dm-thin.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "dm-bio-prison.h"
  8. #include "dm.h"
  9. #include <linux/device-mapper.h>
  10. #include <linux/dm-io.h>
  11. #include <linux/dm-kcopyd.h>
  12. #include <linux/list.h>
  13. #include <linux/init.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #define DM_MSG_PREFIX "thin"
  17. /*
  18. * Tunable constants
  19. */
  20. #define ENDIO_HOOK_POOL_SIZE 1024
  21. #define MAPPING_POOL_SIZE 1024
  22. #define PRISON_CELLS 1024
  23. #define COMMIT_PERIOD HZ
  24. /*
  25. * The block size of the device holding pool data must be
  26. * between 64KB and 1GB.
  27. */
  28. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  29. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  30. /*
  31. * Device id is restricted to 24 bits.
  32. */
  33. #define MAX_DEV_ID ((1 << 24) - 1)
  34. /*
  35. * How do we handle breaking sharing of data blocks?
  36. * =================================================
  37. *
  38. * We use a standard copy-on-write btree to store the mappings for the
  39. * devices (note I'm talking about copy-on-write of the metadata here, not
  40. * the data). When you take an internal snapshot you clone the root node
  41. * of the origin btree. After this there is no concept of an origin or a
  42. * snapshot. They are just two device trees that happen to point to the
  43. * same data blocks.
  44. *
  45. * When we get a write in we decide if it's to a shared data block using
  46. * some timestamp magic. If it is, we have to break sharing.
  47. *
  48. * Let's say we write to a shared block in what was the origin. The
  49. * steps are:
  50. *
  51. * i) plug io further to this physical block. (see bio_prison code).
  52. *
  53. * ii) quiesce any read io to that shared data block. Obviously
  54. * including all devices that share this block. (see dm_deferred_set code)
  55. *
  56. * iii) copy the data block to a newly allocate block. This step can be
  57. * missed out if the io covers the block. (schedule_copy).
  58. *
  59. * iv) insert the new mapping into the origin's btree
  60. * (process_prepared_mapping). This act of inserting breaks some
  61. * sharing of btree nodes between the two devices. Breaking sharing only
  62. * effects the btree of that specific device. Btrees for the other
  63. * devices that share the block never change. The btree for the origin
  64. * device as it was after the last commit is untouched, ie. we're using
  65. * persistent data structures in the functional programming sense.
  66. *
  67. * v) unplug io to this physical block, including the io that triggered
  68. * the breaking of sharing.
  69. *
  70. * Steps (ii) and (iii) occur in parallel.
  71. *
  72. * The metadata _doesn't_ need to be committed before the io continues. We
  73. * get away with this because the io is always written to a _new_ block.
  74. * If there's a crash, then:
  75. *
  76. * - The origin mapping will point to the old origin block (the shared
  77. * one). This will contain the data as it was before the io that triggered
  78. * the breaking of sharing came in.
  79. *
  80. * - The snap mapping still points to the old block. As it would after
  81. * the commit.
  82. *
  83. * The downside of this scheme is the timestamp magic isn't perfect, and
  84. * will continue to think that data block in the snapshot device is shared
  85. * even after the write to the origin has broken sharing. I suspect data
  86. * blocks will typically be shared by many different devices, so we're
  87. * breaking sharing n + 1 times, rather than n, where n is the number of
  88. * devices that reference this data block. At the moment I think the
  89. * benefits far, far outweigh the disadvantages.
  90. */
  91. /*----------------------------------------------------------------*/
  92. /*
  93. * Key building.
  94. */
  95. static void build_data_key(struct dm_thin_device *td,
  96. dm_block_t b, struct dm_cell_key *key)
  97. {
  98. key->virtual = 0;
  99. key->dev = dm_thin_dev_id(td);
  100. key->block = b;
  101. }
  102. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  103. struct dm_cell_key *key)
  104. {
  105. key->virtual = 1;
  106. key->dev = dm_thin_dev_id(td);
  107. key->block = b;
  108. }
  109. /*----------------------------------------------------------------*/
  110. /*
  111. * A pool device ties together a metadata device and a data device. It
  112. * also provides the interface for creating and destroying internal
  113. * devices.
  114. */
  115. struct dm_thin_new_mapping;
  116. /*
  117. * The pool runs in 3 modes. Ordered in degraded order for comparisons.
  118. */
  119. enum pool_mode {
  120. PM_WRITE, /* metadata may be changed */
  121. PM_READ_ONLY, /* metadata may not be changed */
  122. PM_FAIL, /* all I/O fails */
  123. };
  124. struct pool_features {
  125. enum pool_mode mode;
  126. bool zero_new_blocks:1;
  127. bool discard_enabled:1;
  128. bool discard_passdown:1;
  129. };
  130. struct thin_c;
  131. typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
  132. typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
  133. struct pool {
  134. struct list_head list;
  135. struct dm_target *ti; /* Only set if a pool target is bound */
  136. struct mapped_device *pool_md;
  137. struct block_device *md_dev;
  138. struct dm_pool_metadata *pmd;
  139. dm_block_t low_water_blocks;
  140. uint32_t sectors_per_block;
  141. int sectors_per_block_shift;
  142. struct pool_features pf;
  143. unsigned low_water_triggered:1; /* A dm event has been sent */
  144. unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
  145. struct dm_bio_prison *prison;
  146. struct dm_kcopyd_client *copier;
  147. struct workqueue_struct *wq;
  148. struct work_struct worker;
  149. struct delayed_work waker;
  150. unsigned long last_commit_jiffies;
  151. unsigned ref_count;
  152. spinlock_t lock;
  153. struct bio_list deferred_bios;
  154. struct bio_list deferred_flush_bios;
  155. struct list_head prepared_mappings;
  156. struct list_head prepared_discards;
  157. struct bio_list retry_on_resume_list;
  158. struct dm_deferred_set *shared_read_ds;
  159. struct dm_deferred_set *all_io_ds;
  160. struct dm_thin_new_mapping *next_mapping;
  161. mempool_t *mapping_pool;
  162. process_bio_fn process_bio;
  163. process_bio_fn process_discard;
  164. process_mapping_fn process_prepared_mapping;
  165. process_mapping_fn process_prepared_discard;
  166. };
  167. static enum pool_mode get_pool_mode(struct pool *pool);
  168. static void set_pool_mode(struct pool *pool, enum pool_mode mode);
  169. /*
  170. * Target context for a pool.
  171. */
  172. struct pool_c {
  173. struct dm_target *ti;
  174. struct pool *pool;
  175. struct dm_dev *data_dev;
  176. struct dm_dev *metadata_dev;
  177. struct dm_target_callbacks callbacks;
  178. dm_block_t low_water_blocks;
  179. struct pool_features requested_pf; /* Features requested during table load */
  180. struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
  181. };
  182. /*
  183. * Target context for a thin.
  184. */
  185. struct thin_c {
  186. struct dm_dev *pool_dev;
  187. struct dm_dev *origin_dev;
  188. dm_thin_id dev_id;
  189. struct pool *pool;
  190. struct dm_thin_device *td;
  191. };
  192. /*----------------------------------------------------------------*/
  193. /*
  194. * A global list of pools that uses a struct mapped_device as a key.
  195. */
  196. static struct dm_thin_pool_table {
  197. struct mutex mutex;
  198. struct list_head pools;
  199. } dm_thin_pool_table;
  200. static void pool_table_init(void)
  201. {
  202. mutex_init(&dm_thin_pool_table.mutex);
  203. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  204. }
  205. static void __pool_table_insert(struct pool *pool)
  206. {
  207. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  208. list_add(&pool->list, &dm_thin_pool_table.pools);
  209. }
  210. static void __pool_table_remove(struct pool *pool)
  211. {
  212. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  213. list_del(&pool->list);
  214. }
  215. static struct pool *__pool_table_lookup(struct mapped_device *md)
  216. {
  217. struct pool *pool = NULL, *tmp;
  218. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  219. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  220. if (tmp->pool_md == md) {
  221. pool = tmp;
  222. break;
  223. }
  224. }
  225. return pool;
  226. }
  227. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  228. {
  229. struct pool *pool = NULL, *tmp;
  230. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  231. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  232. if (tmp->md_dev == md_dev) {
  233. pool = tmp;
  234. break;
  235. }
  236. }
  237. return pool;
  238. }
  239. /*----------------------------------------------------------------*/
  240. struct dm_thin_endio_hook {
  241. struct thin_c *tc;
  242. struct dm_deferred_entry *shared_read_entry;
  243. struct dm_deferred_entry *all_io_entry;
  244. struct dm_thin_new_mapping *overwrite_mapping;
  245. };
  246. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  247. {
  248. struct bio *bio;
  249. struct bio_list bios;
  250. bio_list_init(&bios);
  251. bio_list_merge(&bios, master);
  252. bio_list_init(master);
  253. while ((bio = bio_list_pop(&bios))) {
  254. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  255. if (h->tc == tc)
  256. bio_endio(bio, DM_ENDIO_REQUEUE);
  257. else
  258. bio_list_add(master, bio);
  259. }
  260. }
  261. static void requeue_io(struct thin_c *tc)
  262. {
  263. struct pool *pool = tc->pool;
  264. unsigned long flags;
  265. spin_lock_irqsave(&pool->lock, flags);
  266. __requeue_bio_list(tc, &pool->deferred_bios);
  267. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  268. spin_unlock_irqrestore(&pool->lock, flags);
  269. }
  270. /*
  271. * This section of code contains the logic for processing a thin device's IO.
  272. * Much of the code depends on pool object resources (lists, workqueues, etc)
  273. * but most is exclusively called from the thin target rather than the thin-pool
  274. * target.
  275. */
  276. static bool block_size_is_power_of_two(struct pool *pool)
  277. {
  278. return pool->sectors_per_block_shift >= 0;
  279. }
  280. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  281. {
  282. struct pool *pool = tc->pool;
  283. sector_t block_nr = bio->bi_sector;
  284. if (block_size_is_power_of_two(pool))
  285. block_nr >>= pool->sectors_per_block_shift;
  286. else
  287. (void) sector_div(block_nr, pool->sectors_per_block);
  288. return block_nr;
  289. }
  290. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  291. {
  292. struct pool *pool = tc->pool;
  293. sector_t bi_sector = bio->bi_sector;
  294. bio->bi_bdev = tc->pool_dev->bdev;
  295. if (block_size_is_power_of_two(pool))
  296. bio->bi_sector = (block << pool->sectors_per_block_shift) |
  297. (bi_sector & (pool->sectors_per_block - 1));
  298. else
  299. bio->bi_sector = (block * pool->sectors_per_block) +
  300. sector_div(bi_sector, pool->sectors_per_block);
  301. }
  302. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  303. {
  304. bio->bi_bdev = tc->origin_dev->bdev;
  305. }
  306. static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
  307. {
  308. return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
  309. dm_thin_changed_this_transaction(tc->td);
  310. }
  311. static void inc_all_io_entry(struct pool *pool, struct bio *bio)
  312. {
  313. struct dm_thin_endio_hook *h;
  314. if (bio->bi_rw & REQ_DISCARD)
  315. return;
  316. h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  317. h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
  318. }
  319. static void issue(struct thin_c *tc, struct bio *bio)
  320. {
  321. struct pool *pool = tc->pool;
  322. unsigned long flags;
  323. if (!bio_triggers_commit(tc, bio)) {
  324. generic_make_request(bio);
  325. return;
  326. }
  327. /*
  328. * Complete bio with an error if earlier I/O caused changes to
  329. * the metadata that can't be committed e.g, due to I/O errors
  330. * on the metadata device.
  331. */
  332. if (dm_thin_aborted_changes(tc->td)) {
  333. bio_io_error(bio);
  334. return;
  335. }
  336. /*
  337. * Batch together any bios that trigger commits and then issue a
  338. * single commit for them in process_deferred_bios().
  339. */
  340. spin_lock_irqsave(&pool->lock, flags);
  341. bio_list_add(&pool->deferred_flush_bios, bio);
  342. spin_unlock_irqrestore(&pool->lock, flags);
  343. }
  344. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  345. {
  346. remap_to_origin(tc, bio);
  347. issue(tc, bio);
  348. }
  349. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  350. dm_block_t block)
  351. {
  352. remap(tc, bio, block);
  353. issue(tc, bio);
  354. }
  355. /*
  356. * wake_worker() is used when new work is queued and when pool_resume is
  357. * ready to continue deferred IO processing.
  358. */
  359. static void wake_worker(struct pool *pool)
  360. {
  361. queue_work(pool->wq, &pool->worker);
  362. }
  363. /*----------------------------------------------------------------*/
  364. /*
  365. * Bio endio functions.
  366. */
  367. struct dm_thin_new_mapping {
  368. struct list_head list;
  369. unsigned quiesced:1;
  370. unsigned prepared:1;
  371. unsigned pass_discard:1;
  372. struct thin_c *tc;
  373. dm_block_t virt_block;
  374. dm_block_t data_block;
  375. struct dm_bio_prison_cell *cell, *cell2;
  376. int err;
  377. /*
  378. * If the bio covers the whole area of a block then we can avoid
  379. * zeroing or copying. Instead this bio is hooked. The bio will
  380. * still be in the cell, so care has to be taken to avoid issuing
  381. * the bio twice.
  382. */
  383. struct bio *bio;
  384. bio_end_io_t *saved_bi_end_io;
  385. };
  386. static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
  387. {
  388. struct pool *pool = m->tc->pool;
  389. if (m->quiesced && m->prepared) {
  390. list_add(&m->list, &pool->prepared_mappings);
  391. wake_worker(pool);
  392. }
  393. }
  394. static void copy_complete(int read_err, unsigned long write_err, void *context)
  395. {
  396. unsigned long flags;
  397. struct dm_thin_new_mapping *m = context;
  398. struct pool *pool = m->tc->pool;
  399. m->err = read_err || write_err ? -EIO : 0;
  400. spin_lock_irqsave(&pool->lock, flags);
  401. m->prepared = 1;
  402. __maybe_add_mapping(m);
  403. spin_unlock_irqrestore(&pool->lock, flags);
  404. }
  405. static void overwrite_endio(struct bio *bio, int err)
  406. {
  407. unsigned long flags;
  408. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  409. struct dm_thin_new_mapping *m = h->overwrite_mapping;
  410. struct pool *pool = m->tc->pool;
  411. m->err = err;
  412. spin_lock_irqsave(&pool->lock, flags);
  413. m->prepared = 1;
  414. __maybe_add_mapping(m);
  415. spin_unlock_irqrestore(&pool->lock, flags);
  416. }
  417. /*----------------------------------------------------------------*/
  418. /*
  419. * Workqueue.
  420. */
  421. /*
  422. * Prepared mapping jobs.
  423. */
  424. /*
  425. * This sends the bios in the cell back to the deferred_bios list.
  426. */
  427. static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  428. {
  429. struct pool *pool = tc->pool;
  430. unsigned long flags;
  431. spin_lock_irqsave(&pool->lock, flags);
  432. dm_cell_release(cell, &pool->deferred_bios);
  433. spin_unlock_irqrestore(&tc->pool->lock, flags);
  434. wake_worker(pool);
  435. }
  436. /*
  437. * Same as cell_defer except it omits the original holder of the cell.
  438. */
  439. static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  440. {
  441. struct pool *pool = tc->pool;
  442. unsigned long flags;
  443. spin_lock_irqsave(&pool->lock, flags);
  444. dm_cell_release_no_holder(cell, &pool->deferred_bios);
  445. spin_unlock_irqrestore(&pool->lock, flags);
  446. wake_worker(pool);
  447. }
  448. static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
  449. {
  450. if (m->bio)
  451. m->bio->bi_end_io = m->saved_bi_end_io;
  452. dm_cell_error(m->cell);
  453. list_del(&m->list);
  454. mempool_free(m, m->tc->pool->mapping_pool);
  455. }
  456. static void process_prepared_mapping(struct dm_thin_new_mapping *m)
  457. {
  458. struct thin_c *tc = m->tc;
  459. struct bio *bio;
  460. int r;
  461. bio = m->bio;
  462. if (bio)
  463. bio->bi_end_io = m->saved_bi_end_io;
  464. if (m->err) {
  465. dm_cell_error(m->cell);
  466. goto out;
  467. }
  468. /*
  469. * Commit the prepared block into the mapping btree.
  470. * Any I/O for this block arriving after this point will get
  471. * remapped to it directly.
  472. */
  473. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  474. if (r) {
  475. DMERR_LIMIT("dm_thin_insert_block() failed");
  476. dm_cell_error(m->cell);
  477. goto out;
  478. }
  479. /*
  480. * Release any bios held while the block was being provisioned.
  481. * If we are processing a write bio that completely covers the block,
  482. * we already processed it so can ignore it now when processing
  483. * the bios in the cell.
  484. */
  485. if (bio) {
  486. cell_defer_no_holder(tc, m->cell);
  487. bio_endio(bio, 0);
  488. } else
  489. cell_defer(tc, m->cell);
  490. out:
  491. list_del(&m->list);
  492. mempool_free(m, tc->pool->mapping_pool);
  493. }
  494. static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
  495. {
  496. struct thin_c *tc = m->tc;
  497. bio_io_error(m->bio);
  498. cell_defer_no_holder(tc, m->cell);
  499. cell_defer_no_holder(tc, m->cell2);
  500. mempool_free(m, tc->pool->mapping_pool);
  501. }
  502. static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
  503. {
  504. struct thin_c *tc = m->tc;
  505. inc_all_io_entry(tc->pool, m->bio);
  506. cell_defer_no_holder(tc, m->cell);
  507. cell_defer_no_holder(tc, m->cell2);
  508. if (m->pass_discard)
  509. remap_and_issue(tc, m->bio, m->data_block);
  510. else
  511. bio_endio(m->bio, 0);
  512. mempool_free(m, tc->pool->mapping_pool);
  513. }
  514. static void process_prepared_discard(struct dm_thin_new_mapping *m)
  515. {
  516. int r;
  517. struct thin_c *tc = m->tc;
  518. r = dm_thin_remove_block(tc->td, m->virt_block);
  519. if (r)
  520. DMERR_LIMIT("dm_thin_remove_block() failed");
  521. process_prepared_discard_passdown(m);
  522. }
  523. static void process_prepared(struct pool *pool, struct list_head *head,
  524. process_mapping_fn *fn)
  525. {
  526. unsigned long flags;
  527. struct list_head maps;
  528. struct dm_thin_new_mapping *m, *tmp;
  529. INIT_LIST_HEAD(&maps);
  530. spin_lock_irqsave(&pool->lock, flags);
  531. list_splice_init(head, &maps);
  532. spin_unlock_irqrestore(&pool->lock, flags);
  533. list_for_each_entry_safe(m, tmp, &maps, list)
  534. (*fn)(m);
  535. }
  536. /*
  537. * Deferred bio jobs.
  538. */
  539. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  540. {
  541. return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
  542. }
  543. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  544. {
  545. return (bio_data_dir(bio) == WRITE) &&
  546. io_overlaps_block(pool, bio);
  547. }
  548. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  549. bio_end_io_t *fn)
  550. {
  551. *save = bio->bi_end_io;
  552. bio->bi_end_io = fn;
  553. }
  554. static int ensure_next_mapping(struct pool *pool)
  555. {
  556. if (pool->next_mapping)
  557. return 0;
  558. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  559. return pool->next_mapping ? 0 : -ENOMEM;
  560. }
  561. static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
  562. {
  563. struct dm_thin_new_mapping *r = pool->next_mapping;
  564. BUG_ON(!pool->next_mapping);
  565. pool->next_mapping = NULL;
  566. return r;
  567. }
  568. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  569. struct dm_dev *origin, dm_block_t data_origin,
  570. dm_block_t data_dest,
  571. struct dm_bio_prison_cell *cell, struct bio *bio)
  572. {
  573. int r;
  574. struct pool *pool = tc->pool;
  575. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  576. INIT_LIST_HEAD(&m->list);
  577. m->quiesced = 0;
  578. m->prepared = 0;
  579. m->tc = tc;
  580. m->virt_block = virt_block;
  581. m->data_block = data_dest;
  582. m->cell = cell;
  583. m->err = 0;
  584. m->bio = NULL;
  585. if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
  586. m->quiesced = 1;
  587. /*
  588. * IO to pool_dev remaps to the pool target's data_dev.
  589. *
  590. * If the whole block of data is being overwritten, we can issue the
  591. * bio immediately. Otherwise we use kcopyd to clone the data first.
  592. */
  593. if (io_overwrites_block(pool, bio)) {
  594. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  595. h->overwrite_mapping = m;
  596. m->bio = bio;
  597. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  598. inc_all_io_entry(pool, bio);
  599. remap_and_issue(tc, bio, data_dest);
  600. } else {
  601. struct dm_io_region from, to;
  602. from.bdev = origin->bdev;
  603. from.sector = data_origin * pool->sectors_per_block;
  604. from.count = pool->sectors_per_block;
  605. to.bdev = tc->pool_dev->bdev;
  606. to.sector = data_dest * pool->sectors_per_block;
  607. to.count = pool->sectors_per_block;
  608. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  609. 0, copy_complete, m);
  610. if (r < 0) {
  611. mempool_free(m, pool->mapping_pool);
  612. DMERR_LIMIT("dm_kcopyd_copy() failed");
  613. dm_cell_error(cell);
  614. }
  615. }
  616. }
  617. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  618. dm_block_t data_origin, dm_block_t data_dest,
  619. struct dm_bio_prison_cell *cell, struct bio *bio)
  620. {
  621. schedule_copy(tc, virt_block, tc->pool_dev,
  622. data_origin, data_dest, cell, bio);
  623. }
  624. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  625. dm_block_t data_dest,
  626. struct dm_bio_prison_cell *cell, struct bio *bio)
  627. {
  628. schedule_copy(tc, virt_block, tc->origin_dev,
  629. virt_block, data_dest, cell, bio);
  630. }
  631. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  632. dm_block_t data_block, struct dm_bio_prison_cell *cell,
  633. struct bio *bio)
  634. {
  635. struct pool *pool = tc->pool;
  636. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  637. INIT_LIST_HEAD(&m->list);
  638. m->quiesced = 1;
  639. m->prepared = 0;
  640. m->tc = tc;
  641. m->virt_block = virt_block;
  642. m->data_block = data_block;
  643. m->cell = cell;
  644. m->err = 0;
  645. m->bio = NULL;
  646. /*
  647. * If the whole block of data is being overwritten or we are not
  648. * zeroing pre-existing data, we can issue the bio immediately.
  649. * Otherwise we use kcopyd to zero the data first.
  650. */
  651. if (!pool->pf.zero_new_blocks)
  652. process_prepared_mapping(m);
  653. else if (io_overwrites_block(pool, bio)) {
  654. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  655. h->overwrite_mapping = m;
  656. m->bio = bio;
  657. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  658. inc_all_io_entry(pool, bio);
  659. remap_and_issue(tc, bio, data_block);
  660. } else {
  661. int r;
  662. struct dm_io_region to;
  663. to.bdev = tc->pool_dev->bdev;
  664. to.sector = data_block * pool->sectors_per_block;
  665. to.count = pool->sectors_per_block;
  666. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  667. if (r < 0) {
  668. mempool_free(m, pool->mapping_pool);
  669. DMERR_LIMIT("dm_kcopyd_zero() failed");
  670. dm_cell_error(cell);
  671. }
  672. }
  673. }
  674. static int commit(struct pool *pool)
  675. {
  676. int r;
  677. r = dm_pool_commit_metadata(pool->pmd);
  678. if (r)
  679. DMERR_LIMIT("commit failed: error = %d", r);
  680. return r;
  681. }
  682. /*
  683. * A non-zero return indicates read_only or fail_io mode.
  684. * Many callers don't care about the return value.
  685. */
  686. static int commit_or_fallback(struct pool *pool)
  687. {
  688. int r;
  689. if (get_pool_mode(pool) != PM_WRITE)
  690. return -EINVAL;
  691. r = commit(pool);
  692. if (r)
  693. set_pool_mode(pool, PM_READ_ONLY);
  694. return r;
  695. }
  696. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  697. {
  698. int r;
  699. dm_block_t free_blocks;
  700. unsigned long flags;
  701. struct pool *pool = tc->pool;
  702. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  703. if (r)
  704. return r;
  705. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  706. DMWARN("%s: reached low water mark, sending event.",
  707. dm_device_name(pool->pool_md));
  708. spin_lock_irqsave(&pool->lock, flags);
  709. pool->low_water_triggered = 1;
  710. spin_unlock_irqrestore(&pool->lock, flags);
  711. dm_table_event(pool->ti->table);
  712. }
  713. if (!free_blocks) {
  714. if (pool->no_free_space)
  715. return -ENOSPC;
  716. else {
  717. /*
  718. * Try to commit to see if that will free up some
  719. * more space.
  720. */
  721. (void) commit_or_fallback(pool);
  722. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  723. if (r)
  724. return r;
  725. /*
  726. * If we still have no space we set a flag to avoid
  727. * doing all this checking and return -ENOSPC.
  728. */
  729. if (!free_blocks) {
  730. DMWARN("%s: no free space available.",
  731. dm_device_name(pool->pool_md));
  732. spin_lock_irqsave(&pool->lock, flags);
  733. pool->no_free_space = 1;
  734. spin_unlock_irqrestore(&pool->lock, flags);
  735. return -ENOSPC;
  736. }
  737. }
  738. }
  739. r = dm_pool_alloc_data_block(pool->pmd, result);
  740. if (r)
  741. return r;
  742. return 0;
  743. }
  744. /*
  745. * If we have run out of space, queue bios until the device is
  746. * resumed, presumably after having been reloaded with more space.
  747. */
  748. static void retry_on_resume(struct bio *bio)
  749. {
  750. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  751. struct thin_c *tc = h->tc;
  752. struct pool *pool = tc->pool;
  753. unsigned long flags;
  754. spin_lock_irqsave(&pool->lock, flags);
  755. bio_list_add(&pool->retry_on_resume_list, bio);
  756. spin_unlock_irqrestore(&pool->lock, flags);
  757. }
  758. static void no_space(struct dm_bio_prison_cell *cell)
  759. {
  760. struct bio *bio;
  761. struct bio_list bios;
  762. bio_list_init(&bios);
  763. dm_cell_release(cell, &bios);
  764. while ((bio = bio_list_pop(&bios)))
  765. retry_on_resume(bio);
  766. }
  767. static void process_discard(struct thin_c *tc, struct bio *bio)
  768. {
  769. int r;
  770. unsigned long flags;
  771. struct pool *pool = tc->pool;
  772. struct dm_bio_prison_cell *cell, *cell2;
  773. struct dm_cell_key key, key2;
  774. dm_block_t block = get_bio_block(tc, bio);
  775. struct dm_thin_lookup_result lookup_result;
  776. struct dm_thin_new_mapping *m;
  777. build_virtual_key(tc->td, block, &key);
  778. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  779. return;
  780. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  781. switch (r) {
  782. case 0:
  783. /*
  784. * Check nobody is fiddling with this pool block. This can
  785. * happen if someone's in the process of breaking sharing
  786. * on this block.
  787. */
  788. build_data_key(tc->td, lookup_result.block, &key2);
  789. if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
  790. cell_defer_no_holder(tc, cell);
  791. break;
  792. }
  793. if (io_overlaps_block(pool, bio)) {
  794. /*
  795. * IO may still be going to the destination block. We must
  796. * quiesce before we can do the removal.
  797. */
  798. m = get_next_mapping(pool);
  799. m->tc = tc;
  800. m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
  801. m->virt_block = block;
  802. m->data_block = lookup_result.block;
  803. m->cell = cell;
  804. m->cell2 = cell2;
  805. m->err = 0;
  806. m->bio = bio;
  807. if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
  808. spin_lock_irqsave(&pool->lock, flags);
  809. list_add(&m->list, &pool->prepared_discards);
  810. spin_unlock_irqrestore(&pool->lock, flags);
  811. wake_worker(pool);
  812. }
  813. } else {
  814. inc_all_io_entry(pool, bio);
  815. cell_defer_no_holder(tc, cell);
  816. cell_defer_no_holder(tc, cell2);
  817. /*
  818. * The DM core makes sure that the discard doesn't span
  819. * a block boundary. So we submit the discard of a
  820. * partial block appropriately.
  821. */
  822. if ((!lookup_result.shared) && pool->pf.discard_passdown)
  823. remap_and_issue(tc, bio, lookup_result.block);
  824. else
  825. bio_endio(bio, 0);
  826. }
  827. break;
  828. case -ENODATA:
  829. /*
  830. * It isn't provisioned, just forget it.
  831. */
  832. cell_defer_no_holder(tc, cell);
  833. bio_endio(bio, 0);
  834. break;
  835. default:
  836. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  837. __func__, r);
  838. cell_defer_no_holder(tc, cell);
  839. bio_io_error(bio);
  840. break;
  841. }
  842. }
  843. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  844. struct dm_cell_key *key,
  845. struct dm_thin_lookup_result *lookup_result,
  846. struct dm_bio_prison_cell *cell)
  847. {
  848. int r;
  849. dm_block_t data_block;
  850. r = alloc_data_block(tc, &data_block);
  851. switch (r) {
  852. case 0:
  853. schedule_internal_copy(tc, block, lookup_result->block,
  854. data_block, cell, bio);
  855. break;
  856. case -ENOSPC:
  857. no_space(cell);
  858. break;
  859. default:
  860. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  861. __func__, r);
  862. dm_cell_error(cell);
  863. break;
  864. }
  865. }
  866. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  867. dm_block_t block,
  868. struct dm_thin_lookup_result *lookup_result)
  869. {
  870. struct dm_bio_prison_cell *cell;
  871. struct pool *pool = tc->pool;
  872. struct dm_cell_key key;
  873. /*
  874. * If cell is already occupied, then sharing is already in the process
  875. * of being broken so we have nothing further to do here.
  876. */
  877. build_data_key(tc->td, lookup_result->block, &key);
  878. if (dm_bio_detain(pool->prison, &key, bio, &cell))
  879. return;
  880. if (bio_data_dir(bio) == WRITE && bio->bi_size)
  881. break_sharing(tc, bio, block, &key, lookup_result, cell);
  882. else {
  883. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  884. h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
  885. inc_all_io_entry(pool, bio);
  886. cell_defer_no_holder(tc, cell);
  887. remap_and_issue(tc, bio, lookup_result->block);
  888. }
  889. }
  890. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  891. struct dm_bio_prison_cell *cell)
  892. {
  893. int r;
  894. dm_block_t data_block;
  895. /*
  896. * Remap empty bios (flushes) immediately, without provisioning.
  897. */
  898. if (!bio->bi_size) {
  899. inc_all_io_entry(tc->pool, bio);
  900. cell_defer_no_holder(tc, cell);
  901. remap_and_issue(tc, bio, 0);
  902. return;
  903. }
  904. /*
  905. * Fill read bios with zeroes and complete them immediately.
  906. */
  907. if (bio_data_dir(bio) == READ) {
  908. zero_fill_bio(bio);
  909. cell_defer_no_holder(tc, cell);
  910. bio_endio(bio, 0);
  911. return;
  912. }
  913. r = alloc_data_block(tc, &data_block);
  914. switch (r) {
  915. case 0:
  916. if (tc->origin_dev)
  917. schedule_external_copy(tc, block, data_block, cell, bio);
  918. else
  919. schedule_zero(tc, block, data_block, cell, bio);
  920. break;
  921. case -ENOSPC:
  922. no_space(cell);
  923. break;
  924. default:
  925. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  926. __func__, r);
  927. set_pool_mode(tc->pool, PM_READ_ONLY);
  928. dm_cell_error(cell);
  929. break;
  930. }
  931. }
  932. static void process_bio(struct thin_c *tc, struct bio *bio)
  933. {
  934. int r;
  935. dm_block_t block = get_bio_block(tc, bio);
  936. struct dm_bio_prison_cell *cell;
  937. struct dm_cell_key key;
  938. struct dm_thin_lookup_result lookup_result;
  939. /*
  940. * If cell is already occupied, then the block is already
  941. * being provisioned so we have nothing further to do here.
  942. */
  943. build_virtual_key(tc->td, block, &key);
  944. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  945. return;
  946. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  947. switch (r) {
  948. case 0:
  949. if (lookup_result.shared) {
  950. process_shared_bio(tc, bio, block, &lookup_result);
  951. cell_defer_no_holder(tc, cell);
  952. } else {
  953. inc_all_io_entry(tc->pool, bio);
  954. cell_defer_no_holder(tc, cell);
  955. remap_and_issue(tc, bio, lookup_result.block);
  956. }
  957. break;
  958. case -ENODATA:
  959. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  960. inc_all_io_entry(tc->pool, bio);
  961. cell_defer_no_holder(tc, cell);
  962. remap_to_origin_and_issue(tc, bio);
  963. } else
  964. provision_block(tc, bio, block, cell);
  965. break;
  966. default:
  967. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  968. __func__, r);
  969. cell_defer_no_holder(tc, cell);
  970. bio_io_error(bio);
  971. break;
  972. }
  973. }
  974. static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
  975. {
  976. int r;
  977. int rw = bio_data_dir(bio);
  978. dm_block_t block = get_bio_block(tc, bio);
  979. struct dm_thin_lookup_result lookup_result;
  980. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  981. switch (r) {
  982. case 0:
  983. if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
  984. bio_io_error(bio);
  985. else {
  986. inc_all_io_entry(tc->pool, bio);
  987. remap_and_issue(tc, bio, lookup_result.block);
  988. }
  989. break;
  990. case -ENODATA:
  991. if (rw != READ) {
  992. bio_io_error(bio);
  993. break;
  994. }
  995. if (tc->origin_dev) {
  996. inc_all_io_entry(tc->pool, bio);
  997. remap_to_origin_and_issue(tc, bio);
  998. break;
  999. }
  1000. zero_fill_bio(bio);
  1001. bio_endio(bio, 0);
  1002. break;
  1003. default:
  1004. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  1005. __func__, r);
  1006. bio_io_error(bio);
  1007. break;
  1008. }
  1009. }
  1010. static void process_bio_fail(struct thin_c *tc, struct bio *bio)
  1011. {
  1012. bio_io_error(bio);
  1013. }
  1014. static int need_commit_due_to_time(struct pool *pool)
  1015. {
  1016. return jiffies < pool->last_commit_jiffies ||
  1017. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1018. }
  1019. static void process_deferred_bios(struct pool *pool)
  1020. {
  1021. unsigned long flags;
  1022. struct bio *bio;
  1023. struct bio_list bios;
  1024. bio_list_init(&bios);
  1025. spin_lock_irqsave(&pool->lock, flags);
  1026. bio_list_merge(&bios, &pool->deferred_bios);
  1027. bio_list_init(&pool->deferred_bios);
  1028. spin_unlock_irqrestore(&pool->lock, flags);
  1029. while ((bio = bio_list_pop(&bios))) {
  1030. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1031. struct thin_c *tc = h->tc;
  1032. /*
  1033. * If we've got no free new_mapping structs, and processing
  1034. * this bio might require one, we pause until there are some
  1035. * prepared mappings to process.
  1036. */
  1037. if (ensure_next_mapping(pool)) {
  1038. spin_lock_irqsave(&pool->lock, flags);
  1039. bio_list_merge(&pool->deferred_bios, &bios);
  1040. spin_unlock_irqrestore(&pool->lock, flags);
  1041. break;
  1042. }
  1043. if (bio->bi_rw & REQ_DISCARD)
  1044. pool->process_discard(tc, bio);
  1045. else
  1046. pool->process_bio(tc, bio);
  1047. }
  1048. /*
  1049. * If there are any deferred flush bios, we must commit
  1050. * the metadata before issuing them.
  1051. */
  1052. bio_list_init(&bios);
  1053. spin_lock_irqsave(&pool->lock, flags);
  1054. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1055. bio_list_init(&pool->deferred_flush_bios);
  1056. spin_unlock_irqrestore(&pool->lock, flags);
  1057. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1058. return;
  1059. if (commit_or_fallback(pool)) {
  1060. while ((bio = bio_list_pop(&bios)))
  1061. bio_io_error(bio);
  1062. return;
  1063. }
  1064. pool->last_commit_jiffies = jiffies;
  1065. while ((bio = bio_list_pop(&bios)))
  1066. generic_make_request(bio);
  1067. }
  1068. static void do_worker(struct work_struct *ws)
  1069. {
  1070. struct pool *pool = container_of(ws, struct pool, worker);
  1071. process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
  1072. process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
  1073. process_deferred_bios(pool);
  1074. }
  1075. /*
  1076. * We want to commit periodically so that not too much
  1077. * unwritten data builds up.
  1078. */
  1079. static void do_waker(struct work_struct *ws)
  1080. {
  1081. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1082. wake_worker(pool);
  1083. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1084. }
  1085. /*----------------------------------------------------------------*/
  1086. static enum pool_mode get_pool_mode(struct pool *pool)
  1087. {
  1088. return pool->pf.mode;
  1089. }
  1090. static void set_pool_mode(struct pool *pool, enum pool_mode mode)
  1091. {
  1092. int r;
  1093. pool->pf.mode = mode;
  1094. switch (mode) {
  1095. case PM_FAIL:
  1096. DMERR("switching pool to failure mode");
  1097. pool->process_bio = process_bio_fail;
  1098. pool->process_discard = process_bio_fail;
  1099. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1100. pool->process_prepared_discard = process_prepared_discard_fail;
  1101. break;
  1102. case PM_READ_ONLY:
  1103. DMERR("switching pool to read-only mode");
  1104. r = dm_pool_abort_metadata(pool->pmd);
  1105. if (r) {
  1106. DMERR("aborting transaction failed");
  1107. set_pool_mode(pool, PM_FAIL);
  1108. } else {
  1109. dm_pool_metadata_read_only(pool->pmd);
  1110. pool->process_bio = process_bio_read_only;
  1111. pool->process_discard = process_discard;
  1112. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1113. pool->process_prepared_discard = process_prepared_discard_passdown;
  1114. }
  1115. break;
  1116. case PM_WRITE:
  1117. pool->process_bio = process_bio;
  1118. pool->process_discard = process_discard;
  1119. pool->process_prepared_mapping = process_prepared_mapping;
  1120. pool->process_prepared_discard = process_prepared_discard;
  1121. break;
  1122. }
  1123. }
  1124. /*----------------------------------------------------------------*/
  1125. /*
  1126. * Mapping functions.
  1127. */
  1128. /*
  1129. * Called only while mapping a thin bio to hand it over to the workqueue.
  1130. */
  1131. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1132. {
  1133. unsigned long flags;
  1134. struct pool *pool = tc->pool;
  1135. spin_lock_irqsave(&pool->lock, flags);
  1136. bio_list_add(&pool->deferred_bios, bio);
  1137. spin_unlock_irqrestore(&pool->lock, flags);
  1138. wake_worker(pool);
  1139. }
  1140. static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1141. {
  1142. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1143. h->tc = tc;
  1144. h->shared_read_entry = NULL;
  1145. h->all_io_entry = NULL;
  1146. h->overwrite_mapping = NULL;
  1147. }
  1148. /*
  1149. * Non-blocking function called from the thin target's map function.
  1150. */
  1151. static int thin_bio_map(struct dm_target *ti, struct bio *bio)
  1152. {
  1153. int r;
  1154. struct thin_c *tc = ti->private;
  1155. dm_block_t block = get_bio_block(tc, bio);
  1156. struct dm_thin_device *td = tc->td;
  1157. struct dm_thin_lookup_result result;
  1158. struct dm_bio_prison_cell *cell1, *cell2;
  1159. struct dm_cell_key key;
  1160. thin_hook_bio(tc, bio);
  1161. if (get_pool_mode(tc->pool) == PM_FAIL) {
  1162. bio_io_error(bio);
  1163. return DM_MAPIO_SUBMITTED;
  1164. }
  1165. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1166. thin_defer_bio(tc, bio);
  1167. return DM_MAPIO_SUBMITTED;
  1168. }
  1169. r = dm_thin_find_block(td, block, 0, &result);
  1170. /*
  1171. * Note that we defer readahead too.
  1172. */
  1173. switch (r) {
  1174. case 0:
  1175. if (unlikely(result.shared)) {
  1176. /*
  1177. * We have a race condition here between the
  1178. * result.shared value returned by the lookup and
  1179. * snapshot creation, which may cause new
  1180. * sharing.
  1181. *
  1182. * To avoid this always quiesce the origin before
  1183. * taking the snap. You want to do this anyway to
  1184. * ensure a consistent application view
  1185. * (i.e. lockfs).
  1186. *
  1187. * More distant ancestors are irrelevant. The
  1188. * shared flag will be set in their case.
  1189. */
  1190. thin_defer_bio(tc, bio);
  1191. return DM_MAPIO_SUBMITTED;
  1192. }
  1193. build_virtual_key(tc->td, block, &key);
  1194. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1))
  1195. return DM_MAPIO_SUBMITTED;
  1196. build_data_key(tc->td, result.block, &key);
  1197. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2)) {
  1198. cell_defer_no_holder(tc, cell1);
  1199. return DM_MAPIO_SUBMITTED;
  1200. }
  1201. inc_all_io_entry(tc->pool, bio);
  1202. cell_defer_no_holder(tc, cell2);
  1203. cell_defer_no_holder(tc, cell1);
  1204. remap(tc, bio, result.block);
  1205. return DM_MAPIO_REMAPPED;
  1206. case -ENODATA:
  1207. if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
  1208. /*
  1209. * This block isn't provisioned, and we have no way
  1210. * of doing so. Just error it.
  1211. */
  1212. bio_io_error(bio);
  1213. return DM_MAPIO_SUBMITTED;
  1214. }
  1215. /* fall through */
  1216. case -EWOULDBLOCK:
  1217. /*
  1218. * In future, the failed dm_thin_find_block above could
  1219. * provide the hint to load the metadata into cache.
  1220. */
  1221. thin_defer_bio(tc, bio);
  1222. return DM_MAPIO_SUBMITTED;
  1223. default:
  1224. /*
  1225. * Must always call bio_io_error on failure.
  1226. * dm_thin_find_block can fail with -EINVAL if the
  1227. * pool is switched to fail-io mode.
  1228. */
  1229. bio_io_error(bio);
  1230. return DM_MAPIO_SUBMITTED;
  1231. }
  1232. }
  1233. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1234. {
  1235. int r;
  1236. unsigned long flags;
  1237. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1238. spin_lock_irqsave(&pt->pool->lock, flags);
  1239. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1240. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1241. if (!r) {
  1242. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1243. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1244. }
  1245. return r;
  1246. }
  1247. static void __requeue_bios(struct pool *pool)
  1248. {
  1249. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1250. bio_list_init(&pool->retry_on_resume_list);
  1251. }
  1252. /*----------------------------------------------------------------
  1253. * Binding of control targets to a pool object
  1254. *--------------------------------------------------------------*/
  1255. static bool data_dev_supports_discard(struct pool_c *pt)
  1256. {
  1257. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1258. return q && blk_queue_discard(q);
  1259. }
  1260. /*
  1261. * If discard_passdown was enabled verify that the data device
  1262. * supports discards. Disable discard_passdown if not.
  1263. */
  1264. static void disable_passdown_if_not_supported(struct pool_c *pt)
  1265. {
  1266. struct pool *pool = pt->pool;
  1267. struct block_device *data_bdev = pt->data_dev->bdev;
  1268. struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
  1269. sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
  1270. const char *reason = NULL;
  1271. char buf[BDEVNAME_SIZE];
  1272. if (!pt->adjusted_pf.discard_passdown)
  1273. return;
  1274. if (!data_dev_supports_discard(pt))
  1275. reason = "discard unsupported";
  1276. else if (data_limits->max_discard_sectors < pool->sectors_per_block)
  1277. reason = "max discard sectors smaller than a block";
  1278. else if (data_limits->discard_granularity > block_size)
  1279. reason = "discard granularity larger than a block";
  1280. else if (block_size & (data_limits->discard_granularity - 1))
  1281. reason = "discard granularity not a factor of block size";
  1282. if (reason) {
  1283. DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
  1284. pt->adjusted_pf.discard_passdown = false;
  1285. }
  1286. }
  1287. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1288. {
  1289. struct pool_c *pt = ti->private;
  1290. /*
  1291. * We want to make sure that degraded pools are never upgraded.
  1292. */
  1293. enum pool_mode old_mode = pool->pf.mode;
  1294. enum pool_mode new_mode = pt->adjusted_pf.mode;
  1295. if (old_mode > new_mode)
  1296. new_mode = old_mode;
  1297. pool->ti = ti;
  1298. pool->low_water_blocks = pt->low_water_blocks;
  1299. pool->pf = pt->adjusted_pf;
  1300. set_pool_mode(pool, new_mode);
  1301. return 0;
  1302. }
  1303. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1304. {
  1305. if (pool->ti == ti)
  1306. pool->ti = NULL;
  1307. }
  1308. /*----------------------------------------------------------------
  1309. * Pool creation
  1310. *--------------------------------------------------------------*/
  1311. /* Initialize pool features. */
  1312. static void pool_features_init(struct pool_features *pf)
  1313. {
  1314. pf->mode = PM_WRITE;
  1315. pf->zero_new_blocks = true;
  1316. pf->discard_enabled = true;
  1317. pf->discard_passdown = true;
  1318. }
  1319. static void __pool_destroy(struct pool *pool)
  1320. {
  1321. __pool_table_remove(pool);
  1322. if (dm_pool_metadata_close(pool->pmd) < 0)
  1323. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1324. dm_bio_prison_destroy(pool->prison);
  1325. dm_kcopyd_client_destroy(pool->copier);
  1326. if (pool->wq)
  1327. destroy_workqueue(pool->wq);
  1328. if (pool->next_mapping)
  1329. mempool_free(pool->next_mapping, pool->mapping_pool);
  1330. mempool_destroy(pool->mapping_pool);
  1331. dm_deferred_set_destroy(pool->shared_read_ds);
  1332. dm_deferred_set_destroy(pool->all_io_ds);
  1333. kfree(pool);
  1334. }
  1335. static struct kmem_cache *_new_mapping_cache;
  1336. static struct pool *pool_create(struct mapped_device *pool_md,
  1337. struct block_device *metadata_dev,
  1338. unsigned long block_size,
  1339. int read_only, char **error)
  1340. {
  1341. int r;
  1342. void *err_p;
  1343. struct pool *pool;
  1344. struct dm_pool_metadata *pmd;
  1345. bool format_device = read_only ? false : true;
  1346. pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
  1347. if (IS_ERR(pmd)) {
  1348. *error = "Error creating metadata object";
  1349. return (struct pool *)pmd;
  1350. }
  1351. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1352. if (!pool) {
  1353. *error = "Error allocating memory for pool";
  1354. err_p = ERR_PTR(-ENOMEM);
  1355. goto bad_pool;
  1356. }
  1357. pool->pmd = pmd;
  1358. pool->sectors_per_block = block_size;
  1359. if (block_size & (block_size - 1))
  1360. pool->sectors_per_block_shift = -1;
  1361. else
  1362. pool->sectors_per_block_shift = __ffs(block_size);
  1363. pool->low_water_blocks = 0;
  1364. pool_features_init(&pool->pf);
  1365. pool->prison = dm_bio_prison_create(PRISON_CELLS);
  1366. if (!pool->prison) {
  1367. *error = "Error creating pool's bio prison";
  1368. err_p = ERR_PTR(-ENOMEM);
  1369. goto bad_prison;
  1370. }
  1371. pool->copier = dm_kcopyd_client_create();
  1372. if (IS_ERR(pool->copier)) {
  1373. r = PTR_ERR(pool->copier);
  1374. *error = "Error creating pool's kcopyd client";
  1375. err_p = ERR_PTR(r);
  1376. goto bad_kcopyd_client;
  1377. }
  1378. /*
  1379. * Create singlethreaded workqueue that will service all devices
  1380. * that use this metadata.
  1381. */
  1382. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1383. if (!pool->wq) {
  1384. *error = "Error creating pool's workqueue";
  1385. err_p = ERR_PTR(-ENOMEM);
  1386. goto bad_wq;
  1387. }
  1388. INIT_WORK(&pool->worker, do_worker);
  1389. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1390. spin_lock_init(&pool->lock);
  1391. bio_list_init(&pool->deferred_bios);
  1392. bio_list_init(&pool->deferred_flush_bios);
  1393. INIT_LIST_HEAD(&pool->prepared_mappings);
  1394. INIT_LIST_HEAD(&pool->prepared_discards);
  1395. pool->low_water_triggered = 0;
  1396. pool->no_free_space = 0;
  1397. bio_list_init(&pool->retry_on_resume_list);
  1398. pool->shared_read_ds = dm_deferred_set_create();
  1399. if (!pool->shared_read_ds) {
  1400. *error = "Error creating pool's shared read deferred set";
  1401. err_p = ERR_PTR(-ENOMEM);
  1402. goto bad_shared_read_ds;
  1403. }
  1404. pool->all_io_ds = dm_deferred_set_create();
  1405. if (!pool->all_io_ds) {
  1406. *error = "Error creating pool's all io deferred set";
  1407. err_p = ERR_PTR(-ENOMEM);
  1408. goto bad_all_io_ds;
  1409. }
  1410. pool->next_mapping = NULL;
  1411. pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
  1412. _new_mapping_cache);
  1413. if (!pool->mapping_pool) {
  1414. *error = "Error creating pool's mapping mempool";
  1415. err_p = ERR_PTR(-ENOMEM);
  1416. goto bad_mapping_pool;
  1417. }
  1418. pool->ref_count = 1;
  1419. pool->last_commit_jiffies = jiffies;
  1420. pool->pool_md = pool_md;
  1421. pool->md_dev = metadata_dev;
  1422. __pool_table_insert(pool);
  1423. return pool;
  1424. bad_mapping_pool:
  1425. dm_deferred_set_destroy(pool->all_io_ds);
  1426. bad_all_io_ds:
  1427. dm_deferred_set_destroy(pool->shared_read_ds);
  1428. bad_shared_read_ds:
  1429. destroy_workqueue(pool->wq);
  1430. bad_wq:
  1431. dm_kcopyd_client_destroy(pool->copier);
  1432. bad_kcopyd_client:
  1433. dm_bio_prison_destroy(pool->prison);
  1434. bad_prison:
  1435. kfree(pool);
  1436. bad_pool:
  1437. if (dm_pool_metadata_close(pmd))
  1438. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1439. return err_p;
  1440. }
  1441. static void __pool_inc(struct pool *pool)
  1442. {
  1443. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1444. pool->ref_count++;
  1445. }
  1446. static void __pool_dec(struct pool *pool)
  1447. {
  1448. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1449. BUG_ON(!pool->ref_count);
  1450. if (!--pool->ref_count)
  1451. __pool_destroy(pool);
  1452. }
  1453. static struct pool *__pool_find(struct mapped_device *pool_md,
  1454. struct block_device *metadata_dev,
  1455. unsigned long block_size, int read_only,
  1456. char **error, int *created)
  1457. {
  1458. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1459. if (pool) {
  1460. if (pool->pool_md != pool_md) {
  1461. *error = "metadata device already in use by a pool";
  1462. return ERR_PTR(-EBUSY);
  1463. }
  1464. __pool_inc(pool);
  1465. } else {
  1466. pool = __pool_table_lookup(pool_md);
  1467. if (pool) {
  1468. if (pool->md_dev != metadata_dev) {
  1469. *error = "different pool cannot replace a pool";
  1470. return ERR_PTR(-EINVAL);
  1471. }
  1472. __pool_inc(pool);
  1473. } else {
  1474. pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
  1475. *created = 1;
  1476. }
  1477. }
  1478. return pool;
  1479. }
  1480. /*----------------------------------------------------------------
  1481. * Pool target methods
  1482. *--------------------------------------------------------------*/
  1483. static void pool_dtr(struct dm_target *ti)
  1484. {
  1485. struct pool_c *pt = ti->private;
  1486. mutex_lock(&dm_thin_pool_table.mutex);
  1487. unbind_control_target(pt->pool, ti);
  1488. __pool_dec(pt->pool);
  1489. dm_put_device(ti, pt->metadata_dev);
  1490. dm_put_device(ti, pt->data_dev);
  1491. kfree(pt);
  1492. mutex_unlock(&dm_thin_pool_table.mutex);
  1493. }
  1494. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1495. struct dm_target *ti)
  1496. {
  1497. int r;
  1498. unsigned argc;
  1499. const char *arg_name;
  1500. static struct dm_arg _args[] = {
  1501. {0, 3, "Invalid number of pool feature arguments"},
  1502. };
  1503. /*
  1504. * No feature arguments supplied.
  1505. */
  1506. if (!as->argc)
  1507. return 0;
  1508. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1509. if (r)
  1510. return -EINVAL;
  1511. while (argc && !r) {
  1512. arg_name = dm_shift_arg(as);
  1513. argc--;
  1514. if (!strcasecmp(arg_name, "skip_block_zeroing"))
  1515. pf->zero_new_blocks = false;
  1516. else if (!strcasecmp(arg_name, "ignore_discard"))
  1517. pf->discard_enabled = false;
  1518. else if (!strcasecmp(arg_name, "no_discard_passdown"))
  1519. pf->discard_passdown = false;
  1520. else if (!strcasecmp(arg_name, "read_only"))
  1521. pf->mode = PM_READ_ONLY;
  1522. else {
  1523. ti->error = "Unrecognised pool feature requested";
  1524. r = -EINVAL;
  1525. break;
  1526. }
  1527. }
  1528. return r;
  1529. }
  1530. /*
  1531. * thin-pool <metadata dev> <data dev>
  1532. * <data block size (sectors)>
  1533. * <low water mark (blocks)>
  1534. * [<#feature args> [<arg>]*]
  1535. *
  1536. * Optional feature arguments are:
  1537. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1538. * ignore_discard: disable discard
  1539. * no_discard_passdown: don't pass discards down to the data device
  1540. */
  1541. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1542. {
  1543. int r, pool_created = 0;
  1544. struct pool_c *pt;
  1545. struct pool *pool;
  1546. struct pool_features pf;
  1547. struct dm_arg_set as;
  1548. struct dm_dev *data_dev;
  1549. unsigned long block_size;
  1550. dm_block_t low_water_blocks;
  1551. struct dm_dev *metadata_dev;
  1552. sector_t metadata_dev_size;
  1553. char b[BDEVNAME_SIZE];
  1554. /*
  1555. * FIXME Remove validation from scope of lock.
  1556. */
  1557. mutex_lock(&dm_thin_pool_table.mutex);
  1558. if (argc < 4) {
  1559. ti->error = "Invalid argument count";
  1560. r = -EINVAL;
  1561. goto out_unlock;
  1562. }
  1563. as.argc = argc;
  1564. as.argv = argv;
  1565. r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
  1566. if (r) {
  1567. ti->error = "Error opening metadata block device";
  1568. goto out_unlock;
  1569. }
  1570. metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  1571. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
  1572. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1573. bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
  1574. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1575. if (r) {
  1576. ti->error = "Error getting data device";
  1577. goto out_metadata;
  1578. }
  1579. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1580. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1581. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1582. block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
  1583. ti->error = "Invalid block size";
  1584. r = -EINVAL;
  1585. goto out;
  1586. }
  1587. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1588. ti->error = "Invalid low water mark";
  1589. r = -EINVAL;
  1590. goto out;
  1591. }
  1592. /*
  1593. * Set default pool features.
  1594. */
  1595. pool_features_init(&pf);
  1596. dm_consume_args(&as, 4);
  1597. r = parse_pool_features(&as, &pf, ti);
  1598. if (r)
  1599. goto out;
  1600. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1601. if (!pt) {
  1602. r = -ENOMEM;
  1603. goto out;
  1604. }
  1605. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1606. block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
  1607. if (IS_ERR(pool)) {
  1608. r = PTR_ERR(pool);
  1609. goto out_free_pt;
  1610. }
  1611. /*
  1612. * 'pool_created' reflects whether this is the first table load.
  1613. * Top level discard support is not allowed to be changed after
  1614. * initial load. This would require a pool reload to trigger thin
  1615. * device changes.
  1616. */
  1617. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1618. ti->error = "Discard support cannot be disabled once enabled";
  1619. r = -EINVAL;
  1620. goto out_flags_changed;
  1621. }
  1622. pt->pool = pool;
  1623. pt->ti = ti;
  1624. pt->metadata_dev = metadata_dev;
  1625. pt->data_dev = data_dev;
  1626. pt->low_water_blocks = low_water_blocks;
  1627. pt->adjusted_pf = pt->requested_pf = pf;
  1628. ti->num_flush_bios = 1;
  1629. /*
  1630. * Only need to enable discards if the pool should pass
  1631. * them down to the data device. The thin device's discard
  1632. * processing will cause mappings to be removed from the btree.
  1633. */
  1634. if (pf.discard_enabled && pf.discard_passdown) {
  1635. ti->num_discard_bios = 1;
  1636. /*
  1637. * Setting 'discards_supported' circumvents the normal
  1638. * stacking of discard limits (this keeps the pool and
  1639. * thin devices' discard limits consistent).
  1640. */
  1641. ti->discards_supported = true;
  1642. ti->discard_zeroes_data_unsupported = true;
  1643. }
  1644. ti->private = pt;
  1645. pt->callbacks.congested_fn = pool_is_congested;
  1646. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1647. mutex_unlock(&dm_thin_pool_table.mutex);
  1648. return 0;
  1649. out_flags_changed:
  1650. __pool_dec(pool);
  1651. out_free_pt:
  1652. kfree(pt);
  1653. out:
  1654. dm_put_device(ti, data_dev);
  1655. out_metadata:
  1656. dm_put_device(ti, metadata_dev);
  1657. out_unlock:
  1658. mutex_unlock(&dm_thin_pool_table.mutex);
  1659. return r;
  1660. }
  1661. static int pool_map(struct dm_target *ti, struct bio *bio)
  1662. {
  1663. int r;
  1664. struct pool_c *pt = ti->private;
  1665. struct pool *pool = pt->pool;
  1666. unsigned long flags;
  1667. /*
  1668. * As this is a singleton target, ti->begin is always zero.
  1669. */
  1670. spin_lock_irqsave(&pool->lock, flags);
  1671. bio->bi_bdev = pt->data_dev->bdev;
  1672. r = DM_MAPIO_REMAPPED;
  1673. spin_unlock_irqrestore(&pool->lock, flags);
  1674. return r;
  1675. }
  1676. /*
  1677. * Retrieves the number of blocks of the data device from
  1678. * the superblock and compares it to the actual device size,
  1679. * thus resizing the data device in case it has grown.
  1680. *
  1681. * This both copes with opening preallocated data devices in the ctr
  1682. * being followed by a resume
  1683. * -and-
  1684. * calling the resume method individually after userspace has
  1685. * grown the data device in reaction to a table event.
  1686. */
  1687. static int pool_preresume(struct dm_target *ti)
  1688. {
  1689. int r;
  1690. struct pool_c *pt = ti->private;
  1691. struct pool *pool = pt->pool;
  1692. sector_t data_size = ti->len;
  1693. dm_block_t sb_data_size;
  1694. /*
  1695. * Take control of the pool object.
  1696. */
  1697. r = bind_control_target(pool, ti);
  1698. if (r)
  1699. return r;
  1700. (void) sector_div(data_size, pool->sectors_per_block);
  1701. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1702. if (r) {
  1703. DMERR("failed to retrieve data device size");
  1704. return r;
  1705. }
  1706. if (data_size < sb_data_size) {
  1707. DMERR("pool target too small, is %llu blocks (expected %llu)",
  1708. (unsigned long long)data_size, sb_data_size);
  1709. return -EINVAL;
  1710. } else if (data_size > sb_data_size) {
  1711. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1712. if (r) {
  1713. DMERR("failed to resize data device");
  1714. /* FIXME Stricter than necessary: Rollback transaction instead here */
  1715. set_pool_mode(pool, PM_READ_ONLY);
  1716. return r;
  1717. }
  1718. (void) commit_or_fallback(pool);
  1719. }
  1720. return 0;
  1721. }
  1722. static void pool_resume(struct dm_target *ti)
  1723. {
  1724. struct pool_c *pt = ti->private;
  1725. struct pool *pool = pt->pool;
  1726. unsigned long flags;
  1727. spin_lock_irqsave(&pool->lock, flags);
  1728. pool->low_water_triggered = 0;
  1729. pool->no_free_space = 0;
  1730. __requeue_bios(pool);
  1731. spin_unlock_irqrestore(&pool->lock, flags);
  1732. do_waker(&pool->waker.work);
  1733. }
  1734. static void pool_postsuspend(struct dm_target *ti)
  1735. {
  1736. struct pool_c *pt = ti->private;
  1737. struct pool *pool = pt->pool;
  1738. cancel_delayed_work(&pool->waker);
  1739. flush_workqueue(pool->wq);
  1740. (void) commit_or_fallback(pool);
  1741. }
  1742. static int check_arg_count(unsigned argc, unsigned args_required)
  1743. {
  1744. if (argc != args_required) {
  1745. DMWARN("Message received with %u arguments instead of %u.",
  1746. argc, args_required);
  1747. return -EINVAL;
  1748. }
  1749. return 0;
  1750. }
  1751. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1752. {
  1753. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1754. *dev_id <= MAX_DEV_ID)
  1755. return 0;
  1756. if (warning)
  1757. DMWARN("Message received with invalid device id: %s", arg);
  1758. return -EINVAL;
  1759. }
  1760. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1761. {
  1762. dm_thin_id dev_id;
  1763. int r;
  1764. r = check_arg_count(argc, 2);
  1765. if (r)
  1766. return r;
  1767. r = read_dev_id(argv[1], &dev_id, 1);
  1768. if (r)
  1769. return r;
  1770. r = dm_pool_create_thin(pool->pmd, dev_id);
  1771. if (r) {
  1772. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  1773. argv[1]);
  1774. return r;
  1775. }
  1776. return 0;
  1777. }
  1778. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1779. {
  1780. dm_thin_id dev_id;
  1781. dm_thin_id origin_dev_id;
  1782. int r;
  1783. r = check_arg_count(argc, 3);
  1784. if (r)
  1785. return r;
  1786. r = read_dev_id(argv[1], &dev_id, 1);
  1787. if (r)
  1788. return r;
  1789. r = read_dev_id(argv[2], &origin_dev_id, 1);
  1790. if (r)
  1791. return r;
  1792. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  1793. if (r) {
  1794. DMWARN("Creation of new snapshot %s of device %s failed.",
  1795. argv[1], argv[2]);
  1796. return r;
  1797. }
  1798. return 0;
  1799. }
  1800. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  1801. {
  1802. dm_thin_id dev_id;
  1803. int r;
  1804. r = check_arg_count(argc, 2);
  1805. if (r)
  1806. return r;
  1807. r = read_dev_id(argv[1], &dev_id, 1);
  1808. if (r)
  1809. return r;
  1810. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  1811. if (r)
  1812. DMWARN("Deletion of thin device %s failed.", argv[1]);
  1813. return r;
  1814. }
  1815. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  1816. {
  1817. dm_thin_id old_id, new_id;
  1818. int r;
  1819. r = check_arg_count(argc, 3);
  1820. if (r)
  1821. return r;
  1822. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  1823. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  1824. return -EINVAL;
  1825. }
  1826. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  1827. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  1828. return -EINVAL;
  1829. }
  1830. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  1831. if (r) {
  1832. DMWARN("Failed to change transaction id from %s to %s.",
  1833. argv[1], argv[2]);
  1834. return r;
  1835. }
  1836. return 0;
  1837. }
  1838. static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1839. {
  1840. int r;
  1841. r = check_arg_count(argc, 1);
  1842. if (r)
  1843. return r;
  1844. (void) commit_or_fallback(pool);
  1845. r = dm_pool_reserve_metadata_snap(pool->pmd);
  1846. if (r)
  1847. DMWARN("reserve_metadata_snap message failed.");
  1848. return r;
  1849. }
  1850. static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1851. {
  1852. int r;
  1853. r = check_arg_count(argc, 1);
  1854. if (r)
  1855. return r;
  1856. r = dm_pool_release_metadata_snap(pool->pmd);
  1857. if (r)
  1858. DMWARN("release_metadata_snap message failed.");
  1859. return r;
  1860. }
  1861. /*
  1862. * Messages supported:
  1863. * create_thin <dev_id>
  1864. * create_snap <dev_id> <origin_id>
  1865. * delete <dev_id>
  1866. * trim <dev_id> <new_size_in_sectors>
  1867. * set_transaction_id <current_trans_id> <new_trans_id>
  1868. * reserve_metadata_snap
  1869. * release_metadata_snap
  1870. */
  1871. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  1872. {
  1873. int r = -EINVAL;
  1874. struct pool_c *pt = ti->private;
  1875. struct pool *pool = pt->pool;
  1876. if (!strcasecmp(argv[0], "create_thin"))
  1877. r = process_create_thin_mesg(argc, argv, pool);
  1878. else if (!strcasecmp(argv[0], "create_snap"))
  1879. r = process_create_snap_mesg(argc, argv, pool);
  1880. else if (!strcasecmp(argv[0], "delete"))
  1881. r = process_delete_mesg(argc, argv, pool);
  1882. else if (!strcasecmp(argv[0], "set_transaction_id"))
  1883. r = process_set_transaction_id_mesg(argc, argv, pool);
  1884. else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
  1885. r = process_reserve_metadata_snap_mesg(argc, argv, pool);
  1886. else if (!strcasecmp(argv[0], "release_metadata_snap"))
  1887. r = process_release_metadata_snap_mesg(argc, argv, pool);
  1888. else
  1889. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  1890. if (!r)
  1891. (void) commit_or_fallback(pool);
  1892. return r;
  1893. }
  1894. static void emit_flags(struct pool_features *pf, char *result,
  1895. unsigned sz, unsigned maxlen)
  1896. {
  1897. unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
  1898. !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
  1899. DMEMIT("%u ", count);
  1900. if (!pf->zero_new_blocks)
  1901. DMEMIT("skip_block_zeroing ");
  1902. if (!pf->discard_enabled)
  1903. DMEMIT("ignore_discard ");
  1904. if (!pf->discard_passdown)
  1905. DMEMIT("no_discard_passdown ");
  1906. if (pf->mode == PM_READ_ONLY)
  1907. DMEMIT("read_only ");
  1908. }
  1909. /*
  1910. * Status line is:
  1911. * <transaction id> <used metadata sectors>/<total metadata sectors>
  1912. * <used data sectors>/<total data sectors> <held metadata root>
  1913. */
  1914. static void pool_status(struct dm_target *ti, status_type_t type,
  1915. unsigned status_flags, char *result, unsigned maxlen)
  1916. {
  1917. int r;
  1918. unsigned sz = 0;
  1919. uint64_t transaction_id;
  1920. dm_block_t nr_free_blocks_data;
  1921. dm_block_t nr_free_blocks_metadata;
  1922. dm_block_t nr_blocks_data;
  1923. dm_block_t nr_blocks_metadata;
  1924. dm_block_t held_root;
  1925. char buf[BDEVNAME_SIZE];
  1926. char buf2[BDEVNAME_SIZE];
  1927. struct pool_c *pt = ti->private;
  1928. struct pool *pool = pt->pool;
  1929. switch (type) {
  1930. case STATUSTYPE_INFO:
  1931. if (get_pool_mode(pool) == PM_FAIL) {
  1932. DMEMIT("Fail");
  1933. break;
  1934. }
  1935. /* Commit to ensure statistics aren't out-of-date */
  1936. if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
  1937. (void) commit_or_fallback(pool);
  1938. r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
  1939. if (r) {
  1940. DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
  1941. goto err;
  1942. }
  1943. r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
  1944. if (r) {
  1945. DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
  1946. goto err;
  1947. }
  1948. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  1949. if (r) {
  1950. DMERR("dm_pool_get_metadata_dev_size returned %d", r);
  1951. goto err;
  1952. }
  1953. r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
  1954. if (r) {
  1955. DMERR("dm_pool_get_free_block_count returned %d", r);
  1956. goto err;
  1957. }
  1958. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  1959. if (r) {
  1960. DMERR("dm_pool_get_data_dev_size returned %d", r);
  1961. goto err;
  1962. }
  1963. r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
  1964. if (r) {
  1965. DMERR("dm_pool_get_metadata_snap returned %d", r);
  1966. goto err;
  1967. }
  1968. DMEMIT("%llu %llu/%llu %llu/%llu ",
  1969. (unsigned long long)transaction_id,
  1970. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  1971. (unsigned long long)nr_blocks_metadata,
  1972. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  1973. (unsigned long long)nr_blocks_data);
  1974. if (held_root)
  1975. DMEMIT("%llu ", held_root);
  1976. else
  1977. DMEMIT("- ");
  1978. if (pool->pf.mode == PM_READ_ONLY)
  1979. DMEMIT("ro ");
  1980. else
  1981. DMEMIT("rw ");
  1982. if (!pool->pf.discard_enabled)
  1983. DMEMIT("ignore_discard");
  1984. else if (pool->pf.discard_passdown)
  1985. DMEMIT("discard_passdown");
  1986. else
  1987. DMEMIT("no_discard_passdown");
  1988. break;
  1989. case STATUSTYPE_TABLE:
  1990. DMEMIT("%s %s %lu %llu ",
  1991. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  1992. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  1993. (unsigned long)pool->sectors_per_block,
  1994. (unsigned long long)pt->low_water_blocks);
  1995. emit_flags(&pt->requested_pf, result, sz, maxlen);
  1996. break;
  1997. }
  1998. return;
  1999. err:
  2000. DMEMIT("Error");
  2001. }
  2002. static int pool_iterate_devices(struct dm_target *ti,
  2003. iterate_devices_callout_fn fn, void *data)
  2004. {
  2005. struct pool_c *pt = ti->private;
  2006. return fn(ti, pt->data_dev, 0, ti->len, data);
  2007. }
  2008. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  2009. struct bio_vec *biovec, int max_size)
  2010. {
  2011. struct pool_c *pt = ti->private;
  2012. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  2013. if (!q->merge_bvec_fn)
  2014. return max_size;
  2015. bvm->bi_bdev = pt->data_dev->bdev;
  2016. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  2017. }
  2018. static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
  2019. {
  2020. struct pool *pool = pt->pool;
  2021. struct queue_limits *data_limits;
  2022. limits->max_discard_sectors = pool->sectors_per_block;
  2023. /*
  2024. * discard_granularity is just a hint, and not enforced.
  2025. */
  2026. if (pt->adjusted_pf.discard_passdown) {
  2027. data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
  2028. limits->discard_granularity = data_limits->discard_granularity;
  2029. } else
  2030. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2031. }
  2032. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2033. {
  2034. struct pool_c *pt = ti->private;
  2035. struct pool *pool = pt->pool;
  2036. blk_limits_io_min(limits, 0);
  2037. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2038. /*
  2039. * pt->adjusted_pf is a staging area for the actual features to use.
  2040. * They get transferred to the live pool in bind_control_target()
  2041. * called from pool_preresume().
  2042. */
  2043. if (!pt->adjusted_pf.discard_enabled)
  2044. return;
  2045. disable_passdown_if_not_supported(pt);
  2046. set_discard_limits(pt, limits);
  2047. }
  2048. static struct target_type pool_target = {
  2049. .name = "thin-pool",
  2050. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2051. DM_TARGET_IMMUTABLE,
  2052. .version = {1, 6, 1},
  2053. .module = THIS_MODULE,
  2054. .ctr = pool_ctr,
  2055. .dtr = pool_dtr,
  2056. .map = pool_map,
  2057. .postsuspend = pool_postsuspend,
  2058. .preresume = pool_preresume,
  2059. .resume = pool_resume,
  2060. .message = pool_message,
  2061. .status = pool_status,
  2062. .merge = pool_merge,
  2063. .iterate_devices = pool_iterate_devices,
  2064. .io_hints = pool_io_hints,
  2065. };
  2066. /*----------------------------------------------------------------
  2067. * Thin target methods
  2068. *--------------------------------------------------------------*/
  2069. static void thin_dtr(struct dm_target *ti)
  2070. {
  2071. struct thin_c *tc = ti->private;
  2072. mutex_lock(&dm_thin_pool_table.mutex);
  2073. __pool_dec(tc->pool);
  2074. dm_pool_close_thin_device(tc->td);
  2075. dm_put_device(ti, tc->pool_dev);
  2076. if (tc->origin_dev)
  2077. dm_put_device(ti, tc->origin_dev);
  2078. kfree(tc);
  2079. mutex_unlock(&dm_thin_pool_table.mutex);
  2080. }
  2081. /*
  2082. * Thin target parameters:
  2083. *
  2084. * <pool_dev> <dev_id> [origin_dev]
  2085. *
  2086. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2087. * dev_id: the internal device identifier
  2088. * origin_dev: a device external to the pool that should act as the origin
  2089. *
  2090. * If the pool device has discards disabled, they get disabled for the thin
  2091. * device as well.
  2092. */
  2093. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2094. {
  2095. int r;
  2096. struct thin_c *tc;
  2097. struct dm_dev *pool_dev, *origin_dev;
  2098. struct mapped_device *pool_md;
  2099. mutex_lock(&dm_thin_pool_table.mutex);
  2100. if (argc != 2 && argc != 3) {
  2101. ti->error = "Invalid argument count";
  2102. r = -EINVAL;
  2103. goto out_unlock;
  2104. }
  2105. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2106. if (!tc) {
  2107. ti->error = "Out of memory";
  2108. r = -ENOMEM;
  2109. goto out_unlock;
  2110. }
  2111. if (argc == 3) {
  2112. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2113. if (r) {
  2114. ti->error = "Error opening origin device";
  2115. goto bad_origin_dev;
  2116. }
  2117. tc->origin_dev = origin_dev;
  2118. }
  2119. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2120. if (r) {
  2121. ti->error = "Error opening pool device";
  2122. goto bad_pool_dev;
  2123. }
  2124. tc->pool_dev = pool_dev;
  2125. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2126. ti->error = "Invalid device id";
  2127. r = -EINVAL;
  2128. goto bad_common;
  2129. }
  2130. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2131. if (!pool_md) {
  2132. ti->error = "Couldn't get pool mapped device";
  2133. r = -EINVAL;
  2134. goto bad_common;
  2135. }
  2136. tc->pool = __pool_table_lookup(pool_md);
  2137. if (!tc->pool) {
  2138. ti->error = "Couldn't find pool object";
  2139. r = -EINVAL;
  2140. goto bad_pool_lookup;
  2141. }
  2142. __pool_inc(tc->pool);
  2143. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2144. ti->error = "Couldn't open thin device, Pool is in fail mode";
  2145. goto bad_thin_open;
  2146. }
  2147. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2148. if (r) {
  2149. ti->error = "Couldn't open thin internal device";
  2150. goto bad_thin_open;
  2151. }
  2152. r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
  2153. if (r)
  2154. goto bad_thin_open;
  2155. ti->num_flush_bios = 1;
  2156. ti->flush_supported = true;
  2157. ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
  2158. /* In case the pool supports discards, pass them on. */
  2159. if (tc->pool->pf.discard_enabled) {
  2160. ti->discards_supported = true;
  2161. ti->num_discard_bios = 1;
  2162. ti->discard_zeroes_data_unsupported = true;
  2163. /* Discard bios must be split on a block boundary */
  2164. ti->split_discard_bios = true;
  2165. }
  2166. dm_put(pool_md);
  2167. mutex_unlock(&dm_thin_pool_table.mutex);
  2168. return 0;
  2169. bad_thin_open:
  2170. __pool_dec(tc->pool);
  2171. bad_pool_lookup:
  2172. dm_put(pool_md);
  2173. bad_common:
  2174. dm_put_device(ti, tc->pool_dev);
  2175. bad_pool_dev:
  2176. if (tc->origin_dev)
  2177. dm_put_device(ti, tc->origin_dev);
  2178. bad_origin_dev:
  2179. kfree(tc);
  2180. out_unlock:
  2181. mutex_unlock(&dm_thin_pool_table.mutex);
  2182. return r;
  2183. }
  2184. static int thin_map(struct dm_target *ti, struct bio *bio)
  2185. {
  2186. bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
  2187. return thin_bio_map(ti, bio);
  2188. }
  2189. static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
  2190. {
  2191. unsigned long flags;
  2192. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  2193. struct list_head work;
  2194. struct dm_thin_new_mapping *m, *tmp;
  2195. struct pool *pool = h->tc->pool;
  2196. if (h->shared_read_entry) {
  2197. INIT_LIST_HEAD(&work);
  2198. dm_deferred_entry_dec(h->shared_read_entry, &work);
  2199. spin_lock_irqsave(&pool->lock, flags);
  2200. list_for_each_entry_safe(m, tmp, &work, list) {
  2201. list_del(&m->list);
  2202. m->quiesced = 1;
  2203. __maybe_add_mapping(m);
  2204. }
  2205. spin_unlock_irqrestore(&pool->lock, flags);
  2206. }
  2207. if (h->all_io_entry) {
  2208. INIT_LIST_HEAD(&work);
  2209. dm_deferred_entry_dec(h->all_io_entry, &work);
  2210. if (!list_empty(&work)) {
  2211. spin_lock_irqsave(&pool->lock, flags);
  2212. list_for_each_entry_safe(m, tmp, &work, list)
  2213. list_add(&m->list, &pool->prepared_discards);
  2214. spin_unlock_irqrestore(&pool->lock, flags);
  2215. wake_worker(pool);
  2216. }
  2217. }
  2218. return 0;
  2219. }
  2220. static void thin_postsuspend(struct dm_target *ti)
  2221. {
  2222. if (dm_noflush_suspending(ti))
  2223. requeue_io((struct thin_c *)ti->private);
  2224. }
  2225. /*
  2226. * <nr mapped sectors> <highest mapped sector>
  2227. */
  2228. static void thin_status(struct dm_target *ti, status_type_t type,
  2229. unsigned status_flags, char *result, unsigned maxlen)
  2230. {
  2231. int r;
  2232. ssize_t sz = 0;
  2233. dm_block_t mapped, highest;
  2234. char buf[BDEVNAME_SIZE];
  2235. struct thin_c *tc = ti->private;
  2236. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2237. DMEMIT("Fail");
  2238. return;
  2239. }
  2240. if (!tc->td)
  2241. DMEMIT("-");
  2242. else {
  2243. switch (type) {
  2244. case STATUSTYPE_INFO:
  2245. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2246. if (r) {
  2247. DMERR("dm_thin_get_mapped_count returned %d", r);
  2248. goto err;
  2249. }
  2250. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2251. if (r < 0) {
  2252. DMERR("dm_thin_get_highest_mapped_block returned %d", r);
  2253. goto err;
  2254. }
  2255. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2256. if (r)
  2257. DMEMIT("%llu", ((highest + 1) *
  2258. tc->pool->sectors_per_block) - 1);
  2259. else
  2260. DMEMIT("-");
  2261. break;
  2262. case STATUSTYPE_TABLE:
  2263. DMEMIT("%s %lu",
  2264. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2265. (unsigned long) tc->dev_id);
  2266. if (tc->origin_dev)
  2267. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2268. break;
  2269. }
  2270. }
  2271. return;
  2272. err:
  2273. DMEMIT("Error");
  2274. }
  2275. static int thin_iterate_devices(struct dm_target *ti,
  2276. iterate_devices_callout_fn fn, void *data)
  2277. {
  2278. sector_t blocks;
  2279. struct thin_c *tc = ti->private;
  2280. struct pool *pool = tc->pool;
  2281. /*
  2282. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2283. * we follow a more convoluted path through to the pool's target.
  2284. */
  2285. if (!pool->ti)
  2286. return 0; /* nothing is bound */
  2287. blocks = pool->ti->len;
  2288. (void) sector_div(blocks, pool->sectors_per_block);
  2289. if (blocks)
  2290. return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
  2291. return 0;
  2292. }
  2293. static struct target_type thin_target = {
  2294. .name = "thin",
  2295. .version = {1, 7, 1},
  2296. .module = THIS_MODULE,
  2297. .ctr = thin_ctr,
  2298. .dtr = thin_dtr,
  2299. .map = thin_map,
  2300. .end_io = thin_endio,
  2301. .postsuspend = thin_postsuspend,
  2302. .status = thin_status,
  2303. .iterate_devices = thin_iterate_devices,
  2304. };
  2305. /*----------------------------------------------------------------*/
  2306. static int __init dm_thin_init(void)
  2307. {
  2308. int r;
  2309. pool_table_init();
  2310. r = dm_register_target(&thin_target);
  2311. if (r)
  2312. return r;
  2313. r = dm_register_target(&pool_target);
  2314. if (r)
  2315. goto bad_pool_target;
  2316. r = -ENOMEM;
  2317. _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
  2318. if (!_new_mapping_cache)
  2319. goto bad_new_mapping_cache;
  2320. return 0;
  2321. bad_new_mapping_cache:
  2322. dm_unregister_target(&pool_target);
  2323. bad_pool_target:
  2324. dm_unregister_target(&thin_target);
  2325. return r;
  2326. }
  2327. static void dm_thin_exit(void)
  2328. {
  2329. dm_unregister_target(&thin_target);
  2330. dm_unregister_target(&pool_target);
  2331. kmem_cache_destroy(_new_mapping_cache);
  2332. }
  2333. module_init(dm_thin_init);
  2334. module_exit(dm_thin_exit);
  2335. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2336. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2337. MODULE_LICENSE("GPL");