common.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031
  1. /*
  2. * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
  3. * http://www.samsung.com
  4. *
  5. * Common Codes for EXYNOS
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/irq.h>
  14. #include <linux/io.h>
  15. #include <linux/device.h>
  16. #include <linux/gpio.h>
  17. #include <linux/sched.h>
  18. #include <linux/serial_core.h>
  19. #include <linux/of.h>
  20. #include <linux/of_irq.h>
  21. #include <linux/export.h>
  22. #include <linux/irqdomain.h>
  23. #include <linux/of_address.h>
  24. #include <asm/proc-fns.h>
  25. #include <asm/exception.h>
  26. #include <asm/hardware/cache-l2x0.h>
  27. #include <asm/hardware/gic.h>
  28. #include <asm/mach/map.h>
  29. #include <asm/mach/irq.h>
  30. #include <asm/cacheflush.h>
  31. #include <mach/regs-irq.h>
  32. #include <mach/regs-pmu.h>
  33. #include <mach/regs-gpio.h>
  34. #include <mach/pmu.h>
  35. #include <plat/cpu.h>
  36. #include <plat/clock.h>
  37. #include <plat/devs.h>
  38. #include <plat/pm.h>
  39. #include <plat/sdhci.h>
  40. #include <plat/gpio-cfg.h>
  41. #include <plat/adc-core.h>
  42. #include <plat/fb-core.h>
  43. #include <plat/fimc-core.h>
  44. #include <plat/iic-core.h>
  45. #include <plat/tv-core.h>
  46. #include <plat/spi-core.h>
  47. #include <plat/regs-serial.h>
  48. #include "common.h"
  49. #define L2_AUX_VAL 0x7C470001
  50. #define L2_AUX_MASK 0xC200ffff
  51. static const char name_exynos4210[] = "EXYNOS4210";
  52. static const char name_exynos4212[] = "EXYNOS4212";
  53. static const char name_exynos4412[] = "EXYNOS4412";
  54. static const char name_exynos5250[] = "EXYNOS5250";
  55. static void exynos4_map_io(void);
  56. static void exynos5_map_io(void);
  57. static void exynos4_init_clocks(int xtal);
  58. static void exynos5_init_clocks(int xtal);
  59. static void exynos4_init_uarts(struct s3c2410_uartcfg *cfg, int no);
  60. static int exynos_init(void);
  61. static struct cpu_table cpu_ids[] __initdata = {
  62. {
  63. .idcode = EXYNOS4210_CPU_ID,
  64. .idmask = EXYNOS4_CPU_MASK,
  65. .map_io = exynos4_map_io,
  66. .init_clocks = exynos4_init_clocks,
  67. .init_uarts = exynos4_init_uarts,
  68. .init = exynos_init,
  69. .name = name_exynos4210,
  70. }, {
  71. .idcode = EXYNOS4212_CPU_ID,
  72. .idmask = EXYNOS4_CPU_MASK,
  73. .map_io = exynos4_map_io,
  74. .init_clocks = exynos4_init_clocks,
  75. .init_uarts = exynos4_init_uarts,
  76. .init = exynos_init,
  77. .name = name_exynos4212,
  78. }, {
  79. .idcode = EXYNOS4412_CPU_ID,
  80. .idmask = EXYNOS4_CPU_MASK,
  81. .map_io = exynos4_map_io,
  82. .init_clocks = exynos4_init_clocks,
  83. .init_uarts = exynos4_init_uarts,
  84. .init = exynos_init,
  85. .name = name_exynos4412,
  86. }, {
  87. .idcode = EXYNOS5250_SOC_ID,
  88. .idmask = EXYNOS5_SOC_MASK,
  89. .map_io = exynos5_map_io,
  90. .init_clocks = exynos5_init_clocks,
  91. .init = exynos_init,
  92. .name = name_exynos5250,
  93. },
  94. };
  95. /* Initial IO mappings */
  96. static struct map_desc exynos_iodesc[] __initdata = {
  97. {
  98. .virtual = (unsigned long)S5P_VA_CHIPID,
  99. .pfn = __phys_to_pfn(EXYNOS_PA_CHIPID),
  100. .length = SZ_4K,
  101. .type = MT_DEVICE,
  102. },
  103. };
  104. static struct map_desc exynos4_iodesc[] __initdata = {
  105. {
  106. .virtual = (unsigned long)S3C_VA_SYS,
  107. .pfn = __phys_to_pfn(EXYNOS4_PA_SYSCON),
  108. .length = SZ_64K,
  109. .type = MT_DEVICE,
  110. }, {
  111. .virtual = (unsigned long)S3C_VA_TIMER,
  112. .pfn = __phys_to_pfn(EXYNOS4_PA_TIMER),
  113. .length = SZ_16K,
  114. .type = MT_DEVICE,
  115. }, {
  116. .virtual = (unsigned long)S3C_VA_WATCHDOG,
  117. .pfn = __phys_to_pfn(EXYNOS4_PA_WATCHDOG),
  118. .length = SZ_4K,
  119. .type = MT_DEVICE,
  120. }, {
  121. .virtual = (unsigned long)S5P_VA_SROMC,
  122. .pfn = __phys_to_pfn(EXYNOS4_PA_SROMC),
  123. .length = SZ_4K,
  124. .type = MT_DEVICE,
  125. }, {
  126. .virtual = (unsigned long)S5P_VA_SYSTIMER,
  127. .pfn = __phys_to_pfn(EXYNOS4_PA_SYSTIMER),
  128. .length = SZ_4K,
  129. .type = MT_DEVICE,
  130. }, {
  131. .virtual = (unsigned long)S5P_VA_PMU,
  132. .pfn = __phys_to_pfn(EXYNOS4_PA_PMU),
  133. .length = SZ_64K,
  134. .type = MT_DEVICE,
  135. }, {
  136. .virtual = (unsigned long)S5P_VA_COMBINER_BASE,
  137. .pfn = __phys_to_pfn(EXYNOS4_PA_COMBINER),
  138. .length = SZ_4K,
  139. .type = MT_DEVICE,
  140. }, {
  141. .virtual = (unsigned long)S5P_VA_GIC_CPU,
  142. .pfn = __phys_to_pfn(EXYNOS4_PA_GIC_CPU),
  143. .length = SZ_64K,
  144. .type = MT_DEVICE,
  145. }, {
  146. .virtual = (unsigned long)S5P_VA_GIC_DIST,
  147. .pfn = __phys_to_pfn(EXYNOS4_PA_GIC_DIST),
  148. .length = SZ_64K,
  149. .type = MT_DEVICE,
  150. }, {
  151. .virtual = (unsigned long)S3C_VA_UART,
  152. .pfn = __phys_to_pfn(EXYNOS4_PA_UART),
  153. .length = SZ_512K,
  154. .type = MT_DEVICE,
  155. }, {
  156. .virtual = (unsigned long)S5P_VA_CMU,
  157. .pfn = __phys_to_pfn(EXYNOS4_PA_CMU),
  158. .length = SZ_128K,
  159. .type = MT_DEVICE,
  160. }, {
  161. .virtual = (unsigned long)S5P_VA_COREPERI_BASE,
  162. .pfn = __phys_to_pfn(EXYNOS4_PA_COREPERI),
  163. .length = SZ_8K,
  164. .type = MT_DEVICE,
  165. }, {
  166. .virtual = (unsigned long)S5P_VA_L2CC,
  167. .pfn = __phys_to_pfn(EXYNOS4_PA_L2CC),
  168. .length = SZ_4K,
  169. .type = MT_DEVICE,
  170. }, {
  171. .virtual = (unsigned long)S5P_VA_DMC0,
  172. .pfn = __phys_to_pfn(EXYNOS4_PA_DMC0),
  173. .length = SZ_64K,
  174. .type = MT_DEVICE,
  175. }, {
  176. .virtual = (unsigned long)S5P_VA_DMC1,
  177. .pfn = __phys_to_pfn(EXYNOS4_PA_DMC1),
  178. .length = SZ_64K,
  179. .type = MT_DEVICE,
  180. }, {
  181. .virtual = (unsigned long)S3C_VA_USB_HSPHY,
  182. .pfn = __phys_to_pfn(EXYNOS4_PA_HSPHY),
  183. .length = SZ_4K,
  184. .type = MT_DEVICE,
  185. },
  186. };
  187. static struct map_desc exynos4_iodesc0[] __initdata = {
  188. {
  189. .virtual = (unsigned long)S5P_VA_SYSRAM,
  190. .pfn = __phys_to_pfn(EXYNOS4_PA_SYSRAM0),
  191. .length = SZ_4K,
  192. .type = MT_DEVICE,
  193. },
  194. };
  195. static struct map_desc exynos4_iodesc1[] __initdata = {
  196. {
  197. .virtual = (unsigned long)S5P_VA_SYSRAM,
  198. .pfn = __phys_to_pfn(EXYNOS4_PA_SYSRAM1),
  199. .length = SZ_4K,
  200. .type = MT_DEVICE,
  201. },
  202. };
  203. static struct map_desc exynos5_iodesc[] __initdata = {
  204. {
  205. .virtual = (unsigned long)S3C_VA_SYS,
  206. .pfn = __phys_to_pfn(EXYNOS5_PA_SYSCON),
  207. .length = SZ_64K,
  208. .type = MT_DEVICE,
  209. }, {
  210. .virtual = (unsigned long)S3C_VA_TIMER,
  211. .pfn = __phys_to_pfn(EXYNOS5_PA_TIMER),
  212. .length = SZ_16K,
  213. .type = MT_DEVICE,
  214. }, {
  215. .virtual = (unsigned long)S3C_VA_WATCHDOG,
  216. .pfn = __phys_to_pfn(EXYNOS5_PA_WATCHDOG),
  217. .length = SZ_4K,
  218. .type = MT_DEVICE,
  219. }, {
  220. .virtual = (unsigned long)S5P_VA_SROMC,
  221. .pfn = __phys_to_pfn(EXYNOS5_PA_SROMC),
  222. .length = SZ_4K,
  223. .type = MT_DEVICE,
  224. }, {
  225. .virtual = (unsigned long)S5P_VA_SYSTIMER,
  226. .pfn = __phys_to_pfn(EXYNOS5_PA_SYSTIMER),
  227. .length = SZ_4K,
  228. .type = MT_DEVICE,
  229. }, {
  230. .virtual = (unsigned long)S5P_VA_SYSRAM,
  231. .pfn = __phys_to_pfn(EXYNOS5_PA_SYSRAM),
  232. .length = SZ_4K,
  233. .type = MT_DEVICE,
  234. }, {
  235. .virtual = (unsigned long)S5P_VA_CMU,
  236. .pfn = __phys_to_pfn(EXYNOS5_PA_CMU),
  237. .length = 144 * SZ_1K,
  238. .type = MT_DEVICE,
  239. }, {
  240. .virtual = (unsigned long)S5P_VA_PMU,
  241. .pfn = __phys_to_pfn(EXYNOS5_PA_PMU),
  242. .length = SZ_64K,
  243. .type = MT_DEVICE,
  244. }, {
  245. .virtual = (unsigned long)S3C_VA_UART,
  246. .pfn = __phys_to_pfn(EXYNOS5_PA_UART),
  247. .length = SZ_512K,
  248. .type = MT_DEVICE,
  249. },
  250. };
  251. void exynos4_restart(char mode, const char *cmd)
  252. {
  253. __raw_writel(0x1, S5P_SWRESET);
  254. }
  255. void exynos5_restart(char mode, const char *cmd)
  256. {
  257. __raw_writel(0x1, EXYNOS_SWRESET);
  258. }
  259. void __init exynos_init_late(void)
  260. {
  261. exynos_pm_late_initcall();
  262. }
  263. /*
  264. * exynos_map_io
  265. *
  266. * register the standard cpu IO areas
  267. */
  268. void __init exynos_init_io(struct map_desc *mach_desc, int size)
  269. {
  270. /* initialize the io descriptors we need for initialization */
  271. iotable_init(exynos_iodesc, ARRAY_SIZE(exynos_iodesc));
  272. if (mach_desc)
  273. iotable_init(mach_desc, size);
  274. /* detect cpu id and rev. */
  275. s5p_init_cpu(S5P_VA_CHIPID);
  276. s3c_init_cpu(samsung_cpu_id, cpu_ids, ARRAY_SIZE(cpu_ids));
  277. }
  278. static void __init exynos4_map_io(void)
  279. {
  280. iotable_init(exynos4_iodesc, ARRAY_SIZE(exynos4_iodesc));
  281. if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_0)
  282. iotable_init(exynos4_iodesc0, ARRAY_SIZE(exynos4_iodesc0));
  283. else
  284. iotable_init(exynos4_iodesc1, ARRAY_SIZE(exynos4_iodesc1));
  285. /* initialize device information early */
  286. exynos4_default_sdhci0();
  287. exynos4_default_sdhci1();
  288. exynos4_default_sdhci2();
  289. exynos4_default_sdhci3();
  290. s3c_adc_setname("samsung-adc-v3");
  291. s3c_fimc_setname(0, "exynos4-fimc");
  292. s3c_fimc_setname(1, "exynos4-fimc");
  293. s3c_fimc_setname(2, "exynos4-fimc");
  294. s3c_fimc_setname(3, "exynos4-fimc");
  295. s3c_sdhci_setname(0, "exynos4-sdhci");
  296. s3c_sdhci_setname(1, "exynos4-sdhci");
  297. s3c_sdhci_setname(2, "exynos4-sdhci");
  298. s3c_sdhci_setname(3, "exynos4-sdhci");
  299. /* The I2C bus controllers are directly compatible with s3c2440 */
  300. s3c_i2c0_setname("s3c2440-i2c");
  301. s3c_i2c1_setname("s3c2440-i2c");
  302. s3c_i2c2_setname("s3c2440-i2c");
  303. s5p_fb_setname(0, "exynos4-fb");
  304. s5p_hdmi_setname("exynos4-hdmi");
  305. s3c64xx_spi_setname("exynos4210-spi");
  306. }
  307. static void __init exynos5_map_io(void)
  308. {
  309. iotable_init(exynos5_iodesc, ARRAY_SIZE(exynos5_iodesc));
  310. s3c_device_i2c0.resource[0].start = EXYNOS5_PA_IIC(0);
  311. s3c_device_i2c0.resource[0].end = EXYNOS5_PA_IIC(0) + SZ_4K - 1;
  312. s3c_device_i2c0.resource[1].start = EXYNOS5_IRQ_IIC;
  313. s3c_device_i2c0.resource[1].end = EXYNOS5_IRQ_IIC;
  314. s3c_sdhci_setname(0, "exynos4-sdhci");
  315. s3c_sdhci_setname(1, "exynos4-sdhci");
  316. s3c_sdhci_setname(2, "exynos4-sdhci");
  317. s3c_sdhci_setname(3, "exynos4-sdhci");
  318. /* The I2C bus controllers are directly compatible with s3c2440 */
  319. s3c_i2c0_setname("s3c2440-i2c");
  320. s3c_i2c1_setname("s3c2440-i2c");
  321. s3c_i2c2_setname("s3c2440-i2c");
  322. s3c64xx_spi_setname("exynos4210-spi");
  323. }
  324. static void __init exynos4_init_clocks(int xtal)
  325. {
  326. printk(KERN_DEBUG "%s: initializing clocks\n", __func__);
  327. s3c24xx_register_baseclocks(xtal);
  328. s5p_register_clocks(xtal);
  329. if (soc_is_exynos4210())
  330. exynos4210_register_clocks();
  331. else if (soc_is_exynos4212() || soc_is_exynos4412())
  332. exynos4212_register_clocks();
  333. exynos4_register_clocks();
  334. exynos4_setup_clocks();
  335. }
  336. static void __init exynos5_init_clocks(int xtal)
  337. {
  338. printk(KERN_DEBUG "%s: initializing clocks\n", __func__);
  339. s3c24xx_register_baseclocks(xtal);
  340. s5p_register_clocks(xtal);
  341. exynos5_register_clocks();
  342. exynos5_setup_clocks();
  343. }
  344. #define COMBINER_ENABLE_SET 0x0
  345. #define COMBINER_ENABLE_CLEAR 0x4
  346. #define COMBINER_INT_STATUS 0xC
  347. static DEFINE_SPINLOCK(irq_controller_lock);
  348. struct combiner_chip_data {
  349. unsigned int irq_offset;
  350. unsigned int irq_mask;
  351. void __iomem *base;
  352. };
  353. static struct irq_domain *combiner_irq_domain;
  354. static struct combiner_chip_data combiner_data[MAX_COMBINER_NR];
  355. static inline void __iomem *combiner_base(struct irq_data *data)
  356. {
  357. struct combiner_chip_data *combiner_data =
  358. irq_data_get_irq_chip_data(data);
  359. return combiner_data->base;
  360. }
  361. static void combiner_mask_irq(struct irq_data *data)
  362. {
  363. u32 mask = 1 << (data->hwirq % 32);
  364. __raw_writel(mask, combiner_base(data) + COMBINER_ENABLE_CLEAR);
  365. }
  366. static void combiner_unmask_irq(struct irq_data *data)
  367. {
  368. u32 mask = 1 << (data->hwirq % 32);
  369. __raw_writel(mask, combiner_base(data) + COMBINER_ENABLE_SET);
  370. }
  371. static void combiner_handle_cascade_irq(unsigned int irq, struct irq_desc *desc)
  372. {
  373. struct combiner_chip_data *chip_data = irq_get_handler_data(irq);
  374. struct irq_chip *chip = irq_get_chip(irq);
  375. unsigned int cascade_irq, combiner_irq;
  376. unsigned long status;
  377. chained_irq_enter(chip, desc);
  378. spin_lock(&irq_controller_lock);
  379. status = __raw_readl(chip_data->base + COMBINER_INT_STATUS);
  380. spin_unlock(&irq_controller_lock);
  381. status &= chip_data->irq_mask;
  382. if (status == 0)
  383. goto out;
  384. combiner_irq = __ffs(status);
  385. cascade_irq = combiner_irq + (chip_data->irq_offset & ~31);
  386. if (unlikely(cascade_irq >= NR_IRQS))
  387. do_bad_IRQ(cascade_irq, desc);
  388. else
  389. generic_handle_irq(cascade_irq);
  390. out:
  391. chained_irq_exit(chip, desc);
  392. }
  393. static struct irq_chip combiner_chip = {
  394. .name = "COMBINER",
  395. .irq_mask = combiner_mask_irq,
  396. .irq_unmask = combiner_unmask_irq,
  397. };
  398. static void __init combiner_cascade_irq(unsigned int combiner_nr, unsigned int irq)
  399. {
  400. unsigned int max_nr;
  401. if (soc_is_exynos5250())
  402. max_nr = EXYNOS5_MAX_COMBINER_NR;
  403. else
  404. max_nr = EXYNOS4_MAX_COMBINER_NR;
  405. if (combiner_nr >= max_nr)
  406. BUG();
  407. if (irq_set_handler_data(irq, &combiner_data[combiner_nr]) != 0)
  408. BUG();
  409. irq_set_chained_handler(irq, combiner_handle_cascade_irq);
  410. }
  411. static void __init combiner_init_one(unsigned int combiner_nr,
  412. void __iomem *base)
  413. {
  414. combiner_data[combiner_nr].base = base;
  415. combiner_data[combiner_nr].irq_offset = irq_find_mapping(
  416. combiner_irq_domain, combiner_nr * MAX_IRQ_IN_COMBINER);
  417. combiner_data[combiner_nr].irq_mask = 0xff << ((combiner_nr % 4) << 3);
  418. /* Disable all interrupts */
  419. __raw_writel(combiner_data[combiner_nr].irq_mask,
  420. base + COMBINER_ENABLE_CLEAR);
  421. }
  422. #ifdef CONFIG_OF
  423. static int combiner_irq_domain_xlate(struct irq_domain *d,
  424. struct device_node *controller,
  425. const u32 *intspec, unsigned int intsize,
  426. unsigned long *out_hwirq,
  427. unsigned int *out_type)
  428. {
  429. if (d->of_node != controller)
  430. return -EINVAL;
  431. if (intsize < 2)
  432. return -EINVAL;
  433. *out_hwirq = intspec[0] * MAX_IRQ_IN_COMBINER + intspec[1];
  434. *out_type = 0;
  435. return 0;
  436. }
  437. #else
  438. static int combiner_irq_domain_xlate(struct irq_domain *d,
  439. struct device_node *controller,
  440. const u32 *intspec, unsigned int intsize,
  441. unsigned long *out_hwirq,
  442. unsigned int *out_type)
  443. {
  444. return -EINVAL;
  445. }
  446. #endif
  447. static int combiner_irq_domain_map(struct irq_domain *d, unsigned int irq,
  448. irq_hw_number_t hw)
  449. {
  450. irq_set_chip_and_handler(irq, &combiner_chip, handle_level_irq);
  451. irq_set_chip_data(irq, &combiner_data[hw >> 3]);
  452. set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
  453. return 0;
  454. }
  455. static struct irq_domain_ops combiner_irq_domain_ops = {
  456. .xlate = combiner_irq_domain_xlate,
  457. .map = combiner_irq_domain_map,
  458. };
  459. static void __init combiner_init(void __iomem *combiner_base,
  460. struct device_node *np)
  461. {
  462. int i, irq, irq_base;
  463. unsigned int max_nr, nr_irq;
  464. if (np) {
  465. if (of_property_read_u32(np, "samsung,combiner-nr", &max_nr)) {
  466. pr_warning("%s: number of combiners not specified, "
  467. "setting default as %d.\n",
  468. __func__, EXYNOS4_MAX_COMBINER_NR);
  469. max_nr = EXYNOS4_MAX_COMBINER_NR;
  470. }
  471. } else {
  472. max_nr = soc_is_exynos5250() ? EXYNOS5_MAX_COMBINER_NR :
  473. EXYNOS4_MAX_COMBINER_NR;
  474. }
  475. nr_irq = max_nr * MAX_IRQ_IN_COMBINER;
  476. irq_base = irq_alloc_descs(COMBINER_IRQ(0, 0), 1, nr_irq, 0);
  477. if (IS_ERR_VALUE(irq_base)) {
  478. irq_base = COMBINER_IRQ(0, 0);
  479. pr_warning("%s: irq desc alloc failed. Continuing with %d as linux irq base\n", __func__, irq_base);
  480. }
  481. combiner_irq_domain = irq_domain_add_legacy(np, nr_irq, irq_base, 0,
  482. &combiner_irq_domain_ops, &combiner_data);
  483. if (WARN_ON(!combiner_irq_domain)) {
  484. pr_warning("%s: irq domain init failed\n", __func__);
  485. return;
  486. }
  487. for (i = 0; i < max_nr; i++) {
  488. combiner_init_one(i, combiner_base + (i >> 2) * 0x10);
  489. irq = IRQ_SPI(i);
  490. #ifdef CONFIG_OF
  491. if (np)
  492. irq = irq_of_parse_and_map(np, i);
  493. #endif
  494. combiner_cascade_irq(i, irq);
  495. }
  496. }
  497. #ifdef CONFIG_OF
  498. int __init combiner_of_init(struct device_node *np, struct device_node *parent)
  499. {
  500. void __iomem *combiner_base;
  501. combiner_base = of_iomap(np, 0);
  502. if (!combiner_base) {
  503. pr_err("%s: failed to map combiner registers\n", __func__);
  504. return -ENXIO;
  505. }
  506. combiner_init(combiner_base, np);
  507. return 0;
  508. }
  509. static const struct of_device_id exynos4_dt_irq_match[] = {
  510. { .compatible = "arm,cortex-a9-gic", .data = gic_of_init, },
  511. { .compatible = "samsung,exynos4210-combiner",
  512. .data = combiner_of_init, },
  513. {},
  514. };
  515. #endif
  516. void __init exynos4_init_irq(void)
  517. {
  518. unsigned int gic_bank_offset;
  519. gic_bank_offset = soc_is_exynos4412() ? 0x4000 : 0x8000;
  520. if (!of_have_populated_dt())
  521. gic_init_bases(0, IRQ_PPI(0), S5P_VA_GIC_DIST, S5P_VA_GIC_CPU, gic_bank_offset, NULL);
  522. #ifdef CONFIG_OF
  523. else
  524. of_irq_init(exynos4_dt_irq_match);
  525. #endif
  526. if (!of_have_populated_dt())
  527. combiner_init(S5P_VA_COMBINER_BASE, NULL);
  528. /*
  529. * The parameters of s5p_init_irq() are for VIC init.
  530. * Theses parameters should be NULL and 0 because EXYNOS4
  531. * uses GIC instead of VIC.
  532. */
  533. s5p_init_irq(NULL, 0);
  534. }
  535. void __init exynos5_init_irq(void)
  536. {
  537. #ifdef CONFIG_OF
  538. of_irq_init(exynos4_dt_irq_match);
  539. #endif
  540. /*
  541. * The parameters of s5p_init_irq() are for VIC init.
  542. * Theses parameters should be NULL and 0 because EXYNOS4
  543. * uses GIC instead of VIC.
  544. */
  545. s5p_init_irq(NULL, 0);
  546. }
  547. struct bus_type exynos_subsys = {
  548. .name = "exynos-core",
  549. .dev_name = "exynos-core",
  550. };
  551. static struct device exynos4_dev = {
  552. .bus = &exynos_subsys,
  553. };
  554. static int __init exynos_core_init(void)
  555. {
  556. return subsys_system_register(&exynos_subsys, NULL);
  557. }
  558. core_initcall(exynos_core_init);
  559. #ifdef CONFIG_CACHE_L2X0
  560. static int __init exynos4_l2x0_cache_init(void)
  561. {
  562. int ret;
  563. if (soc_is_exynos5250())
  564. return 0;
  565. ret = l2x0_of_init(L2_AUX_VAL, L2_AUX_MASK);
  566. if (!ret) {
  567. l2x0_regs_phys = virt_to_phys(&l2x0_saved_regs);
  568. clean_dcache_area(&l2x0_regs_phys, sizeof(unsigned long));
  569. return 0;
  570. }
  571. if (!(__raw_readl(S5P_VA_L2CC + L2X0_CTRL) & 0x1)) {
  572. l2x0_saved_regs.phy_base = EXYNOS4_PA_L2CC;
  573. /* TAG, Data Latency Control: 2 cycles */
  574. l2x0_saved_regs.tag_latency = 0x110;
  575. if (soc_is_exynos4212() || soc_is_exynos4412())
  576. l2x0_saved_regs.data_latency = 0x120;
  577. else
  578. l2x0_saved_regs.data_latency = 0x110;
  579. l2x0_saved_regs.prefetch_ctrl = 0x30000007;
  580. l2x0_saved_regs.pwr_ctrl =
  581. (L2X0_DYNAMIC_CLK_GATING_EN | L2X0_STNDBY_MODE_EN);
  582. l2x0_regs_phys = virt_to_phys(&l2x0_saved_regs);
  583. __raw_writel(l2x0_saved_regs.tag_latency,
  584. S5P_VA_L2CC + L2X0_TAG_LATENCY_CTRL);
  585. __raw_writel(l2x0_saved_regs.data_latency,
  586. S5P_VA_L2CC + L2X0_DATA_LATENCY_CTRL);
  587. /* L2X0 Prefetch Control */
  588. __raw_writel(l2x0_saved_regs.prefetch_ctrl,
  589. S5P_VA_L2CC + L2X0_PREFETCH_CTRL);
  590. /* L2X0 Power Control */
  591. __raw_writel(l2x0_saved_regs.pwr_ctrl,
  592. S5P_VA_L2CC + L2X0_POWER_CTRL);
  593. clean_dcache_area(&l2x0_regs_phys, sizeof(unsigned long));
  594. clean_dcache_area(&l2x0_saved_regs, sizeof(struct l2x0_regs));
  595. }
  596. l2x0_init(S5P_VA_L2CC, L2_AUX_VAL, L2_AUX_MASK);
  597. return 0;
  598. }
  599. early_initcall(exynos4_l2x0_cache_init);
  600. #endif
  601. static int __init exynos_init(void)
  602. {
  603. printk(KERN_INFO "EXYNOS: Initializing architecture\n");
  604. return device_register(&exynos4_dev);
  605. }
  606. /* uart registration process */
  607. static void __init exynos4_init_uarts(struct s3c2410_uartcfg *cfg, int no)
  608. {
  609. struct s3c2410_uartcfg *tcfg = cfg;
  610. u32 ucnt;
  611. for (ucnt = 0; ucnt < no; ucnt++, tcfg++)
  612. tcfg->has_fracval = 1;
  613. s3c24xx_init_uartdevs("exynos4210-uart", exynos4_uart_resources, cfg, no);
  614. }
  615. static void __iomem *exynos_eint_base;
  616. static DEFINE_SPINLOCK(eint_lock);
  617. static unsigned int eint0_15_data[16];
  618. static inline int exynos4_irq_to_gpio(unsigned int irq)
  619. {
  620. if (irq < IRQ_EINT(0))
  621. return -EINVAL;
  622. irq -= IRQ_EINT(0);
  623. if (irq < 8)
  624. return EXYNOS4_GPX0(irq);
  625. irq -= 8;
  626. if (irq < 8)
  627. return EXYNOS4_GPX1(irq);
  628. irq -= 8;
  629. if (irq < 8)
  630. return EXYNOS4_GPX2(irq);
  631. irq -= 8;
  632. if (irq < 8)
  633. return EXYNOS4_GPX3(irq);
  634. return -EINVAL;
  635. }
  636. static inline int exynos5_irq_to_gpio(unsigned int irq)
  637. {
  638. if (irq < IRQ_EINT(0))
  639. return -EINVAL;
  640. irq -= IRQ_EINT(0);
  641. if (irq < 8)
  642. return EXYNOS5_GPX0(irq);
  643. irq -= 8;
  644. if (irq < 8)
  645. return EXYNOS5_GPX1(irq);
  646. irq -= 8;
  647. if (irq < 8)
  648. return EXYNOS5_GPX2(irq);
  649. irq -= 8;
  650. if (irq < 8)
  651. return EXYNOS5_GPX3(irq);
  652. return -EINVAL;
  653. }
  654. static unsigned int exynos4_eint0_15_src_int[16] = {
  655. EXYNOS4_IRQ_EINT0,
  656. EXYNOS4_IRQ_EINT1,
  657. EXYNOS4_IRQ_EINT2,
  658. EXYNOS4_IRQ_EINT3,
  659. EXYNOS4_IRQ_EINT4,
  660. EXYNOS4_IRQ_EINT5,
  661. EXYNOS4_IRQ_EINT6,
  662. EXYNOS4_IRQ_EINT7,
  663. EXYNOS4_IRQ_EINT8,
  664. EXYNOS4_IRQ_EINT9,
  665. EXYNOS4_IRQ_EINT10,
  666. EXYNOS4_IRQ_EINT11,
  667. EXYNOS4_IRQ_EINT12,
  668. EXYNOS4_IRQ_EINT13,
  669. EXYNOS4_IRQ_EINT14,
  670. EXYNOS4_IRQ_EINT15,
  671. };
  672. static unsigned int exynos5_eint0_15_src_int[16] = {
  673. EXYNOS5_IRQ_EINT0,
  674. EXYNOS5_IRQ_EINT1,
  675. EXYNOS5_IRQ_EINT2,
  676. EXYNOS5_IRQ_EINT3,
  677. EXYNOS5_IRQ_EINT4,
  678. EXYNOS5_IRQ_EINT5,
  679. EXYNOS5_IRQ_EINT6,
  680. EXYNOS5_IRQ_EINT7,
  681. EXYNOS5_IRQ_EINT8,
  682. EXYNOS5_IRQ_EINT9,
  683. EXYNOS5_IRQ_EINT10,
  684. EXYNOS5_IRQ_EINT11,
  685. EXYNOS5_IRQ_EINT12,
  686. EXYNOS5_IRQ_EINT13,
  687. EXYNOS5_IRQ_EINT14,
  688. EXYNOS5_IRQ_EINT15,
  689. };
  690. static inline void exynos_irq_eint_mask(struct irq_data *data)
  691. {
  692. u32 mask;
  693. spin_lock(&eint_lock);
  694. mask = __raw_readl(EINT_MASK(exynos_eint_base, data->irq));
  695. mask |= EINT_OFFSET_BIT(data->irq);
  696. __raw_writel(mask, EINT_MASK(exynos_eint_base, data->irq));
  697. spin_unlock(&eint_lock);
  698. }
  699. static void exynos_irq_eint_unmask(struct irq_data *data)
  700. {
  701. u32 mask;
  702. spin_lock(&eint_lock);
  703. mask = __raw_readl(EINT_MASK(exynos_eint_base, data->irq));
  704. mask &= ~(EINT_OFFSET_BIT(data->irq));
  705. __raw_writel(mask, EINT_MASK(exynos_eint_base, data->irq));
  706. spin_unlock(&eint_lock);
  707. }
  708. static inline void exynos_irq_eint_ack(struct irq_data *data)
  709. {
  710. __raw_writel(EINT_OFFSET_BIT(data->irq),
  711. EINT_PEND(exynos_eint_base, data->irq));
  712. }
  713. static void exynos_irq_eint_maskack(struct irq_data *data)
  714. {
  715. exynos_irq_eint_mask(data);
  716. exynos_irq_eint_ack(data);
  717. }
  718. static int exynos_irq_eint_set_type(struct irq_data *data, unsigned int type)
  719. {
  720. int offs = EINT_OFFSET(data->irq);
  721. int shift;
  722. u32 ctrl, mask;
  723. u32 newvalue = 0;
  724. switch (type) {
  725. case IRQ_TYPE_EDGE_RISING:
  726. newvalue = S5P_IRQ_TYPE_EDGE_RISING;
  727. break;
  728. case IRQ_TYPE_EDGE_FALLING:
  729. newvalue = S5P_IRQ_TYPE_EDGE_FALLING;
  730. break;
  731. case IRQ_TYPE_EDGE_BOTH:
  732. newvalue = S5P_IRQ_TYPE_EDGE_BOTH;
  733. break;
  734. case IRQ_TYPE_LEVEL_LOW:
  735. newvalue = S5P_IRQ_TYPE_LEVEL_LOW;
  736. break;
  737. case IRQ_TYPE_LEVEL_HIGH:
  738. newvalue = S5P_IRQ_TYPE_LEVEL_HIGH;
  739. break;
  740. default:
  741. printk(KERN_ERR "No such irq type %d", type);
  742. return -EINVAL;
  743. }
  744. shift = (offs & 0x7) * 4;
  745. mask = 0x7 << shift;
  746. spin_lock(&eint_lock);
  747. ctrl = __raw_readl(EINT_CON(exynos_eint_base, data->irq));
  748. ctrl &= ~mask;
  749. ctrl |= newvalue << shift;
  750. __raw_writel(ctrl, EINT_CON(exynos_eint_base, data->irq));
  751. spin_unlock(&eint_lock);
  752. if (soc_is_exynos5250())
  753. s3c_gpio_cfgpin(exynos5_irq_to_gpio(data->irq), S3C_GPIO_SFN(0xf));
  754. else
  755. s3c_gpio_cfgpin(exynos4_irq_to_gpio(data->irq), S3C_GPIO_SFN(0xf));
  756. return 0;
  757. }
  758. static struct irq_chip exynos_irq_eint = {
  759. .name = "exynos-eint",
  760. .irq_mask = exynos_irq_eint_mask,
  761. .irq_unmask = exynos_irq_eint_unmask,
  762. .irq_mask_ack = exynos_irq_eint_maskack,
  763. .irq_ack = exynos_irq_eint_ack,
  764. .irq_set_type = exynos_irq_eint_set_type,
  765. #ifdef CONFIG_PM
  766. .irq_set_wake = s3c_irqext_wake,
  767. #endif
  768. };
  769. /*
  770. * exynos4_irq_demux_eint
  771. *
  772. * This function demuxes the IRQ from from EINTs 16 to 31.
  773. * It is designed to be inlined into the specific handler
  774. * s5p_irq_demux_eintX_Y.
  775. *
  776. * Each EINT pend/mask registers handle eight of them.
  777. */
  778. static inline void exynos_irq_demux_eint(unsigned int start)
  779. {
  780. unsigned int irq;
  781. u32 status = __raw_readl(EINT_PEND(exynos_eint_base, start));
  782. u32 mask = __raw_readl(EINT_MASK(exynos_eint_base, start));
  783. status &= ~mask;
  784. status &= 0xff;
  785. while (status) {
  786. irq = fls(status) - 1;
  787. generic_handle_irq(irq + start);
  788. status &= ~(1 << irq);
  789. }
  790. }
  791. static void exynos_irq_demux_eint16_31(unsigned int irq, struct irq_desc *desc)
  792. {
  793. struct irq_chip *chip = irq_get_chip(irq);
  794. chained_irq_enter(chip, desc);
  795. exynos_irq_demux_eint(IRQ_EINT(16));
  796. exynos_irq_demux_eint(IRQ_EINT(24));
  797. chained_irq_exit(chip, desc);
  798. }
  799. static void exynos_irq_eint0_15(unsigned int irq, struct irq_desc *desc)
  800. {
  801. u32 *irq_data = irq_get_handler_data(irq);
  802. struct irq_chip *chip = irq_get_chip(irq);
  803. chained_irq_enter(chip, desc);
  804. chip->irq_mask(&desc->irq_data);
  805. if (chip->irq_ack)
  806. chip->irq_ack(&desc->irq_data);
  807. generic_handle_irq(*irq_data);
  808. chip->irq_unmask(&desc->irq_data);
  809. chained_irq_exit(chip, desc);
  810. }
  811. static int __init exynos_init_irq_eint(void)
  812. {
  813. int irq;
  814. #ifdef CONFIG_PINCTRL_SAMSUNG
  815. /*
  816. * The Samsung pinctrl driver provides an integrated gpio/pinmux/pinconf
  817. * functionality along with support for external gpio and wakeup
  818. * interrupts. If the samsung pinctrl driver is enabled and includes
  819. * the wakeup interrupt support, then the setting up external wakeup
  820. * interrupts here can be skipped. This check here is temporary to
  821. * allow exynos4 platforms that do not use Samsung pinctrl driver to
  822. * co-exist with platforms that do. When all of the Samsung Exynos4
  823. * platforms switch over to using the pinctrl driver, the wakeup
  824. * interrupt support code here can be completely removed.
  825. */
  826. struct device_node *pctrl_np, *wkup_np;
  827. const char *pctrl_compat = "samsung,pinctrl-exynos4210";
  828. const char *wkup_compat = "samsung,exynos4210-wakeup-eint";
  829. for_each_compatible_node(pctrl_np, NULL, pctrl_compat) {
  830. if (of_device_is_available(pctrl_np)) {
  831. wkup_np = of_find_compatible_node(pctrl_np, NULL,
  832. wkup_compat);
  833. if (wkup_np)
  834. return -ENODEV;
  835. }
  836. }
  837. #endif
  838. if (soc_is_exynos5250())
  839. exynos_eint_base = ioremap(EXYNOS5_PA_GPIO1, SZ_4K);
  840. else
  841. exynos_eint_base = ioremap(EXYNOS4_PA_GPIO2, SZ_4K);
  842. if (exynos_eint_base == NULL) {
  843. pr_err("unable to ioremap for EINT base address\n");
  844. return -ENOMEM;
  845. }
  846. for (irq = 0 ; irq <= 31 ; irq++) {
  847. irq_set_chip_and_handler(IRQ_EINT(irq), &exynos_irq_eint,
  848. handle_level_irq);
  849. set_irq_flags(IRQ_EINT(irq), IRQF_VALID);
  850. }
  851. irq_set_chained_handler(EXYNOS_IRQ_EINT16_31, exynos_irq_demux_eint16_31);
  852. for (irq = 0 ; irq <= 15 ; irq++) {
  853. eint0_15_data[irq] = IRQ_EINT(irq);
  854. if (soc_is_exynos5250()) {
  855. irq_set_handler_data(exynos5_eint0_15_src_int[irq],
  856. &eint0_15_data[irq]);
  857. irq_set_chained_handler(exynos5_eint0_15_src_int[irq],
  858. exynos_irq_eint0_15);
  859. } else {
  860. irq_set_handler_data(exynos4_eint0_15_src_int[irq],
  861. &eint0_15_data[irq]);
  862. irq_set_chained_handler(exynos4_eint0_15_src_int[irq],
  863. exynos_irq_eint0_15);
  864. }
  865. }
  866. return 0;
  867. }
  868. arch_initcall(exynos_init_irq_eint);