slab.c 115 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/uaccess.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/fault-inject.h>
  110. #include <linux/rtmutex.h>
  111. #include <asm/cacheflush.h>
  112. #include <asm/tlbflush.h>
  113. #include <asm/page.h>
  114. /*
  115. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  116. * SLAB_RED_ZONE & SLAB_POISON.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * STATS - 1 to collect stats for /proc/slabinfo.
  120. * 0 for faster, smaller code (especially in the critical paths).
  121. *
  122. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  123. */
  124. #ifdef CONFIG_DEBUG_SLAB
  125. #define DEBUG 1
  126. #define STATS 1
  127. #define FORCED_DEBUG 1
  128. #else
  129. #define DEBUG 0
  130. #define STATS 0
  131. #define FORCED_DEBUG 0
  132. #endif
  133. /* Shouldn't this be in a header file somewhere? */
  134. #define BYTES_PER_WORD sizeof(void *)
  135. #ifndef cache_line_size
  136. #define cache_line_size() L1_CACHE_BYTES
  137. #endif
  138. #ifndef ARCH_KMALLOC_MINALIGN
  139. /*
  140. * Enforce a minimum alignment for the kmalloc caches.
  141. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  142. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  143. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  144. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  145. * Note that this flag disables some debug features.
  146. */
  147. #define ARCH_KMALLOC_MINALIGN 0
  148. #endif
  149. #ifndef ARCH_SLAB_MINALIGN
  150. /*
  151. * Enforce a minimum alignment for all caches.
  152. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  153. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  154. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  155. * some debug features.
  156. */
  157. #define ARCH_SLAB_MINALIGN 0
  158. #endif
  159. #ifndef ARCH_KMALLOC_FLAGS
  160. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  161. #endif
  162. /* Legal flag mask for kmem_cache_create(). */
  163. #if DEBUG
  164. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  166. SLAB_CACHE_DMA | \
  167. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  168. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  169. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  170. #else
  171. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  172. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  173. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  174. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  175. #endif
  176. /*
  177. * kmem_bufctl_t:
  178. *
  179. * Bufctl's are used for linking objs within a slab
  180. * linked offsets.
  181. *
  182. * This implementation relies on "struct page" for locating the cache &
  183. * slab an object belongs to.
  184. * This allows the bufctl structure to be small (one int), but limits
  185. * the number of objects a slab (not a cache) can contain when off-slab
  186. * bufctls are used. The limit is the size of the largest general cache
  187. * that does not use off-slab slabs.
  188. * For 32bit archs with 4 kB pages, is this 56.
  189. * This is not serious, as it is only for large objects, when it is unwise
  190. * to have too many per slab.
  191. * Note: This limit can be raised by introducing a general cache whose size
  192. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  193. */
  194. typedef unsigned int kmem_bufctl_t;
  195. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  196. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  197. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  198. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  199. /*
  200. * struct slab
  201. *
  202. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  203. * for a slab, or allocated from an general cache.
  204. * Slabs are chained into three list: fully used, partial, fully free slabs.
  205. */
  206. struct slab {
  207. struct list_head list;
  208. unsigned long colouroff;
  209. void *s_mem; /* including colour offset */
  210. unsigned int inuse; /* num of objs active in slab */
  211. kmem_bufctl_t free;
  212. unsigned short nodeid;
  213. };
  214. /*
  215. * struct slab_rcu
  216. *
  217. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  218. * arrange for kmem_freepages to be called via RCU. This is useful if
  219. * we need to approach a kernel structure obliquely, from its address
  220. * obtained without the usual locking. We can lock the structure to
  221. * stabilize it and check it's still at the given address, only if we
  222. * can be sure that the memory has not been meanwhile reused for some
  223. * other kind of object (which our subsystem's lock might corrupt).
  224. *
  225. * rcu_read_lock before reading the address, then rcu_read_unlock after
  226. * taking the spinlock within the structure expected at that address.
  227. *
  228. * We assume struct slab_rcu can overlay struct slab when destroying.
  229. */
  230. struct slab_rcu {
  231. struct rcu_head head;
  232. struct kmem_cache *cachep;
  233. void *addr;
  234. };
  235. /*
  236. * struct array_cache
  237. *
  238. * Purpose:
  239. * - LIFO ordering, to hand out cache-warm objects from _alloc
  240. * - reduce the number of linked list operations
  241. * - reduce spinlock operations
  242. *
  243. * The limit is stored in the per-cpu structure to reduce the data cache
  244. * footprint.
  245. *
  246. */
  247. struct array_cache {
  248. unsigned int avail;
  249. unsigned int limit;
  250. unsigned int batchcount;
  251. unsigned int touched;
  252. spinlock_t lock;
  253. void *entry[0]; /*
  254. * Must have this definition in here for the proper
  255. * alignment of array_cache. Also simplifies accessing
  256. * the entries.
  257. * [0] is for gcc 2.95. It should really be [].
  258. */
  259. };
  260. /*
  261. * bootstrap: The caches do not work without cpuarrays anymore, but the
  262. * cpuarrays are allocated from the generic caches...
  263. */
  264. #define BOOT_CPUCACHE_ENTRIES 1
  265. struct arraycache_init {
  266. struct array_cache cache;
  267. void *entries[BOOT_CPUCACHE_ENTRIES];
  268. };
  269. /*
  270. * The slab lists for all objects.
  271. */
  272. struct kmem_list3 {
  273. struct list_head slabs_partial; /* partial list first, better asm code */
  274. struct list_head slabs_full;
  275. struct list_head slabs_free;
  276. unsigned long free_objects;
  277. unsigned int free_limit;
  278. unsigned int colour_next; /* Per-node cache coloring */
  279. spinlock_t list_lock;
  280. struct array_cache *shared; /* shared per node */
  281. struct array_cache **alien; /* on other nodes */
  282. unsigned long next_reap; /* updated without locking */
  283. int free_touched; /* updated without locking */
  284. };
  285. /*
  286. * Need this for bootstrapping a per node allocator.
  287. */
  288. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  289. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  290. #define CACHE_CACHE 0
  291. #define SIZE_AC 1
  292. #define SIZE_L3 (1 + MAX_NUMNODES)
  293. static int drain_freelist(struct kmem_cache *cache,
  294. struct kmem_list3 *l3, int tofree);
  295. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  296. int node);
  297. static int enable_cpucache(struct kmem_cache *cachep);
  298. static void cache_reap(struct work_struct *unused);
  299. /*
  300. * This function must be completely optimized away if a constant is passed to
  301. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  302. */
  303. static __always_inline int index_of(const size_t size)
  304. {
  305. extern void __bad_size(void);
  306. if (__builtin_constant_p(size)) {
  307. int i = 0;
  308. #define CACHE(x) \
  309. if (size <=x) \
  310. return i; \
  311. else \
  312. i++;
  313. #include "linux/kmalloc_sizes.h"
  314. #undef CACHE
  315. __bad_size();
  316. } else
  317. __bad_size();
  318. return 0;
  319. }
  320. static int slab_early_init = 1;
  321. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  322. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  323. static void kmem_list3_init(struct kmem_list3 *parent)
  324. {
  325. INIT_LIST_HEAD(&parent->slabs_full);
  326. INIT_LIST_HEAD(&parent->slabs_partial);
  327. INIT_LIST_HEAD(&parent->slabs_free);
  328. parent->shared = NULL;
  329. parent->alien = NULL;
  330. parent->colour_next = 0;
  331. spin_lock_init(&parent->list_lock);
  332. parent->free_objects = 0;
  333. parent->free_touched = 0;
  334. }
  335. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  336. do { \
  337. INIT_LIST_HEAD(listp); \
  338. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  339. } while (0)
  340. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  341. do { \
  342. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  343. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  345. } while (0)
  346. /*
  347. * struct kmem_cache
  348. *
  349. * manages a cache.
  350. */
  351. struct kmem_cache {
  352. /* 1) per-cpu data, touched during every alloc/free */
  353. struct array_cache *array[NR_CPUS];
  354. /* 2) Cache tunables. Protected by cache_chain_mutex */
  355. unsigned int batchcount;
  356. unsigned int limit;
  357. unsigned int shared;
  358. unsigned int buffer_size;
  359. /* 3) touched by every alloc & free from the backend */
  360. struct kmem_list3 *nodelists[MAX_NUMNODES];
  361. unsigned int flags; /* constant flags */
  362. unsigned int num; /* # of objs per slab */
  363. /* 4) cache_grow/shrink */
  364. /* order of pgs per slab (2^n) */
  365. unsigned int gfporder;
  366. /* force GFP flags, e.g. GFP_DMA */
  367. gfp_t gfpflags;
  368. size_t colour; /* cache colouring range */
  369. unsigned int colour_off; /* colour offset */
  370. struct kmem_cache *slabp_cache;
  371. unsigned int slab_size;
  372. unsigned int dflags; /* dynamic flags */
  373. /* constructor func */
  374. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  375. /* de-constructor func */
  376. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  377. /* 5) cache creation/removal */
  378. const char *name;
  379. struct list_head next;
  380. /* 6) statistics */
  381. #if STATS
  382. unsigned long num_active;
  383. unsigned long num_allocations;
  384. unsigned long high_mark;
  385. unsigned long grown;
  386. unsigned long reaped;
  387. unsigned long errors;
  388. unsigned long max_freeable;
  389. unsigned long node_allocs;
  390. unsigned long node_frees;
  391. unsigned long node_overflow;
  392. atomic_t allochit;
  393. atomic_t allocmiss;
  394. atomic_t freehit;
  395. atomic_t freemiss;
  396. #endif
  397. #if DEBUG
  398. /*
  399. * If debugging is enabled, then the allocator can add additional
  400. * fields and/or padding to every object. buffer_size contains the total
  401. * object size including these internal fields, the following two
  402. * variables contain the offset to the user object and its size.
  403. */
  404. int obj_offset;
  405. int obj_size;
  406. #endif
  407. };
  408. #define CFLGS_OFF_SLAB (0x80000000UL)
  409. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  410. #define BATCHREFILL_LIMIT 16
  411. /*
  412. * Optimization question: fewer reaps means less probability for unnessary
  413. * cpucache drain/refill cycles.
  414. *
  415. * OTOH the cpuarrays can contain lots of objects,
  416. * which could lock up otherwise freeable slabs.
  417. */
  418. #define REAPTIMEOUT_CPUC (2*HZ)
  419. #define REAPTIMEOUT_LIST3 (4*HZ)
  420. #if STATS
  421. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  422. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  423. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  424. #define STATS_INC_GROWN(x) ((x)->grown++)
  425. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  426. #define STATS_SET_HIGH(x) \
  427. do { \
  428. if ((x)->num_active > (x)->high_mark) \
  429. (x)->high_mark = (x)->num_active; \
  430. } while (0)
  431. #define STATS_INC_ERR(x) ((x)->errors++)
  432. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  433. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  434. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  435. #define STATS_SET_FREEABLE(x, i) \
  436. do { \
  437. if ((x)->max_freeable < i) \
  438. (x)->max_freeable = i; \
  439. } while (0)
  440. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  441. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  442. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  443. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  444. #else
  445. #define STATS_INC_ACTIVE(x) do { } while (0)
  446. #define STATS_DEC_ACTIVE(x) do { } while (0)
  447. #define STATS_INC_ALLOCED(x) do { } while (0)
  448. #define STATS_INC_GROWN(x) do { } while (0)
  449. #define STATS_ADD_REAPED(x,y) do { } while (0)
  450. #define STATS_SET_HIGH(x) do { } while (0)
  451. #define STATS_INC_ERR(x) do { } while (0)
  452. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  453. #define STATS_INC_NODEFREES(x) do { } while (0)
  454. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  455. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  456. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  457. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  458. #define STATS_INC_FREEHIT(x) do { } while (0)
  459. #define STATS_INC_FREEMISS(x) do { } while (0)
  460. #endif
  461. #if DEBUG
  462. /*
  463. * memory layout of objects:
  464. * 0 : objp
  465. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  466. * the end of an object is aligned with the end of the real
  467. * allocation. Catches writes behind the end of the allocation.
  468. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  469. * redzone word.
  470. * cachep->obj_offset: The real object.
  471. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  472. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  473. * [BYTES_PER_WORD long]
  474. */
  475. static int obj_offset(struct kmem_cache *cachep)
  476. {
  477. return cachep->obj_offset;
  478. }
  479. static int obj_size(struct kmem_cache *cachep)
  480. {
  481. return cachep->obj_size;
  482. }
  483. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  484. {
  485. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  486. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  487. }
  488. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  489. {
  490. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  491. if (cachep->flags & SLAB_STORE_USER)
  492. return (unsigned long *)(objp + cachep->buffer_size -
  493. 2 * BYTES_PER_WORD);
  494. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  495. }
  496. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  497. {
  498. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  499. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  500. }
  501. #else
  502. #define obj_offset(x) 0
  503. #define obj_size(cachep) (cachep->buffer_size)
  504. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  505. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  507. #endif
  508. /*
  509. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  510. * order.
  511. */
  512. #if defined(CONFIG_LARGE_ALLOCS)
  513. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  514. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  515. #elif defined(CONFIG_MMU)
  516. #define MAX_OBJ_ORDER 5 /* 32 pages */
  517. #define MAX_GFP_ORDER 5 /* 32 pages */
  518. #else
  519. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  520. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  521. #endif
  522. /*
  523. * Do not go above this order unless 0 objects fit into the slab.
  524. */
  525. #define BREAK_GFP_ORDER_HI 1
  526. #define BREAK_GFP_ORDER_LO 0
  527. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  528. /*
  529. * Functions for storing/retrieving the cachep and or slab from the page
  530. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  531. * these are used to find the cache which an obj belongs to.
  532. */
  533. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  534. {
  535. page->lru.next = (struct list_head *)cache;
  536. }
  537. static inline struct kmem_cache *page_get_cache(struct page *page)
  538. {
  539. if (unlikely(PageCompound(page)))
  540. page = (struct page *)page_private(page);
  541. BUG_ON(!PageSlab(page));
  542. return (struct kmem_cache *)page->lru.next;
  543. }
  544. static inline void page_set_slab(struct page *page, struct slab *slab)
  545. {
  546. page->lru.prev = (struct list_head *)slab;
  547. }
  548. static inline struct slab *page_get_slab(struct page *page)
  549. {
  550. if (unlikely(PageCompound(page)))
  551. page = (struct page *)page_private(page);
  552. BUG_ON(!PageSlab(page));
  553. return (struct slab *)page->lru.prev;
  554. }
  555. static inline struct kmem_cache *virt_to_cache(const void *obj)
  556. {
  557. struct page *page = virt_to_page(obj);
  558. return page_get_cache(page);
  559. }
  560. static inline struct slab *virt_to_slab(const void *obj)
  561. {
  562. struct page *page = virt_to_page(obj);
  563. return page_get_slab(page);
  564. }
  565. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  566. unsigned int idx)
  567. {
  568. return slab->s_mem + cache->buffer_size * idx;
  569. }
  570. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  571. struct slab *slab, void *obj)
  572. {
  573. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  574. }
  575. /*
  576. * These are the default caches for kmalloc. Custom caches can have other sizes.
  577. */
  578. struct cache_sizes malloc_sizes[] = {
  579. #define CACHE(x) { .cs_size = (x) },
  580. #include <linux/kmalloc_sizes.h>
  581. CACHE(ULONG_MAX)
  582. #undef CACHE
  583. };
  584. EXPORT_SYMBOL(malloc_sizes);
  585. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  586. struct cache_names {
  587. char *name;
  588. char *name_dma;
  589. };
  590. static struct cache_names __initdata cache_names[] = {
  591. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  592. #include <linux/kmalloc_sizes.h>
  593. {NULL,}
  594. #undef CACHE
  595. };
  596. static struct arraycache_init initarray_cache __initdata =
  597. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  598. static struct arraycache_init initarray_generic =
  599. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  600. /* internal cache of cache description objs */
  601. static struct kmem_cache cache_cache = {
  602. .batchcount = 1,
  603. .limit = BOOT_CPUCACHE_ENTRIES,
  604. .shared = 1,
  605. .buffer_size = sizeof(struct kmem_cache),
  606. .name = "kmem_cache",
  607. #if DEBUG
  608. .obj_size = sizeof(struct kmem_cache),
  609. #endif
  610. };
  611. #define BAD_ALIEN_MAGIC 0x01020304ul
  612. #ifdef CONFIG_LOCKDEP
  613. /*
  614. * Slab sometimes uses the kmalloc slabs to store the slab headers
  615. * for other slabs "off slab".
  616. * The locking for this is tricky in that it nests within the locks
  617. * of all other slabs in a few places; to deal with this special
  618. * locking we put on-slab caches into a separate lock-class.
  619. *
  620. * We set lock class for alien array caches which are up during init.
  621. * The lock annotation will be lost if all cpus of a node goes down and
  622. * then comes back up during hotplug
  623. */
  624. static struct lock_class_key on_slab_l3_key;
  625. static struct lock_class_key on_slab_alc_key;
  626. static inline void init_lock_keys(void)
  627. {
  628. int q;
  629. struct cache_sizes *s = malloc_sizes;
  630. while (s->cs_size != ULONG_MAX) {
  631. for_each_node(q) {
  632. struct array_cache **alc;
  633. int r;
  634. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  635. if (!l3 || OFF_SLAB(s->cs_cachep))
  636. continue;
  637. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  638. alc = l3->alien;
  639. /*
  640. * FIXME: This check for BAD_ALIEN_MAGIC
  641. * should go away when common slab code is taught to
  642. * work even without alien caches.
  643. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  644. * for alloc_alien_cache,
  645. */
  646. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  647. continue;
  648. for_each_node(r) {
  649. if (alc[r])
  650. lockdep_set_class(&alc[r]->lock,
  651. &on_slab_alc_key);
  652. }
  653. }
  654. s++;
  655. }
  656. }
  657. #else
  658. static inline void init_lock_keys(void)
  659. {
  660. }
  661. #endif
  662. /*
  663. * 1. Guard access to the cache-chain.
  664. * 2. Protect sanity of cpu_online_map against cpu hotplug events
  665. */
  666. static DEFINE_MUTEX(cache_chain_mutex);
  667. static struct list_head cache_chain;
  668. /*
  669. * chicken and egg problem: delay the per-cpu array allocation
  670. * until the general caches are up.
  671. */
  672. static enum {
  673. NONE,
  674. PARTIAL_AC,
  675. PARTIAL_L3,
  676. FULL
  677. } g_cpucache_up;
  678. /*
  679. * used by boot code to determine if it can use slab based allocator
  680. */
  681. int slab_is_available(void)
  682. {
  683. return g_cpucache_up == FULL;
  684. }
  685. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  686. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  687. {
  688. return cachep->array[smp_processor_id()];
  689. }
  690. static inline struct kmem_cache *__find_general_cachep(size_t size,
  691. gfp_t gfpflags)
  692. {
  693. struct cache_sizes *csizep = malloc_sizes;
  694. #if DEBUG
  695. /* This happens if someone tries to call
  696. * kmem_cache_create(), or __kmalloc(), before
  697. * the generic caches are initialized.
  698. */
  699. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  700. #endif
  701. while (size > csizep->cs_size)
  702. csizep++;
  703. /*
  704. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  705. * has cs_{dma,}cachep==NULL. Thus no special case
  706. * for large kmalloc calls required.
  707. */
  708. if (unlikely(gfpflags & GFP_DMA))
  709. return csizep->cs_dmacachep;
  710. return csizep->cs_cachep;
  711. }
  712. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  713. {
  714. return __find_general_cachep(size, gfpflags);
  715. }
  716. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  717. {
  718. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  719. }
  720. /*
  721. * Calculate the number of objects and left-over bytes for a given buffer size.
  722. */
  723. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  724. size_t align, int flags, size_t *left_over,
  725. unsigned int *num)
  726. {
  727. int nr_objs;
  728. size_t mgmt_size;
  729. size_t slab_size = PAGE_SIZE << gfporder;
  730. /*
  731. * The slab management structure can be either off the slab or
  732. * on it. For the latter case, the memory allocated for a
  733. * slab is used for:
  734. *
  735. * - The struct slab
  736. * - One kmem_bufctl_t for each object
  737. * - Padding to respect alignment of @align
  738. * - @buffer_size bytes for each object
  739. *
  740. * If the slab management structure is off the slab, then the
  741. * alignment will already be calculated into the size. Because
  742. * the slabs are all pages aligned, the objects will be at the
  743. * correct alignment when allocated.
  744. */
  745. if (flags & CFLGS_OFF_SLAB) {
  746. mgmt_size = 0;
  747. nr_objs = slab_size / buffer_size;
  748. if (nr_objs > SLAB_LIMIT)
  749. nr_objs = SLAB_LIMIT;
  750. } else {
  751. /*
  752. * Ignore padding for the initial guess. The padding
  753. * is at most @align-1 bytes, and @buffer_size is at
  754. * least @align. In the worst case, this result will
  755. * be one greater than the number of objects that fit
  756. * into the memory allocation when taking the padding
  757. * into account.
  758. */
  759. nr_objs = (slab_size - sizeof(struct slab)) /
  760. (buffer_size + sizeof(kmem_bufctl_t));
  761. /*
  762. * This calculated number will be either the right
  763. * amount, or one greater than what we want.
  764. */
  765. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  766. > slab_size)
  767. nr_objs--;
  768. if (nr_objs > SLAB_LIMIT)
  769. nr_objs = SLAB_LIMIT;
  770. mgmt_size = slab_mgmt_size(nr_objs, align);
  771. }
  772. *num = nr_objs;
  773. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  774. }
  775. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  776. static void __slab_error(const char *function, struct kmem_cache *cachep,
  777. char *msg)
  778. {
  779. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  780. function, cachep->name, msg);
  781. dump_stack();
  782. }
  783. /*
  784. * By default on NUMA we use alien caches to stage the freeing of
  785. * objects allocated from other nodes. This causes massive memory
  786. * inefficiencies when using fake NUMA setup to split memory into a
  787. * large number of small nodes, so it can be disabled on the command
  788. * line
  789. */
  790. static int use_alien_caches __read_mostly = 1;
  791. static int __init noaliencache_setup(char *s)
  792. {
  793. use_alien_caches = 0;
  794. return 1;
  795. }
  796. __setup("noaliencache", noaliencache_setup);
  797. #ifdef CONFIG_NUMA
  798. /*
  799. * Special reaping functions for NUMA systems called from cache_reap().
  800. * These take care of doing round robin flushing of alien caches (containing
  801. * objects freed on different nodes from which they were allocated) and the
  802. * flushing of remote pcps by calling drain_node_pages.
  803. */
  804. static DEFINE_PER_CPU(unsigned long, reap_node);
  805. static void init_reap_node(int cpu)
  806. {
  807. int node;
  808. node = next_node(cpu_to_node(cpu), node_online_map);
  809. if (node == MAX_NUMNODES)
  810. node = first_node(node_online_map);
  811. per_cpu(reap_node, cpu) = node;
  812. }
  813. static void next_reap_node(void)
  814. {
  815. int node = __get_cpu_var(reap_node);
  816. /*
  817. * Also drain per cpu pages on remote zones
  818. */
  819. if (node != numa_node_id())
  820. drain_node_pages(node);
  821. node = next_node(node, node_online_map);
  822. if (unlikely(node >= MAX_NUMNODES))
  823. node = first_node(node_online_map);
  824. __get_cpu_var(reap_node) = node;
  825. }
  826. #else
  827. #define init_reap_node(cpu) do { } while (0)
  828. #define next_reap_node(void) do { } while (0)
  829. #endif
  830. /*
  831. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  832. * via the workqueue/eventd.
  833. * Add the CPU number into the expiration time to minimize the possibility of
  834. * the CPUs getting into lockstep and contending for the global cache chain
  835. * lock.
  836. */
  837. static void __devinit start_cpu_timer(int cpu)
  838. {
  839. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  840. /*
  841. * When this gets called from do_initcalls via cpucache_init(),
  842. * init_workqueues() has already run, so keventd will be setup
  843. * at that time.
  844. */
  845. if (keventd_up() && reap_work->work.func == NULL) {
  846. init_reap_node(cpu);
  847. INIT_DELAYED_WORK(reap_work, cache_reap);
  848. schedule_delayed_work_on(cpu, reap_work,
  849. __round_jiffies_relative(HZ, cpu));
  850. }
  851. }
  852. static struct array_cache *alloc_arraycache(int node, int entries,
  853. int batchcount)
  854. {
  855. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  856. struct array_cache *nc = NULL;
  857. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  858. if (nc) {
  859. nc->avail = 0;
  860. nc->limit = entries;
  861. nc->batchcount = batchcount;
  862. nc->touched = 0;
  863. spin_lock_init(&nc->lock);
  864. }
  865. return nc;
  866. }
  867. /*
  868. * Transfer objects in one arraycache to another.
  869. * Locking must be handled by the caller.
  870. *
  871. * Return the number of entries transferred.
  872. */
  873. static int transfer_objects(struct array_cache *to,
  874. struct array_cache *from, unsigned int max)
  875. {
  876. /* Figure out how many entries to transfer */
  877. int nr = min(min(from->avail, max), to->limit - to->avail);
  878. if (!nr)
  879. return 0;
  880. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  881. sizeof(void *) *nr);
  882. from->avail -= nr;
  883. to->avail += nr;
  884. to->touched = 1;
  885. return nr;
  886. }
  887. #ifndef CONFIG_NUMA
  888. #define drain_alien_cache(cachep, alien) do { } while (0)
  889. #define reap_alien(cachep, l3) do { } while (0)
  890. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  891. {
  892. return (struct array_cache **)BAD_ALIEN_MAGIC;
  893. }
  894. static inline void free_alien_cache(struct array_cache **ac_ptr)
  895. {
  896. }
  897. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  898. {
  899. return 0;
  900. }
  901. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  902. gfp_t flags)
  903. {
  904. return NULL;
  905. }
  906. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  907. gfp_t flags, int nodeid)
  908. {
  909. return NULL;
  910. }
  911. #else /* CONFIG_NUMA */
  912. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  913. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  914. static struct array_cache **alloc_alien_cache(int node, int limit)
  915. {
  916. struct array_cache **ac_ptr;
  917. int memsize = sizeof(void *) * MAX_NUMNODES;
  918. int i;
  919. if (limit > 1)
  920. limit = 12;
  921. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  922. if (ac_ptr) {
  923. for_each_node(i) {
  924. if (i == node || !node_online(i)) {
  925. ac_ptr[i] = NULL;
  926. continue;
  927. }
  928. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  929. if (!ac_ptr[i]) {
  930. for (i--; i <= 0; i--)
  931. kfree(ac_ptr[i]);
  932. kfree(ac_ptr);
  933. return NULL;
  934. }
  935. }
  936. }
  937. return ac_ptr;
  938. }
  939. static void free_alien_cache(struct array_cache **ac_ptr)
  940. {
  941. int i;
  942. if (!ac_ptr)
  943. return;
  944. for_each_node(i)
  945. kfree(ac_ptr[i]);
  946. kfree(ac_ptr);
  947. }
  948. static void __drain_alien_cache(struct kmem_cache *cachep,
  949. struct array_cache *ac, int node)
  950. {
  951. struct kmem_list3 *rl3 = cachep->nodelists[node];
  952. if (ac->avail) {
  953. spin_lock(&rl3->list_lock);
  954. /*
  955. * Stuff objects into the remote nodes shared array first.
  956. * That way we could avoid the overhead of putting the objects
  957. * into the free lists and getting them back later.
  958. */
  959. if (rl3->shared)
  960. transfer_objects(rl3->shared, ac, ac->limit);
  961. free_block(cachep, ac->entry, ac->avail, node);
  962. ac->avail = 0;
  963. spin_unlock(&rl3->list_lock);
  964. }
  965. }
  966. /*
  967. * Called from cache_reap() to regularly drain alien caches round robin.
  968. */
  969. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  970. {
  971. int node = __get_cpu_var(reap_node);
  972. if (l3->alien) {
  973. struct array_cache *ac = l3->alien[node];
  974. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  975. __drain_alien_cache(cachep, ac, node);
  976. spin_unlock_irq(&ac->lock);
  977. }
  978. }
  979. }
  980. static void drain_alien_cache(struct kmem_cache *cachep,
  981. struct array_cache **alien)
  982. {
  983. int i = 0;
  984. struct array_cache *ac;
  985. unsigned long flags;
  986. for_each_online_node(i) {
  987. ac = alien[i];
  988. if (ac) {
  989. spin_lock_irqsave(&ac->lock, flags);
  990. __drain_alien_cache(cachep, ac, i);
  991. spin_unlock_irqrestore(&ac->lock, flags);
  992. }
  993. }
  994. }
  995. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  996. {
  997. struct slab *slabp = virt_to_slab(objp);
  998. int nodeid = slabp->nodeid;
  999. struct kmem_list3 *l3;
  1000. struct array_cache *alien = NULL;
  1001. int node;
  1002. node = numa_node_id();
  1003. /*
  1004. * Make sure we are not freeing a object from another node to the array
  1005. * cache on this cpu.
  1006. */
  1007. if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
  1008. return 0;
  1009. l3 = cachep->nodelists[node];
  1010. STATS_INC_NODEFREES(cachep);
  1011. if (l3->alien && l3->alien[nodeid]) {
  1012. alien = l3->alien[nodeid];
  1013. spin_lock(&alien->lock);
  1014. if (unlikely(alien->avail == alien->limit)) {
  1015. STATS_INC_ACOVERFLOW(cachep);
  1016. __drain_alien_cache(cachep, alien, nodeid);
  1017. }
  1018. alien->entry[alien->avail++] = objp;
  1019. spin_unlock(&alien->lock);
  1020. } else {
  1021. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1022. free_block(cachep, &objp, 1, nodeid);
  1023. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1024. }
  1025. return 1;
  1026. }
  1027. #endif
  1028. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1029. unsigned long action, void *hcpu)
  1030. {
  1031. long cpu = (long)hcpu;
  1032. struct kmem_cache *cachep;
  1033. struct kmem_list3 *l3 = NULL;
  1034. int node = cpu_to_node(cpu);
  1035. int memsize = sizeof(struct kmem_list3);
  1036. switch (action) {
  1037. case CPU_UP_PREPARE:
  1038. mutex_lock(&cache_chain_mutex);
  1039. /*
  1040. * We need to do this right in the beginning since
  1041. * alloc_arraycache's are going to use this list.
  1042. * kmalloc_node allows us to add the slab to the right
  1043. * kmem_list3 and not this cpu's kmem_list3
  1044. */
  1045. list_for_each_entry(cachep, &cache_chain, next) {
  1046. /*
  1047. * Set up the size64 kmemlist for cpu before we can
  1048. * begin anything. Make sure some other cpu on this
  1049. * node has not already allocated this
  1050. */
  1051. if (!cachep->nodelists[node]) {
  1052. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1053. if (!l3)
  1054. goto bad;
  1055. kmem_list3_init(l3);
  1056. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1057. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1058. /*
  1059. * The l3s don't come and go as CPUs come and
  1060. * go. cache_chain_mutex is sufficient
  1061. * protection here.
  1062. */
  1063. cachep->nodelists[node] = l3;
  1064. }
  1065. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1066. cachep->nodelists[node]->free_limit =
  1067. (1 + nr_cpus_node(node)) *
  1068. cachep->batchcount + cachep->num;
  1069. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1070. }
  1071. /*
  1072. * Now we can go ahead with allocating the shared arrays and
  1073. * array caches
  1074. */
  1075. list_for_each_entry(cachep, &cache_chain, next) {
  1076. struct array_cache *nc;
  1077. struct array_cache *shared;
  1078. struct array_cache **alien = NULL;
  1079. nc = alloc_arraycache(node, cachep->limit,
  1080. cachep->batchcount);
  1081. if (!nc)
  1082. goto bad;
  1083. shared = alloc_arraycache(node,
  1084. cachep->shared * cachep->batchcount,
  1085. 0xbaadf00d);
  1086. if (!shared)
  1087. goto bad;
  1088. if (use_alien_caches) {
  1089. alien = alloc_alien_cache(node, cachep->limit);
  1090. if (!alien)
  1091. goto bad;
  1092. }
  1093. cachep->array[cpu] = nc;
  1094. l3 = cachep->nodelists[node];
  1095. BUG_ON(!l3);
  1096. spin_lock_irq(&l3->list_lock);
  1097. if (!l3->shared) {
  1098. /*
  1099. * We are serialised from CPU_DEAD or
  1100. * CPU_UP_CANCELLED by the cpucontrol lock
  1101. */
  1102. l3->shared = shared;
  1103. shared = NULL;
  1104. }
  1105. #ifdef CONFIG_NUMA
  1106. if (!l3->alien) {
  1107. l3->alien = alien;
  1108. alien = NULL;
  1109. }
  1110. #endif
  1111. spin_unlock_irq(&l3->list_lock);
  1112. kfree(shared);
  1113. free_alien_cache(alien);
  1114. }
  1115. break;
  1116. case CPU_ONLINE:
  1117. mutex_unlock(&cache_chain_mutex);
  1118. start_cpu_timer(cpu);
  1119. break;
  1120. #ifdef CONFIG_HOTPLUG_CPU
  1121. case CPU_DOWN_PREPARE:
  1122. mutex_lock(&cache_chain_mutex);
  1123. break;
  1124. case CPU_DOWN_FAILED:
  1125. mutex_unlock(&cache_chain_mutex);
  1126. break;
  1127. case CPU_DEAD:
  1128. /*
  1129. * Even if all the cpus of a node are down, we don't free the
  1130. * kmem_list3 of any cache. This to avoid a race between
  1131. * cpu_down, and a kmalloc allocation from another cpu for
  1132. * memory from the node of the cpu going down. The list3
  1133. * structure is usually allocated from kmem_cache_create() and
  1134. * gets destroyed at kmem_cache_destroy().
  1135. */
  1136. /* fall thru */
  1137. #endif
  1138. case CPU_UP_CANCELED:
  1139. list_for_each_entry(cachep, &cache_chain, next) {
  1140. struct array_cache *nc;
  1141. struct array_cache *shared;
  1142. struct array_cache **alien;
  1143. cpumask_t mask;
  1144. mask = node_to_cpumask(node);
  1145. /* cpu is dead; no one can alloc from it. */
  1146. nc = cachep->array[cpu];
  1147. cachep->array[cpu] = NULL;
  1148. l3 = cachep->nodelists[node];
  1149. if (!l3)
  1150. goto free_array_cache;
  1151. spin_lock_irq(&l3->list_lock);
  1152. /* Free limit for this kmem_list3 */
  1153. l3->free_limit -= cachep->batchcount;
  1154. if (nc)
  1155. free_block(cachep, nc->entry, nc->avail, node);
  1156. if (!cpus_empty(mask)) {
  1157. spin_unlock_irq(&l3->list_lock);
  1158. goto free_array_cache;
  1159. }
  1160. shared = l3->shared;
  1161. if (shared) {
  1162. free_block(cachep, l3->shared->entry,
  1163. l3->shared->avail, node);
  1164. l3->shared = NULL;
  1165. }
  1166. alien = l3->alien;
  1167. l3->alien = NULL;
  1168. spin_unlock_irq(&l3->list_lock);
  1169. kfree(shared);
  1170. if (alien) {
  1171. drain_alien_cache(cachep, alien);
  1172. free_alien_cache(alien);
  1173. }
  1174. free_array_cache:
  1175. kfree(nc);
  1176. }
  1177. /*
  1178. * In the previous loop, all the objects were freed to
  1179. * the respective cache's slabs, now we can go ahead and
  1180. * shrink each nodelist to its limit.
  1181. */
  1182. list_for_each_entry(cachep, &cache_chain, next) {
  1183. l3 = cachep->nodelists[node];
  1184. if (!l3)
  1185. continue;
  1186. drain_freelist(cachep, l3, l3->free_objects);
  1187. }
  1188. mutex_unlock(&cache_chain_mutex);
  1189. break;
  1190. }
  1191. return NOTIFY_OK;
  1192. bad:
  1193. return NOTIFY_BAD;
  1194. }
  1195. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1196. &cpuup_callback, NULL, 0
  1197. };
  1198. /*
  1199. * swap the static kmem_list3 with kmalloced memory
  1200. */
  1201. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1202. int nodeid)
  1203. {
  1204. struct kmem_list3 *ptr;
  1205. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1206. BUG_ON(!ptr);
  1207. local_irq_disable();
  1208. memcpy(ptr, list, sizeof(struct kmem_list3));
  1209. /*
  1210. * Do not assume that spinlocks can be initialized via memcpy:
  1211. */
  1212. spin_lock_init(&ptr->list_lock);
  1213. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1214. cachep->nodelists[nodeid] = ptr;
  1215. local_irq_enable();
  1216. }
  1217. /*
  1218. * Initialisation. Called after the page allocator have been initialised and
  1219. * before smp_init().
  1220. */
  1221. void __init kmem_cache_init(void)
  1222. {
  1223. size_t left_over;
  1224. struct cache_sizes *sizes;
  1225. struct cache_names *names;
  1226. int i;
  1227. int order;
  1228. int node;
  1229. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1230. kmem_list3_init(&initkmem_list3[i]);
  1231. if (i < MAX_NUMNODES)
  1232. cache_cache.nodelists[i] = NULL;
  1233. }
  1234. /*
  1235. * Fragmentation resistance on low memory - only use bigger
  1236. * page orders on machines with more than 32MB of memory.
  1237. */
  1238. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1239. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1240. /* Bootstrap is tricky, because several objects are allocated
  1241. * from caches that do not exist yet:
  1242. * 1) initialize the cache_cache cache: it contains the struct
  1243. * kmem_cache structures of all caches, except cache_cache itself:
  1244. * cache_cache is statically allocated.
  1245. * Initially an __init data area is used for the head array and the
  1246. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1247. * array at the end of the bootstrap.
  1248. * 2) Create the first kmalloc cache.
  1249. * The struct kmem_cache for the new cache is allocated normally.
  1250. * An __init data area is used for the head array.
  1251. * 3) Create the remaining kmalloc caches, with minimally sized
  1252. * head arrays.
  1253. * 4) Replace the __init data head arrays for cache_cache and the first
  1254. * kmalloc cache with kmalloc allocated arrays.
  1255. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1256. * the other cache's with kmalloc allocated memory.
  1257. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1258. */
  1259. node = numa_node_id();
  1260. /* 1) create the cache_cache */
  1261. INIT_LIST_HEAD(&cache_chain);
  1262. list_add(&cache_cache.next, &cache_chain);
  1263. cache_cache.colour_off = cache_line_size();
  1264. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1265. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
  1266. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1267. cache_line_size());
  1268. for (order = 0; order < MAX_ORDER; order++) {
  1269. cache_estimate(order, cache_cache.buffer_size,
  1270. cache_line_size(), 0, &left_over, &cache_cache.num);
  1271. if (cache_cache.num)
  1272. break;
  1273. }
  1274. BUG_ON(!cache_cache.num);
  1275. cache_cache.gfporder = order;
  1276. cache_cache.colour = left_over / cache_cache.colour_off;
  1277. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1278. sizeof(struct slab), cache_line_size());
  1279. /* 2+3) create the kmalloc caches */
  1280. sizes = malloc_sizes;
  1281. names = cache_names;
  1282. /*
  1283. * Initialize the caches that provide memory for the array cache and the
  1284. * kmem_list3 structures first. Without this, further allocations will
  1285. * bug.
  1286. */
  1287. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1288. sizes[INDEX_AC].cs_size,
  1289. ARCH_KMALLOC_MINALIGN,
  1290. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1291. NULL, NULL);
  1292. if (INDEX_AC != INDEX_L3) {
  1293. sizes[INDEX_L3].cs_cachep =
  1294. kmem_cache_create(names[INDEX_L3].name,
  1295. sizes[INDEX_L3].cs_size,
  1296. ARCH_KMALLOC_MINALIGN,
  1297. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1298. NULL, NULL);
  1299. }
  1300. slab_early_init = 0;
  1301. while (sizes->cs_size != ULONG_MAX) {
  1302. /*
  1303. * For performance, all the general caches are L1 aligned.
  1304. * This should be particularly beneficial on SMP boxes, as it
  1305. * eliminates "false sharing".
  1306. * Note for systems short on memory removing the alignment will
  1307. * allow tighter packing of the smaller caches.
  1308. */
  1309. if (!sizes->cs_cachep) {
  1310. sizes->cs_cachep = kmem_cache_create(names->name,
  1311. sizes->cs_size,
  1312. ARCH_KMALLOC_MINALIGN,
  1313. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1314. NULL, NULL);
  1315. }
  1316. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1317. sizes->cs_size,
  1318. ARCH_KMALLOC_MINALIGN,
  1319. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1320. SLAB_PANIC,
  1321. NULL, NULL);
  1322. sizes++;
  1323. names++;
  1324. }
  1325. /* 4) Replace the bootstrap head arrays */
  1326. {
  1327. struct array_cache *ptr;
  1328. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1329. local_irq_disable();
  1330. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1331. memcpy(ptr, cpu_cache_get(&cache_cache),
  1332. sizeof(struct arraycache_init));
  1333. /*
  1334. * Do not assume that spinlocks can be initialized via memcpy:
  1335. */
  1336. spin_lock_init(&ptr->lock);
  1337. cache_cache.array[smp_processor_id()] = ptr;
  1338. local_irq_enable();
  1339. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1340. local_irq_disable();
  1341. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1342. != &initarray_generic.cache);
  1343. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1344. sizeof(struct arraycache_init));
  1345. /*
  1346. * Do not assume that spinlocks can be initialized via memcpy:
  1347. */
  1348. spin_lock_init(&ptr->lock);
  1349. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1350. ptr;
  1351. local_irq_enable();
  1352. }
  1353. /* 5) Replace the bootstrap kmem_list3's */
  1354. {
  1355. int nid;
  1356. /* Replace the static kmem_list3 structures for the boot cpu */
  1357. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
  1358. for_each_online_node(nid) {
  1359. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1360. &initkmem_list3[SIZE_AC + nid], nid);
  1361. if (INDEX_AC != INDEX_L3) {
  1362. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1363. &initkmem_list3[SIZE_L3 + nid], nid);
  1364. }
  1365. }
  1366. }
  1367. /* 6) resize the head arrays to their final sizes */
  1368. {
  1369. struct kmem_cache *cachep;
  1370. mutex_lock(&cache_chain_mutex);
  1371. list_for_each_entry(cachep, &cache_chain, next)
  1372. if (enable_cpucache(cachep))
  1373. BUG();
  1374. mutex_unlock(&cache_chain_mutex);
  1375. }
  1376. /* Annotate slab for lockdep -- annotate the malloc caches */
  1377. init_lock_keys();
  1378. /* Done! */
  1379. g_cpucache_up = FULL;
  1380. /*
  1381. * Register a cpu startup notifier callback that initializes
  1382. * cpu_cache_get for all new cpus
  1383. */
  1384. register_cpu_notifier(&cpucache_notifier);
  1385. /*
  1386. * The reap timers are started later, with a module init call: That part
  1387. * of the kernel is not yet operational.
  1388. */
  1389. }
  1390. static int __init cpucache_init(void)
  1391. {
  1392. int cpu;
  1393. /*
  1394. * Register the timers that return unneeded pages to the page allocator
  1395. */
  1396. for_each_online_cpu(cpu)
  1397. start_cpu_timer(cpu);
  1398. return 0;
  1399. }
  1400. __initcall(cpucache_init);
  1401. /*
  1402. * Interface to system's page allocator. No need to hold the cache-lock.
  1403. *
  1404. * If we requested dmaable memory, we will get it. Even if we
  1405. * did not request dmaable memory, we might get it, but that
  1406. * would be relatively rare and ignorable.
  1407. */
  1408. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1409. {
  1410. struct page *page;
  1411. int nr_pages;
  1412. int i;
  1413. #ifndef CONFIG_MMU
  1414. /*
  1415. * Nommu uses slab's for process anonymous memory allocations, and thus
  1416. * requires __GFP_COMP to properly refcount higher order allocations
  1417. */
  1418. flags |= __GFP_COMP;
  1419. #endif
  1420. flags |= cachep->gfpflags;
  1421. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1422. if (!page)
  1423. return NULL;
  1424. nr_pages = (1 << cachep->gfporder);
  1425. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1426. add_zone_page_state(page_zone(page),
  1427. NR_SLAB_RECLAIMABLE, nr_pages);
  1428. else
  1429. add_zone_page_state(page_zone(page),
  1430. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1431. for (i = 0; i < nr_pages; i++)
  1432. __SetPageSlab(page + i);
  1433. return page_address(page);
  1434. }
  1435. /*
  1436. * Interface to system's page release.
  1437. */
  1438. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1439. {
  1440. unsigned long i = (1 << cachep->gfporder);
  1441. struct page *page = virt_to_page(addr);
  1442. const unsigned long nr_freed = i;
  1443. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1444. sub_zone_page_state(page_zone(page),
  1445. NR_SLAB_RECLAIMABLE, nr_freed);
  1446. else
  1447. sub_zone_page_state(page_zone(page),
  1448. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1449. while (i--) {
  1450. BUG_ON(!PageSlab(page));
  1451. __ClearPageSlab(page);
  1452. page++;
  1453. }
  1454. if (current->reclaim_state)
  1455. current->reclaim_state->reclaimed_slab += nr_freed;
  1456. free_pages((unsigned long)addr, cachep->gfporder);
  1457. }
  1458. static void kmem_rcu_free(struct rcu_head *head)
  1459. {
  1460. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1461. struct kmem_cache *cachep = slab_rcu->cachep;
  1462. kmem_freepages(cachep, slab_rcu->addr);
  1463. if (OFF_SLAB(cachep))
  1464. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1465. }
  1466. #if DEBUG
  1467. #ifdef CONFIG_DEBUG_PAGEALLOC
  1468. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1469. unsigned long caller)
  1470. {
  1471. int size = obj_size(cachep);
  1472. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1473. if (size < 5 * sizeof(unsigned long))
  1474. return;
  1475. *addr++ = 0x12345678;
  1476. *addr++ = caller;
  1477. *addr++ = smp_processor_id();
  1478. size -= 3 * sizeof(unsigned long);
  1479. {
  1480. unsigned long *sptr = &caller;
  1481. unsigned long svalue;
  1482. while (!kstack_end(sptr)) {
  1483. svalue = *sptr++;
  1484. if (kernel_text_address(svalue)) {
  1485. *addr++ = svalue;
  1486. size -= sizeof(unsigned long);
  1487. if (size <= sizeof(unsigned long))
  1488. break;
  1489. }
  1490. }
  1491. }
  1492. *addr++ = 0x87654321;
  1493. }
  1494. #endif
  1495. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1496. {
  1497. int size = obj_size(cachep);
  1498. addr = &((char *)addr)[obj_offset(cachep)];
  1499. memset(addr, val, size);
  1500. *(unsigned char *)(addr + size - 1) = POISON_END;
  1501. }
  1502. static void dump_line(char *data, int offset, int limit)
  1503. {
  1504. int i;
  1505. unsigned char error = 0;
  1506. int bad_count = 0;
  1507. printk(KERN_ERR "%03x:", offset);
  1508. for (i = 0; i < limit; i++) {
  1509. if (data[offset + i] != POISON_FREE) {
  1510. error = data[offset + i];
  1511. bad_count++;
  1512. }
  1513. printk(" %02x", (unsigned char)data[offset + i]);
  1514. }
  1515. printk("\n");
  1516. if (bad_count == 1) {
  1517. error ^= POISON_FREE;
  1518. if (!(error & (error - 1))) {
  1519. printk(KERN_ERR "Single bit error detected. Probably "
  1520. "bad RAM.\n");
  1521. #ifdef CONFIG_X86
  1522. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1523. "test tool.\n");
  1524. #else
  1525. printk(KERN_ERR "Run a memory test tool.\n");
  1526. #endif
  1527. }
  1528. }
  1529. }
  1530. #endif
  1531. #if DEBUG
  1532. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1533. {
  1534. int i, size;
  1535. char *realobj;
  1536. if (cachep->flags & SLAB_RED_ZONE) {
  1537. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1538. *dbg_redzone1(cachep, objp),
  1539. *dbg_redzone2(cachep, objp));
  1540. }
  1541. if (cachep->flags & SLAB_STORE_USER) {
  1542. printk(KERN_ERR "Last user: [<%p>]",
  1543. *dbg_userword(cachep, objp));
  1544. print_symbol("(%s)",
  1545. (unsigned long)*dbg_userword(cachep, objp));
  1546. printk("\n");
  1547. }
  1548. realobj = (char *)objp + obj_offset(cachep);
  1549. size = obj_size(cachep);
  1550. for (i = 0; i < size && lines; i += 16, lines--) {
  1551. int limit;
  1552. limit = 16;
  1553. if (i + limit > size)
  1554. limit = size - i;
  1555. dump_line(realobj, i, limit);
  1556. }
  1557. }
  1558. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1559. {
  1560. char *realobj;
  1561. int size, i;
  1562. int lines = 0;
  1563. realobj = (char *)objp + obj_offset(cachep);
  1564. size = obj_size(cachep);
  1565. for (i = 0; i < size; i++) {
  1566. char exp = POISON_FREE;
  1567. if (i == size - 1)
  1568. exp = POISON_END;
  1569. if (realobj[i] != exp) {
  1570. int limit;
  1571. /* Mismatch ! */
  1572. /* Print header */
  1573. if (lines == 0) {
  1574. printk(KERN_ERR
  1575. "Slab corruption: start=%p, len=%d\n",
  1576. realobj, size);
  1577. print_objinfo(cachep, objp, 0);
  1578. }
  1579. /* Hexdump the affected line */
  1580. i = (i / 16) * 16;
  1581. limit = 16;
  1582. if (i + limit > size)
  1583. limit = size - i;
  1584. dump_line(realobj, i, limit);
  1585. i += 16;
  1586. lines++;
  1587. /* Limit to 5 lines */
  1588. if (lines > 5)
  1589. break;
  1590. }
  1591. }
  1592. if (lines != 0) {
  1593. /* Print some data about the neighboring objects, if they
  1594. * exist:
  1595. */
  1596. struct slab *slabp = virt_to_slab(objp);
  1597. unsigned int objnr;
  1598. objnr = obj_to_index(cachep, slabp, objp);
  1599. if (objnr) {
  1600. objp = index_to_obj(cachep, slabp, objnr - 1);
  1601. realobj = (char *)objp + obj_offset(cachep);
  1602. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1603. realobj, size);
  1604. print_objinfo(cachep, objp, 2);
  1605. }
  1606. if (objnr + 1 < cachep->num) {
  1607. objp = index_to_obj(cachep, slabp, objnr + 1);
  1608. realobj = (char *)objp + obj_offset(cachep);
  1609. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1610. realobj, size);
  1611. print_objinfo(cachep, objp, 2);
  1612. }
  1613. }
  1614. }
  1615. #endif
  1616. #if DEBUG
  1617. /**
  1618. * slab_destroy_objs - destroy a slab and its objects
  1619. * @cachep: cache pointer being destroyed
  1620. * @slabp: slab pointer being destroyed
  1621. *
  1622. * Call the registered destructor for each object in a slab that is being
  1623. * destroyed.
  1624. */
  1625. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1626. {
  1627. int i;
  1628. for (i = 0; i < cachep->num; i++) {
  1629. void *objp = index_to_obj(cachep, slabp, i);
  1630. if (cachep->flags & SLAB_POISON) {
  1631. #ifdef CONFIG_DEBUG_PAGEALLOC
  1632. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1633. OFF_SLAB(cachep))
  1634. kernel_map_pages(virt_to_page(objp),
  1635. cachep->buffer_size / PAGE_SIZE, 1);
  1636. else
  1637. check_poison_obj(cachep, objp);
  1638. #else
  1639. check_poison_obj(cachep, objp);
  1640. #endif
  1641. }
  1642. if (cachep->flags & SLAB_RED_ZONE) {
  1643. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1644. slab_error(cachep, "start of a freed object "
  1645. "was overwritten");
  1646. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1647. slab_error(cachep, "end of a freed object "
  1648. "was overwritten");
  1649. }
  1650. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1651. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1652. }
  1653. }
  1654. #else
  1655. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1656. {
  1657. if (cachep->dtor) {
  1658. int i;
  1659. for (i = 0; i < cachep->num; i++) {
  1660. void *objp = index_to_obj(cachep, slabp, i);
  1661. (cachep->dtor) (objp, cachep, 0);
  1662. }
  1663. }
  1664. }
  1665. #endif
  1666. /**
  1667. * slab_destroy - destroy and release all objects in a slab
  1668. * @cachep: cache pointer being destroyed
  1669. * @slabp: slab pointer being destroyed
  1670. *
  1671. * Destroy all the objs in a slab, and release the mem back to the system.
  1672. * Before calling the slab must have been unlinked from the cache. The
  1673. * cache-lock is not held/needed.
  1674. */
  1675. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1676. {
  1677. void *addr = slabp->s_mem - slabp->colouroff;
  1678. slab_destroy_objs(cachep, slabp);
  1679. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1680. struct slab_rcu *slab_rcu;
  1681. slab_rcu = (struct slab_rcu *)slabp;
  1682. slab_rcu->cachep = cachep;
  1683. slab_rcu->addr = addr;
  1684. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1685. } else {
  1686. kmem_freepages(cachep, addr);
  1687. if (OFF_SLAB(cachep))
  1688. kmem_cache_free(cachep->slabp_cache, slabp);
  1689. }
  1690. }
  1691. /*
  1692. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1693. * size of kmem_list3.
  1694. */
  1695. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1696. {
  1697. int node;
  1698. for_each_online_node(node) {
  1699. cachep->nodelists[node] = &initkmem_list3[index + node];
  1700. cachep->nodelists[node]->next_reap = jiffies +
  1701. REAPTIMEOUT_LIST3 +
  1702. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1703. }
  1704. }
  1705. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1706. {
  1707. int i;
  1708. struct kmem_list3 *l3;
  1709. for_each_online_cpu(i)
  1710. kfree(cachep->array[i]);
  1711. /* NUMA: free the list3 structures */
  1712. for_each_online_node(i) {
  1713. l3 = cachep->nodelists[i];
  1714. if (l3) {
  1715. kfree(l3->shared);
  1716. free_alien_cache(l3->alien);
  1717. kfree(l3);
  1718. }
  1719. }
  1720. kmem_cache_free(&cache_cache, cachep);
  1721. }
  1722. /**
  1723. * calculate_slab_order - calculate size (page order) of slabs
  1724. * @cachep: pointer to the cache that is being created
  1725. * @size: size of objects to be created in this cache.
  1726. * @align: required alignment for the objects.
  1727. * @flags: slab allocation flags
  1728. *
  1729. * Also calculates the number of objects per slab.
  1730. *
  1731. * This could be made much more intelligent. For now, try to avoid using
  1732. * high order pages for slabs. When the gfp() functions are more friendly
  1733. * towards high-order requests, this should be changed.
  1734. */
  1735. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1736. size_t size, size_t align, unsigned long flags)
  1737. {
  1738. unsigned long offslab_limit;
  1739. size_t left_over = 0;
  1740. int gfporder;
  1741. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1742. unsigned int num;
  1743. size_t remainder;
  1744. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1745. if (!num)
  1746. continue;
  1747. if (flags & CFLGS_OFF_SLAB) {
  1748. /*
  1749. * Max number of objs-per-slab for caches which
  1750. * use off-slab slabs. Needed to avoid a possible
  1751. * looping condition in cache_grow().
  1752. */
  1753. offslab_limit = size - sizeof(struct slab);
  1754. offslab_limit /= sizeof(kmem_bufctl_t);
  1755. if (num > offslab_limit)
  1756. break;
  1757. }
  1758. /* Found something acceptable - save it away */
  1759. cachep->num = num;
  1760. cachep->gfporder = gfporder;
  1761. left_over = remainder;
  1762. /*
  1763. * A VFS-reclaimable slab tends to have most allocations
  1764. * as GFP_NOFS and we really don't want to have to be allocating
  1765. * higher-order pages when we are unable to shrink dcache.
  1766. */
  1767. if (flags & SLAB_RECLAIM_ACCOUNT)
  1768. break;
  1769. /*
  1770. * Large number of objects is good, but very large slabs are
  1771. * currently bad for the gfp()s.
  1772. */
  1773. if (gfporder >= slab_break_gfp_order)
  1774. break;
  1775. /*
  1776. * Acceptable internal fragmentation?
  1777. */
  1778. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1779. break;
  1780. }
  1781. return left_over;
  1782. }
  1783. static int setup_cpu_cache(struct kmem_cache *cachep)
  1784. {
  1785. if (g_cpucache_up == FULL)
  1786. return enable_cpucache(cachep);
  1787. if (g_cpucache_up == NONE) {
  1788. /*
  1789. * Note: the first kmem_cache_create must create the cache
  1790. * that's used by kmalloc(24), otherwise the creation of
  1791. * further caches will BUG().
  1792. */
  1793. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1794. /*
  1795. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1796. * the first cache, then we need to set up all its list3s,
  1797. * otherwise the creation of further caches will BUG().
  1798. */
  1799. set_up_list3s(cachep, SIZE_AC);
  1800. if (INDEX_AC == INDEX_L3)
  1801. g_cpucache_up = PARTIAL_L3;
  1802. else
  1803. g_cpucache_up = PARTIAL_AC;
  1804. } else {
  1805. cachep->array[smp_processor_id()] =
  1806. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1807. if (g_cpucache_up == PARTIAL_AC) {
  1808. set_up_list3s(cachep, SIZE_L3);
  1809. g_cpucache_up = PARTIAL_L3;
  1810. } else {
  1811. int node;
  1812. for_each_online_node(node) {
  1813. cachep->nodelists[node] =
  1814. kmalloc_node(sizeof(struct kmem_list3),
  1815. GFP_KERNEL, node);
  1816. BUG_ON(!cachep->nodelists[node]);
  1817. kmem_list3_init(cachep->nodelists[node]);
  1818. }
  1819. }
  1820. }
  1821. cachep->nodelists[numa_node_id()]->next_reap =
  1822. jiffies + REAPTIMEOUT_LIST3 +
  1823. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1824. cpu_cache_get(cachep)->avail = 0;
  1825. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1826. cpu_cache_get(cachep)->batchcount = 1;
  1827. cpu_cache_get(cachep)->touched = 0;
  1828. cachep->batchcount = 1;
  1829. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1830. return 0;
  1831. }
  1832. /**
  1833. * kmem_cache_create - Create a cache.
  1834. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1835. * @size: The size of objects to be created in this cache.
  1836. * @align: The required alignment for the objects.
  1837. * @flags: SLAB flags
  1838. * @ctor: A constructor for the objects.
  1839. * @dtor: A destructor for the objects.
  1840. *
  1841. * Returns a ptr to the cache on success, NULL on failure.
  1842. * Cannot be called within a int, but can be interrupted.
  1843. * The @ctor is run when new pages are allocated by the cache
  1844. * and the @dtor is run before the pages are handed back.
  1845. *
  1846. * @name must be valid until the cache is destroyed. This implies that
  1847. * the module calling this has to destroy the cache before getting unloaded.
  1848. *
  1849. * The flags are
  1850. *
  1851. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1852. * to catch references to uninitialised memory.
  1853. *
  1854. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1855. * for buffer overruns.
  1856. *
  1857. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1858. * cacheline. This can be beneficial if you're counting cycles as closely
  1859. * as davem.
  1860. */
  1861. struct kmem_cache *
  1862. kmem_cache_create (const char *name, size_t size, size_t align,
  1863. unsigned long flags,
  1864. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1865. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1866. {
  1867. size_t left_over, slab_size, ralign;
  1868. struct kmem_cache *cachep = NULL, *pc;
  1869. /*
  1870. * Sanity checks... these are all serious usage bugs.
  1871. */
  1872. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1873. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1874. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1875. name);
  1876. BUG();
  1877. }
  1878. /*
  1879. * We use cache_chain_mutex to ensure a consistent view of
  1880. * cpu_online_map as well. Please see cpuup_callback
  1881. */
  1882. mutex_lock(&cache_chain_mutex);
  1883. list_for_each_entry(pc, &cache_chain, next) {
  1884. char tmp;
  1885. int res;
  1886. /*
  1887. * This happens when the module gets unloaded and doesn't
  1888. * destroy its slab cache and no-one else reuses the vmalloc
  1889. * area of the module. Print a warning.
  1890. */
  1891. res = probe_kernel_address(pc->name, tmp);
  1892. if (res) {
  1893. printk("SLAB: cache with size %d has lost its name\n",
  1894. pc->buffer_size);
  1895. continue;
  1896. }
  1897. if (!strcmp(pc->name, name)) {
  1898. printk("kmem_cache_create: duplicate cache %s\n", name);
  1899. dump_stack();
  1900. goto oops;
  1901. }
  1902. }
  1903. #if DEBUG
  1904. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1905. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1906. /* No constructor, but inital state check requested */
  1907. printk(KERN_ERR "%s: No con, but init state check "
  1908. "requested - %s\n", __FUNCTION__, name);
  1909. flags &= ~SLAB_DEBUG_INITIAL;
  1910. }
  1911. #if FORCED_DEBUG
  1912. /*
  1913. * Enable redzoning and last user accounting, except for caches with
  1914. * large objects, if the increased size would increase the object size
  1915. * above the next power of two: caches with object sizes just above a
  1916. * power of two have a significant amount of internal fragmentation.
  1917. */
  1918. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1919. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1920. if (!(flags & SLAB_DESTROY_BY_RCU))
  1921. flags |= SLAB_POISON;
  1922. #endif
  1923. if (flags & SLAB_DESTROY_BY_RCU)
  1924. BUG_ON(flags & SLAB_POISON);
  1925. #endif
  1926. if (flags & SLAB_DESTROY_BY_RCU)
  1927. BUG_ON(dtor);
  1928. /*
  1929. * Always checks flags, a caller might be expecting debug support which
  1930. * isn't available.
  1931. */
  1932. BUG_ON(flags & ~CREATE_MASK);
  1933. /*
  1934. * Check that size is in terms of words. This is needed to avoid
  1935. * unaligned accesses for some archs when redzoning is used, and makes
  1936. * sure any on-slab bufctl's are also correctly aligned.
  1937. */
  1938. if (size & (BYTES_PER_WORD - 1)) {
  1939. size += (BYTES_PER_WORD - 1);
  1940. size &= ~(BYTES_PER_WORD - 1);
  1941. }
  1942. /* calculate the final buffer alignment: */
  1943. /* 1) arch recommendation: can be overridden for debug */
  1944. if (flags & SLAB_HWCACHE_ALIGN) {
  1945. /*
  1946. * Default alignment: as specified by the arch code. Except if
  1947. * an object is really small, then squeeze multiple objects into
  1948. * one cacheline.
  1949. */
  1950. ralign = cache_line_size();
  1951. while (size <= ralign / 2)
  1952. ralign /= 2;
  1953. } else {
  1954. ralign = BYTES_PER_WORD;
  1955. }
  1956. /*
  1957. * Redzoning and user store require word alignment. Note this will be
  1958. * overridden by architecture or caller mandated alignment if either
  1959. * is greater than BYTES_PER_WORD.
  1960. */
  1961. if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
  1962. ralign = BYTES_PER_WORD;
  1963. /* 2) arch mandated alignment */
  1964. if (ralign < ARCH_SLAB_MINALIGN) {
  1965. ralign = ARCH_SLAB_MINALIGN;
  1966. }
  1967. /* 3) caller mandated alignment */
  1968. if (ralign < align) {
  1969. ralign = align;
  1970. }
  1971. /* disable debug if necessary */
  1972. if (ralign > BYTES_PER_WORD)
  1973. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1974. /*
  1975. * 4) Store it.
  1976. */
  1977. align = ralign;
  1978. /* Get cache's description obj. */
  1979. cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
  1980. if (!cachep)
  1981. goto oops;
  1982. #if DEBUG
  1983. cachep->obj_size = size;
  1984. /*
  1985. * Both debugging options require word-alignment which is calculated
  1986. * into align above.
  1987. */
  1988. if (flags & SLAB_RED_ZONE) {
  1989. /* add space for red zone words */
  1990. cachep->obj_offset += BYTES_PER_WORD;
  1991. size += 2 * BYTES_PER_WORD;
  1992. }
  1993. if (flags & SLAB_STORE_USER) {
  1994. /* user store requires one word storage behind the end of
  1995. * the real object.
  1996. */
  1997. size += BYTES_PER_WORD;
  1998. }
  1999. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2000. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2001. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2002. cachep->obj_offset += PAGE_SIZE - size;
  2003. size = PAGE_SIZE;
  2004. }
  2005. #endif
  2006. #endif
  2007. /*
  2008. * Determine if the slab management is 'on' or 'off' slab.
  2009. * (bootstrapping cannot cope with offslab caches so don't do
  2010. * it too early on.)
  2011. */
  2012. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2013. /*
  2014. * Size is large, assume best to place the slab management obj
  2015. * off-slab (should allow better packing of objs).
  2016. */
  2017. flags |= CFLGS_OFF_SLAB;
  2018. size = ALIGN(size, align);
  2019. left_over = calculate_slab_order(cachep, size, align, flags);
  2020. if (!cachep->num) {
  2021. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  2022. kmem_cache_free(&cache_cache, cachep);
  2023. cachep = NULL;
  2024. goto oops;
  2025. }
  2026. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2027. + sizeof(struct slab), align);
  2028. /*
  2029. * If the slab has been placed off-slab, and we have enough space then
  2030. * move it on-slab. This is at the expense of any extra colouring.
  2031. */
  2032. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2033. flags &= ~CFLGS_OFF_SLAB;
  2034. left_over -= slab_size;
  2035. }
  2036. if (flags & CFLGS_OFF_SLAB) {
  2037. /* really off slab. No need for manual alignment */
  2038. slab_size =
  2039. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2040. }
  2041. cachep->colour_off = cache_line_size();
  2042. /* Offset must be a multiple of the alignment. */
  2043. if (cachep->colour_off < align)
  2044. cachep->colour_off = align;
  2045. cachep->colour = left_over / cachep->colour_off;
  2046. cachep->slab_size = slab_size;
  2047. cachep->flags = flags;
  2048. cachep->gfpflags = 0;
  2049. if (flags & SLAB_CACHE_DMA)
  2050. cachep->gfpflags |= GFP_DMA;
  2051. cachep->buffer_size = size;
  2052. if (flags & CFLGS_OFF_SLAB) {
  2053. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2054. /*
  2055. * This is a possibility for one of the malloc_sizes caches.
  2056. * But since we go off slab only for object size greater than
  2057. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2058. * this should not happen at all.
  2059. * But leave a BUG_ON for some lucky dude.
  2060. */
  2061. BUG_ON(!cachep->slabp_cache);
  2062. }
  2063. cachep->ctor = ctor;
  2064. cachep->dtor = dtor;
  2065. cachep->name = name;
  2066. if (setup_cpu_cache(cachep)) {
  2067. __kmem_cache_destroy(cachep);
  2068. cachep = NULL;
  2069. goto oops;
  2070. }
  2071. /* cache setup completed, link it into the list */
  2072. list_add(&cachep->next, &cache_chain);
  2073. oops:
  2074. if (!cachep && (flags & SLAB_PANIC))
  2075. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2076. name);
  2077. mutex_unlock(&cache_chain_mutex);
  2078. return cachep;
  2079. }
  2080. EXPORT_SYMBOL(kmem_cache_create);
  2081. #if DEBUG
  2082. static void check_irq_off(void)
  2083. {
  2084. BUG_ON(!irqs_disabled());
  2085. }
  2086. static void check_irq_on(void)
  2087. {
  2088. BUG_ON(irqs_disabled());
  2089. }
  2090. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2091. {
  2092. #ifdef CONFIG_SMP
  2093. check_irq_off();
  2094. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2095. #endif
  2096. }
  2097. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2098. {
  2099. #ifdef CONFIG_SMP
  2100. check_irq_off();
  2101. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2102. #endif
  2103. }
  2104. #else
  2105. #define check_irq_off() do { } while(0)
  2106. #define check_irq_on() do { } while(0)
  2107. #define check_spinlock_acquired(x) do { } while(0)
  2108. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2109. #endif
  2110. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2111. struct array_cache *ac,
  2112. int force, int node);
  2113. static void do_drain(void *arg)
  2114. {
  2115. struct kmem_cache *cachep = arg;
  2116. struct array_cache *ac;
  2117. int node = numa_node_id();
  2118. check_irq_off();
  2119. ac = cpu_cache_get(cachep);
  2120. spin_lock(&cachep->nodelists[node]->list_lock);
  2121. free_block(cachep, ac->entry, ac->avail, node);
  2122. spin_unlock(&cachep->nodelists[node]->list_lock);
  2123. ac->avail = 0;
  2124. }
  2125. static void drain_cpu_caches(struct kmem_cache *cachep)
  2126. {
  2127. struct kmem_list3 *l3;
  2128. int node;
  2129. on_each_cpu(do_drain, cachep, 1, 1);
  2130. check_irq_on();
  2131. for_each_online_node(node) {
  2132. l3 = cachep->nodelists[node];
  2133. if (l3 && l3->alien)
  2134. drain_alien_cache(cachep, l3->alien);
  2135. }
  2136. for_each_online_node(node) {
  2137. l3 = cachep->nodelists[node];
  2138. if (l3)
  2139. drain_array(cachep, l3, l3->shared, 1, node);
  2140. }
  2141. }
  2142. /*
  2143. * Remove slabs from the list of free slabs.
  2144. * Specify the number of slabs to drain in tofree.
  2145. *
  2146. * Returns the actual number of slabs released.
  2147. */
  2148. static int drain_freelist(struct kmem_cache *cache,
  2149. struct kmem_list3 *l3, int tofree)
  2150. {
  2151. struct list_head *p;
  2152. int nr_freed;
  2153. struct slab *slabp;
  2154. nr_freed = 0;
  2155. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2156. spin_lock_irq(&l3->list_lock);
  2157. p = l3->slabs_free.prev;
  2158. if (p == &l3->slabs_free) {
  2159. spin_unlock_irq(&l3->list_lock);
  2160. goto out;
  2161. }
  2162. slabp = list_entry(p, struct slab, list);
  2163. #if DEBUG
  2164. BUG_ON(slabp->inuse);
  2165. #endif
  2166. list_del(&slabp->list);
  2167. /*
  2168. * Safe to drop the lock. The slab is no longer linked
  2169. * to the cache.
  2170. */
  2171. l3->free_objects -= cache->num;
  2172. spin_unlock_irq(&l3->list_lock);
  2173. slab_destroy(cache, slabp);
  2174. nr_freed++;
  2175. }
  2176. out:
  2177. return nr_freed;
  2178. }
  2179. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2180. static int __cache_shrink(struct kmem_cache *cachep)
  2181. {
  2182. int ret = 0, i = 0;
  2183. struct kmem_list3 *l3;
  2184. drain_cpu_caches(cachep);
  2185. check_irq_on();
  2186. for_each_online_node(i) {
  2187. l3 = cachep->nodelists[i];
  2188. if (!l3)
  2189. continue;
  2190. drain_freelist(cachep, l3, l3->free_objects);
  2191. ret += !list_empty(&l3->slabs_full) ||
  2192. !list_empty(&l3->slabs_partial);
  2193. }
  2194. return (ret ? 1 : 0);
  2195. }
  2196. /**
  2197. * kmem_cache_shrink - Shrink a cache.
  2198. * @cachep: The cache to shrink.
  2199. *
  2200. * Releases as many slabs as possible for a cache.
  2201. * To help debugging, a zero exit status indicates all slabs were released.
  2202. */
  2203. int kmem_cache_shrink(struct kmem_cache *cachep)
  2204. {
  2205. int ret;
  2206. BUG_ON(!cachep || in_interrupt());
  2207. mutex_lock(&cache_chain_mutex);
  2208. ret = __cache_shrink(cachep);
  2209. mutex_unlock(&cache_chain_mutex);
  2210. return ret;
  2211. }
  2212. EXPORT_SYMBOL(kmem_cache_shrink);
  2213. /**
  2214. * kmem_cache_destroy - delete a cache
  2215. * @cachep: the cache to destroy
  2216. *
  2217. * Remove a struct kmem_cache object from the slab cache.
  2218. *
  2219. * It is expected this function will be called by a module when it is
  2220. * unloaded. This will remove the cache completely, and avoid a duplicate
  2221. * cache being allocated each time a module is loaded and unloaded, if the
  2222. * module doesn't have persistent in-kernel storage across loads and unloads.
  2223. *
  2224. * The cache must be empty before calling this function.
  2225. *
  2226. * The caller must guarantee that noone will allocate memory from the cache
  2227. * during the kmem_cache_destroy().
  2228. */
  2229. void kmem_cache_destroy(struct kmem_cache *cachep)
  2230. {
  2231. BUG_ON(!cachep || in_interrupt());
  2232. /* Find the cache in the chain of caches. */
  2233. mutex_lock(&cache_chain_mutex);
  2234. /*
  2235. * the chain is never empty, cache_cache is never destroyed
  2236. */
  2237. list_del(&cachep->next);
  2238. if (__cache_shrink(cachep)) {
  2239. slab_error(cachep, "Can't free all objects");
  2240. list_add(&cachep->next, &cache_chain);
  2241. mutex_unlock(&cache_chain_mutex);
  2242. return;
  2243. }
  2244. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2245. synchronize_rcu();
  2246. __kmem_cache_destroy(cachep);
  2247. mutex_unlock(&cache_chain_mutex);
  2248. }
  2249. EXPORT_SYMBOL(kmem_cache_destroy);
  2250. /*
  2251. * Get the memory for a slab management obj.
  2252. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2253. * always come from malloc_sizes caches. The slab descriptor cannot
  2254. * come from the same cache which is getting created because,
  2255. * when we are searching for an appropriate cache for these
  2256. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2257. * If we are creating a malloc_sizes cache here it would not be visible to
  2258. * kmem_find_general_cachep till the initialization is complete.
  2259. * Hence we cannot have slabp_cache same as the original cache.
  2260. */
  2261. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2262. int colour_off, gfp_t local_flags,
  2263. int nodeid)
  2264. {
  2265. struct slab *slabp;
  2266. if (OFF_SLAB(cachep)) {
  2267. /* Slab management obj is off-slab. */
  2268. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2269. local_flags & ~GFP_THISNODE, nodeid);
  2270. if (!slabp)
  2271. return NULL;
  2272. } else {
  2273. slabp = objp + colour_off;
  2274. colour_off += cachep->slab_size;
  2275. }
  2276. slabp->inuse = 0;
  2277. slabp->colouroff = colour_off;
  2278. slabp->s_mem = objp + colour_off;
  2279. slabp->nodeid = nodeid;
  2280. return slabp;
  2281. }
  2282. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2283. {
  2284. return (kmem_bufctl_t *) (slabp + 1);
  2285. }
  2286. static void cache_init_objs(struct kmem_cache *cachep,
  2287. struct slab *slabp, unsigned long ctor_flags)
  2288. {
  2289. int i;
  2290. for (i = 0; i < cachep->num; i++) {
  2291. void *objp = index_to_obj(cachep, slabp, i);
  2292. #if DEBUG
  2293. /* need to poison the objs? */
  2294. if (cachep->flags & SLAB_POISON)
  2295. poison_obj(cachep, objp, POISON_FREE);
  2296. if (cachep->flags & SLAB_STORE_USER)
  2297. *dbg_userword(cachep, objp) = NULL;
  2298. if (cachep->flags & SLAB_RED_ZONE) {
  2299. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2300. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2301. }
  2302. /*
  2303. * Constructors are not allowed to allocate memory from the same
  2304. * cache which they are a constructor for. Otherwise, deadlock.
  2305. * They must also be threaded.
  2306. */
  2307. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2308. cachep->ctor(objp + obj_offset(cachep), cachep,
  2309. ctor_flags);
  2310. if (cachep->flags & SLAB_RED_ZONE) {
  2311. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2312. slab_error(cachep, "constructor overwrote the"
  2313. " end of an object");
  2314. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2315. slab_error(cachep, "constructor overwrote the"
  2316. " start of an object");
  2317. }
  2318. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2319. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2320. kernel_map_pages(virt_to_page(objp),
  2321. cachep->buffer_size / PAGE_SIZE, 0);
  2322. #else
  2323. if (cachep->ctor)
  2324. cachep->ctor(objp, cachep, ctor_flags);
  2325. #endif
  2326. slab_bufctl(slabp)[i] = i + 1;
  2327. }
  2328. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2329. slabp->free = 0;
  2330. }
  2331. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2332. {
  2333. if (flags & GFP_DMA)
  2334. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2335. else
  2336. BUG_ON(cachep->gfpflags & GFP_DMA);
  2337. }
  2338. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2339. int nodeid)
  2340. {
  2341. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2342. kmem_bufctl_t next;
  2343. slabp->inuse++;
  2344. next = slab_bufctl(slabp)[slabp->free];
  2345. #if DEBUG
  2346. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2347. WARN_ON(slabp->nodeid != nodeid);
  2348. #endif
  2349. slabp->free = next;
  2350. return objp;
  2351. }
  2352. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2353. void *objp, int nodeid)
  2354. {
  2355. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2356. #if DEBUG
  2357. /* Verify that the slab belongs to the intended node */
  2358. WARN_ON(slabp->nodeid != nodeid);
  2359. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2360. printk(KERN_ERR "slab: double free detected in cache "
  2361. "'%s', objp %p\n", cachep->name, objp);
  2362. BUG();
  2363. }
  2364. #endif
  2365. slab_bufctl(slabp)[objnr] = slabp->free;
  2366. slabp->free = objnr;
  2367. slabp->inuse--;
  2368. }
  2369. /*
  2370. * Map pages beginning at addr to the given cache and slab. This is required
  2371. * for the slab allocator to be able to lookup the cache and slab of a
  2372. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2373. */
  2374. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2375. void *addr)
  2376. {
  2377. int nr_pages;
  2378. struct page *page;
  2379. page = virt_to_page(addr);
  2380. nr_pages = 1;
  2381. if (likely(!PageCompound(page)))
  2382. nr_pages <<= cache->gfporder;
  2383. do {
  2384. page_set_cache(page, cache);
  2385. page_set_slab(page, slab);
  2386. page++;
  2387. } while (--nr_pages);
  2388. }
  2389. /*
  2390. * Grow (by 1) the number of slabs within a cache. This is called by
  2391. * kmem_cache_alloc() when there are no active objs left in a cache.
  2392. */
  2393. static int cache_grow(struct kmem_cache *cachep,
  2394. gfp_t flags, int nodeid, void *objp)
  2395. {
  2396. struct slab *slabp;
  2397. size_t offset;
  2398. gfp_t local_flags;
  2399. unsigned long ctor_flags;
  2400. struct kmem_list3 *l3;
  2401. /*
  2402. * Be lazy and only check for valid flags here, keeping it out of the
  2403. * critical path in kmem_cache_alloc().
  2404. */
  2405. BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
  2406. if (flags & __GFP_NO_GROW)
  2407. return 0;
  2408. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2409. local_flags = (flags & GFP_LEVEL_MASK);
  2410. if (!(local_flags & __GFP_WAIT))
  2411. /*
  2412. * Not allowed to sleep. Need to tell a constructor about
  2413. * this - it might need to know...
  2414. */
  2415. ctor_flags |= SLAB_CTOR_ATOMIC;
  2416. /* Take the l3 list lock to change the colour_next on this node */
  2417. check_irq_off();
  2418. l3 = cachep->nodelists[nodeid];
  2419. spin_lock(&l3->list_lock);
  2420. /* Get colour for the slab, and cal the next value. */
  2421. offset = l3->colour_next;
  2422. l3->colour_next++;
  2423. if (l3->colour_next >= cachep->colour)
  2424. l3->colour_next = 0;
  2425. spin_unlock(&l3->list_lock);
  2426. offset *= cachep->colour_off;
  2427. if (local_flags & __GFP_WAIT)
  2428. local_irq_enable();
  2429. /*
  2430. * The test for missing atomic flag is performed here, rather than
  2431. * the more obvious place, simply to reduce the critical path length
  2432. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2433. * will eventually be caught here (where it matters).
  2434. */
  2435. kmem_flagcheck(cachep, flags);
  2436. /*
  2437. * Get mem for the objs. Attempt to allocate a physical page from
  2438. * 'nodeid'.
  2439. */
  2440. if (!objp)
  2441. objp = kmem_getpages(cachep, flags, nodeid);
  2442. if (!objp)
  2443. goto failed;
  2444. /* Get slab management. */
  2445. slabp = alloc_slabmgmt(cachep, objp, offset,
  2446. local_flags & ~GFP_THISNODE, nodeid);
  2447. if (!slabp)
  2448. goto opps1;
  2449. slabp->nodeid = nodeid;
  2450. slab_map_pages(cachep, slabp, objp);
  2451. cache_init_objs(cachep, slabp, ctor_flags);
  2452. if (local_flags & __GFP_WAIT)
  2453. local_irq_disable();
  2454. check_irq_off();
  2455. spin_lock(&l3->list_lock);
  2456. /* Make slab active. */
  2457. list_add_tail(&slabp->list, &(l3->slabs_free));
  2458. STATS_INC_GROWN(cachep);
  2459. l3->free_objects += cachep->num;
  2460. spin_unlock(&l3->list_lock);
  2461. return 1;
  2462. opps1:
  2463. kmem_freepages(cachep, objp);
  2464. failed:
  2465. if (local_flags & __GFP_WAIT)
  2466. local_irq_disable();
  2467. return 0;
  2468. }
  2469. #if DEBUG
  2470. /*
  2471. * Perform extra freeing checks:
  2472. * - detect bad pointers.
  2473. * - POISON/RED_ZONE checking
  2474. * - destructor calls, for caches with POISON+dtor
  2475. */
  2476. static void kfree_debugcheck(const void *objp)
  2477. {
  2478. struct page *page;
  2479. if (!virt_addr_valid(objp)) {
  2480. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2481. (unsigned long)objp);
  2482. BUG();
  2483. }
  2484. page = virt_to_page(objp);
  2485. if (!PageSlab(page)) {
  2486. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2487. (unsigned long)objp);
  2488. BUG();
  2489. }
  2490. }
  2491. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2492. {
  2493. unsigned long redzone1, redzone2;
  2494. redzone1 = *dbg_redzone1(cache, obj);
  2495. redzone2 = *dbg_redzone2(cache, obj);
  2496. /*
  2497. * Redzone is ok.
  2498. */
  2499. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2500. return;
  2501. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2502. slab_error(cache, "double free detected");
  2503. else
  2504. slab_error(cache, "memory outside object was overwritten");
  2505. printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
  2506. obj, redzone1, redzone2);
  2507. }
  2508. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2509. void *caller)
  2510. {
  2511. struct page *page;
  2512. unsigned int objnr;
  2513. struct slab *slabp;
  2514. objp -= obj_offset(cachep);
  2515. kfree_debugcheck(objp);
  2516. page = virt_to_page(objp);
  2517. slabp = page_get_slab(page);
  2518. if (cachep->flags & SLAB_RED_ZONE) {
  2519. verify_redzone_free(cachep, objp);
  2520. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2521. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2522. }
  2523. if (cachep->flags & SLAB_STORE_USER)
  2524. *dbg_userword(cachep, objp) = caller;
  2525. objnr = obj_to_index(cachep, slabp, objp);
  2526. BUG_ON(objnr >= cachep->num);
  2527. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2528. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2529. /*
  2530. * Need to call the slab's constructor so the caller can
  2531. * perform a verify of its state (debugging). Called without
  2532. * the cache-lock held.
  2533. */
  2534. cachep->ctor(objp + obj_offset(cachep),
  2535. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2536. }
  2537. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2538. /* we want to cache poison the object,
  2539. * call the destruction callback
  2540. */
  2541. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2542. }
  2543. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2544. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2545. #endif
  2546. if (cachep->flags & SLAB_POISON) {
  2547. #ifdef CONFIG_DEBUG_PAGEALLOC
  2548. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2549. store_stackinfo(cachep, objp, (unsigned long)caller);
  2550. kernel_map_pages(virt_to_page(objp),
  2551. cachep->buffer_size / PAGE_SIZE, 0);
  2552. } else {
  2553. poison_obj(cachep, objp, POISON_FREE);
  2554. }
  2555. #else
  2556. poison_obj(cachep, objp, POISON_FREE);
  2557. #endif
  2558. }
  2559. return objp;
  2560. }
  2561. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2562. {
  2563. kmem_bufctl_t i;
  2564. int entries = 0;
  2565. /* Check slab's freelist to see if this obj is there. */
  2566. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2567. entries++;
  2568. if (entries > cachep->num || i >= cachep->num)
  2569. goto bad;
  2570. }
  2571. if (entries != cachep->num - slabp->inuse) {
  2572. bad:
  2573. printk(KERN_ERR "slab: Internal list corruption detected in "
  2574. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2575. cachep->name, cachep->num, slabp, slabp->inuse);
  2576. for (i = 0;
  2577. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2578. i++) {
  2579. if (i % 16 == 0)
  2580. printk("\n%03x:", i);
  2581. printk(" %02x", ((unsigned char *)slabp)[i]);
  2582. }
  2583. printk("\n");
  2584. BUG();
  2585. }
  2586. }
  2587. #else
  2588. #define kfree_debugcheck(x) do { } while(0)
  2589. #define cache_free_debugcheck(x,objp,z) (objp)
  2590. #define check_slabp(x,y) do { } while(0)
  2591. #endif
  2592. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2593. {
  2594. int batchcount;
  2595. struct kmem_list3 *l3;
  2596. struct array_cache *ac;
  2597. int node;
  2598. node = numa_node_id();
  2599. check_irq_off();
  2600. ac = cpu_cache_get(cachep);
  2601. retry:
  2602. batchcount = ac->batchcount;
  2603. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2604. /*
  2605. * If there was little recent activity on this cache, then
  2606. * perform only a partial refill. Otherwise we could generate
  2607. * refill bouncing.
  2608. */
  2609. batchcount = BATCHREFILL_LIMIT;
  2610. }
  2611. l3 = cachep->nodelists[node];
  2612. BUG_ON(ac->avail > 0 || !l3);
  2613. spin_lock(&l3->list_lock);
  2614. /* See if we can refill from the shared array */
  2615. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2616. goto alloc_done;
  2617. while (batchcount > 0) {
  2618. struct list_head *entry;
  2619. struct slab *slabp;
  2620. /* Get slab alloc is to come from. */
  2621. entry = l3->slabs_partial.next;
  2622. if (entry == &l3->slabs_partial) {
  2623. l3->free_touched = 1;
  2624. entry = l3->slabs_free.next;
  2625. if (entry == &l3->slabs_free)
  2626. goto must_grow;
  2627. }
  2628. slabp = list_entry(entry, struct slab, list);
  2629. check_slabp(cachep, slabp);
  2630. check_spinlock_acquired(cachep);
  2631. while (slabp->inuse < cachep->num && batchcount--) {
  2632. STATS_INC_ALLOCED(cachep);
  2633. STATS_INC_ACTIVE(cachep);
  2634. STATS_SET_HIGH(cachep);
  2635. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2636. node);
  2637. }
  2638. check_slabp(cachep, slabp);
  2639. /* move slabp to correct slabp list: */
  2640. list_del(&slabp->list);
  2641. if (slabp->free == BUFCTL_END)
  2642. list_add(&slabp->list, &l3->slabs_full);
  2643. else
  2644. list_add(&slabp->list, &l3->slabs_partial);
  2645. }
  2646. must_grow:
  2647. l3->free_objects -= ac->avail;
  2648. alloc_done:
  2649. spin_unlock(&l3->list_lock);
  2650. if (unlikely(!ac->avail)) {
  2651. int x;
  2652. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2653. /* cache_grow can reenable interrupts, then ac could change. */
  2654. ac = cpu_cache_get(cachep);
  2655. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2656. return NULL;
  2657. if (!ac->avail) /* objects refilled by interrupt? */
  2658. goto retry;
  2659. }
  2660. ac->touched = 1;
  2661. return ac->entry[--ac->avail];
  2662. }
  2663. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2664. gfp_t flags)
  2665. {
  2666. might_sleep_if(flags & __GFP_WAIT);
  2667. #if DEBUG
  2668. kmem_flagcheck(cachep, flags);
  2669. #endif
  2670. }
  2671. #if DEBUG
  2672. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2673. gfp_t flags, void *objp, void *caller)
  2674. {
  2675. if (!objp)
  2676. return objp;
  2677. if (cachep->flags & SLAB_POISON) {
  2678. #ifdef CONFIG_DEBUG_PAGEALLOC
  2679. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2680. kernel_map_pages(virt_to_page(objp),
  2681. cachep->buffer_size / PAGE_SIZE, 1);
  2682. else
  2683. check_poison_obj(cachep, objp);
  2684. #else
  2685. check_poison_obj(cachep, objp);
  2686. #endif
  2687. poison_obj(cachep, objp, POISON_INUSE);
  2688. }
  2689. if (cachep->flags & SLAB_STORE_USER)
  2690. *dbg_userword(cachep, objp) = caller;
  2691. if (cachep->flags & SLAB_RED_ZONE) {
  2692. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2693. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2694. slab_error(cachep, "double free, or memory outside"
  2695. " object was overwritten");
  2696. printk(KERN_ERR
  2697. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2698. objp, *dbg_redzone1(cachep, objp),
  2699. *dbg_redzone2(cachep, objp));
  2700. }
  2701. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2702. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2703. }
  2704. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2705. {
  2706. struct slab *slabp;
  2707. unsigned objnr;
  2708. slabp = page_get_slab(virt_to_page(objp));
  2709. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2710. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2711. }
  2712. #endif
  2713. objp += obj_offset(cachep);
  2714. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2715. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2716. if (!(flags & __GFP_WAIT))
  2717. ctor_flags |= SLAB_CTOR_ATOMIC;
  2718. cachep->ctor(objp, cachep, ctor_flags);
  2719. }
  2720. #if ARCH_SLAB_MINALIGN
  2721. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2722. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2723. objp, ARCH_SLAB_MINALIGN);
  2724. }
  2725. #endif
  2726. return objp;
  2727. }
  2728. #else
  2729. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2730. #endif
  2731. #ifdef CONFIG_FAILSLAB
  2732. static struct failslab_attr {
  2733. struct fault_attr attr;
  2734. u32 ignore_gfp_wait;
  2735. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2736. struct dentry *ignore_gfp_wait_file;
  2737. #endif
  2738. } failslab = {
  2739. .attr = FAULT_ATTR_INITIALIZER,
  2740. .ignore_gfp_wait = 1,
  2741. };
  2742. static int __init setup_failslab(char *str)
  2743. {
  2744. return setup_fault_attr(&failslab.attr, str);
  2745. }
  2746. __setup("failslab=", setup_failslab);
  2747. static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2748. {
  2749. if (cachep == &cache_cache)
  2750. return 0;
  2751. if (flags & __GFP_NOFAIL)
  2752. return 0;
  2753. if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
  2754. return 0;
  2755. return should_fail(&failslab.attr, obj_size(cachep));
  2756. }
  2757. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2758. static int __init failslab_debugfs(void)
  2759. {
  2760. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2761. struct dentry *dir;
  2762. int err;
  2763. err = init_fault_attr_dentries(&failslab.attr, "failslab");
  2764. if (err)
  2765. return err;
  2766. dir = failslab.attr.dentries.dir;
  2767. failslab.ignore_gfp_wait_file =
  2768. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2769. &failslab.ignore_gfp_wait);
  2770. if (!failslab.ignore_gfp_wait_file) {
  2771. err = -ENOMEM;
  2772. debugfs_remove(failslab.ignore_gfp_wait_file);
  2773. cleanup_fault_attr_dentries(&failslab.attr);
  2774. }
  2775. return err;
  2776. }
  2777. late_initcall(failslab_debugfs);
  2778. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2779. #else /* CONFIG_FAILSLAB */
  2780. static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2781. {
  2782. return 0;
  2783. }
  2784. #endif /* CONFIG_FAILSLAB */
  2785. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2786. {
  2787. void *objp;
  2788. struct array_cache *ac;
  2789. check_irq_off();
  2790. if (should_failslab(cachep, flags))
  2791. return NULL;
  2792. ac = cpu_cache_get(cachep);
  2793. if (likely(ac->avail)) {
  2794. STATS_INC_ALLOCHIT(cachep);
  2795. ac->touched = 1;
  2796. objp = ac->entry[--ac->avail];
  2797. } else {
  2798. STATS_INC_ALLOCMISS(cachep);
  2799. objp = cache_alloc_refill(cachep, flags);
  2800. }
  2801. return objp;
  2802. }
  2803. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2804. gfp_t flags, void *caller)
  2805. {
  2806. unsigned long save_flags;
  2807. void *objp = NULL;
  2808. cache_alloc_debugcheck_before(cachep, flags);
  2809. local_irq_save(save_flags);
  2810. if (unlikely(NUMA_BUILD &&
  2811. current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
  2812. objp = alternate_node_alloc(cachep, flags);
  2813. if (!objp)
  2814. objp = ____cache_alloc(cachep, flags);
  2815. /*
  2816. * We may just have run out of memory on the local node.
  2817. * ____cache_alloc_node() knows how to locate memory on other nodes
  2818. */
  2819. if (NUMA_BUILD && !objp)
  2820. objp = ____cache_alloc_node(cachep, flags, numa_node_id());
  2821. local_irq_restore(save_flags);
  2822. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2823. caller);
  2824. prefetchw(objp);
  2825. return objp;
  2826. }
  2827. #ifdef CONFIG_NUMA
  2828. /*
  2829. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2830. *
  2831. * If we are in_interrupt, then process context, including cpusets and
  2832. * mempolicy, may not apply and should not be used for allocation policy.
  2833. */
  2834. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2835. {
  2836. int nid_alloc, nid_here;
  2837. if (in_interrupt() || (flags & __GFP_THISNODE))
  2838. return NULL;
  2839. nid_alloc = nid_here = numa_node_id();
  2840. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2841. nid_alloc = cpuset_mem_spread_node();
  2842. else if (current->mempolicy)
  2843. nid_alloc = slab_node(current->mempolicy);
  2844. if (nid_alloc != nid_here)
  2845. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2846. return NULL;
  2847. }
  2848. /*
  2849. * Fallback function if there was no memory available and no objects on a
  2850. * certain node and fall back is permitted. First we scan all the
  2851. * available nodelists for available objects. If that fails then we
  2852. * perform an allocation without specifying a node. This allows the page
  2853. * allocator to do its reclaim / fallback magic. We then insert the
  2854. * slab into the proper nodelist and then allocate from it.
  2855. */
  2856. void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2857. {
  2858. struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
  2859. ->node_zonelists[gfp_zone(flags)];
  2860. struct zone **z;
  2861. void *obj = NULL;
  2862. int nid;
  2863. gfp_t local_flags = (flags & GFP_LEVEL_MASK);
  2864. retry:
  2865. /*
  2866. * Look through allowed nodes for objects available
  2867. * from existing per node queues.
  2868. */
  2869. for (z = zonelist->zones; *z && !obj; z++) {
  2870. nid = zone_to_nid(*z);
  2871. if (cpuset_zone_allowed(*z, flags | __GFP_HARDWALL) &&
  2872. cache->nodelists[nid] &&
  2873. cache->nodelists[nid]->free_objects)
  2874. obj = ____cache_alloc_node(cache,
  2875. flags | GFP_THISNODE, nid);
  2876. }
  2877. if (!obj) {
  2878. /*
  2879. * This allocation will be performed within the constraints
  2880. * of the current cpuset / memory policy requirements.
  2881. * We may trigger various forms of reclaim on the allowed
  2882. * set and go into memory reserves if necessary.
  2883. */
  2884. if (local_flags & __GFP_WAIT)
  2885. local_irq_enable();
  2886. kmem_flagcheck(cache, flags);
  2887. obj = kmem_getpages(cache, flags, -1);
  2888. if (local_flags & __GFP_WAIT)
  2889. local_irq_disable();
  2890. if (obj) {
  2891. /*
  2892. * Insert into the appropriate per node queues
  2893. */
  2894. nid = page_to_nid(virt_to_page(obj));
  2895. if (cache_grow(cache, flags, nid, obj)) {
  2896. obj = ____cache_alloc_node(cache,
  2897. flags | GFP_THISNODE, nid);
  2898. if (!obj)
  2899. /*
  2900. * Another processor may allocate the
  2901. * objects in the slab since we are
  2902. * not holding any locks.
  2903. */
  2904. goto retry;
  2905. } else {
  2906. kmem_freepages(cache, obj);
  2907. obj = NULL;
  2908. }
  2909. }
  2910. }
  2911. return obj;
  2912. }
  2913. /*
  2914. * A interface to enable slab creation on nodeid
  2915. */
  2916. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2917. int nodeid)
  2918. {
  2919. struct list_head *entry;
  2920. struct slab *slabp;
  2921. struct kmem_list3 *l3;
  2922. void *obj;
  2923. int x;
  2924. l3 = cachep->nodelists[nodeid];
  2925. BUG_ON(!l3);
  2926. retry:
  2927. check_irq_off();
  2928. spin_lock(&l3->list_lock);
  2929. entry = l3->slabs_partial.next;
  2930. if (entry == &l3->slabs_partial) {
  2931. l3->free_touched = 1;
  2932. entry = l3->slabs_free.next;
  2933. if (entry == &l3->slabs_free)
  2934. goto must_grow;
  2935. }
  2936. slabp = list_entry(entry, struct slab, list);
  2937. check_spinlock_acquired_node(cachep, nodeid);
  2938. check_slabp(cachep, slabp);
  2939. STATS_INC_NODEALLOCS(cachep);
  2940. STATS_INC_ACTIVE(cachep);
  2941. STATS_SET_HIGH(cachep);
  2942. BUG_ON(slabp->inuse == cachep->num);
  2943. obj = slab_get_obj(cachep, slabp, nodeid);
  2944. check_slabp(cachep, slabp);
  2945. l3->free_objects--;
  2946. /* move slabp to correct slabp list: */
  2947. list_del(&slabp->list);
  2948. if (slabp->free == BUFCTL_END)
  2949. list_add(&slabp->list, &l3->slabs_full);
  2950. else
  2951. list_add(&slabp->list, &l3->slabs_partial);
  2952. spin_unlock(&l3->list_lock);
  2953. goto done;
  2954. must_grow:
  2955. spin_unlock(&l3->list_lock);
  2956. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2957. if (x)
  2958. goto retry;
  2959. if (!(flags & __GFP_THISNODE))
  2960. /* Unable to grow the cache. Fall back to other nodes. */
  2961. return fallback_alloc(cachep, flags);
  2962. return NULL;
  2963. done:
  2964. return obj;
  2965. }
  2966. #endif
  2967. /*
  2968. * Caller needs to acquire correct kmem_list's list_lock
  2969. */
  2970. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2971. int node)
  2972. {
  2973. int i;
  2974. struct kmem_list3 *l3;
  2975. for (i = 0; i < nr_objects; i++) {
  2976. void *objp = objpp[i];
  2977. struct slab *slabp;
  2978. slabp = virt_to_slab(objp);
  2979. l3 = cachep->nodelists[node];
  2980. list_del(&slabp->list);
  2981. check_spinlock_acquired_node(cachep, node);
  2982. check_slabp(cachep, slabp);
  2983. slab_put_obj(cachep, slabp, objp, node);
  2984. STATS_DEC_ACTIVE(cachep);
  2985. l3->free_objects++;
  2986. check_slabp(cachep, slabp);
  2987. /* fixup slab chains */
  2988. if (slabp->inuse == 0) {
  2989. if (l3->free_objects > l3->free_limit) {
  2990. l3->free_objects -= cachep->num;
  2991. /* No need to drop any previously held
  2992. * lock here, even if we have a off-slab slab
  2993. * descriptor it is guaranteed to come from
  2994. * a different cache, refer to comments before
  2995. * alloc_slabmgmt.
  2996. */
  2997. slab_destroy(cachep, slabp);
  2998. } else {
  2999. list_add(&slabp->list, &l3->slabs_free);
  3000. }
  3001. } else {
  3002. /* Unconditionally move a slab to the end of the
  3003. * partial list on free - maximum time for the
  3004. * other objects to be freed, too.
  3005. */
  3006. list_add_tail(&slabp->list, &l3->slabs_partial);
  3007. }
  3008. }
  3009. }
  3010. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3011. {
  3012. int batchcount;
  3013. struct kmem_list3 *l3;
  3014. int node = numa_node_id();
  3015. batchcount = ac->batchcount;
  3016. #if DEBUG
  3017. BUG_ON(!batchcount || batchcount > ac->avail);
  3018. #endif
  3019. check_irq_off();
  3020. l3 = cachep->nodelists[node];
  3021. spin_lock(&l3->list_lock);
  3022. if (l3->shared) {
  3023. struct array_cache *shared_array = l3->shared;
  3024. int max = shared_array->limit - shared_array->avail;
  3025. if (max) {
  3026. if (batchcount > max)
  3027. batchcount = max;
  3028. memcpy(&(shared_array->entry[shared_array->avail]),
  3029. ac->entry, sizeof(void *) * batchcount);
  3030. shared_array->avail += batchcount;
  3031. goto free_done;
  3032. }
  3033. }
  3034. free_block(cachep, ac->entry, batchcount, node);
  3035. free_done:
  3036. #if STATS
  3037. {
  3038. int i = 0;
  3039. struct list_head *p;
  3040. p = l3->slabs_free.next;
  3041. while (p != &(l3->slabs_free)) {
  3042. struct slab *slabp;
  3043. slabp = list_entry(p, struct slab, list);
  3044. BUG_ON(slabp->inuse);
  3045. i++;
  3046. p = p->next;
  3047. }
  3048. STATS_SET_FREEABLE(cachep, i);
  3049. }
  3050. #endif
  3051. spin_unlock(&l3->list_lock);
  3052. ac->avail -= batchcount;
  3053. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3054. }
  3055. /*
  3056. * Release an obj back to its cache. If the obj has a constructed state, it must
  3057. * be in this state _before_ it is released. Called with disabled ints.
  3058. */
  3059. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3060. {
  3061. struct array_cache *ac = cpu_cache_get(cachep);
  3062. check_irq_off();
  3063. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3064. if (cache_free_alien(cachep, objp))
  3065. return;
  3066. if (likely(ac->avail < ac->limit)) {
  3067. STATS_INC_FREEHIT(cachep);
  3068. ac->entry[ac->avail++] = objp;
  3069. return;
  3070. } else {
  3071. STATS_INC_FREEMISS(cachep);
  3072. cache_flusharray(cachep, ac);
  3073. ac->entry[ac->avail++] = objp;
  3074. }
  3075. }
  3076. /**
  3077. * kmem_cache_alloc - Allocate an object
  3078. * @cachep: The cache to allocate from.
  3079. * @flags: See kmalloc().
  3080. *
  3081. * Allocate an object from this cache. The flags are only relevant
  3082. * if the cache has no available objects.
  3083. */
  3084. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3085. {
  3086. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3087. }
  3088. EXPORT_SYMBOL(kmem_cache_alloc);
  3089. /**
  3090. * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
  3091. * @cache: The cache to allocate from.
  3092. * @flags: See kmalloc().
  3093. *
  3094. * Allocate an object from this cache and set the allocated memory to zero.
  3095. * The flags are only relevant if the cache has no available objects.
  3096. */
  3097. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  3098. {
  3099. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  3100. if (ret)
  3101. memset(ret, 0, obj_size(cache));
  3102. return ret;
  3103. }
  3104. EXPORT_SYMBOL(kmem_cache_zalloc);
  3105. /**
  3106. * kmem_ptr_validate - check if an untrusted pointer might
  3107. * be a slab entry.
  3108. * @cachep: the cache we're checking against
  3109. * @ptr: pointer to validate
  3110. *
  3111. * This verifies that the untrusted pointer looks sane:
  3112. * it is _not_ a guarantee that the pointer is actually
  3113. * part of the slab cache in question, but it at least
  3114. * validates that the pointer can be dereferenced and
  3115. * looks half-way sane.
  3116. *
  3117. * Currently only used for dentry validation.
  3118. */
  3119. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3120. {
  3121. unsigned long addr = (unsigned long)ptr;
  3122. unsigned long min_addr = PAGE_OFFSET;
  3123. unsigned long align_mask = BYTES_PER_WORD - 1;
  3124. unsigned long size = cachep->buffer_size;
  3125. struct page *page;
  3126. if (unlikely(addr < min_addr))
  3127. goto out;
  3128. if (unlikely(addr > (unsigned long)high_memory - size))
  3129. goto out;
  3130. if (unlikely(addr & align_mask))
  3131. goto out;
  3132. if (unlikely(!kern_addr_valid(addr)))
  3133. goto out;
  3134. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3135. goto out;
  3136. page = virt_to_page(ptr);
  3137. if (unlikely(!PageSlab(page)))
  3138. goto out;
  3139. if (unlikely(page_get_cache(page) != cachep))
  3140. goto out;
  3141. return 1;
  3142. out:
  3143. return 0;
  3144. }
  3145. #ifdef CONFIG_NUMA
  3146. /**
  3147. * kmem_cache_alloc_node - Allocate an object on the specified node
  3148. * @cachep: The cache to allocate from.
  3149. * @flags: See kmalloc().
  3150. * @nodeid: node number of the target node.
  3151. *
  3152. * Identical to kmem_cache_alloc but it will allocate memory on the given
  3153. * node, which can improve the performance for cpu bound structures.
  3154. *
  3155. * Fallback to other node is possible if __GFP_THISNODE is not set.
  3156. */
  3157. static __always_inline void *
  3158. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  3159. int nodeid, void *caller)
  3160. {
  3161. unsigned long save_flags;
  3162. void *ptr = NULL;
  3163. cache_alloc_debugcheck_before(cachep, flags);
  3164. local_irq_save(save_flags);
  3165. if (unlikely(nodeid == -1))
  3166. nodeid = numa_node_id();
  3167. if (likely(cachep->nodelists[nodeid])) {
  3168. if (nodeid == numa_node_id()) {
  3169. /*
  3170. * Use the locally cached objects if possible.
  3171. * However ____cache_alloc does not allow fallback
  3172. * to other nodes. It may fail while we still have
  3173. * objects on other nodes available.
  3174. */
  3175. ptr = ____cache_alloc(cachep, flags);
  3176. }
  3177. if (!ptr) {
  3178. /* ___cache_alloc_node can fall back to other nodes */
  3179. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3180. }
  3181. } else {
  3182. /* Node not bootstrapped yet */
  3183. if (!(flags & __GFP_THISNODE))
  3184. ptr = fallback_alloc(cachep, flags);
  3185. }
  3186. local_irq_restore(save_flags);
  3187. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3188. return ptr;
  3189. }
  3190. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3191. {
  3192. return __cache_alloc_node(cachep, flags, nodeid,
  3193. __builtin_return_address(0));
  3194. }
  3195. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3196. static __always_inline void *
  3197. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3198. {
  3199. struct kmem_cache *cachep;
  3200. cachep = kmem_find_general_cachep(size, flags);
  3201. if (unlikely(cachep == NULL))
  3202. return NULL;
  3203. return kmem_cache_alloc_node(cachep, flags, node);
  3204. }
  3205. #ifdef CONFIG_DEBUG_SLAB
  3206. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3207. {
  3208. return __do_kmalloc_node(size, flags, node,
  3209. __builtin_return_address(0));
  3210. }
  3211. EXPORT_SYMBOL(__kmalloc_node);
  3212. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3213. int node, void *caller)
  3214. {
  3215. return __do_kmalloc_node(size, flags, node, caller);
  3216. }
  3217. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3218. #else
  3219. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3220. {
  3221. return __do_kmalloc_node(size, flags, node, NULL);
  3222. }
  3223. EXPORT_SYMBOL(__kmalloc_node);
  3224. #endif /* CONFIG_DEBUG_SLAB */
  3225. #endif /* CONFIG_NUMA */
  3226. /**
  3227. * __do_kmalloc - allocate memory
  3228. * @size: how many bytes of memory are required.
  3229. * @flags: the type of memory to allocate (see kmalloc).
  3230. * @caller: function caller for debug tracking of the caller
  3231. */
  3232. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3233. void *caller)
  3234. {
  3235. struct kmem_cache *cachep;
  3236. /* If you want to save a few bytes .text space: replace
  3237. * __ with kmem_.
  3238. * Then kmalloc uses the uninlined functions instead of the inline
  3239. * functions.
  3240. */
  3241. cachep = __find_general_cachep(size, flags);
  3242. if (unlikely(cachep == NULL))
  3243. return NULL;
  3244. return __cache_alloc(cachep, flags, caller);
  3245. }
  3246. #ifdef CONFIG_DEBUG_SLAB
  3247. void *__kmalloc(size_t size, gfp_t flags)
  3248. {
  3249. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3250. }
  3251. EXPORT_SYMBOL(__kmalloc);
  3252. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  3253. {
  3254. return __do_kmalloc(size, flags, caller);
  3255. }
  3256. EXPORT_SYMBOL(__kmalloc_track_caller);
  3257. #else
  3258. void *__kmalloc(size_t size, gfp_t flags)
  3259. {
  3260. return __do_kmalloc(size, flags, NULL);
  3261. }
  3262. EXPORT_SYMBOL(__kmalloc);
  3263. #endif
  3264. /**
  3265. * kmem_cache_free - Deallocate an object
  3266. * @cachep: The cache the allocation was from.
  3267. * @objp: The previously allocated object.
  3268. *
  3269. * Free an object which was previously allocated from this
  3270. * cache.
  3271. */
  3272. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3273. {
  3274. unsigned long flags;
  3275. BUG_ON(virt_to_cache(objp) != cachep);
  3276. local_irq_save(flags);
  3277. __cache_free(cachep, objp);
  3278. local_irq_restore(flags);
  3279. }
  3280. EXPORT_SYMBOL(kmem_cache_free);
  3281. /**
  3282. * kfree - free previously allocated memory
  3283. * @objp: pointer returned by kmalloc.
  3284. *
  3285. * If @objp is NULL, no operation is performed.
  3286. *
  3287. * Don't free memory not originally allocated by kmalloc()
  3288. * or you will run into trouble.
  3289. */
  3290. void kfree(const void *objp)
  3291. {
  3292. struct kmem_cache *c;
  3293. unsigned long flags;
  3294. if (unlikely(!objp))
  3295. return;
  3296. local_irq_save(flags);
  3297. kfree_debugcheck(objp);
  3298. c = virt_to_cache(objp);
  3299. debug_check_no_locks_freed(objp, obj_size(c));
  3300. __cache_free(c, (void *)objp);
  3301. local_irq_restore(flags);
  3302. }
  3303. EXPORT_SYMBOL(kfree);
  3304. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3305. {
  3306. return obj_size(cachep);
  3307. }
  3308. EXPORT_SYMBOL(kmem_cache_size);
  3309. const char *kmem_cache_name(struct kmem_cache *cachep)
  3310. {
  3311. return cachep->name;
  3312. }
  3313. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3314. /*
  3315. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3316. */
  3317. static int alloc_kmemlist(struct kmem_cache *cachep)
  3318. {
  3319. int node;
  3320. struct kmem_list3 *l3;
  3321. struct array_cache *new_shared;
  3322. struct array_cache **new_alien = NULL;
  3323. for_each_online_node(node) {
  3324. if (use_alien_caches) {
  3325. new_alien = alloc_alien_cache(node, cachep->limit);
  3326. if (!new_alien)
  3327. goto fail;
  3328. }
  3329. new_shared = alloc_arraycache(node,
  3330. cachep->shared*cachep->batchcount,
  3331. 0xbaadf00d);
  3332. if (!new_shared) {
  3333. free_alien_cache(new_alien);
  3334. goto fail;
  3335. }
  3336. l3 = cachep->nodelists[node];
  3337. if (l3) {
  3338. struct array_cache *shared = l3->shared;
  3339. spin_lock_irq(&l3->list_lock);
  3340. if (shared)
  3341. free_block(cachep, shared->entry,
  3342. shared->avail, node);
  3343. l3->shared = new_shared;
  3344. if (!l3->alien) {
  3345. l3->alien = new_alien;
  3346. new_alien = NULL;
  3347. }
  3348. l3->free_limit = (1 + nr_cpus_node(node)) *
  3349. cachep->batchcount + cachep->num;
  3350. spin_unlock_irq(&l3->list_lock);
  3351. kfree(shared);
  3352. free_alien_cache(new_alien);
  3353. continue;
  3354. }
  3355. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3356. if (!l3) {
  3357. free_alien_cache(new_alien);
  3358. kfree(new_shared);
  3359. goto fail;
  3360. }
  3361. kmem_list3_init(l3);
  3362. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3363. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3364. l3->shared = new_shared;
  3365. l3->alien = new_alien;
  3366. l3->free_limit = (1 + nr_cpus_node(node)) *
  3367. cachep->batchcount + cachep->num;
  3368. cachep->nodelists[node] = l3;
  3369. }
  3370. return 0;
  3371. fail:
  3372. if (!cachep->next.next) {
  3373. /* Cache is not active yet. Roll back what we did */
  3374. node--;
  3375. while (node >= 0) {
  3376. if (cachep->nodelists[node]) {
  3377. l3 = cachep->nodelists[node];
  3378. kfree(l3->shared);
  3379. free_alien_cache(l3->alien);
  3380. kfree(l3);
  3381. cachep->nodelists[node] = NULL;
  3382. }
  3383. node--;
  3384. }
  3385. }
  3386. return -ENOMEM;
  3387. }
  3388. struct ccupdate_struct {
  3389. struct kmem_cache *cachep;
  3390. struct array_cache *new[NR_CPUS];
  3391. };
  3392. static void do_ccupdate_local(void *info)
  3393. {
  3394. struct ccupdate_struct *new = info;
  3395. struct array_cache *old;
  3396. check_irq_off();
  3397. old = cpu_cache_get(new->cachep);
  3398. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3399. new->new[smp_processor_id()] = old;
  3400. }
  3401. /* Always called with the cache_chain_mutex held */
  3402. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3403. int batchcount, int shared)
  3404. {
  3405. struct ccupdate_struct *new;
  3406. int i;
  3407. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3408. if (!new)
  3409. return -ENOMEM;
  3410. for_each_online_cpu(i) {
  3411. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3412. batchcount);
  3413. if (!new->new[i]) {
  3414. for (i--; i >= 0; i--)
  3415. kfree(new->new[i]);
  3416. kfree(new);
  3417. return -ENOMEM;
  3418. }
  3419. }
  3420. new->cachep = cachep;
  3421. on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
  3422. check_irq_on();
  3423. cachep->batchcount = batchcount;
  3424. cachep->limit = limit;
  3425. cachep->shared = shared;
  3426. for_each_online_cpu(i) {
  3427. struct array_cache *ccold = new->new[i];
  3428. if (!ccold)
  3429. continue;
  3430. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3431. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3432. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3433. kfree(ccold);
  3434. }
  3435. kfree(new);
  3436. return alloc_kmemlist(cachep);
  3437. }
  3438. /* Called with cache_chain_mutex held always */
  3439. static int enable_cpucache(struct kmem_cache *cachep)
  3440. {
  3441. int err;
  3442. int limit, shared;
  3443. /*
  3444. * The head array serves three purposes:
  3445. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3446. * - reduce the number of spinlock operations.
  3447. * - reduce the number of linked list operations on the slab and
  3448. * bufctl chains: array operations are cheaper.
  3449. * The numbers are guessed, we should auto-tune as described by
  3450. * Bonwick.
  3451. */
  3452. if (cachep->buffer_size > 131072)
  3453. limit = 1;
  3454. else if (cachep->buffer_size > PAGE_SIZE)
  3455. limit = 8;
  3456. else if (cachep->buffer_size > 1024)
  3457. limit = 24;
  3458. else if (cachep->buffer_size > 256)
  3459. limit = 54;
  3460. else
  3461. limit = 120;
  3462. /*
  3463. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3464. * allocation behaviour: Most allocs on one cpu, most free operations
  3465. * on another cpu. For these cases, an efficient object passing between
  3466. * cpus is necessary. This is provided by a shared array. The array
  3467. * replaces Bonwick's magazine layer.
  3468. * On uniprocessor, it's functionally equivalent (but less efficient)
  3469. * to a larger limit. Thus disabled by default.
  3470. */
  3471. shared = 0;
  3472. #ifdef CONFIG_SMP
  3473. if (cachep->buffer_size <= PAGE_SIZE)
  3474. shared = 8;
  3475. #endif
  3476. #if DEBUG
  3477. /*
  3478. * With debugging enabled, large batchcount lead to excessively long
  3479. * periods with disabled local interrupts. Limit the batchcount
  3480. */
  3481. if (limit > 32)
  3482. limit = 32;
  3483. #endif
  3484. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3485. if (err)
  3486. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3487. cachep->name, -err);
  3488. return err;
  3489. }
  3490. /*
  3491. * Drain an array if it contains any elements taking the l3 lock only if
  3492. * necessary. Note that the l3 listlock also protects the array_cache
  3493. * if drain_array() is used on the shared array.
  3494. */
  3495. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3496. struct array_cache *ac, int force, int node)
  3497. {
  3498. int tofree;
  3499. if (!ac || !ac->avail)
  3500. return;
  3501. if (ac->touched && !force) {
  3502. ac->touched = 0;
  3503. } else {
  3504. spin_lock_irq(&l3->list_lock);
  3505. if (ac->avail) {
  3506. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3507. if (tofree > ac->avail)
  3508. tofree = (ac->avail + 1) / 2;
  3509. free_block(cachep, ac->entry, tofree, node);
  3510. ac->avail -= tofree;
  3511. memmove(ac->entry, &(ac->entry[tofree]),
  3512. sizeof(void *) * ac->avail);
  3513. }
  3514. spin_unlock_irq(&l3->list_lock);
  3515. }
  3516. }
  3517. /**
  3518. * cache_reap - Reclaim memory from caches.
  3519. * @unused: unused parameter
  3520. *
  3521. * Called from workqueue/eventd every few seconds.
  3522. * Purpose:
  3523. * - clear the per-cpu caches for this CPU.
  3524. * - return freeable pages to the main free memory pool.
  3525. *
  3526. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3527. * again on the next iteration.
  3528. */
  3529. static void cache_reap(struct work_struct *unused)
  3530. {
  3531. struct kmem_cache *searchp;
  3532. struct kmem_list3 *l3;
  3533. int node = numa_node_id();
  3534. if (!mutex_trylock(&cache_chain_mutex)) {
  3535. /* Give up. Setup the next iteration. */
  3536. schedule_delayed_work(&__get_cpu_var(reap_work),
  3537. round_jiffies_relative(REAPTIMEOUT_CPUC));
  3538. return;
  3539. }
  3540. list_for_each_entry(searchp, &cache_chain, next) {
  3541. check_irq_on();
  3542. /*
  3543. * We only take the l3 lock if absolutely necessary and we
  3544. * have established with reasonable certainty that
  3545. * we can do some work if the lock was obtained.
  3546. */
  3547. l3 = searchp->nodelists[node];
  3548. reap_alien(searchp, l3);
  3549. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3550. /*
  3551. * These are racy checks but it does not matter
  3552. * if we skip one check or scan twice.
  3553. */
  3554. if (time_after(l3->next_reap, jiffies))
  3555. goto next;
  3556. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3557. drain_array(searchp, l3, l3->shared, 0, node);
  3558. if (l3->free_touched)
  3559. l3->free_touched = 0;
  3560. else {
  3561. int freed;
  3562. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3563. 5 * searchp->num - 1) / (5 * searchp->num));
  3564. STATS_ADD_REAPED(searchp, freed);
  3565. }
  3566. next:
  3567. cond_resched();
  3568. }
  3569. check_irq_on();
  3570. mutex_unlock(&cache_chain_mutex);
  3571. next_reap_node();
  3572. refresh_cpu_vm_stats(smp_processor_id());
  3573. /* Set up the next iteration */
  3574. schedule_delayed_work(&__get_cpu_var(reap_work),
  3575. round_jiffies_relative(REAPTIMEOUT_CPUC));
  3576. }
  3577. #ifdef CONFIG_PROC_FS
  3578. static void print_slabinfo_header(struct seq_file *m)
  3579. {
  3580. /*
  3581. * Output format version, so at least we can change it
  3582. * without _too_ many complaints.
  3583. */
  3584. #if STATS
  3585. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3586. #else
  3587. seq_puts(m, "slabinfo - version: 2.1\n");
  3588. #endif
  3589. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3590. "<objperslab> <pagesperslab>");
  3591. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3592. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3593. #if STATS
  3594. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3595. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3596. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3597. #endif
  3598. seq_putc(m, '\n');
  3599. }
  3600. static void *s_start(struct seq_file *m, loff_t *pos)
  3601. {
  3602. loff_t n = *pos;
  3603. struct list_head *p;
  3604. mutex_lock(&cache_chain_mutex);
  3605. if (!n)
  3606. print_slabinfo_header(m);
  3607. p = cache_chain.next;
  3608. while (n--) {
  3609. p = p->next;
  3610. if (p == &cache_chain)
  3611. return NULL;
  3612. }
  3613. return list_entry(p, struct kmem_cache, next);
  3614. }
  3615. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3616. {
  3617. struct kmem_cache *cachep = p;
  3618. ++*pos;
  3619. return cachep->next.next == &cache_chain ?
  3620. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3621. }
  3622. static void s_stop(struct seq_file *m, void *p)
  3623. {
  3624. mutex_unlock(&cache_chain_mutex);
  3625. }
  3626. static int s_show(struct seq_file *m, void *p)
  3627. {
  3628. struct kmem_cache *cachep = p;
  3629. struct slab *slabp;
  3630. unsigned long active_objs;
  3631. unsigned long num_objs;
  3632. unsigned long active_slabs = 0;
  3633. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3634. const char *name;
  3635. char *error = NULL;
  3636. int node;
  3637. struct kmem_list3 *l3;
  3638. active_objs = 0;
  3639. num_slabs = 0;
  3640. for_each_online_node(node) {
  3641. l3 = cachep->nodelists[node];
  3642. if (!l3)
  3643. continue;
  3644. check_irq_on();
  3645. spin_lock_irq(&l3->list_lock);
  3646. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3647. if (slabp->inuse != cachep->num && !error)
  3648. error = "slabs_full accounting error";
  3649. active_objs += cachep->num;
  3650. active_slabs++;
  3651. }
  3652. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3653. if (slabp->inuse == cachep->num && !error)
  3654. error = "slabs_partial inuse accounting error";
  3655. if (!slabp->inuse && !error)
  3656. error = "slabs_partial/inuse accounting error";
  3657. active_objs += slabp->inuse;
  3658. active_slabs++;
  3659. }
  3660. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3661. if (slabp->inuse && !error)
  3662. error = "slabs_free/inuse accounting error";
  3663. num_slabs++;
  3664. }
  3665. free_objects += l3->free_objects;
  3666. if (l3->shared)
  3667. shared_avail += l3->shared->avail;
  3668. spin_unlock_irq(&l3->list_lock);
  3669. }
  3670. num_slabs += active_slabs;
  3671. num_objs = num_slabs * cachep->num;
  3672. if (num_objs - active_objs != free_objects && !error)
  3673. error = "free_objects accounting error";
  3674. name = cachep->name;
  3675. if (error)
  3676. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3677. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3678. name, active_objs, num_objs, cachep->buffer_size,
  3679. cachep->num, (1 << cachep->gfporder));
  3680. seq_printf(m, " : tunables %4u %4u %4u",
  3681. cachep->limit, cachep->batchcount, cachep->shared);
  3682. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3683. active_slabs, num_slabs, shared_avail);
  3684. #if STATS
  3685. { /* list3 stats */
  3686. unsigned long high = cachep->high_mark;
  3687. unsigned long allocs = cachep->num_allocations;
  3688. unsigned long grown = cachep->grown;
  3689. unsigned long reaped = cachep->reaped;
  3690. unsigned long errors = cachep->errors;
  3691. unsigned long max_freeable = cachep->max_freeable;
  3692. unsigned long node_allocs = cachep->node_allocs;
  3693. unsigned long node_frees = cachep->node_frees;
  3694. unsigned long overflows = cachep->node_overflow;
  3695. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3696. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3697. reaped, errors, max_freeable, node_allocs,
  3698. node_frees, overflows);
  3699. }
  3700. /* cpu stats */
  3701. {
  3702. unsigned long allochit = atomic_read(&cachep->allochit);
  3703. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3704. unsigned long freehit = atomic_read(&cachep->freehit);
  3705. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3706. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3707. allochit, allocmiss, freehit, freemiss);
  3708. }
  3709. #endif
  3710. seq_putc(m, '\n');
  3711. return 0;
  3712. }
  3713. /*
  3714. * slabinfo_op - iterator that generates /proc/slabinfo
  3715. *
  3716. * Output layout:
  3717. * cache-name
  3718. * num-active-objs
  3719. * total-objs
  3720. * object size
  3721. * num-active-slabs
  3722. * total-slabs
  3723. * num-pages-per-slab
  3724. * + further values on SMP and with statistics enabled
  3725. */
  3726. const struct seq_operations slabinfo_op = {
  3727. .start = s_start,
  3728. .next = s_next,
  3729. .stop = s_stop,
  3730. .show = s_show,
  3731. };
  3732. #define MAX_SLABINFO_WRITE 128
  3733. /**
  3734. * slabinfo_write - Tuning for the slab allocator
  3735. * @file: unused
  3736. * @buffer: user buffer
  3737. * @count: data length
  3738. * @ppos: unused
  3739. */
  3740. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3741. size_t count, loff_t *ppos)
  3742. {
  3743. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3744. int limit, batchcount, shared, res;
  3745. struct kmem_cache *cachep;
  3746. if (count > MAX_SLABINFO_WRITE)
  3747. return -EINVAL;
  3748. if (copy_from_user(&kbuf, buffer, count))
  3749. return -EFAULT;
  3750. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3751. tmp = strchr(kbuf, ' ');
  3752. if (!tmp)
  3753. return -EINVAL;
  3754. *tmp = '\0';
  3755. tmp++;
  3756. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3757. return -EINVAL;
  3758. /* Find the cache in the chain of caches. */
  3759. mutex_lock(&cache_chain_mutex);
  3760. res = -EINVAL;
  3761. list_for_each_entry(cachep, &cache_chain, next) {
  3762. if (!strcmp(cachep->name, kbuf)) {
  3763. if (limit < 1 || batchcount < 1 ||
  3764. batchcount > limit || shared < 0) {
  3765. res = 0;
  3766. } else {
  3767. res = do_tune_cpucache(cachep, limit,
  3768. batchcount, shared);
  3769. }
  3770. break;
  3771. }
  3772. }
  3773. mutex_unlock(&cache_chain_mutex);
  3774. if (res >= 0)
  3775. res = count;
  3776. return res;
  3777. }
  3778. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3779. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3780. {
  3781. loff_t n = *pos;
  3782. struct list_head *p;
  3783. mutex_lock(&cache_chain_mutex);
  3784. p = cache_chain.next;
  3785. while (n--) {
  3786. p = p->next;
  3787. if (p == &cache_chain)
  3788. return NULL;
  3789. }
  3790. return list_entry(p, struct kmem_cache, next);
  3791. }
  3792. static inline int add_caller(unsigned long *n, unsigned long v)
  3793. {
  3794. unsigned long *p;
  3795. int l;
  3796. if (!v)
  3797. return 1;
  3798. l = n[1];
  3799. p = n + 2;
  3800. while (l) {
  3801. int i = l/2;
  3802. unsigned long *q = p + 2 * i;
  3803. if (*q == v) {
  3804. q[1]++;
  3805. return 1;
  3806. }
  3807. if (*q > v) {
  3808. l = i;
  3809. } else {
  3810. p = q + 2;
  3811. l -= i + 1;
  3812. }
  3813. }
  3814. if (++n[1] == n[0])
  3815. return 0;
  3816. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3817. p[0] = v;
  3818. p[1] = 1;
  3819. return 1;
  3820. }
  3821. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3822. {
  3823. void *p;
  3824. int i;
  3825. if (n[0] == n[1])
  3826. return;
  3827. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3828. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3829. continue;
  3830. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3831. return;
  3832. }
  3833. }
  3834. static void show_symbol(struct seq_file *m, unsigned long address)
  3835. {
  3836. #ifdef CONFIG_KALLSYMS
  3837. char *modname;
  3838. const char *name;
  3839. unsigned long offset, size;
  3840. char namebuf[KSYM_NAME_LEN+1];
  3841. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3842. if (name) {
  3843. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3844. if (modname)
  3845. seq_printf(m, " [%s]", modname);
  3846. return;
  3847. }
  3848. #endif
  3849. seq_printf(m, "%p", (void *)address);
  3850. }
  3851. static int leaks_show(struct seq_file *m, void *p)
  3852. {
  3853. struct kmem_cache *cachep = p;
  3854. struct slab *slabp;
  3855. struct kmem_list3 *l3;
  3856. const char *name;
  3857. unsigned long *n = m->private;
  3858. int node;
  3859. int i;
  3860. if (!(cachep->flags & SLAB_STORE_USER))
  3861. return 0;
  3862. if (!(cachep->flags & SLAB_RED_ZONE))
  3863. return 0;
  3864. /* OK, we can do it */
  3865. n[1] = 0;
  3866. for_each_online_node(node) {
  3867. l3 = cachep->nodelists[node];
  3868. if (!l3)
  3869. continue;
  3870. check_irq_on();
  3871. spin_lock_irq(&l3->list_lock);
  3872. list_for_each_entry(slabp, &l3->slabs_full, list)
  3873. handle_slab(n, cachep, slabp);
  3874. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3875. handle_slab(n, cachep, slabp);
  3876. spin_unlock_irq(&l3->list_lock);
  3877. }
  3878. name = cachep->name;
  3879. if (n[0] == n[1]) {
  3880. /* Increase the buffer size */
  3881. mutex_unlock(&cache_chain_mutex);
  3882. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3883. if (!m->private) {
  3884. /* Too bad, we are really out */
  3885. m->private = n;
  3886. mutex_lock(&cache_chain_mutex);
  3887. return -ENOMEM;
  3888. }
  3889. *(unsigned long *)m->private = n[0] * 2;
  3890. kfree(n);
  3891. mutex_lock(&cache_chain_mutex);
  3892. /* Now make sure this entry will be retried */
  3893. m->count = m->size;
  3894. return 0;
  3895. }
  3896. for (i = 0; i < n[1]; i++) {
  3897. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3898. show_symbol(m, n[2*i+2]);
  3899. seq_putc(m, '\n');
  3900. }
  3901. return 0;
  3902. }
  3903. const struct seq_operations slabstats_op = {
  3904. .start = leaks_start,
  3905. .next = s_next,
  3906. .stop = s_stop,
  3907. .show = leaks_show,
  3908. };
  3909. #endif
  3910. #endif
  3911. /**
  3912. * ksize - get the actual amount of memory allocated for a given object
  3913. * @objp: Pointer to the object
  3914. *
  3915. * kmalloc may internally round up allocations and return more memory
  3916. * than requested. ksize() can be used to determine the actual amount of
  3917. * memory allocated. The caller may use this additional memory, even though
  3918. * a smaller amount of memory was initially specified with the kmalloc call.
  3919. * The caller must guarantee that objp points to a valid object previously
  3920. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3921. * must not be freed during the duration of the call.
  3922. */
  3923. unsigned int ksize(const void *objp)
  3924. {
  3925. if (unlikely(objp == NULL))
  3926. return 0;
  3927. return obj_size(virt_to_cache(objp));
  3928. }