel power up across a sequence of operations
  1002. */
  1003. schedule_delayed_work(&intel_dp->panel_vdd_work,
  1004. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  1005. }
  1006. }
  1007. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  1008. {
  1009. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1010. struct drm_i915_private *dev_priv = dev->dev_private;
  1011. u32 pp;
  1012. if (!is_edp(intel_dp))
  1013. return;
  1014. DRM_DEBUG_KMS("Turn eDP power on\n");
  1015. if (ironlake_edp_have_panel_power(intel_dp)) {
  1016. DRM_DEBUG_KMS("eDP power already on\n");
  1017. return;
  1018. }
  1019. ironlake_wait_panel_power_cycle(intel_dp);
  1020. pp = ironlake_get_pp_control(dev_priv);
  1021. if (IS_GEN5(dev)) {
  1022. /* ILK workaround: disable reset around power sequence */
  1023. pp &= ~PANEL_POWER_RESET;
  1024. I915_WRITE(PCH_PP_CONTROL, pp);
  1025. POSTING_READ(PCH_PP_CONTROL);
  1026. }
  1027. pp |= POWER_TARGET_ON;
  1028. if (!IS_GEN5(dev))
  1029. pp |= PANEL_POWER_RESET;
  1030. I915_WRITE(PCH_PP_CONTROL, pp);
  1031. POSTING_READ(PCH_PP_CONTROL);
  1032. ironlake_wait_panel_on(intel_dp);
  1033. if (IS_GEN5(dev)) {
  1034. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  1035. I915_WRITE(PCH_PP_CONTROL, pp);
  1036. POSTING_READ(PCH_PP_CONTROL);
  1037. }
  1038. }
  1039. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  1040. {
  1041. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1042. struct drm_i915_private *dev_priv = dev->dev_private;
  1043. u32 pp;
  1044. if (!is_edp(intel_dp))
  1045. return;
  1046. DRM_DEBUG_KMS("Turn eDP power off\n");
  1047. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1048. pp = ironlake_get_pp_control(dev_priv);
  1049. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1050. * panels get very unhappy and cease to work. */
  1051. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  1052. I915_WRITE(PCH_PP_CONTROL, pp);
  1053. POSTING_READ(PCH_PP_CONTROL);
  1054. intel_dp->want_panel_vdd = false;
  1055. ironlake_wait_panel_off(intel_dp);
  1056. }
  1057. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  1058. {
  1059. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1060. struct drm_device *dev = intel_dig_port->base.base.dev;
  1061. struct drm_i915_private *dev_priv = dev->dev_private;
  1062. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  1063. u32 pp;
  1064. if (!is_edp(intel_dp))
  1065. return;
  1066. DRM_DEBUG_KMS("\n");
  1067. /*
  1068. * If we enable the backlight right away following a panel power
  1069. * on, we may see slight flicker as the panel syncs with the eDP
  1070. * link. So delay a bit to make sure the image is solid before
  1071. * allowing it to appear.
  1072. */
  1073. msleep(intel_dp->backlight_on_delay);
  1074. pp = ironlake_get_pp_control(dev_priv);
  1075. pp |= EDP_BLC_ENABLE;
  1076. I915_WRITE(PCH_PP_CONTROL, pp);
  1077. POSTING_READ(PCH_PP_CONTROL);
  1078. intel_panel_enable_backlight(dev, pipe);
  1079. }
  1080. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1081. {
  1082. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1083. struct drm_i915_private *dev_priv = dev->dev_private;
  1084. u32 pp;
  1085. if (!is_edp(intel_dp))
  1086. return;
  1087. intel_panel_disable_backlight(dev);
  1088. DRM_DEBUG_KMS("\n");
  1089. pp = ironlake_get_pp_control(dev_priv);
  1090. pp &= ~EDP_BLC_ENABLE;
  1091. I915_WRITE(PCH_PP_CONTROL, pp);
  1092. POSTING_READ(PCH_PP_CONTROL);
  1093. msleep(intel_dp->backlight_off_delay);
  1094. }
  1095. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1096. {
  1097. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1098. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1099. struct drm_device *dev = crtc->dev;
  1100. struct drm_i915_private *dev_priv = dev->dev_private;
  1101. u32 dpa_ctl;
  1102. assert_pipe_disabled(dev_priv,
  1103. to_intel_crtc(crtc)->pipe);
  1104. DRM_DEBUG_KMS("\n");
  1105. dpa_ctl = I915_READ(DP_A);
  1106. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1107. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1108. /* We don't adjust intel_dp->DP while tearing down the link, to
  1109. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1110. * enable bits here to ensure that we don't enable too much. */
  1111. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1112. intel_dp->DP |= DP_PLL_ENABLE;
  1113. I915_WRITE(DP_A, intel_dp->DP);
  1114. POSTING_READ(DP_A);
  1115. udelay(200);
  1116. }
  1117. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1118. {
  1119. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1120. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1121. struct drm_device *dev = crtc->dev;
  1122. struct drm_i915_private *dev_priv = dev->dev_private;
  1123. u32 dpa_ctl;
  1124. assert_pipe_disabled(dev_priv,
  1125. to_intel_crtc(crtc)->pipe);
  1126. dpa_ctl = I915_READ(DP_A);
  1127. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1128. "dp pll off, should be on\n");
  1129. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1130. /* We can't rely on the value tracked for the DP register in
  1131. * intel_dp->DP because link_down must not change that (otherwise link
  1132. * re-training will fail. */
  1133. dpa_ctl &= ~DP_PLL_ENABLE;
  1134. I915_WRITE(DP_A, dpa_ctl);
  1135. POSTING_READ(DP_A);
  1136. udelay(200);
  1137. }
  1138. /* If the sink supports it, try to set the power state appropriately */
  1139. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1140. {
  1141. int ret, i;
  1142. /* Should have a valid DPCD by this point */
  1143. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1144. return;
  1145. if (mode != DRM_MODE_DPMS_ON) {
  1146. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1147. DP_SET_POWER_D3);
  1148. if (ret != 1)
  1149. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1150. } else {
  1151. /*
  1152. * When turning on, we need to retry for 1ms to give the sink
  1153. * time to wake up.
  1154. */
  1155. for (i = 0; i < 3; i++) {
  1156. ret = intel_dp_aux_native_write_1(intel_dp,
  1157. DP_SET_POWER,
  1158. DP_SET_POWER_D0);
  1159. if (ret == 1)
  1160. break;
  1161. msleep(1);
  1162. }
  1163. }
  1164. }
  1165. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1166. enum pipe *pipe)
  1167. {
  1168. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1169. struct drm_device *dev = encoder->base.dev;
  1170. struct drm_i915_private *dev_priv = dev->dev_private;
  1171. u32 tmp = I915_READ(intel_dp->output_reg);
  1172. if (!(tmp & DP_PORT_EN))
  1173. return false;
  1174. if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
  1175. *pipe = PORT_TO_PIPE_CPT(tmp);
  1176. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  1177. *pipe = PORT_TO_PIPE(tmp);
  1178. } else {
  1179. u32 trans_sel;
  1180. u32 trans_dp;
  1181. int i;
  1182. switch (intel_dp->output_reg) {
  1183. case PCH_DP_B:
  1184. trans_sel = TRANS_DP_PORT_SEL_B;
  1185. break;
  1186. case PCH_DP_C:
  1187. trans_sel = TRANS_DP_PORT_SEL_C;
  1188. break;
  1189. case PCH_DP_D:
  1190. trans_sel = TRANS_DP_PORT_SEL_D;
  1191. break;
  1192. default:
  1193. return true;
  1194. }
  1195. for_each_pipe(i) {
  1196. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1197. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1198. *pipe = i;
  1199. return true;
  1200. }
  1201. }
  1202. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1203. intel_dp->output_reg);
  1204. }
  1205. return true;
  1206. }
  1207. static void intel_disable_dp(struct intel_encoder *encoder)
  1208. {
  1209. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1210. /* Make sure the panel is off before trying to change the mode. But also
  1211. * ensure that we have vdd while we switch off the panel. */
  1212. ironlake_edp_panel_vdd_on(intel_dp);
  1213. ironlake_edp_backlight_off(intel_dp);
  1214. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1215. ironlake_edp_panel_off(intel_dp);
  1216. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1217. if (!is_cpu_edp(intel_dp))
  1218. intel_dp_link_down(intel_dp);
  1219. }
  1220. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1221. {
  1222. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1223. if (is_cpu_edp(intel_dp)) {
  1224. intel_dp_link_down(intel_dp);
  1225. ironlake_edp_pll_off(intel_dp);
  1226. }
  1227. }
  1228. static void intel_enable_dp(struct intel_encoder *encoder)
  1229. {
  1230. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1231. struct drm_device *dev = encoder->base.dev;
  1232. struct drm_i915_private *dev_priv = dev->dev_private;
  1233. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1234. if (WARN_ON(dp_reg & DP_PORT_EN))
  1235. return;
  1236. ironlake_edp_panel_vdd_on(intel_dp);
  1237. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1238. intel_dp_start_link_train(intel_dp);
  1239. ironlake_edp_panel_on(intel_dp);
  1240. ironlake_edp_panel_vdd_off(intel_dp, true);
  1241. intel_dp_complete_link_train(intel_dp);
  1242. ironlake_edp_backlight_on(intel_dp);
  1243. }
  1244. static void intel_pre_enable_dp(struct intel_encoder *encoder)
  1245. {
  1246. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1247. if (is_cpu_edp(intel_dp))
  1248. ironlake_edp_pll_on(intel_dp);
  1249. }
  1250. /*
  1251. * Native read with retry for link status and receiver capability reads for
  1252. * cases where the sink may still be asleep.
  1253. */
  1254. static bool
  1255. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1256. uint8_t *recv, int recv_bytes)
  1257. {
  1258. int ret, i;
  1259. /*
  1260. * Sinks are *supposed* to come up within 1ms from an off state,
  1261. * but we're also supposed to retry 3 times per the spec.
  1262. */
  1263. for (i = 0; i < 3; i++) {
  1264. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1265. recv_bytes);
  1266. if (ret == recv_bytes)
  1267. return true;
  1268. msleep(1);
  1269. }
  1270. return false;
  1271. }
  1272. /*
  1273. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1274. * link status information
  1275. */
  1276. static bool
  1277. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1278. {
  1279. return intel_dp_aux_native_read_retry(intel_dp,
  1280. DP_LANE0_1_STATUS,
  1281. link_status,
  1282. DP_LINK_STATUS_SIZE);
  1283. }
  1284. #if 0
  1285. static char *voltage_names[] = {
  1286. "0.4V", "0.6V", "0.8V", "1.2V"
  1287. };
  1288. static char *pre_emph_names[] = {
  1289. "0dB", "3.5dB", "6dB", "9.5dB"
  1290. };
  1291. static char *link_train_names[] = {
  1292. "pattern 1", "pattern 2", "idle", "off"
  1293. };
  1294. #endif
  1295. /*
  1296. * These are source-specific values; current Intel hardware supports
  1297. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1298. */
  1299. static uint8_t
  1300. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1301. {
  1302. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1303. if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
  1304. return DP_TRAIN_VOLTAGE_SWING_800;
  1305. else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
  1306. return DP_TRAIN_VOLTAGE_SWING_1200;
  1307. else
  1308. return DP_TRAIN_VOLTAGE_SWING_800;
  1309. }
  1310. static uint8_t
  1311. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1312. {
  1313. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1314. if (IS_HASWELL(dev)) {
  1315. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1316. case DP_TRAIN_VOLTAGE_SWING_400:
  1317. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1318. case DP_TRAIN_VOLTAGE_SWING_600:
  1319. return DP_TRAIN_PRE_EMPHASIS_6;
  1320. case DP_TRAIN_VOLTAGE_SWING_800:
  1321. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1322. case DP_TRAIN_VOLTAGE_SWING_1200:
  1323. default:
  1324. return DP_TRAIN_PRE_EMPHASIS_0;
  1325. }
  1326. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1327. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1328. case DP_TRAIN_VOLTAGE_SWING_400:
  1329. return DP_TRAIN_PRE_EMPHASIS_6;
  1330. case DP_TRAIN_VOLTAGE_SWING_600:
  1331. case DP_TRAIN_VOLTAGE_SWING_800:
  1332. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1333. default:
  1334. return DP_TRAIN_PRE_EMPHASIS_0;
  1335. }
  1336. } else {
  1337. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1338. case DP_TRAIN_VOLTAGE_SWING_400:
  1339. return DP_TRAIN_PRE_EMPHASIS_6;
  1340. case DP_TRAIN_VOLTAGE_SWING_600:
  1341. return DP_TRAIN_PRE_EMPHASIS_6;
  1342. case DP_TRAIN_VOLTAGE_SWING_800:
  1343. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1344. case DP_TRAIN_VOLTAGE_SWING_1200:
  1345. default:
  1346. return DP_TRAIN_PRE_EMPHASIS_0;
  1347. }
  1348. }
  1349. }
  1350. static void
  1351. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1352. {
  1353. uint8_t v = 0;
  1354. uint8_t p = 0;
  1355. int lane;
  1356. uint8_t voltage_max;
  1357. uint8_t preemph_max;
  1358. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1359. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1360. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1361. if (this_v > v)
  1362. v = this_v;
  1363. if (this_p > p)
  1364. p = this_p;
  1365. }
  1366. voltage_max = intel_dp_voltage_max(intel_dp);
  1367. if (v >= voltage_max)
  1368. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1369. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1370. if (p >= preemph_max)
  1371. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1372. for (lane = 0; lane < 4; lane++)
  1373. intel_dp->train_set[lane] = v | p;
  1374. }
  1375. static uint32_t
  1376. intel_gen4_signal_levels(uint8_t train_set)
  1377. {
  1378. uint32_t signal_levels = 0;
  1379. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1380. case DP_TRAIN_VOLTAGE_SWING_400:
  1381. default:
  1382. signal_levels |= DP_VOLTAGE_0_4;
  1383. break;
  1384. case DP_TRAIN_VOLTAGE_SWING_600:
  1385. signal_levels |= DP_VOLTAGE_0_6;
  1386. break;
  1387. case DP_TRAIN_VOLTAGE_SWING_800:
  1388. signal_levels |= DP_VOLTAGE_0_8;
  1389. break;
  1390. case DP_TRAIN_VOLTAGE_SWING_1200:
  1391. signal_levels |= DP_VOLTAGE_1_2;
  1392. break;
  1393. }
  1394. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1395. case DP_TRAIN_PRE_EMPHASIS_0:
  1396. default:
  1397. signal_levels |= DP_PRE_EMPHASIS_0;
  1398. break;
  1399. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1400. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1401. break;
  1402. case DP_TRAIN_PRE_EMPHASIS_6:
  1403. signal_levels |= DP_PRE_EMPHASIS_6;
  1404. break;
  1405. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1406. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1407. break;
  1408. }
  1409. return signal_levels;
  1410. }
  1411. /* Gen6's DP voltage swing and pre-emphasis control */
  1412. static uint32_t
  1413. intel_gen6_edp_signal_levels(uint8_t train_set)
  1414. {
  1415. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1416. DP_TRAIN_PRE_EMPHASIS_MASK);
  1417. switch (signal_levels) {
  1418. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1419. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1420. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1421. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1422. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1423. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1424. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1425. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1426. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1427. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1428. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1429. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1430. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1431. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1432. default:
  1433. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1434. "0x%x\n", signal_levels);
  1435. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1436. }
  1437. }
  1438. /* Gen7's DP voltage swing and pre-emphasis control */
  1439. static uint32_t
  1440. intel_gen7_edp_signal_levels(uint8_t train_set)
  1441. {
  1442. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1443. DP_TRAIN_PRE_EMPHASIS_MASK);
  1444. switch (signal_levels) {
  1445. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1446. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1447. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1448. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1449. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1450. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1451. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1452. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1453. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1454. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1455. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1456. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1457. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1458. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1459. default:
  1460. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1461. "0x%x\n", signal_levels);
  1462. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1463. }
  1464. }
  1465. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1466. static uint32_t
  1467. intel_hsw_signal_levels(uint8_t train_set)
  1468. {
  1469. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1470. DP_TRAIN_PRE_EMPHASIS_MASK);
  1471. switch (signal_levels) {
  1472. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1473. return DDI_BUF_EMP_400MV_0DB_HSW;
  1474. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1475. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1476. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1477. return DDI_BUF_EMP_400MV_6DB_HSW;
  1478. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1479. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1480. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1481. return DDI_BUF_EMP_600MV_0DB_HSW;
  1482. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1483. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1484. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1485. return DDI_BUF_EMP_600MV_6DB_HSW;
  1486. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1487. return DDI_BUF_EMP_800MV_0DB_HSW;
  1488. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1489. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1490. default:
  1491. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1492. "0x%x\n", signal_levels);
  1493. return DDI_BUF_EMP_400MV_0DB_HSW;
  1494. }
  1495. }
  1496. /* Properly updates "DP" with the correct signal levels. */
  1497. static void
  1498. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1499. {
  1500. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1501. struct drm_device *dev = intel_dig_port->base.base.dev;
  1502. uint32_t signal_levels, mask;
  1503. uint8_t train_set = intel_dp->train_set[0];
  1504. if (IS_HASWELL(dev)) {
  1505. signal_levels = intel_hsw_signal_levels(train_set);
  1506. mask = DDI_BUF_EMP_MASK;
  1507. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1508. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1509. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1510. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1511. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1512. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1513. } else {
  1514. signal_levels = intel_gen4_signal_levels(train_set);
  1515. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1516. }
  1517. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1518. *DP = (*DP & ~mask) | signal_levels;
  1519. }
  1520. static bool
  1521. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1522. uint32_t dp_reg_value,
  1523. uint8_t dp_train_pat)
  1524. {
  1525. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1526. struct drm_device *dev = intel_dig_port->base.base.dev;
  1527. struct drm_i915_private *dev_priv = dev->dev_private;
  1528. enum port port = intel_dig_port->port;
  1529. int ret;
  1530. uint32_t temp;
  1531. if (IS_HASWELL(dev)) {
  1532. temp = I915_READ(DP_TP_CTL(port));
  1533. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1534. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1535. else
  1536. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1537. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1538. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1539. case DP_TRAINING_PATTERN_DISABLE:
  1540. temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
  1541. I915_WRITE(DP_TP_CTL(port), temp);
  1542. if (wait_for((I915_READ(DP_TP_STATUS(port)) &
  1543. DP_TP_STATUS_IDLE_DONE), 1))
  1544. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  1545. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1546. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1547. break;
  1548. case DP_TRAINING_PATTERN_1:
  1549. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1550. break;
  1551. case DP_TRAINING_PATTERN_2:
  1552. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1553. break;
  1554. case DP_TRAINING_PATTERN_3:
  1555. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1556. break;
  1557. }
  1558. I915_WRITE(DP_TP_CTL(port), temp);
  1559. } else if (HAS_PCH_CPT(dev) &&
  1560. (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1561. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  1562. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1563. case DP_TRAINING_PATTERN_DISABLE:
  1564. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  1565. break;
  1566. case DP_TRAINING_PATTERN_1:
  1567. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  1568. break;
  1569. case DP_TRAINING_PATTERN_2:
  1570. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1571. break;
  1572. case DP_TRAINING_PATTERN_3:
  1573. DRM_ERROR("DP training pattern 3 not supported\n");
  1574. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1575. break;
  1576. }
  1577. } else {
  1578. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  1579. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1580. case DP_TRAINING_PATTERN_DISABLE:
  1581. dp_reg_value |= DP_LINK_TRAIN_OFF;
  1582. break;
  1583. case DP_TRAINING_PATTERN_1:
  1584. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  1585. break;
  1586. case DP_TRAINING_PATTERN_2:
  1587. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1588. break;
  1589. case DP_TRAINING_PATTERN_3:
  1590. DRM_ERROR("DP training pattern 3 not supported\n");
  1591. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1592. break;
  1593. }
  1594. }
  1595. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1596. POSTING_READ(intel_dp->output_reg);
  1597. intel_dp_aux_native_write_1(intel_dp,
  1598. DP_TRAINING_PATTERN_SET,
  1599. dp_train_pat);
  1600. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  1601. DP_TRAINING_PATTERN_DISABLE) {
  1602. ret = intel_dp_aux_native_write(intel_dp,
  1603. DP_TRAINING_LANE0_SET,
  1604. intel_dp->train_set,
  1605. intel_dp->lane_count);
  1606. if (ret != intel_dp->lane_count)
  1607. return false;
  1608. }
  1609. return true;
  1610. }
  1611. /* Enable corresponding port and start training pattern 1 */
  1612. void
  1613. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1614. {
  1615. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  1616. struct drm_device *dev = encoder->dev;
  1617. int i;
  1618. uint8_t voltage;
  1619. bool clock_recovery = false;
  1620. int voltage_tries, loop_tries;
  1621. uint32_t DP = intel_dp->DP;
  1622. if (HAS_DDI(dev))
  1623. intel_ddi_prepare_link_retrain(encoder);
  1624. /* Write the link configuration data */
  1625. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1626. intel_dp->link_configuration,
  1627. DP_LINK_CONFIGURATION_SIZE);
  1628. DP |= DP_PORT_EN;
  1629. memset(intel_dp->train_set, 0, 4);
  1630. voltage = 0xff;
  1631. voltage_tries = 0;
  1632. loop_tries = 0;
  1633. clock_recovery = false;
  1634. for (;;) {
  1635. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1636. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1637. intel_dp_set_signal_levels(intel_dp, &DP);
  1638. /* Set training pattern 1 */
  1639. if (!intel_dp_set_link_train(intel_dp, DP,
  1640. DP_TRAINING_PATTERN_1 |
  1641. DP_LINK_SCRAMBLING_DISABLE))
  1642. break;
  1643. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  1644. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1645. DRM_ERROR("failed to get link status\n");
  1646. break;
  1647. }
  1648. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1649. DRM_DEBUG_KMS("clock recovery OK\n");
  1650. clock_recovery = true;
  1651. break;
  1652. }
  1653. /* Check to see if we've tried the max voltage */
  1654. for (i = 0; i < intel_dp->lane_count; i++)
  1655. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1656. break;
  1657. if (i == intel_dp->lane_count && voltage_tries == 5) {
  1658. ++loop_tries;
  1659. if (loop_tries == 5) {
  1660. DRM_DEBUG_KMS("too many full retries, give up\n");
  1661. break;
  1662. }
  1663. memset(intel_dp->train_set, 0, 4);
  1664. voltage_tries = 0;
  1665. continue;
  1666. }
  1667. /* Check to see if we've tried the same voltage 5 times */
  1668. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1669. ++voltage_tries;
  1670. if (voltage_tries == 5) {
  1671. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  1672. break;
  1673. }
  1674. } else
  1675. voltage_tries = 0;
  1676. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1677. /* Compute new intel_dp->train_set as requested by target */
  1678. intel_get_adjust_train(intel_dp, link_status);
  1679. }
  1680. intel_dp->DP = DP;
  1681. }
  1682. void
  1683. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1684. {
  1685. bool channel_eq = false;
  1686. int tries, cr_tries;
  1687. uint32_t DP = intel_dp->DP;
  1688. /* channel equalization */
  1689. tries = 0;
  1690. cr_tries = 0;
  1691. channel_eq = false;
  1692. for (;;) {
  1693. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1694. if (cr_tries > 5) {
  1695. DRM_ERROR("failed to train DP, aborting\n");
  1696. intel_dp_link_down(intel_dp);
  1697. break;
  1698. }
  1699. intel_dp_set_signal_levels(intel_dp, &DP);
  1700. /* channel eq pattern */
  1701. if (!intel_dp_set_link_train(intel_dp, DP,
  1702. DP_TRAINING_PATTERN_2 |
  1703. DP_LINK_SCRAMBLING_DISABLE))
  1704. break;
  1705. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  1706. if (!intel_dp_get_link_status(intel_dp, link_status))
  1707. break;
  1708. /* Make sure clock is still ok */
  1709. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1710. intel_dp_start_link_train(intel_dp);
  1711. cr_tries++;
  1712. continue;
  1713. }
  1714. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1715. channel_eq = true;
  1716. break;
  1717. }
  1718. /* Try 5 times, then try clock recovery if that fails */
  1719. if (tries > 5) {
  1720. intel_dp_link_down(intel_dp);
  1721. intel_dp_start_link_train(intel_dp);
  1722. tries = 0;
  1723. cr_tries++;
  1724. continue;
  1725. }
  1726. /* Compute new intel_dp->train_set as requested by target */
  1727. intel_get_adjust_train(intel_dp, link_status);
  1728. ++tries;
  1729. }
  1730. if (channel_eq)
  1731. DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
  1732. intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
  1733. }
  1734. static void
  1735. intel_dp_link_down(struct intel_dp *intel_dp)
  1736. {
  1737. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1738. struct drm_device *dev = intel_dig_port->base.base.dev;
  1739. struct drm_i915_private *dev_priv = dev->dev_private;
  1740. struct intel_crtc *intel_crtc =
  1741. to_intel_crtc(intel_dig_port->base.base.crtc);
  1742. uint32_t DP = intel_dp->DP;
  1743. /*
  1744. * DDI code has a strict mode set sequence and we should try to respect
  1745. * it, otherwise we might hang the machine in many different ways. So we
  1746. * really should be disabling the port only on a complete crtc_disable
  1747. * sequence. This function is just called under two conditions on DDI
  1748. * code:
  1749. * - Link train failed while doing crtc_enable, and on this case we
  1750. * really should respect the mode set sequence and wait for a
  1751. * crtc_disable.
  1752. * - Someone turned the monitor off and intel_dp_check_link_status
  1753. * called us. We don't need to disable the whole port on this case, so
  1754. * when someone turns the monitor on again,
  1755. * intel_ddi_prepare_link_retrain will take care of redoing the link
  1756. * train.
  1757. */
  1758. if (HAS_DDI(dev))
  1759. return;
  1760. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  1761. return;
  1762. DRM_DEBUG_KMS("\n");
  1763. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1764. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1765. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1766. } else {
  1767. DP &= ~DP_LINK_TRAIN_MASK;
  1768. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1769. }
  1770. POSTING_READ(intel_dp->output_reg);
  1771. /* We don't really know why we're doing this */
  1772. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1773. if (HAS_PCH_IBX(dev) &&
  1774. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1775. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1776. /* Hardware workaround: leaving our transcoder select
  1777. * set to transcoder B while it's off will prevent the
  1778. * corresponding HDMI output on transcoder A.
  1779. *
  1780. * Combine this with another hardware workaround:
  1781. * transcoder select bit can only be cleared while the
  1782. * port is enabled.
  1783. */
  1784. DP &= ~DP_PIPEB_SELECT;
  1785. I915_WRITE(intel_dp->output_reg, DP);
  1786. /* Changes to enable or select take place the vblank
  1787. * after being written.
  1788. */
  1789. if (WARN_ON(crtc == NULL)) {
  1790. /* We should never try to disable a port without a crtc
  1791. * attached. For paranoia keep the code around for a
  1792. * bit. */
  1793. POSTING_READ(intel_dp->output_reg);
  1794. msleep(50);
  1795. } else
  1796. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1797. }
  1798. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  1799. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1800. POSTING_READ(intel_dp->output_reg);
  1801. msleep(intel_dp->panel_power_down_delay);
  1802. }
  1803. static bool
  1804. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1805. {
  1806. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  1807. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1808. sizeof(intel_dp->dpcd)) == 0)
  1809. return false; /* aux transfer failed */
  1810. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  1811. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  1812. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  1813. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  1814. return false; /* DPCD not present */
  1815. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  1816. DP_DWN_STRM_PORT_PRESENT))
  1817. return true; /* native DP sink */
  1818. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  1819. return true; /* no per-port downstream info */
  1820. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  1821. intel_dp->downstream_ports,
  1822. DP_MAX_DOWNSTREAM_PORTS) == 0)
  1823. return false; /* downstream port status fetch failed */
  1824. return true;
  1825. }
  1826. static void
  1827. intel_dp_probe_oui(struct intel_dp *intel_dp)
  1828. {
  1829. u8 buf[3];
  1830. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  1831. return;
  1832. ironlake_edp_panel_vdd_on(intel_dp);
  1833. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  1834. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  1835. buf[0], buf[1], buf[2]);
  1836. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  1837. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  1838. buf[0], buf[1], buf[2]);
  1839. ironlake_edp_panel_vdd_off(intel_dp, false);
  1840. }
  1841. static bool
  1842. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  1843. {
  1844. int ret;
  1845. ret = intel_dp_aux_native_read_retry(intel_dp,
  1846. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1847. sink_irq_vector, 1);
  1848. if (!ret)
  1849. return false;
  1850. return true;
  1851. }
  1852. static void
  1853. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  1854. {
  1855. /* NAK by default */
  1856. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  1857. }
  1858. /*
  1859. * According to DP spec
  1860. * 5.1.2:
  1861. * 1. Read DPCD
  1862. * 2. Configure link according to Receiver Capabilities
  1863. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1864. * 4. Check link status on receipt of hot-plug interrupt
  1865. */
  1866. void
  1867. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1868. {
  1869. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1870. u8 sink_irq_vector;
  1871. u8 link_status[DP_LINK_STATUS_SIZE];
  1872. if (!intel_encoder->connectors_active)
  1873. return;
  1874. if (WARN_ON(!intel_encoder->base.crtc))
  1875. return;
  1876. /* Try to read receiver status if the link appears to be up */
  1877. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1878. intel_dp_link_down(intel_dp);
  1879. return;
  1880. }
  1881. /* Now read the DPCD to see if it's actually running */
  1882. if (!intel_dp_get_dpcd(intel_dp)) {
  1883. intel_dp_link_down(intel_dp);
  1884. return;
  1885. }
  1886. /* Try to read the source of the interrupt */
  1887. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  1888. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  1889. /* Clear interrupt source */
  1890. intel_dp_aux_native_write_1(intel_dp,
  1891. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1892. sink_irq_vector);
  1893. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  1894. intel_dp_handle_test_request(intel_dp);
  1895. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  1896. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  1897. }
  1898. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1899. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1900. drm_get_encoder_name(&intel_encoder->base));
  1901. intel_dp_start_link_train(intel_dp);
  1902. intel_dp_complete_link_train(intel_dp);
  1903. }
  1904. }
  1905. /* XXX this is probably wrong for multiple downstream ports */
  1906. static enum drm_connector_status
  1907. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1908. {
  1909. uint8_t *dpcd = intel_dp->dpcd;
  1910. bool hpd;
  1911. uint8_t type;
  1912. if (!intel_dp_get_dpcd(intel_dp))
  1913. return connector_status_disconnected;
  1914. /* if there's no downstream port, we're done */
  1915. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  1916. return connector_status_connected;
  1917. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  1918. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  1919. if (hpd) {
  1920. uint8_t reg;
  1921. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  1922. &reg, 1))
  1923. return connector_status_unknown;
  1924. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  1925. : connector_status_disconnected;
  1926. }
  1927. /* If no HPD, poke DDC gently */
  1928. if (drm_probe_ddc(&intel_dp->adapter))
  1929. return connector_status_connected;
  1930. /* Well we tried, say unknown for unreliable port types */
  1931. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  1932. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  1933. return connector_status_unknown;
  1934. /* Anything else is out of spec, warn and ignore */
  1935. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  1936. return connector_status_disconnected;
  1937. }
  1938. static enum drm_connector_status
  1939. ironlake_dp_detect(struct intel_dp *intel_dp)
  1940. {
  1941. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1942. struct drm_i915_private *dev_priv = dev->dev_private;
  1943. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1944. enum drm_connector_status status;
  1945. /* Can't disconnect eDP, but you can close the lid... */
  1946. if (is_edp(intel_dp)) {
  1947. status = intel_panel_detect(dev);
  1948. if (status == connector_status_unknown)
  1949. status = connector_status_connected;
  1950. return status;
  1951. }
  1952. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  1953. return connector_status_disconnected;
  1954. return intel_dp_detect_dpcd(intel_dp);
  1955. }
  1956. static enum drm_connector_status
  1957. g4x_dp_detect(struct intel_dp *intel_dp)
  1958. {
  1959. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1960. struct drm_i915_private *dev_priv = dev->dev_private;
  1961. uint32_t bit;
  1962. switch (intel_dp->output_reg) {
  1963. case DP_B:
  1964. bit = DPB_HOTPLUG_LIVE_STATUS;
  1965. break;
  1966. case DP_C:
  1967. bit = DPC_HOTPLUG_LIVE_STATUS;
  1968. break;
  1969. case DP_D:
  1970. bit = DPD_HOTPLUG_LIVE_STATUS;
  1971. break;
  1972. default:
  1973. return connector_status_unknown;
  1974. }
  1975. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  1976. return connector_status_disconnected;
  1977. return intel_dp_detect_dpcd(intel_dp);
  1978. }
  1979. static struct edid *
  1980. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  1981. {
  1982. struct intel_connector *intel_connector = to_intel_connector(connector);
  1983. /* use cached edid if we have one */
  1984. if (intel_connector->edid) {
  1985. struct edid *edid;
  1986. int size;
  1987. /* invalid edid */
  1988. if (IS_ERR(intel_connector->edid))
  1989. return NULL;
  1990. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  1991. edid = kmalloc(size, GFP_KERNEL);
  1992. if (!edid)
  1993. return NULL;
  1994. memcpy(edid, intel_connector->edid, size);
  1995. return edid;
  1996. }
  1997. return drm_get_edid(connector, adapter);
  1998. }
  1999. static int
  2000. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2001. {
  2002. struct intel_connector *intel_connector = to_intel_connector(connector);
  2003. /* use cached edid if we have one */
  2004. if (intel_connector->edid) {
  2005. /* invalid edid */
  2006. if (IS_ERR(intel_connector->edid))
  2007. return 0;
  2008. return intel_connector_update_modes(connector,
  2009. intel_connector->edid);
  2010. }
  2011. return intel_ddc_get_modes(connector, adapter);
  2012. }
  2013. static enum drm_connector_status
  2014. intel_dp_detect(struct drm_connector *connector, bool force)
  2015. {
  2016. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2017. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2018. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2019. struct drm_device *dev = connector->dev;
  2020. enum drm_connector_status status;
  2021. struct edid *edid = NULL;
  2022. intel_dp->has_audio = false;
  2023. if (HAS_PCH_SPLIT(dev))
  2024. status = ironlake_dp_detect(intel_dp);
  2025. else
  2026. status = g4x_dp_detect(intel_dp);
  2027. if (status != connector_status_connected)
  2028. return status;
  2029. intel_dp_probe_oui(intel_dp);
  2030. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2031. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2032. } else {
  2033. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2034. if (edid) {
  2035. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2036. kfree(edid);
  2037. }
  2038. }
  2039. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2040. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2041. return connector_status_connected;
  2042. }
  2043. static int intel_dp_get_modes(struct drm_connector *connector)
  2044. {
  2045. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2046. struct intel_connector *intel_connector = to_intel_connector(connector);
  2047. struct drm_device *dev = connector->dev;
  2048. int ret;
  2049. /* We should parse the EDID data and find out if it has an audio sink
  2050. */
  2051. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2052. if (ret)
  2053. return ret;
  2054. /* if eDP has no EDID, fall back to fixed mode */
  2055. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2056. struct drm_display_mode *mode;
  2057. mode = drm_mode_duplicate(dev,
  2058. intel_connector->panel.fixed_mode);
  2059. if (mode) {
  2060. drm_mode_probed_add(connector, mode);
  2061. return 1;
  2062. }
  2063. }
  2064. return 0;
  2065. }
  2066. static bool
  2067. intel_dp_detect_audio(struct drm_connector *connector)
  2068. {
  2069. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2070. struct edid *edid;
  2071. bool has_audio = false;
  2072. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2073. if (edid) {
  2074. has_audio = drm_detect_monitor_audio(edid);
  2075. kfree(edid);
  2076. }
  2077. return has_audio;
  2078. }
  2079. static int
  2080. intel_dp_set_property(struct drm_connector *connector,
  2081. struct drm_property *property,
  2082. uint64_t val)
  2083. {
  2084. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2085. struct intel_connector *intel_connector = to_intel_connector(connector);
  2086. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2087. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2088. int ret;
  2089. ret = drm_object_property_set_value(&connector->base, property, val);
  2090. if (ret)
  2091. return ret;
  2092. if (property == dev_priv->force_audio_property) {
  2093. int i = val;
  2094. bool has_audio;
  2095. if (i == intel_dp->force_audio)
  2096. return 0;
  2097. intel_dp->force_audio = i;
  2098. if (i == HDMI_AUDIO_AUTO)
  2099. has_audio = intel_dp_detect_audio(connector);
  2100. else
  2101. has_audio = (i == HDMI_AUDIO_ON);
  2102. if (has_audio == intel_dp->has_audio)
  2103. return 0;
  2104. intel_dp->has_audio = has_audio;
  2105. goto done;
  2106. }
  2107. if (property == dev_priv->broadcast_rgb_property) {
  2108. switch (val) {
  2109. case INTEL_BROADCAST_RGB_AUTO:
  2110. intel_dp->color_range_auto = true;
  2111. break;
  2112. case INTEL_BROADCAST_RGB_FULL:
  2113. intel_dp->color_range_auto = false;
  2114. intel_dp->color_range = 0;
  2115. break;
  2116. case INTEL_BROADCAST_RGB_LIMITED:
  2117. intel_dp->color_range_auto = false;
  2118. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2119. break;
  2120. default:
  2121. return -EINVAL;
  2122. }
  2123. goto done;
  2124. }
  2125. if (is_edp(intel_dp) &&
  2126. property == connector->dev->mode_config.scaling_mode_property) {
  2127. if (val == DRM_MODE_SCALE_NONE) {
  2128. DRM_DEBUG_KMS("no scaling not supported\n");
  2129. return -EINVAL;
  2130. }
  2131. if (intel_connector->panel.fitting_mode == val) {
  2132. /* the eDP scaling property is not changed */
  2133. return 0;
  2134. }
  2135. intel_connector->panel.fitting_mode = val;
  2136. goto done;
  2137. }
  2138. return -EINVAL;
  2139. done:
  2140. if (intel_encoder->base.crtc)
  2141. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2142. return 0;
  2143. }
  2144. static void
  2145. intel_dp_destroy(struct drm_connector *connector)
  2146. {
  2147. struct drm_device *dev = connector->dev;
  2148. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2149. struct intel_connector *intel_connector = to_intel_connector(connector);
  2150. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2151. kfree(intel_connector->edid);
  2152. if (is_edp(intel_dp)) {
  2153. intel_panel_destroy_backlight(dev);
  2154. intel_panel_fini(&intel_connector->panel);
  2155. }
  2156. drm_sysfs_connector_remove(connector);
  2157. drm_connector_cleanup(connector);
  2158. kfree(connector);
  2159. }
  2160. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2161. {
  2162. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2163. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2164. i2c_del_adapter(&intel_dp->adapter);
  2165. drm_encoder_cleanup(encoder);
  2166. if (is_edp(intel_dp)) {
  2167. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2168. ironlake_panel_vdd_off_sync(intel_dp);
  2169. }
  2170. kfree(intel_dig_port);
  2171. }
  2172. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  2173. .mode_fixup = intel_dp_mode_fixup,
  2174. .mode_set = intel_dp_mode_set,
  2175. .disable = intel_encoder_noop,
  2176. };
  2177. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2178. .dpms = intel_connector_dpms,
  2179. .detect = intel_dp_detect,
  2180. .fill_modes = drm_helper_probe_single_connector_modes,
  2181. .set_property = intel_dp_set_property,
  2182. .destroy = intel_dp_destroy,
  2183. };
  2184. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2185. .get_modes = intel_dp_get_modes,
  2186. .mode_valid = intel_dp_mode_valid,
  2187. .best_encoder = intel_best_encoder,
  2188. };
  2189. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2190. .destroy = intel_dp_encoder_destroy,
  2191. };
  2192. static void
  2193. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2194. {
  2195. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2196. intel_dp_check_link_status(intel_dp);
  2197. }
  2198. /* Return which DP Port should be selected for Transcoder DP control */
  2199. int
  2200. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2201. {
  2202. struct drm_device *dev = crtc->dev;
  2203. struct intel_encoder *intel_encoder;
  2204. struct intel_dp *intel_dp;
  2205. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2206. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2207. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2208. intel_encoder->type == INTEL_OUTPUT_EDP)
  2209. return intel_dp->output_reg;
  2210. }
  2211. return -1;
  2212. }
  2213. /* check the VBT to see whether the eDP is on DP-D port */
  2214. bool intel_dpd_is_edp(struct drm_device *dev)
  2215. {
  2216. struct drm_i915_private *dev_priv = dev->dev_private;
  2217. struct child_device_config *p_child;
  2218. int i;
  2219. if (!dev_priv->child_dev_num)
  2220. return false;
  2221. for (i = 0; i < dev_priv->child_dev_num; i++) {
  2222. p_child = dev_priv->child_dev + i;
  2223. if (p_child->dvo_port == PORT_IDPD &&
  2224. p_child->device_type == DEVICE_TYPE_eDP)
  2225. return true;
  2226. }
  2227. return false;
  2228. }
  2229. static void
  2230. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2231. {
  2232. struct intel_connector *intel_connector = to_intel_connector(connector);
  2233. intel_attach_force_audio_property(connector);
  2234. intel_attach_broadcast_rgb_property(connector);
  2235. intel_dp->color_range_auto = true;
  2236. if (is_edp(intel_dp)) {
  2237. drm_mode_create_scaling_mode_property(connector->dev);
  2238. drm_object_attach_property(
  2239. &connector->base,
  2240. connector->dev->mode_config.scaling_mode_property,
  2241. DRM_MODE_SCALE_ASPECT);
  2242. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2243. }
  2244. }
  2245. static void
  2246. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2247. struct intel_dp *intel_dp)
  2248. {
  2249. struct drm_i915_private *dev_priv = dev->dev_private;
  2250. struct edp_power_seq cur, vbt, spec, final;
  2251. u32 pp_on, pp_off, pp_div, pp;
  2252. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2253. * the very first thing. */
  2254. pp = ironlake_get_pp_control(dev_priv);
  2255. I915_WRITE(PCH_PP_CONTROL, pp);
  2256. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  2257. pp_off = I915_READ(PCH_PP_OFF_DELAYS);
  2258. pp_div = I915_READ(PCH_PP_DIVISOR);
  2259. /* Pull timing values out of registers */
  2260. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2261. PANEL_POWER_UP_DELAY_SHIFT;
  2262. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2263. PANEL_LIGHT_ON_DELAY_SHIFT;
  2264. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2265. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2266. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2267. PANEL_POWER_DOWN_DELAY_SHIFT;
  2268. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2269. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2270. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2271. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2272. vbt = dev_priv->edp.pps;
  2273. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2274. * our hw here, which are all in 100usec. */
  2275. spec.t1_t3 = 210 * 10;
  2276. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2277. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2278. spec.t10 = 500 * 10;
  2279. /* This one is special and actually in units of 100ms, but zero
  2280. * based in the hw (so we need to add 100 ms). But the sw vbt
  2281. * table multiplies it with 1000 to make it in units of 100usec,
  2282. * too. */
  2283. spec.t11_t12 = (510 + 100) * 10;
  2284. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2285. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2286. /* Use the max of the register settings and vbt. If both are
  2287. * unset, fall back to the spec limits. */
  2288. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2289. spec.field : \
  2290. max(cur.field, vbt.field))
  2291. assign_final(t1_t3);
  2292. assign_final(t8);
  2293. assign_final(t9);
  2294. assign_final(t10);
  2295. assign_final(t11_t12);
  2296. #undef assign_final
  2297. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2298. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2299. intel_dp->backlight_on_delay = get_delay(t8);
  2300. intel_dp->backlight_off_delay = get_delay(t9);
  2301. intel_dp->panel_power_down_delay = get_delay(t10);
  2302. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2303. #undef get_delay
  2304. /* And finally store the new values in the power sequencer. */
  2305. pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2306. (final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2307. pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2308. (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2309. /* Compute the divisor for the pp clock, simply match the Bspec
  2310. * formula. */
  2311. pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
  2312. << PP_REFERENCE_DIVIDER_SHIFT;
  2313. pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
  2314. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2315. /* Haswell doesn't have any port selection bits for the panel
  2316. * power sequencer any more. */
  2317. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2318. if (is_cpu_edp(intel_dp))
  2319. pp_on |= PANEL_POWER_PORT_DP_A;
  2320. else
  2321. pp_on |= PANEL_POWER_PORT_DP_D;
  2322. }
  2323. I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
  2324. I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
  2325. I915_WRITE(PCH_PP_DIVISOR, pp_div);
  2326. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2327. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2328. intel_dp->panel_power_cycle_delay);
  2329. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2330. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2331. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2332. I915_READ(PCH_PP_ON_DELAYS),
  2333. I915_READ(PCH_PP_OFF_DELAYS),
  2334. I915_READ(PCH_PP_DIVISOR));
  2335. }
  2336. void
  2337. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2338. struct intel_connector *intel_connector)
  2339. {
  2340. struct drm_connector *connector = &intel_connector->base;
  2341. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2342. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2343. struct drm_device *dev = intel_encoder->base.dev;
  2344. struct drm_i915_private *dev_priv = dev->dev_private;
  2345. struct drm_display_mode *fixed_mode = NULL;
  2346. enum port port = intel_dig_port->port;
  2347. const char *name = NULL;
  2348. int type;
  2349. /* Preserve the current hw state. */
  2350. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2351. intel_dp->attached_connector = intel_connector;
  2352. if (HAS_PCH_SPLIT(dev) && port == PORT_D)
  2353. if (intel_dpd_is_edp(dev))
  2354. intel_dp->is_pch_edp = true;
  2355. /*
  2356. * FIXME : We need to initialize built-in panels before external panels.
  2357. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2358. */
  2359. if (IS_VALLEYVIEW(dev) && port == PORT_C) {
  2360. type = DRM_MODE_CONNECTOR_eDP;
  2361. intel_encoder->type = INTEL_OUTPUT_EDP;
  2362. } else if (port == PORT_A || is_pch_edp(intel_dp)) {
  2363. type = DRM_MODE_CONNECTOR_eDP;
  2364. intel_encoder->type = INTEL_OUTPUT_EDP;
  2365. } else {
  2366. /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
  2367. * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
  2368. * rewrite it.
  2369. */
  2370. type = DRM_MODE_CONNECTOR_DisplayPort;
  2371. }
  2372. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2373. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2374. connector->polled = DRM_CONNECTOR_POLL_HPD;
  2375. connector->interlace_allowed = true;
  2376. connector->doublescan_allowed = 0;
  2377. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2378. ironlake_panel_vdd_work);
  2379. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2380. drm_sysfs_connector_add(connector);
  2381. if (HAS_DDI(dev))
  2382. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2383. else
  2384. intel_connector->get_hw_state = intel_connector_get_hw_state;
  2385. /* Set up the DDC bus. */
  2386. switch (port) {
  2387. case PORT_A:
  2388. name = "DPDDC-A";
  2389. break;
  2390. case PORT_B:
  2391. dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
  2392. name = "DPDDC-B";
  2393. break;
  2394. case PORT_C:
  2395. dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
  2396. name = "DPDDC-C";
  2397. break;
  2398. case PORT_D:
  2399. dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
  2400. name = "DPDDC-D";
  2401. break;
  2402. default:
  2403. WARN(1, "Invalid port %c\n", port_name(port));
  2404. break;
  2405. }
  2406. if (is_edp(intel_dp))
  2407. intel_dp_init_panel_power_sequencer(dev, intel_dp);
  2408. intel_dp_i2c_init(intel_dp, intel_connector, name);
  2409. /* Cache DPCD and EDID for edp. */
  2410. if (is_edp(intel_dp)) {
  2411. bool ret;
  2412. struct drm_display_mode *scan;
  2413. struct edid *edid;
  2414. ironlake_edp_panel_vdd_on(intel_dp);
  2415. ret = intel_dp_get_dpcd(intel_dp);
  2416. ironlake_edp_panel_vdd_off(intel_dp, false);
  2417. if (ret) {
  2418. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2419. dev_priv->no_aux_handshake =
  2420. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2421. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2422. } else {
  2423. /* if this fails, presume the device is a ghost */
  2424. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2425. intel_dp_encoder_destroy(&intel_encoder->base);
  2426. intel_dp_destroy(connector);
  2427. return;
  2428. }
  2429. ironlake_edp_panel_vdd_on(intel_dp);
  2430. edid = drm_get_edid(connector, &intel_dp->adapter);
  2431. if (edid) {
  2432. if (drm_add_edid_modes(connector, edid)) {
  2433. drm_mode_connector_update_edid_property(connector, edid);
  2434. drm_edid_to_eld(connector, edid);
  2435. } else {
  2436. kfree(edid);
  2437. edid = ERR_PTR(-EINVAL);
  2438. }
  2439. } else {
  2440. edid = ERR_PTR(-ENOENT);
  2441. }
  2442. intel_connector->edid = edid;
  2443. /* prefer fixed mode from EDID if available */
  2444. list_for_each_entry(scan, &connector->probed_modes, head) {
  2445. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2446. fixed_mode = drm_mode_duplicate(dev, scan);
  2447. break;
  2448. }
  2449. }
  2450. /* fallback to VBT if available for eDP */
  2451. if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
  2452. fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  2453. if (fixed_mode)
  2454. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2455. }
  2456. ironlake_edp_panel_vdd_off(intel_dp, false);
  2457. }
  2458. if (is_edp(intel_dp)) {
  2459. intel_panel_init(&intel_connector->panel, fixed_mode);
  2460. intel_panel_setup_backlight(connector);
  2461. }
  2462. intel_dp_add_properties(intel_dp, connector);
  2463. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2464. * 0xd. Failure to do so will result in spurious interrupts being
  2465. * generated on the port when a cable is not attached.
  2466. */
  2467. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2468. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2469. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2470. }
  2471. }
  2472. void
  2473. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  2474. {
  2475. struct intel_digital_port *intel_dig_port;
  2476. struct intel_encoder *intel_encoder;
  2477. struct drm_encoder *encoder;
  2478. struct intel_connector *intel_connector;
  2479. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  2480. if (!intel_dig_port)
  2481. return;
  2482. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2483. if (!intel_connector) {
  2484. kfree(intel_dig_port);
  2485. return;
  2486. }
  2487. intel_encoder = &intel_dig_port->base;
  2488. encoder = &intel_encoder->base;
  2489. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2490. DRM_MODE_ENCODER_TMDS);
  2491. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  2492. intel_encoder->enable = intel_enable_dp;
  2493. intel_encoder->pre_enable = intel_pre_enable_dp;
  2494. intel_encoder->disable = intel_disable_dp;
  2495. intel_encoder->post_disable = intel_post_disable_dp;
  2496. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  2497. intel_dig_port->port = port;
  2498. intel_dig_port->dp.output_reg = output_reg;
  2499. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2500. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2501. intel_encoder->cloneable = false;
  2502. intel_encoder->hot_plug = intel_dp_hot_plug;
  2503. intel_dp_init_connector(intel_dig_port, intel_connector);
  2504. }