kvm_main.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. struct kvm_arch_ops *kvm_arch_ops;
  40. struct kvm_stat kvm_stat;
  41. EXPORT_SYMBOL_GPL(kvm_stat);
  42. static struct kvm_stats_debugfs_item {
  43. const char *name;
  44. u32 *data;
  45. struct dentry *dentry;
  46. } debugfs_entries[] = {
  47. { "pf_fixed", &kvm_stat.pf_fixed },
  48. { "pf_guest", &kvm_stat.pf_guest },
  49. { "tlb_flush", &kvm_stat.tlb_flush },
  50. { "invlpg", &kvm_stat.invlpg },
  51. { "exits", &kvm_stat.exits },
  52. { "io_exits", &kvm_stat.io_exits },
  53. { "mmio_exits", &kvm_stat.mmio_exits },
  54. { "signal_exits", &kvm_stat.signal_exits },
  55. { "irq_exits", &kvm_stat.irq_exits },
  56. { 0, 0 }
  57. };
  58. static struct dentry *debugfs_dir;
  59. #define MAX_IO_MSRS 256
  60. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  61. #define LMSW_GUEST_MASK 0x0eULL
  62. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  63. #define CR8_RESEVED_BITS (~0x0fULL)
  64. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  65. #ifdef CONFIG_X86_64
  66. // LDT or TSS descriptor in the GDT. 16 bytes.
  67. struct segment_descriptor_64 {
  68. struct segment_descriptor s;
  69. u32 base_higher;
  70. u32 pad_zero;
  71. };
  72. #endif
  73. unsigned long segment_base(u16 selector)
  74. {
  75. struct descriptor_table gdt;
  76. struct segment_descriptor *d;
  77. unsigned long table_base;
  78. typedef unsigned long ul;
  79. unsigned long v;
  80. if (selector == 0)
  81. return 0;
  82. asm ("sgdt %0" : "=m"(gdt));
  83. table_base = gdt.base;
  84. if (selector & 4) { /* from ldt */
  85. u16 ldt_selector;
  86. asm ("sldt %0" : "=g"(ldt_selector));
  87. table_base = segment_base(ldt_selector);
  88. }
  89. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  90. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  91. #ifdef CONFIG_X86_64
  92. if (d->system == 0
  93. && (d->type == 2 || d->type == 9 || d->type == 11))
  94. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  95. #endif
  96. return v;
  97. }
  98. EXPORT_SYMBOL_GPL(segment_base);
  99. static inline int valid_vcpu(int n)
  100. {
  101. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  102. }
  103. int kvm_read_guest(struct kvm_vcpu *vcpu,
  104. gva_t addr,
  105. unsigned long size,
  106. void *dest)
  107. {
  108. unsigned char *host_buf = dest;
  109. unsigned long req_size = size;
  110. while (size) {
  111. hpa_t paddr;
  112. unsigned now;
  113. unsigned offset;
  114. hva_t guest_buf;
  115. paddr = gva_to_hpa(vcpu, addr);
  116. if (is_error_hpa(paddr))
  117. break;
  118. guest_buf = (hva_t)kmap_atomic(
  119. pfn_to_page(paddr >> PAGE_SHIFT),
  120. KM_USER0);
  121. offset = addr & ~PAGE_MASK;
  122. guest_buf |= offset;
  123. now = min(size, PAGE_SIZE - offset);
  124. memcpy(host_buf, (void*)guest_buf, now);
  125. host_buf += now;
  126. addr += now;
  127. size -= now;
  128. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  129. }
  130. return req_size - size;
  131. }
  132. EXPORT_SYMBOL_GPL(kvm_read_guest);
  133. int kvm_write_guest(struct kvm_vcpu *vcpu,
  134. gva_t addr,
  135. unsigned long size,
  136. void *data)
  137. {
  138. unsigned char *host_buf = data;
  139. unsigned long req_size = size;
  140. while (size) {
  141. hpa_t paddr;
  142. unsigned now;
  143. unsigned offset;
  144. hva_t guest_buf;
  145. paddr = gva_to_hpa(vcpu, addr);
  146. if (is_error_hpa(paddr))
  147. break;
  148. guest_buf = (hva_t)kmap_atomic(
  149. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  150. offset = addr & ~PAGE_MASK;
  151. guest_buf |= offset;
  152. now = min(size, PAGE_SIZE - offset);
  153. memcpy((void*)guest_buf, host_buf, now);
  154. host_buf += now;
  155. addr += now;
  156. size -= now;
  157. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  158. }
  159. return req_size - size;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_write_guest);
  162. static int vcpu_slot(struct kvm_vcpu *vcpu)
  163. {
  164. return vcpu - vcpu->kvm->vcpus;
  165. }
  166. /*
  167. * Switches to specified vcpu, until a matching vcpu_put()
  168. */
  169. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  170. {
  171. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  172. mutex_lock(&vcpu->mutex);
  173. if (unlikely(!vcpu->vmcs)) {
  174. mutex_unlock(&vcpu->mutex);
  175. return 0;
  176. }
  177. return kvm_arch_ops->vcpu_load(vcpu);
  178. }
  179. static void vcpu_put(struct kvm_vcpu *vcpu)
  180. {
  181. kvm_arch_ops->vcpu_put(vcpu);
  182. mutex_unlock(&vcpu->mutex);
  183. }
  184. static int kvm_dev_open(struct inode *inode, struct file *filp)
  185. {
  186. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  187. int i;
  188. if (!kvm)
  189. return -ENOMEM;
  190. spin_lock_init(&kvm->lock);
  191. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  192. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  193. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  194. mutex_init(&vcpu->mutex);
  195. vcpu->mmu.root_hpa = INVALID_PAGE;
  196. INIT_LIST_HEAD(&vcpu->free_pages);
  197. }
  198. filp->private_data = kvm;
  199. return 0;
  200. }
  201. /*
  202. * Free any memory in @free but not in @dont.
  203. */
  204. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  205. struct kvm_memory_slot *dont)
  206. {
  207. int i;
  208. if (!dont || free->phys_mem != dont->phys_mem)
  209. if (free->phys_mem) {
  210. for (i = 0; i < free->npages; ++i)
  211. if (free->phys_mem[i])
  212. __free_page(free->phys_mem[i]);
  213. vfree(free->phys_mem);
  214. }
  215. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  216. vfree(free->dirty_bitmap);
  217. free->phys_mem = 0;
  218. free->npages = 0;
  219. free->dirty_bitmap = 0;
  220. }
  221. static void kvm_free_physmem(struct kvm *kvm)
  222. {
  223. int i;
  224. for (i = 0; i < kvm->nmemslots; ++i)
  225. kvm_free_physmem_slot(&kvm->memslots[i], 0);
  226. }
  227. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  228. {
  229. kvm_arch_ops->vcpu_free(vcpu);
  230. kvm_mmu_destroy(vcpu);
  231. }
  232. static void kvm_free_vcpus(struct kvm *kvm)
  233. {
  234. unsigned int i;
  235. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  236. kvm_free_vcpu(&kvm->vcpus[i]);
  237. }
  238. static int kvm_dev_release(struct inode *inode, struct file *filp)
  239. {
  240. struct kvm *kvm = filp->private_data;
  241. kvm_free_vcpus(kvm);
  242. kvm_free_physmem(kvm);
  243. kfree(kvm);
  244. return 0;
  245. }
  246. static void inject_gp(struct kvm_vcpu *vcpu)
  247. {
  248. kvm_arch_ops->inject_gp(vcpu, 0);
  249. }
  250. static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
  251. unsigned long cr3)
  252. {
  253. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  254. unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
  255. int i;
  256. u64 pdpte;
  257. u64 *pdpt;
  258. struct kvm_memory_slot *memslot;
  259. spin_lock(&vcpu->kvm->lock);
  260. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  261. /* FIXME: !memslot - emulate? 0xff? */
  262. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  263. for (i = 0; i < 4; ++i) {
  264. pdpte = pdpt[offset + i];
  265. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
  266. break;
  267. }
  268. kunmap_atomic(pdpt, KM_USER0);
  269. spin_unlock(&vcpu->kvm->lock);
  270. return i != 4;
  271. }
  272. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  273. {
  274. if (cr0 & CR0_RESEVED_BITS) {
  275. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  276. cr0, vcpu->cr0);
  277. inject_gp(vcpu);
  278. return;
  279. }
  280. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  281. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  282. inject_gp(vcpu);
  283. return;
  284. }
  285. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  286. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  287. "and a clear PE flag\n");
  288. inject_gp(vcpu);
  289. return;
  290. }
  291. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  292. #ifdef CONFIG_X86_64
  293. if ((vcpu->shadow_efer & EFER_LME)) {
  294. int cs_db, cs_l;
  295. if (!is_pae(vcpu)) {
  296. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  297. "in long mode while PAE is disabled\n");
  298. inject_gp(vcpu);
  299. return;
  300. }
  301. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  302. if (cs_l) {
  303. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  304. "in long mode while CS.L == 1\n");
  305. inject_gp(vcpu);
  306. return;
  307. }
  308. } else
  309. #endif
  310. if (is_pae(vcpu) &&
  311. pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  312. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  313. "reserved bits\n");
  314. inject_gp(vcpu);
  315. return;
  316. }
  317. }
  318. kvm_arch_ops->set_cr0(vcpu, cr0);
  319. vcpu->cr0 = cr0;
  320. spin_lock(&vcpu->kvm->lock);
  321. kvm_mmu_reset_context(vcpu);
  322. spin_unlock(&vcpu->kvm->lock);
  323. return;
  324. }
  325. EXPORT_SYMBOL_GPL(set_cr0);
  326. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  327. {
  328. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  329. }
  330. EXPORT_SYMBOL_GPL(lmsw);
  331. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  332. {
  333. if (cr4 & CR4_RESEVED_BITS) {
  334. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  335. inject_gp(vcpu);
  336. return;
  337. }
  338. if (is_long_mode(vcpu)) {
  339. if (!(cr4 & CR4_PAE_MASK)) {
  340. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  341. "in long mode\n");
  342. inject_gp(vcpu);
  343. return;
  344. }
  345. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  346. && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  347. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  348. inject_gp(vcpu);
  349. }
  350. if (cr4 & CR4_VMXE_MASK) {
  351. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  352. inject_gp(vcpu);
  353. return;
  354. }
  355. kvm_arch_ops->set_cr4(vcpu, cr4);
  356. spin_lock(&vcpu->kvm->lock);
  357. kvm_mmu_reset_context(vcpu);
  358. spin_unlock(&vcpu->kvm->lock);
  359. }
  360. EXPORT_SYMBOL_GPL(set_cr4);
  361. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  362. {
  363. if (is_long_mode(vcpu)) {
  364. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  365. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  366. inject_gp(vcpu);
  367. return;
  368. }
  369. } else {
  370. if (cr3 & CR3_RESEVED_BITS) {
  371. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  372. inject_gp(vcpu);
  373. return;
  374. }
  375. if (is_paging(vcpu) && is_pae(vcpu) &&
  376. pdptrs_have_reserved_bits_set(vcpu, cr3)) {
  377. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  378. "reserved bits\n");
  379. inject_gp(vcpu);
  380. return;
  381. }
  382. }
  383. vcpu->cr3 = cr3;
  384. spin_lock(&vcpu->kvm->lock);
  385. vcpu->mmu.new_cr3(vcpu);
  386. spin_unlock(&vcpu->kvm->lock);
  387. }
  388. EXPORT_SYMBOL_GPL(set_cr3);
  389. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  390. {
  391. if ( cr8 & CR8_RESEVED_BITS) {
  392. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  393. inject_gp(vcpu);
  394. return;
  395. }
  396. vcpu->cr8 = cr8;
  397. }
  398. EXPORT_SYMBOL_GPL(set_cr8);
  399. void fx_init(struct kvm_vcpu *vcpu)
  400. {
  401. struct __attribute__ ((__packed__)) fx_image_s {
  402. u16 control; //fcw
  403. u16 status; //fsw
  404. u16 tag; // ftw
  405. u16 opcode; //fop
  406. u64 ip; // fpu ip
  407. u64 operand;// fpu dp
  408. u32 mxcsr;
  409. u32 mxcsr_mask;
  410. } *fx_image;
  411. fx_save(vcpu->host_fx_image);
  412. fpu_init();
  413. fx_save(vcpu->guest_fx_image);
  414. fx_restore(vcpu->host_fx_image);
  415. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  416. fx_image->mxcsr = 0x1f80;
  417. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  418. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  419. }
  420. EXPORT_SYMBOL_GPL(fx_init);
  421. /*
  422. * Creates some virtual cpus. Good luck creating more than one.
  423. */
  424. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  425. {
  426. int r;
  427. struct kvm_vcpu *vcpu;
  428. r = -EINVAL;
  429. if (!valid_vcpu(n))
  430. goto out;
  431. vcpu = &kvm->vcpus[n];
  432. mutex_lock(&vcpu->mutex);
  433. if (vcpu->vmcs) {
  434. mutex_unlock(&vcpu->mutex);
  435. return -EEXIST;
  436. }
  437. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  438. FX_IMAGE_ALIGN);
  439. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  440. vcpu->cpu = -1; /* First load will set up TR */
  441. vcpu->kvm = kvm;
  442. r = kvm_arch_ops->vcpu_create(vcpu);
  443. if (r < 0)
  444. goto out_free_vcpus;
  445. kvm_arch_ops->vcpu_load(vcpu);
  446. r = kvm_arch_ops->vcpu_setup(vcpu);
  447. if (r >= 0)
  448. r = kvm_mmu_init(vcpu);
  449. vcpu_put(vcpu);
  450. if (r < 0)
  451. goto out_free_vcpus;
  452. return 0;
  453. out_free_vcpus:
  454. kvm_free_vcpu(vcpu);
  455. mutex_unlock(&vcpu->mutex);
  456. out:
  457. return r;
  458. }
  459. /*
  460. * Allocate some memory and give it an address in the guest physical address
  461. * space.
  462. *
  463. * Discontiguous memory is allowed, mostly for framebuffers.
  464. */
  465. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  466. struct kvm_memory_region *mem)
  467. {
  468. int r;
  469. gfn_t base_gfn;
  470. unsigned long npages;
  471. unsigned long i;
  472. struct kvm_memory_slot *memslot;
  473. struct kvm_memory_slot old, new;
  474. int memory_config_version;
  475. r = -EINVAL;
  476. /* General sanity checks */
  477. if (mem->memory_size & (PAGE_SIZE - 1))
  478. goto out;
  479. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  480. goto out;
  481. if (mem->slot >= KVM_MEMORY_SLOTS)
  482. goto out;
  483. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  484. goto out;
  485. memslot = &kvm->memslots[mem->slot];
  486. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  487. npages = mem->memory_size >> PAGE_SHIFT;
  488. if (!npages)
  489. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  490. raced:
  491. spin_lock(&kvm->lock);
  492. memory_config_version = kvm->memory_config_version;
  493. new = old = *memslot;
  494. new.base_gfn = base_gfn;
  495. new.npages = npages;
  496. new.flags = mem->flags;
  497. /* Disallow changing a memory slot's size. */
  498. r = -EINVAL;
  499. if (npages && old.npages && npages != old.npages)
  500. goto out_unlock;
  501. /* Check for overlaps */
  502. r = -EEXIST;
  503. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  504. struct kvm_memory_slot *s = &kvm->memslots[i];
  505. if (s == memslot)
  506. continue;
  507. if (!((base_gfn + npages <= s->base_gfn) ||
  508. (base_gfn >= s->base_gfn + s->npages)))
  509. goto out_unlock;
  510. }
  511. /*
  512. * Do memory allocations outside lock. memory_config_version will
  513. * detect any races.
  514. */
  515. spin_unlock(&kvm->lock);
  516. /* Deallocate if slot is being removed */
  517. if (!npages)
  518. new.phys_mem = 0;
  519. /* Free page dirty bitmap if unneeded */
  520. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  521. new.dirty_bitmap = 0;
  522. r = -ENOMEM;
  523. /* Allocate if a slot is being created */
  524. if (npages && !new.phys_mem) {
  525. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  526. if (!new.phys_mem)
  527. goto out_free;
  528. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  529. for (i = 0; i < npages; ++i) {
  530. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  531. | __GFP_ZERO);
  532. if (!new.phys_mem[i])
  533. goto out_free;
  534. }
  535. }
  536. /* Allocate page dirty bitmap if needed */
  537. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  538. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  539. new.dirty_bitmap = vmalloc(dirty_bytes);
  540. if (!new.dirty_bitmap)
  541. goto out_free;
  542. memset(new.dirty_bitmap, 0, dirty_bytes);
  543. }
  544. spin_lock(&kvm->lock);
  545. if (memory_config_version != kvm->memory_config_version) {
  546. spin_unlock(&kvm->lock);
  547. kvm_free_physmem_slot(&new, &old);
  548. goto raced;
  549. }
  550. r = -EAGAIN;
  551. if (kvm->busy)
  552. goto out_unlock;
  553. if (mem->slot >= kvm->nmemslots)
  554. kvm->nmemslots = mem->slot + 1;
  555. *memslot = new;
  556. ++kvm->memory_config_version;
  557. spin_unlock(&kvm->lock);
  558. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  559. struct kvm_vcpu *vcpu;
  560. vcpu = vcpu_load(kvm, i);
  561. if (!vcpu)
  562. continue;
  563. kvm_mmu_reset_context(vcpu);
  564. vcpu_put(vcpu);
  565. }
  566. kvm_free_physmem_slot(&old, &new);
  567. return 0;
  568. out_unlock:
  569. spin_unlock(&kvm->lock);
  570. out_free:
  571. kvm_free_physmem_slot(&new, &old);
  572. out:
  573. return r;
  574. }
  575. /*
  576. * Get (and clear) the dirty memory log for a memory slot.
  577. */
  578. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  579. struct kvm_dirty_log *log)
  580. {
  581. struct kvm_memory_slot *memslot;
  582. int r, i;
  583. int n;
  584. unsigned long any = 0;
  585. spin_lock(&kvm->lock);
  586. /*
  587. * Prevent changes to guest memory configuration even while the lock
  588. * is not taken.
  589. */
  590. ++kvm->busy;
  591. spin_unlock(&kvm->lock);
  592. r = -EINVAL;
  593. if (log->slot >= KVM_MEMORY_SLOTS)
  594. goto out;
  595. memslot = &kvm->memslots[log->slot];
  596. r = -ENOENT;
  597. if (!memslot->dirty_bitmap)
  598. goto out;
  599. n = ALIGN(memslot->npages, 8) / 8;
  600. for (i = 0; !any && i < n; ++i)
  601. any = memslot->dirty_bitmap[i];
  602. r = -EFAULT;
  603. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  604. goto out;
  605. if (any) {
  606. spin_lock(&kvm->lock);
  607. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  608. spin_unlock(&kvm->lock);
  609. memset(memslot->dirty_bitmap, 0, n);
  610. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  611. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  612. if (!vcpu)
  613. continue;
  614. kvm_arch_ops->tlb_flush(vcpu);
  615. vcpu_put(vcpu);
  616. }
  617. }
  618. r = 0;
  619. out:
  620. spin_lock(&kvm->lock);
  621. --kvm->busy;
  622. spin_unlock(&kvm->lock);
  623. return r;
  624. }
  625. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  626. {
  627. int i;
  628. for (i = 0; i < kvm->nmemslots; ++i) {
  629. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  630. if (gfn >= memslot->base_gfn
  631. && gfn < memslot->base_gfn + memslot->npages)
  632. return memslot;
  633. }
  634. return 0;
  635. }
  636. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  637. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  638. {
  639. int i;
  640. struct kvm_memory_slot *memslot = 0;
  641. unsigned long rel_gfn;
  642. for (i = 0; i < kvm->nmemslots; ++i) {
  643. memslot = &kvm->memslots[i];
  644. if (gfn >= memslot->base_gfn
  645. && gfn < memslot->base_gfn + memslot->npages) {
  646. if (!memslot || !memslot->dirty_bitmap)
  647. return;
  648. rel_gfn = gfn - memslot->base_gfn;
  649. /* avoid RMW */
  650. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  651. set_bit(rel_gfn, memslot->dirty_bitmap);
  652. return;
  653. }
  654. }
  655. }
  656. static int emulator_read_std(unsigned long addr,
  657. unsigned long *val,
  658. unsigned int bytes,
  659. struct x86_emulate_ctxt *ctxt)
  660. {
  661. struct kvm_vcpu *vcpu = ctxt->vcpu;
  662. void *data = val;
  663. while (bytes) {
  664. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  665. unsigned offset = addr & (PAGE_SIZE-1);
  666. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  667. unsigned long pfn;
  668. struct kvm_memory_slot *memslot;
  669. void *page;
  670. if (gpa == UNMAPPED_GVA)
  671. return X86EMUL_PROPAGATE_FAULT;
  672. pfn = gpa >> PAGE_SHIFT;
  673. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  674. if (!memslot)
  675. return X86EMUL_UNHANDLEABLE;
  676. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  677. memcpy(data, page + offset, tocopy);
  678. kunmap_atomic(page, KM_USER0);
  679. bytes -= tocopy;
  680. data += tocopy;
  681. addr += tocopy;
  682. }
  683. return X86EMUL_CONTINUE;
  684. }
  685. static int emulator_write_std(unsigned long addr,
  686. unsigned long val,
  687. unsigned int bytes,
  688. struct x86_emulate_ctxt *ctxt)
  689. {
  690. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  691. addr, bytes);
  692. return X86EMUL_UNHANDLEABLE;
  693. }
  694. static int emulator_read_emulated(unsigned long addr,
  695. unsigned long *val,
  696. unsigned int bytes,
  697. struct x86_emulate_ctxt *ctxt)
  698. {
  699. struct kvm_vcpu *vcpu = ctxt->vcpu;
  700. if (vcpu->mmio_read_completed) {
  701. memcpy(val, vcpu->mmio_data, bytes);
  702. vcpu->mmio_read_completed = 0;
  703. return X86EMUL_CONTINUE;
  704. } else if (emulator_read_std(addr, val, bytes, ctxt)
  705. == X86EMUL_CONTINUE)
  706. return X86EMUL_CONTINUE;
  707. else {
  708. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  709. if (gpa == UNMAPPED_GVA)
  710. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  711. vcpu->mmio_needed = 1;
  712. vcpu->mmio_phys_addr = gpa;
  713. vcpu->mmio_size = bytes;
  714. vcpu->mmio_is_write = 0;
  715. return X86EMUL_UNHANDLEABLE;
  716. }
  717. }
  718. static int emulator_write_emulated(unsigned long addr,
  719. unsigned long val,
  720. unsigned int bytes,
  721. struct x86_emulate_ctxt *ctxt)
  722. {
  723. struct kvm_vcpu *vcpu = ctxt->vcpu;
  724. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  725. if (gpa == UNMAPPED_GVA)
  726. return X86EMUL_PROPAGATE_FAULT;
  727. vcpu->mmio_needed = 1;
  728. vcpu->mmio_phys_addr = gpa;
  729. vcpu->mmio_size = bytes;
  730. vcpu->mmio_is_write = 1;
  731. memcpy(vcpu->mmio_data, &val, bytes);
  732. return X86EMUL_CONTINUE;
  733. }
  734. static int emulator_cmpxchg_emulated(unsigned long addr,
  735. unsigned long old,
  736. unsigned long new,
  737. unsigned int bytes,
  738. struct x86_emulate_ctxt *ctxt)
  739. {
  740. static int reported;
  741. if (!reported) {
  742. reported = 1;
  743. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  744. }
  745. return emulator_write_emulated(addr, new, bytes, ctxt);
  746. }
  747. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  748. {
  749. return kvm_arch_ops->get_segment_base(vcpu, seg);
  750. }
  751. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  752. {
  753. spin_lock(&vcpu->kvm->lock);
  754. vcpu->mmu.inval_page(vcpu, address);
  755. spin_unlock(&vcpu->kvm->lock);
  756. kvm_arch_ops->invlpg(vcpu, address);
  757. return X86EMUL_CONTINUE;
  758. }
  759. int emulate_clts(struct kvm_vcpu *vcpu)
  760. {
  761. unsigned long cr0 = vcpu->cr0;
  762. cr0 &= ~CR0_TS_MASK;
  763. kvm_arch_ops->set_cr0(vcpu, cr0);
  764. return X86EMUL_CONTINUE;
  765. }
  766. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  767. {
  768. struct kvm_vcpu *vcpu = ctxt->vcpu;
  769. switch (dr) {
  770. case 0 ... 3:
  771. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  772. return X86EMUL_CONTINUE;
  773. default:
  774. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  775. __FUNCTION__, dr);
  776. return X86EMUL_UNHANDLEABLE;
  777. }
  778. }
  779. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  780. {
  781. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  782. int exception;
  783. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  784. if (exception) {
  785. /* FIXME: better handling */
  786. return X86EMUL_UNHANDLEABLE;
  787. }
  788. return X86EMUL_CONTINUE;
  789. }
  790. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  791. {
  792. static int reported;
  793. u8 opcodes[4];
  794. unsigned long rip = ctxt->vcpu->rip;
  795. unsigned long rip_linear;
  796. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  797. if (reported)
  798. return;
  799. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  800. printk(KERN_ERR "emulation failed but !mmio_needed?"
  801. " rip %lx %02x %02x %02x %02x\n",
  802. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  803. reported = 1;
  804. }
  805. struct x86_emulate_ops emulate_ops = {
  806. .read_std = emulator_read_std,
  807. .write_std = emulator_write_std,
  808. .read_emulated = emulator_read_emulated,
  809. .write_emulated = emulator_write_emulated,
  810. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  811. };
  812. int emulate_instruction(struct kvm_vcpu *vcpu,
  813. struct kvm_run *run,
  814. unsigned long cr2,
  815. u16 error_code)
  816. {
  817. struct x86_emulate_ctxt emulate_ctxt;
  818. int r;
  819. int cs_db, cs_l;
  820. kvm_arch_ops->cache_regs(vcpu);
  821. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  822. emulate_ctxt.vcpu = vcpu;
  823. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  824. emulate_ctxt.cr2 = cr2;
  825. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  826. ? X86EMUL_MODE_REAL : cs_l
  827. ? X86EMUL_MODE_PROT64 : cs_db
  828. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  829. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  830. emulate_ctxt.cs_base = 0;
  831. emulate_ctxt.ds_base = 0;
  832. emulate_ctxt.es_base = 0;
  833. emulate_ctxt.ss_base = 0;
  834. } else {
  835. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  836. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  837. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  838. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  839. }
  840. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  841. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  842. vcpu->mmio_is_write = 0;
  843. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  844. if ((r || vcpu->mmio_is_write) && run) {
  845. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  846. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  847. run->mmio.len = vcpu->mmio_size;
  848. run->mmio.is_write = vcpu->mmio_is_write;
  849. }
  850. if (r) {
  851. if (!vcpu->mmio_needed) {
  852. report_emulation_failure(&emulate_ctxt);
  853. return EMULATE_FAIL;
  854. }
  855. return EMULATE_DO_MMIO;
  856. }
  857. kvm_arch_ops->decache_regs(vcpu);
  858. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  859. if (vcpu->mmio_is_write)
  860. return EMULATE_DO_MMIO;
  861. return EMULATE_DONE;
  862. }
  863. EXPORT_SYMBOL_GPL(emulate_instruction);
  864. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  865. {
  866. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  867. }
  868. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  869. {
  870. struct descriptor_table dt = { limit, base };
  871. kvm_arch_ops->set_gdt(vcpu, &dt);
  872. }
  873. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  874. {
  875. struct descriptor_table dt = { limit, base };
  876. kvm_arch_ops->set_idt(vcpu, &dt);
  877. }
  878. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  879. unsigned long *rflags)
  880. {
  881. lmsw(vcpu, msw);
  882. *rflags = kvm_arch_ops->get_rflags(vcpu);
  883. }
  884. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  885. {
  886. switch (cr) {
  887. case 0:
  888. return vcpu->cr0;
  889. case 2:
  890. return vcpu->cr2;
  891. case 3:
  892. return vcpu->cr3;
  893. case 4:
  894. return vcpu->cr4;
  895. default:
  896. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  897. return 0;
  898. }
  899. }
  900. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  901. unsigned long *rflags)
  902. {
  903. switch (cr) {
  904. case 0:
  905. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  906. *rflags = kvm_arch_ops->get_rflags(vcpu);
  907. break;
  908. case 2:
  909. vcpu->cr2 = val;
  910. break;
  911. case 3:
  912. set_cr3(vcpu, val);
  913. break;
  914. case 4:
  915. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  916. break;
  917. default:
  918. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  919. }
  920. }
  921. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  922. {
  923. u64 data;
  924. switch (msr) {
  925. case 0xc0010010: /* SYSCFG */
  926. case 0xc0010015: /* HWCR */
  927. case MSR_IA32_PLATFORM_ID:
  928. case MSR_IA32_P5_MC_ADDR:
  929. case MSR_IA32_P5_MC_TYPE:
  930. case MSR_IA32_MC0_CTL:
  931. case MSR_IA32_MCG_STATUS:
  932. case MSR_IA32_MCG_CAP:
  933. case MSR_IA32_MC0_MISC:
  934. case MSR_IA32_MC0_MISC+4:
  935. case MSR_IA32_MC0_MISC+8:
  936. case MSR_IA32_MC0_MISC+12:
  937. case MSR_IA32_MC0_MISC+16:
  938. case MSR_IA32_UCODE_REV:
  939. case MSR_IA32_PERF_STATUS:
  940. /* MTRR registers */
  941. case 0xfe:
  942. case 0x200 ... 0x2ff:
  943. data = 0;
  944. break;
  945. case 0xcd: /* fsb frequency */
  946. data = 3;
  947. break;
  948. case MSR_IA32_APICBASE:
  949. data = vcpu->apic_base;
  950. break;
  951. #ifdef CONFIG_X86_64
  952. case MSR_EFER:
  953. data = vcpu->shadow_efer;
  954. break;
  955. #endif
  956. default:
  957. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  958. return 1;
  959. }
  960. *pdata = data;
  961. return 0;
  962. }
  963. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  964. /*
  965. * Reads an msr value (of 'msr_index') into 'pdata'.
  966. * Returns 0 on success, non-0 otherwise.
  967. * Assumes vcpu_load() was already called.
  968. */
  969. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  970. {
  971. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  972. }
  973. #ifdef CONFIG_X86_64
  974. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  975. {
  976. if (efer & EFER_RESERVED_BITS) {
  977. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  978. efer);
  979. inject_gp(vcpu);
  980. return;
  981. }
  982. if (is_paging(vcpu)
  983. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  984. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  985. inject_gp(vcpu);
  986. return;
  987. }
  988. kvm_arch_ops->set_efer(vcpu, efer);
  989. efer &= ~EFER_LMA;
  990. efer |= vcpu->shadow_efer & EFER_LMA;
  991. vcpu->shadow_efer = efer;
  992. }
  993. #endif
  994. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  995. {
  996. switch (msr) {
  997. #ifdef CONFIG_X86_64
  998. case MSR_EFER:
  999. set_efer(vcpu, data);
  1000. break;
  1001. #endif
  1002. case MSR_IA32_MC0_STATUS:
  1003. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1004. __FUNCTION__, data);
  1005. break;
  1006. case MSR_IA32_UCODE_REV:
  1007. case MSR_IA32_UCODE_WRITE:
  1008. case 0x200 ... 0x2ff: /* MTRRs */
  1009. break;
  1010. case MSR_IA32_APICBASE:
  1011. vcpu->apic_base = data;
  1012. break;
  1013. default:
  1014. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1015. return 1;
  1016. }
  1017. return 0;
  1018. }
  1019. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1020. /*
  1021. * Writes msr value into into the appropriate "register".
  1022. * Returns 0 on success, non-0 otherwise.
  1023. * Assumes vcpu_load() was already called.
  1024. */
  1025. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1026. {
  1027. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1028. }
  1029. void kvm_resched(struct kvm_vcpu *vcpu)
  1030. {
  1031. vcpu_put(vcpu);
  1032. cond_resched();
  1033. /* Cannot fail - no vcpu unplug yet. */
  1034. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  1035. }
  1036. EXPORT_SYMBOL_GPL(kvm_resched);
  1037. void load_msrs(struct vmx_msr_entry *e, int n)
  1038. {
  1039. int i;
  1040. for (i = 0; i < n; ++i)
  1041. wrmsrl(e[i].index, e[i].data);
  1042. }
  1043. EXPORT_SYMBOL_GPL(load_msrs);
  1044. void save_msrs(struct vmx_msr_entry *e, int n)
  1045. {
  1046. int i;
  1047. for (i = 0; i < n; ++i)
  1048. rdmsrl(e[i].index, e[i].data);
  1049. }
  1050. EXPORT_SYMBOL_GPL(save_msrs);
  1051. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  1052. {
  1053. struct kvm_vcpu *vcpu;
  1054. int r;
  1055. if (!valid_vcpu(kvm_run->vcpu))
  1056. return -EINVAL;
  1057. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  1058. if (!vcpu)
  1059. return -ENOENT;
  1060. if (kvm_run->emulated) {
  1061. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1062. kvm_run->emulated = 0;
  1063. }
  1064. if (kvm_run->mmio_completed) {
  1065. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1066. vcpu->mmio_read_completed = 1;
  1067. }
  1068. vcpu->mmio_needed = 0;
  1069. r = kvm_arch_ops->run(vcpu, kvm_run);
  1070. vcpu_put(vcpu);
  1071. return r;
  1072. }
  1073. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1074. {
  1075. struct kvm_vcpu *vcpu;
  1076. if (!valid_vcpu(regs->vcpu))
  1077. return -EINVAL;
  1078. vcpu = vcpu_load(kvm, regs->vcpu);
  1079. if (!vcpu)
  1080. return -ENOENT;
  1081. kvm_arch_ops->cache_regs(vcpu);
  1082. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1083. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1084. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1085. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1086. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1087. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1088. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1089. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1090. #ifdef CONFIG_X86_64
  1091. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1092. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1093. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1094. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1095. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1096. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1097. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1098. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1099. #endif
  1100. regs->rip = vcpu->rip;
  1101. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1102. /*
  1103. * Don't leak debug flags in case they were set for guest debugging
  1104. */
  1105. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1106. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1107. vcpu_put(vcpu);
  1108. return 0;
  1109. }
  1110. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1111. {
  1112. struct kvm_vcpu *vcpu;
  1113. if (!valid_vcpu(regs->vcpu))
  1114. return -EINVAL;
  1115. vcpu = vcpu_load(kvm, regs->vcpu);
  1116. if (!vcpu)
  1117. return -ENOENT;
  1118. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1119. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1120. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1121. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1122. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1123. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1124. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1125. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1126. #ifdef CONFIG_X86_64
  1127. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1128. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1129. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1130. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1131. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1132. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1133. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1134. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1135. #endif
  1136. vcpu->rip = regs->rip;
  1137. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1138. kvm_arch_ops->decache_regs(vcpu);
  1139. vcpu_put(vcpu);
  1140. return 0;
  1141. }
  1142. static void get_segment(struct kvm_vcpu *vcpu,
  1143. struct kvm_segment *var, int seg)
  1144. {
  1145. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1146. }
  1147. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1148. {
  1149. struct kvm_vcpu *vcpu;
  1150. struct descriptor_table dt;
  1151. if (!valid_vcpu(sregs->vcpu))
  1152. return -EINVAL;
  1153. vcpu = vcpu_load(kvm, sregs->vcpu);
  1154. if (!vcpu)
  1155. return -ENOENT;
  1156. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1157. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1158. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1159. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1160. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1161. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1162. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1163. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1164. kvm_arch_ops->get_idt(vcpu, &dt);
  1165. sregs->idt.limit = dt.limit;
  1166. sregs->idt.base = dt.base;
  1167. kvm_arch_ops->get_gdt(vcpu, &dt);
  1168. sregs->gdt.limit = dt.limit;
  1169. sregs->gdt.base = dt.base;
  1170. sregs->cr0 = vcpu->cr0;
  1171. sregs->cr2 = vcpu->cr2;
  1172. sregs->cr3 = vcpu->cr3;
  1173. sregs->cr4 = vcpu->cr4;
  1174. sregs->cr8 = vcpu->cr8;
  1175. sregs->efer = vcpu->shadow_efer;
  1176. sregs->apic_base = vcpu->apic_base;
  1177. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1178. sizeof sregs->interrupt_bitmap);
  1179. vcpu_put(vcpu);
  1180. return 0;
  1181. }
  1182. static void set_segment(struct kvm_vcpu *vcpu,
  1183. struct kvm_segment *var, int seg)
  1184. {
  1185. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1186. }
  1187. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1188. {
  1189. struct kvm_vcpu *vcpu;
  1190. int mmu_reset_needed = 0;
  1191. int i;
  1192. struct descriptor_table dt;
  1193. if (!valid_vcpu(sregs->vcpu))
  1194. return -EINVAL;
  1195. vcpu = vcpu_load(kvm, sregs->vcpu);
  1196. if (!vcpu)
  1197. return -ENOENT;
  1198. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1199. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1200. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1201. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1202. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1203. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1204. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1205. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1206. dt.limit = sregs->idt.limit;
  1207. dt.base = sregs->idt.base;
  1208. kvm_arch_ops->set_idt(vcpu, &dt);
  1209. dt.limit = sregs->gdt.limit;
  1210. dt.base = sregs->gdt.base;
  1211. kvm_arch_ops->set_gdt(vcpu, &dt);
  1212. vcpu->cr2 = sregs->cr2;
  1213. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1214. vcpu->cr3 = sregs->cr3;
  1215. vcpu->cr8 = sregs->cr8;
  1216. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1217. #ifdef CONFIG_X86_64
  1218. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1219. #endif
  1220. vcpu->apic_base = sregs->apic_base;
  1221. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1222. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1223. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1224. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1225. if (mmu_reset_needed)
  1226. kvm_mmu_reset_context(vcpu);
  1227. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1228. sizeof vcpu->irq_pending);
  1229. vcpu->irq_summary = 0;
  1230. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1231. if (vcpu->irq_pending[i])
  1232. __set_bit(i, &vcpu->irq_summary);
  1233. vcpu_put(vcpu);
  1234. return 0;
  1235. }
  1236. /*
  1237. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1238. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1239. *
  1240. * This list is modified at module load time to reflect the
  1241. * capabilities of the host cpu.
  1242. */
  1243. static u32 msrs_to_save[] = {
  1244. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1245. MSR_K6_STAR,
  1246. #ifdef CONFIG_X86_64
  1247. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1248. #endif
  1249. MSR_IA32_TIME_STAMP_COUNTER,
  1250. };
  1251. static unsigned num_msrs_to_save;
  1252. static __init void kvm_init_msr_list(void)
  1253. {
  1254. u32 dummy[2];
  1255. unsigned i, j;
  1256. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1257. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1258. continue;
  1259. if (j < i)
  1260. msrs_to_save[j] = msrs_to_save[i];
  1261. j++;
  1262. }
  1263. num_msrs_to_save = j;
  1264. }
  1265. /*
  1266. * Adapt set_msr() to msr_io()'s calling convention
  1267. */
  1268. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1269. {
  1270. return set_msr(vcpu, index, *data);
  1271. }
  1272. /*
  1273. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1274. *
  1275. * @return number of msrs set successfully.
  1276. */
  1277. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1278. struct kvm_msr_entry *entries,
  1279. int (*do_msr)(struct kvm_vcpu *vcpu,
  1280. unsigned index, u64 *data))
  1281. {
  1282. struct kvm_vcpu *vcpu;
  1283. int i;
  1284. if (!valid_vcpu(msrs->vcpu))
  1285. return -EINVAL;
  1286. vcpu = vcpu_load(kvm, msrs->vcpu);
  1287. if (!vcpu)
  1288. return -ENOENT;
  1289. for (i = 0; i < msrs->nmsrs; ++i)
  1290. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1291. break;
  1292. vcpu_put(vcpu);
  1293. return i;
  1294. }
  1295. /*
  1296. * Read or write a bunch of msrs. Parameters are user addresses.
  1297. *
  1298. * @return number of msrs set successfully.
  1299. */
  1300. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1301. int (*do_msr)(struct kvm_vcpu *vcpu,
  1302. unsigned index, u64 *data),
  1303. int writeback)
  1304. {
  1305. struct kvm_msrs msrs;
  1306. struct kvm_msr_entry *entries;
  1307. int r, n;
  1308. unsigned size;
  1309. r = -EFAULT;
  1310. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1311. goto out;
  1312. r = -E2BIG;
  1313. if (msrs.nmsrs >= MAX_IO_MSRS)
  1314. goto out;
  1315. r = -ENOMEM;
  1316. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1317. entries = vmalloc(size);
  1318. if (!entries)
  1319. goto out;
  1320. r = -EFAULT;
  1321. if (copy_from_user(entries, user_msrs->entries, size))
  1322. goto out_free;
  1323. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1324. if (r < 0)
  1325. goto out_free;
  1326. r = -EFAULT;
  1327. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1328. goto out_free;
  1329. r = n;
  1330. out_free:
  1331. vfree(entries);
  1332. out:
  1333. return r;
  1334. }
  1335. /*
  1336. * Translate a guest virtual address to a guest physical address.
  1337. */
  1338. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1339. {
  1340. unsigned long vaddr = tr->linear_address;
  1341. struct kvm_vcpu *vcpu;
  1342. gpa_t gpa;
  1343. vcpu = vcpu_load(kvm, tr->vcpu);
  1344. if (!vcpu)
  1345. return -ENOENT;
  1346. spin_lock(&kvm->lock);
  1347. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1348. tr->physical_address = gpa;
  1349. tr->valid = gpa != UNMAPPED_GVA;
  1350. tr->writeable = 1;
  1351. tr->usermode = 0;
  1352. spin_unlock(&kvm->lock);
  1353. vcpu_put(vcpu);
  1354. return 0;
  1355. }
  1356. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1357. {
  1358. struct kvm_vcpu *vcpu;
  1359. if (!valid_vcpu(irq->vcpu))
  1360. return -EINVAL;
  1361. if (irq->irq < 0 || irq->irq >= 256)
  1362. return -EINVAL;
  1363. vcpu = vcpu_load(kvm, irq->vcpu);
  1364. if (!vcpu)
  1365. return -ENOENT;
  1366. set_bit(irq->irq, vcpu->irq_pending);
  1367. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1368. vcpu_put(vcpu);
  1369. return 0;
  1370. }
  1371. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1372. struct kvm_debug_guest *dbg)
  1373. {
  1374. struct kvm_vcpu *vcpu;
  1375. int r;
  1376. if (!valid_vcpu(dbg->vcpu))
  1377. return -EINVAL;
  1378. vcpu = vcpu_load(kvm, dbg->vcpu);
  1379. if (!vcpu)
  1380. return -ENOENT;
  1381. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1382. vcpu_put(vcpu);
  1383. return r;
  1384. }
  1385. static long kvm_dev_ioctl(struct file *filp,
  1386. unsigned int ioctl, unsigned long arg)
  1387. {
  1388. struct kvm *kvm = filp->private_data;
  1389. int r = -EINVAL;
  1390. switch (ioctl) {
  1391. case KVM_GET_API_VERSION:
  1392. r = KVM_API_VERSION;
  1393. break;
  1394. case KVM_CREATE_VCPU: {
  1395. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1396. if (r)
  1397. goto out;
  1398. break;
  1399. }
  1400. case KVM_RUN: {
  1401. struct kvm_run kvm_run;
  1402. r = -EFAULT;
  1403. if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
  1404. goto out;
  1405. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1406. if (r < 0)
  1407. goto out;
  1408. r = -EFAULT;
  1409. if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run))
  1410. goto out;
  1411. r = 0;
  1412. break;
  1413. }
  1414. case KVM_GET_REGS: {
  1415. struct kvm_regs kvm_regs;
  1416. r = -EFAULT;
  1417. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1418. goto out;
  1419. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1420. if (r)
  1421. goto out;
  1422. r = -EFAULT;
  1423. if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
  1424. goto out;
  1425. r = 0;
  1426. break;
  1427. }
  1428. case KVM_SET_REGS: {
  1429. struct kvm_regs kvm_regs;
  1430. r = -EFAULT;
  1431. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1432. goto out;
  1433. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1434. if (r)
  1435. goto out;
  1436. r = 0;
  1437. break;
  1438. }
  1439. case KVM_GET_SREGS: {
  1440. struct kvm_sregs kvm_sregs;
  1441. r = -EFAULT;
  1442. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1443. goto out;
  1444. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1445. if (r)
  1446. goto out;
  1447. r = -EFAULT;
  1448. if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
  1449. goto out;
  1450. r = 0;
  1451. break;
  1452. }
  1453. case KVM_SET_SREGS: {
  1454. struct kvm_sregs kvm_sregs;
  1455. r = -EFAULT;
  1456. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1457. goto out;
  1458. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1459. if (r)
  1460. goto out;
  1461. r = 0;
  1462. break;
  1463. }
  1464. case KVM_TRANSLATE: {
  1465. struct kvm_translation tr;
  1466. r = -EFAULT;
  1467. if (copy_from_user(&tr, (void *)arg, sizeof tr))
  1468. goto out;
  1469. r = kvm_dev_ioctl_translate(kvm, &tr);
  1470. if (r)
  1471. goto out;
  1472. r = -EFAULT;
  1473. if (copy_to_user((void *)arg, &tr, sizeof tr))
  1474. goto out;
  1475. r = 0;
  1476. break;
  1477. }
  1478. case KVM_INTERRUPT: {
  1479. struct kvm_interrupt irq;
  1480. r = -EFAULT;
  1481. if (copy_from_user(&irq, (void *)arg, sizeof irq))
  1482. goto out;
  1483. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1484. if (r)
  1485. goto out;
  1486. r = 0;
  1487. break;
  1488. }
  1489. case KVM_DEBUG_GUEST: {
  1490. struct kvm_debug_guest dbg;
  1491. r = -EFAULT;
  1492. if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
  1493. goto out;
  1494. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1495. if (r)
  1496. goto out;
  1497. r = 0;
  1498. break;
  1499. }
  1500. case KVM_SET_MEMORY_REGION: {
  1501. struct kvm_memory_region kvm_mem;
  1502. r = -EFAULT;
  1503. if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
  1504. goto out;
  1505. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1506. if (r)
  1507. goto out;
  1508. break;
  1509. }
  1510. case KVM_GET_DIRTY_LOG: {
  1511. struct kvm_dirty_log log;
  1512. r = -EFAULT;
  1513. if (copy_from_user(&log, (void *)arg, sizeof log))
  1514. goto out;
  1515. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1516. if (r)
  1517. goto out;
  1518. break;
  1519. }
  1520. case KVM_GET_MSRS:
  1521. r = msr_io(kvm, (void __user *)arg, get_msr, 1);
  1522. break;
  1523. case KVM_SET_MSRS:
  1524. r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
  1525. break;
  1526. case KVM_GET_MSR_INDEX_LIST: {
  1527. struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
  1528. struct kvm_msr_list msr_list;
  1529. unsigned n;
  1530. r = -EFAULT;
  1531. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1532. goto out;
  1533. n = msr_list.nmsrs;
  1534. msr_list.nmsrs = num_msrs_to_save;
  1535. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1536. goto out;
  1537. r = -E2BIG;
  1538. if (n < num_msrs_to_save)
  1539. goto out;
  1540. r = -EFAULT;
  1541. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1542. num_msrs_to_save * sizeof(u32)))
  1543. goto out;
  1544. r = 0;
  1545. }
  1546. default:
  1547. ;
  1548. }
  1549. out:
  1550. return r;
  1551. }
  1552. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1553. unsigned long address,
  1554. int *type)
  1555. {
  1556. struct kvm *kvm = vma->vm_file->private_data;
  1557. unsigned long pgoff;
  1558. struct kvm_memory_slot *slot;
  1559. struct page *page;
  1560. *type = VM_FAULT_MINOR;
  1561. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1562. slot = gfn_to_memslot(kvm, pgoff);
  1563. if (!slot)
  1564. return NOPAGE_SIGBUS;
  1565. page = gfn_to_page(slot, pgoff);
  1566. if (!page)
  1567. return NOPAGE_SIGBUS;
  1568. get_page(page);
  1569. return page;
  1570. }
  1571. static struct vm_operations_struct kvm_dev_vm_ops = {
  1572. .nopage = kvm_dev_nopage,
  1573. };
  1574. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1575. {
  1576. vma->vm_ops = &kvm_dev_vm_ops;
  1577. return 0;
  1578. }
  1579. static struct file_operations kvm_chardev_ops = {
  1580. .open = kvm_dev_open,
  1581. .release = kvm_dev_release,
  1582. .unlocked_ioctl = kvm_dev_ioctl,
  1583. .compat_ioctl = kvm_dev_ioctl,
  1584. .mmap = kvm_dev_mmap,
  1585. };
  1586. static struct miscdevice kvm_dev = {
  1587. MISC_DYNAMIC_MINOR,
  1588. "kvm",
  1589. &kvm_chardev_ops,
  1590. };
  1591. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1592. void *v)
  1593. {
  1594. if (val == SYS_RESTART) {
  1595. /*
  1596. * Some (well, at least mine) BIOSes hang on reboot if
  1597. * in vmx root mode.
  1598. */
  1599. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1600. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1601. }
  1602. return NOTIFY_OK;
  1603. }
  1604. static struct notifier_block kvm_reboot_notifier = {
  1605. .notifier_call = kvm_reboot,
  1606. .priority = 0,
  1607. };
  1608. static __init void kvm_init_debug(void)
  1609. {
  1610. struct kvm_stats_debugfs_item *p;
  1611. debugfs_dir = debugfs_create_dir("kvm", 0);
  1612. for (p = debugfs_entries; p->name; ++p)
  1613. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1614. p->data);
  1615. }
  1616. static void kvm_exit_debug(void)
  1617. {
  1618. struct kvm_stats_debugfs_item *p;
  1619. for (p = debugfs_entries; p->name; ++p)
  1620. debugfs_remove(p->dentry);
  1621. debugfs_remove(debugfs_dir);
  1622. }
  1623. hpa_t bad_page_address;
  1624. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1625. {
  1626. int r;
  1627. if (kvm_arch_ops) {
  1628. printk(KERN_ERR "kvm: already loaded the other module\n");
  1629. return -EEXIST;
  1630. }
  1631. kvm_arch_ops = ops;
  1632. if (!kvm_arch_ops->cpu_has_kvm_support()) {
  1633. printk(KERN_ERR "kvm: no hardware support\n");
  1634. return -EOPNOTSUPP;
  1635. }
  1636. if (kvm_arch_ops->disabled_by_bios()) {
  1637. printk(KERN_ERR "kvm: disabled by bios\n");
  1638. return -EOPNOTSUPP;
  1639. }
  1640. r = kvm_arch_ops->hardware_setup();
  1641. if (r < 0)
  1642. return r;
  1643. on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
  1644. register_reboot_notifier(&kvm_reboot_notifier);
  1645. kvm_chardev_ops.owner = module;
  1646. r = misc_register(&kvm_dev);
  1647. if (r) {
  1648. printk (KERN_ERR "kvm: misc device register failed\n");
  1649. goto out_free;
  1650. }
  1651. return r;
  1652. out_free:
  1653. unregister_reboot_notifier(&kvm_reboot_notifier);
  1654. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1655. kvm_arch_ops->hardware_unsetup();
  1656. return r;
  1657. }
  1658. void kvm_exit_arch(void)
  1659. {
  1660. misc_deregister(&kvm_dev);
  1661. unregister_reboot_notifier(&kvm_reboot_notifier);
  1662. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1663. kvm_arch_ops->hardware_unsetup();
  1664. kvm_arch_ops = NULL;
  1665. }
  1666. static __init int kvm_init(void)
  1667. {
  1668. static struct page *bad_page;
  1669. int r = 0;
  1670. kvm_init_debug();
  1671. kvm_init_msr_list();
  1672. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1673. r = -ENOMEM;
  1674. goto out;
  1675. }
  1676. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1677. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1678. return r;
  1679. out:
  1680. kvm_exit_debug();
  1681. return r;
  1682. }
  1683. static __exit void kvm_exit(void)
  1684. {
  1685. kvm_exit_debug();
  1686. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1687. }
  1688. module_init(kvm_init)
  1689. module_exit(kvm_exit)
  1690. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1691. EXPORT_SYMBOL_GPL(kvm_exit_arch);