elevator.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <linux/hash.h>
  37. #include <linux/uaccess.h>
  38. #include <trace/events/block.h>
  39. #include "blk.h"
  40. static DEFINE_SPINLOCK(elv_list_lock);
  41. static LIST_HEAD(elv_list);
  42. /*
  43. * Merge hash stuff.
  44. */
  45. static const int elv_hash_shift = 6;
  46. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  47. #define ELV_HASH_FN(sec) \
  48. (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  49. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  50. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  51. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  52. /*
  53. * Query io scheduler to see if the current process issuing bio may be
  54. * merged with rq.
  55. */
  56. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  57. {
  58. struct request_queue *q = rq->q;
  59. struct elevator_queue *e = q->elevator;
  60. if (e->ops->elevator_allow_merge_fn)
  61. return e->ops->elevator_allow_merge_fn(q, rq, bio);
  62. return 1;
  63. }
  64. /*
  65. * can we safely merge with this request?
  66. */
  67. int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  68. {
  69. if (!rq_mergeable(rq))
  70. return 0;
  71. /*
  72. * Don't merge file system requests and discard requests
  73. */
  74. if (bio_discard(bio) != bio_discard(rq->bio))
  75. return 0;
  76. /*
  77. * different data direction or already started, don't merge
  78. */
  79. if (bio_data_dir(bio) != rq_data_dir(rq))
  80. return 0;
  81. /*
  82. * must be same device and not a special request
  83. */
  84. if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
  85. return 0;
  86. /*
  87. * only merge integrity protected bio into ditto rq
  88. */
  89. if (bio_integrity(bio) != blk_integrity_rq(rq))
  90. return 0;
  91. if (!elv_iosched_allow_merge(rq, bio))
  92. return 0;
  93. return 1;
  94. }
  95. EXPORT_SYMBOL(elv_rq_merge_ok);
  96. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  97. {
  98. int ret = ELEVATOR_NO_MERGE;
  99. /*
  100. * we can merge and sequence is ok, check if it's possible
  101. */
  102. if (elv_rq_merge_ok(__rq, bio)) {
  103. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  104. ret = ELEVATOR_BACK_MERGE;
  105. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  106. ret = ELEVATOR_FRONT_MERGE;
  107. }
  108. return ret;
  109. }
  110. static struct elevator_type *elevator_find(const char *name)
  111. {
  112. struct elevator_type *e;
  113. list_for_each_entry(e, &elv_list, list) {
  114. if (!strcmp(e->elevator_name, name))
  115. return e;
  116. }
  117. return NULL;
  118. }
  119. static void elevator_put(struct elevator_type *e)
  120. {
  121. module_put(e->elevator_owner);
  122. }
  123. static struct elevator_type *elevator_get(const char *name)
  124. {
  125. struct elevator_type *e;
  126. spin_lock(&elv_list_lock);
  127. e = elevator_find(name);
  128. if (!e) {
  129. char elv[ELV_NAME_MAX + strlen("-iosched")];
  130. spin_unlock(&elv_list_lock);
  131. if (!strcmp(name, "anticipatory"))
  132. sprintf(elv, "as-iosched");
  133. else
  134. sprintf(elv, "%s-iosched", name);
  135. request_module("%s", elv);
  136. spin_lock(&elv_list_lock);
  137. e = elevator_find(name);
  138. }
  139. if (e && !try_module_get(e->elevator_owner))
  140. e = NULL;
  141. spin_unlock(&elv_list_lock);
  142. return e;
  143. }
  144. static void *elevator_init_queue(struct request_queue *q,
  145. struct elevator_queue *eq)
  146. {
  147. return eq->ops->elevator_init_fn(q);
  148. }
  149. static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
  150. void *data)
  151. {
  152. q->elevator = eq;
  153. eq->elevator_data = data;
  154. }
  155. static char chosen_elevator[16];
  156. static int __init elevator_setup(char *str)
  157. {
  158. /*
  159. * Be backwards-compatible with previous kernels, so users
  160. * won't get the wrong elevator.
  161. */
  162. if (!strcmp(str, "as"))
  163. strcpy(chosen_elevator, "anticipatory");
  164. else
  165. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  166. return 1;
  167. }
  168. __setup("elevator=", elevator_setup);
  169. static struct kobj_type elv_ktype;
  170. static struct elevator_queue *elevator_alloc(struct request_queue *q,
  171. struct elevator_type *e)
  172. {
  173. struct elevator_queue *eq;
  174. int i;
  175. eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
  176. if (unlikely(!eq))
  177. goto err;
  178. eq->ops = &e->ops;
  179. eq->elevator_type = e;
  180. kobject_init(&eq->kobj, &elv_ktype);
  181. mutex_init(&eq->sysfs_lock);
  182. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  183. GFP_KERNEL, q->node);
  184. if (!eq->hash)
  185. goto err;
  186. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  187. INIT_HLIST_HEAD(&eq->hash[i]);
  188. return eq;
  189. err:
  190. kfree(eq);
  191. elevator_put(e);
  192. return NULL;
  193. }
  194. static void elevator_release(struct kobject *kobj)
  195. {
  196. struct elevator_queue *e;
  197. e = container_of(kobj, struct elevator_queue, kobj);
  198. elevator_put(e->elevator_type);
  199. kfree(e->hash);
  200. kfree(e);
  201. }
  202. int elevator_init(struct request_queue *q, char *name)
  203. {
  204. struct elevator_type *e = NULL;
  205. struct elevator_queue *eq;
  206. int ret = 0;
  207. void *data;
  208. INIT_LIST_HEAD(&q->queue_head);
  209. q->last_merge = NULL;
  210. q->end_sector = 0;
  211. q->boundary_rq = NULL;
  212. if (name) {
  213. e = elevator_get(name);
  214. if (!e)
  215. return -EINVAL;
  216. }
  217. if (!e && *chosen_elevator) {
  218. e = elevator_get(chosen_elevator);
  219. if (!e)
  220. printk(KERN_ERR "I/O scheduler %s not found\n",
  221. chosen_elevator);
  222. }
  223. if (!e) {
  224. e = elevator_get(CONFIG_DEFAULT_IOSCHED);
  225. if (!e) {
  226. printk(KERN_ERR
  227. "Default I/O scheduler not found. " \
  228. "Using noop.\n");
  229. e = elevator_get("noop");
  230. }
  231. }
  232. eq = elevator_alloc(q, e);
  233. if (!eq)
  234. return -ENOMEM;
  235. data = elevator_init_queue(q, eq);
  236. if (!data) {
  237. kobject_put(&eq->kobj);
  238. return -ENOMEM;
  239. }
  240. elevator_attach(q, eq, data);
  241. return ret;
  242. }
  243. EXPORT_SYMBOL(elevator_init);
  244. void elevator_exit(struct elevator_queue *e)
  245. {
  246. mutex_lock(&e->sysfs_lock);
  247. if (e->ops->elevator_exit_fn)
  248. e->ops->elevator_exit_fn(e);
  249. e->ops = NULL;
  250. mutex_unlock(&e->sysfs_lock);
  251. kobject_put(&e->kobj);
  252. }
  253. EXPORT_SYMBOL(elevator_exit);
  254. static void elv_activate_rq(struct request_queue *q, struct request *rq)
  255. {
  256. struct elevator_queue *e = q->elevator;
  257. if (e->ops->elevator_activate_req_fn)
  258. e->ops->elevator_activate_req_fn(q, rq);
  259. }
  260. static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
  261. {
  262. struct elevator_queue *e = q->elevator;
  263. if (e->ops->elevator_deactivate_req_fn)
  264. e->ops->elevator_deactivate_req_fn(q, rq);
  265. }
  266. static inline void __elv_rqhash_del(struct request *rq)
  267. {
  268. hlist_del_init(&rq->hash);
  269. }
  270. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  271. {
  272. if (ELV_ON_HASH(rq))
  273. __elv_rqhash_del(rq);
  274. }
  275. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  276. {
  277. struct elevator_queue *e = q->elevator;
  278. BUG_ON(ELV_ON_HASH(rq));
  279. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  280. }
  281. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  282. {
  283. __elv_rqhash_del(rq);
  284. elv_rqhash_add(q, rq);
  285. }
  286. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  287. {
  288. struct elevator_queue *e = q->elevator;
  289. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  290. struct hlist_node *entry, *next;
  291. struct request *rq;
  292. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  293. BUG_ON(!ELV_ON_HASH(rq));
  294. if (unlikely(!rq_mergeable(rq))) {
  295. __elv_rqhash_del(rq);
  296. continue;
  297. }
  298. if (rq_hash_key(rq) == offset)
  299. return rq;
  300. }
  301. return NULL;
  302. }
  303. /*
  304. * RB-tree support functions for inserting/lookup/removal of requests
  305. * in a sorted RB tree.
  306. */
  307. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  308. {
  309. struct rb_node **p = &root->rb_node;
  310. struct rb_node *parent = NULL;
  311. struct request *__rq;
  312. while (*p) {
  313. parent = *p;
  314. __rq = rb_entry(parent, struct request, rb_node);
  315. if (rq->sector < __rq->sector)
  316. p = &(*p)->rb_left;
  317. else if (rq->sector > __rq->sector)
  318. p = &(*p)->rb_right;
  319. else
  320. return __rq;
  321. }
  322. rb_link_node(&rq->rb_node, parent, p);
  323. rb_insert_color(&rq->rb_node, root);
  324. return NULL;
  325. }
  326. EXPORT_SYMBOL(elv_rb_add);
  327. void elv_rb_del(struct rb_root *root, struct request *rq)
  328. {
  329. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  330. rb_erase(&rq->rb_node, root);
  331. RB_CLEAR_NODE(&rq->rb_node);
  332. }
  333. EXPORT_SYMBOL(elv_rb_del);
  334. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  335. {
  336. struct rb_node *n = root->rb_node;
  337. struct request *rq;
  338. while (n) {
  339. rq = rb_entry(n, struct request, rb_node);
  340. if (sector < rq->sector)
  341. n = n->rb_left;
  342. else if (sector > rq->sector)
  343. n = n->rb_right;
  344. else
  345. return rq;
  346. }
  347. return NULL;
  348. }
  349. EXPORT_SYMBOL(elv_rb_find);
  350. /*
  351. * Insert rq into dispatch queue of q. Queue lock must be held on
  352. * entry. rq is sort instead into the dispatch queue. To be used by
  353. * specific elevators.
  354. */
  355. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  356. {
  357. sector_t boundary;
  358. struct list_head *entry;
  359. int stop_flags;
  360. if (q->last_merge == rq)
  361. q->last_merge = NULL;
  362. elv_rqhash_del(q, rq);
  363. q->nr_sorted--;
  364. boundary = q->end_sector;
  365. stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
  366. list_for_each_prev(entry, &q->queue_head) {
  367. struct request *pos = list_entry_rq(entry);
  368. if (blk_discard_rq(rq) != blk_discard_rq(pos))
  369. break;
  370. if (rq_data_dir(rq) != rq_data_dir(pos))
  371. break;
  372. if (pos->cmd_flags & stop_flags)
  373. break;
  374. if (rq->sector >= boundary) {
  375. if (pos->sector < boundary)
  376. continue;
  377. } else {
  378. if (pos->sector >= boundary)
  379. break;
  380. }
  381. if (rq->sector >= pos->sector)
  382. break;
  383. }
  384. list_add(&rq->queuelist, entry);
  385. }
  386. EXPORT_SYMBOL(elv_dispatch_sort);
  387. /*
  388. * Insert rq into dispatch queue of q. Queue lock must be held on
  389. * entry. rq is added to the back of the dispatch queue. To be used by
  390. * specific elevators.
  391. */
  392. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  393. {
  394. if (q->last_merge == rq)
  395. q->last_merge = NULL;
  396. elv_rqhash_del(q, rq);
  397. q->nr_sorted--;
  398. q->end_sector = rq_end_sector(rq);
  399. q->boundary_rq = rq;
  400. list_add_tail(&rq->queuelist, &q->queue_head);
  401. }
  402. EXPORT_SYMBOL(elv_dispatch_add_tail);
  403. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  404. {
  405. struct elevator_queue *e = q->elevator;
  406. struct request *__rq;
  407. int ret;
  408. /*
  409. * First try one-hit cache.
  410. */
  411. if (q->last_merge) {
  412. ret = elv_try_merge(q->last_merge, bio);
  413. if (ret != ELEVATOR_NO_MERGE) {
  414. *req = q->last_merge;
  415. return ret;
  416. }
  417. }
  418. if (blk_queue_nomerges(q))
  419. return ELEVATOR_NO_MERGE;
  420. /*
  421. * See if our hash lookup can find a potential backmerge.
  422. */
  423. __rq = elv_rqhash_find(q, bio->bi_sector);
  424. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  425. *req = __rq;
  426. return ELEVATOR_BACK_MERGE;
  427. }
  428. if (e->ops->elevator_merge_fn)
  429. return e->ops->elevator_merge_fn(q, req, bio);
  430. return ELEVATOR_NO_MERGE;
  431. }
  432. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  433. {
  434. struct elevator_queue *e = q->elevator;
  435. if (e->ops->elevator_merged_fn)
  436. e->ops->elevator_merged_fn(q, rq, type);
  437. if (type == ELEVATOR_BACK_MERGE)
  438. elv_rqhash_reposition(q, rq);
  439. q->last_merge = rq;
  440. }
  441. void elv_merge_requests(struct request_queue *q, struct request *rq,
  442. struct request *next)
  443. {
  444. struct elevator_queue *e = q->elevator;
  445. if (e->ops->elevator_merge_req_fn)
  446. e->ops->elevator_merge_req_fn(q, rq, next);
  447. elv_rqhash_reposition(q, rq);
  448. elv_rqhash_del(q, next);
  449. q->nr_sorted--;
  450. q->last_merge = rq;
  451. }
  452. void elv_requeue_request(struct request_queue *q, struct request *rq)
  453. {
  454. /*
  455. * it already went through dequeue, we need to decrement the
  456. * in_flight count again
  457. */
  458. if (blk_account_rq(rq)) {
  459. q->in_flight--;
  460. if (blk_sorted_rq(rq))
  461. elv_deactivate_rq(q, rq);
  462. }
  463. rq->cmd_flags &= ~REQ_STARTED;
  464. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  465. }
  466. void elv_drain_elevator(struct request_queue *q)
  467. {
  468. static int printed;
  469. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  470. ;
  471. if (q->nr_sorted == 0)
  472. return;
  473. if (printed++ < 10) {
  474. printk(KERN_ERR "%s: forced dispatching is broken "
  475. "(nr_sorted=%u), please report this\n",
  476. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  477. }
  478. }
  479. /*
  480. * Call with queue lock held, interrupts disabled
  481. */
  482. void elv_quiesce_start(struct request_queue *q)
  483. {
  484. queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
  485. /*
  486. * make sure we don't have any requests in flight
  487. */
  488. elv_drain_elevator(q);
  489. while (q->rq.elvpriv) {
  490. blk_start_queueing(q);
  491. spin_unlock_irq(q->queue_lock);
  492. msleep(10);
  493. spin_lock_irq(q->queue_lock);
  494. elv_drain_elevator(q);
  495. }
  496. }
  497. void elv_quiesce_end(struct request_queue *q)
  498. {
  499. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  500. }
  501. void elv_insert(struct request_queue *q, struct request *rq, int where)
  502. {
  503. struct list_head *pos;
  504. unsigned ordseq;
  505. int unplug_it = 1;
  506. trace_block_rq_insert(q, rq);
  507. rq->q = q;
  508. switch (where) {
  509. case ELEVATOR_INSERT_FRONT:
  510. rq->cmd_flags |= REQ_SOFTBARRIER;
  511. list_add(&rq->queuelist, &q->queue_head);
  512. break;
  513. case ELEVATOR_INSERT_BACK:
  514. rq->cmd_flags |= REQ_SOFTBARRIER;
  515. elv_drain_elevator(q);
  516. list_add_tail(&rq->queuelist, &q->queue_head);
  517. /*
  518. * We kick the queue here for the following reasons.
  519. * - The elevator might have returned NULL previously
  520. * to delay requests and returned them now. As the
  521. * queue wasn't empty before this request, ll_rw_blk
  522. * won't run the queue on return, resulting in hang.
  523. * - Usually, back inserted requests won't be merged
  524. * with anything. There's no point in delaying queue
  525. * processing.
  526. */
  527. blk_remove_plug(q);
  528. blk_start_queueing(q);
  529. break;
  530. case ELEVATOR_INSERT_SORT:
  531. BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
  532. rq->cmd_flags |= REQ_SORTED;
  533. q->nr_sorted++;
  534. if (rq_mergeable(rq)) {
  535. elv_rqhash_add(q, rq);
  536. if (!q->last_merge)
  537. q->last_merge = rq;
  538. }
  539. /*
  540. * Some ioscheds (cfq) run q->request_fn directly, so
  541. * rq cannot be accessed after calling
  542. * elevator_add_req_fn.
  543. */
  544. q->elevator->ops->elevator_add_req_fn(q, rq);
  545. break;
  546. case ELEVATOR_INSERT_REQUEUE:
  547. /*
  548. * If ordered flush isn't in progress, we do front
  549. * insertion; otherwise, requests should be requeued
  550. * in ordseq order.
  551. */
  552. rq->cmd_flags |= REQ_SOFTBARRIER;
  553. /*
  554. * Most requeues happen because of a busy condition,
  555. * don't force unplug of the queue for that case.
  556. */
  557. unplug_it = 0;
  558. if (q->ordseq == 0) {
  559. list_add(&rq->queuelist, &q->queue_head);
  560. break;
  561. }
  562. ordseq = blk_ordered_req_seq(rq);
  563. list_for_each(pos, &q->queue_head) {
  564. struct request *pos_rq = list_entry_rq(pos);
  565. if (ordseq <= blk_ordered_req_seq(pos_rq))
  566. break;
  567. }
  568. list_add_tail(&rq->queuelist, pos);
  569. break;
  570. default:
  571. printk(KERN_ERR "%s: bad insertion point %d\n",
  572. __func__, where);
  573. BUG();
  574. }
  575. if (unplug_it && blk_queue_plugged(q)) {
  576. int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
  577. - q->in_flight;
  578. if (nrq >= q->unplug_thresh)
  579. __generic_unplug_device(q);
  580. }
  581. }
  582. void __elv_add_request(struct request_queue *q, struct request *rq, int where,
  583. int plug)
  584. {
  585. if (q->ordcolor)
  586. rq->cmd_flags |= REQ_ORDERED_COLOR;
  587. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  588. /*
  589. * toggle ordered color
  590. */
  591. if (blk_barrier_rq(rq))
  592. q->ordcolor ^= 1;
  593. /*
  594. * barriers implicitly indicate back insertion
  595. */
  596. if (where == ELEVATOR_INSERT_SORT)
  597. where = ELEVATOR_INSERT_BACK;
  598. /*
  599. * this request is scheduling boundary, update
  600. * end_sector
  601. */
  602. if (blk_fs_request(rq) || blk_discard_rq(rq)) {
  603. q->end_sector = rq_end_sector(rq);
  604. q->boundary_rq = rq;
  605. }
  606. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  607. where == ELEVATOR_INSERT_SORT)
  608. where = ELEVATOR_INSERT_BACK;
  609. if (plug)
  610. blk_plug_device(q);
  611. elv_insert(q, rq, where);
  612. }
  613. EXPORT_SYMBOL(__elv_add_request);
  614. void elv_add_request(struct request_queue *q, struct request *rq, int where,
  615. int plug)
  616. {
  617. unsigned long flags;
  618. spin_lock_irqsave(q->queue_lock, flags);
  619. __elv_add_request(q, rq, where, plug);
  620. spin_unlock_irqrestore(q->queue_lock, flags);
  621. }
  622. EXPORT_SYMBOL(elv_add_request);
  623. static inline struct request *__elv_next_request(struct request_queue *q)
  624. {
  625. struct request *rq;
  626. while (1) {
  627. while (!list_empty(&q->queue_head)) {
  628. rq = list_entry_rq(q->queue_head.next);
  629. if (blk_do_ordered(q, &rq))
  630. return rq;
  631. }
  632. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  633. return NULL;
  634. }
  635. }
  636. struct request *elv_next_request(struct request_queue *q)
  637. {
  638. struct request *rq;
  639. int ret;
  640. while ((rq = __elv_next_request(q)) != NULL) {
  641. if (!(rq->cmd_flags & REQ_STARTED)) {
  642. /*
  643. * This is the first time the device driver
  644. * sees this request (possibly after
  645. * requeueing). Notify IO scheduler.
  646. */
  647. if (blk_sorted_rq(rq))
  648. elv_activate_rq(q, rq);
  649. /*
  650. * just mark as started even if we don't start
  651. * it, a request that has been delayed should
  652. * not be passed by new incoming requests
  653. */
  654. rq->cmd_flags |= REQ_STARTED;
  655. trace_block_rq_issue(q, rq);
  656. }
  657. if (!q->boundary_rq || q->boundary_rq == rq) {
  658. q->end_sector = rq_end_sector(rq);
  659. q->boundary_rq = NULL;
  660. }
  661. if (rq->cmd_flags & REQ_DONTPREP)
  662. break;
  663. if (q->dma_drain_size && rq->data_len) {
  664. /*
  665. * make sure space for the drain appears we
  666. * know we can do this because max_hw_segments
  667. * has been adjusted to be one fewer than the
  668. * device can handle
  669. */
  670. rq->nr_phys_segments++;
  671. }
  672. if (!q->prep_rq_fn)
  673. break;
  674. ret = q->prep_rq_fn(q, rq);
  675. if (ret == BLKPREP_OK) {
  676. break;
  677. } else if (ret == BLKPREP_DEFER) {
  678. /*
  679. * the request may have been (partially) prepped.
  680. * we need to keep this request in the front to
  681. * avoid resource deadlock. REQ_STARTED will
  682. * prevent other fs requests from passing this one.
  683. */
  684. if (q->dma_drain_size && rq->data_len &&
  685. !(rq->cmd_flags & REQ_DONTPREP)) {
  686. /*
  687. * remove the space for the drain we added
  688. * so that we don't add it again
  689. */
  690. --rq->nr_phys_segments;
  691. }
  692. rq = NULL;
  693. break;
  694. } else if (ret == BLKPREP_KILL) {
  695. rq->cmd_flags |= REQ_QUIET;
  696. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  697. } else {
  698. printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
  699. break;
  700. }
  701. }
  702. return rq;
  703. }
  704. EXPORT_SYMBOL(elv_next_request);
  705. void elv_dequeue_request(struct request_queue *q, struct request *rq)
  706. {
  707. BUG_ON(list_empty(&rq->queuelist));
  708. BUG_ON(ELV_ON_HASH(rq));
  709. list_del_init(&rq->queuelist);
  710. /*
  711. * the time frame between a request being removed from the lists
  712. * and to it is freed is accounted as io that is in progress at
  713. * the driver side.
  714. */
  715. if (blk_account_rq(rq))
  716. q->in_flight++;
  717. }
  718. int elv_queue_empty(struct request_queue *q)
  719. {
  720. struct elevator_queue *e = q->elevator;
  721. if (!list_empty(&q->queue_head))
  722. return 0;
  723. if (e->ops->elevator_queue_empty_fn)
  724. return e->ops->elevator_queue_empty_fn(q);
  725. return 1;
  726. }
  727. EXPORT_SYMBOL(elv_queue_empty);
  728. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  729. {
  730. struct elevator_queue *e = q->elevator;
  731. if (e->ops->elevator_latter_req_fn)
  732. return e->ops->elevator_latter_req_fn(q, rq);
  733. return NULL;
  734. }
  735. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  736. {
  737. struct elevator_queue *e = q->elevator;
  738. if (e->ops->elevator_former_req_fn)
  739. return e->ops->elevator_former_req_fn(q, rq);
  740. return NULL;
  741. }
  742. int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  743. {
  744. struct elevator_queue *e = q->elevator;
  745. if (e->ops->elevator_set_req_fn)
  746. return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
  747. rq->elevator_private = NULL;
  748. return 0;
  749. }
  750. void elv_put_request(struct request_queue *q, struct request *rq)
  751. {
  752. struct elevator_queue *e = q->elevator;
  753. if (e->ops->elevator_put_req_fn)
  754. e->ops->elevator_put_req_fn(rq);
  755. }
  756. int elv_may_queue(struct request_queue *q, int rw)
  757. {
  758. struct elevator_queue *e = q->elevator;
  759. if (e->ops->elevator_may_queue_fn)
  760. return e->ops->elevator_may_queue_fn(q, rw);
  761. return ELV_MQUEUE_MAY;
  762. }
  763. void elv_abort_queue(struct request_queue *q)
  764. {
  765. struct request *rq;
  766. while (!list_empty(&q->queue_head)) {
  767. rq = list_entry_rq(q->queue_head.next);
  768. rq->cmd_flags |= REQ_QUIET;
  769. trace_block_rq_abort(q, rq);
  770. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  771. }
  772. }
  773. EXPORT_SYMBOL(elv_abort_queue);
  774. void elv_completed_request(struct request_queue *q, struct request *rq)
  775. {
  776. struct elevator_queue *e = q->elevator;
  777. /*
  778. * request is released from the driver, io must be done
  779. */
  780. if (blk_account_rq(rq)) {
  781. q->in_flight--;
  782. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  783. e->ops->elevator_completed_req_fn(q, rq);
  784. }
  785. /*
  786. * Check if the queue is waiting for fs requests to be
  787. * drained for flush sequence.
  788. */
  789. if (unlikely(q->ordseq)) {
  790. struct request *next = NULL;
  791. if (!list_empty(&q->queue_head))
  792. next = list_entry_rq(q->queue_head.next);
  793. if (!q->in_flight &&
  794. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  795. (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
  796. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  797. blk_start_queueing(q);
  798. }
  799. }
  800. }
  801. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  802. static ssize_t
  803. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  804. {
  805. struct elv_fs_entry *entry = to_elv(attr);
  806. struct elevator_queue *e;
  807. ssize_t error;
  808. if (!entry->show)
  809. return -EIO;
  810. e = container_of(kobj, struct elevator_queue, kobj);
  811. mutex_lock(&e->sysfs_lock);
  812. error = e->ops ? entry->show(e, page) : -ENOENT;
  813. mutex_unlock(&e->sysfs_lock);
  814. return error;
  815. }
  816. static ssize_t
  817. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  818. const char *page, size_t length)
  819. {
  820. struct elv_fs_entry *entry = to_elv(attr);
  821. struct elevator_queue *e;
  822. ssize_t error;
  823. if (!entry->store)
  824. return -EIO;
  825. e = container_of(kobj, struct elevator_queue, kobj);
  826. mutex_lock(&e->sysfs_lock);
  827. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  828. mutex_unlock(&e->sysfs_lock);
  829. return error;
  830. }
  831. static struct sysfs_ops elv_sysfs_ops = {
  832. .show = elv_attr_show,
  833. .store = elv_attr_store,
  834. };
  835. static struct kobj_type elv_ktype = {
  836. .sysfs_ops = &elv_sysfs_ops,
  837. .release = elevator_release,
  838. };
  839. int elv_register_queue(struct request_queue *q)
  840. {
  841. struct elevator_queue *e = q->elevator;
  842. int error;
  843. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  844. if (!error) {
  845. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  846. if (attr) {
  847. while (attr->attr.name) {
  848. if (sysfs_create_file(&e->kobj, &attr->attr))
  849. break;
  850. attr++;
  851. }
  852. }
  853. kobject_uevent(&e->kobj, KOBJ_ADD);
  854. }
  855. return error;
  856. }
  857. static void __elv_unregister_queue(struct elevator_queue *e)
  858. {
  859. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  860. kobject_del(&e->kobj);
  861. }
  862. void elv_unregister_queue(struct request_queue *q)
  863. {
  864. if (q)
  865. __elv_unregister_queue(q->elevator);
  866. }
  867. void elv_register(struct elevator_type *e)
  868. {
  869. char *def = "";
  870. spin_lock(&elv_list_lock);
  871. BUG_ON(elevator_find(e->elevator_name));
  872. list_add_tail(&e->list, &elv_list);
  873. spin_unlock(&elv_list_lock);
  874. if (!strcmp(e->elevator_name, chosen_elevator) ||
  875. (!*chosen_elevator &&
  876. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  877. def = " (default)";
  878. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  879. def);
  880. }
  881. EXPORT_SYMBOL_GPL(elv_register);
  882. void elv_unregister(struct elevator_type *e)
  883. {
  884. struct task_struct *g, *p;
  885. /*
  886. * Iterate every thread in the process to remove the io contexts.
  887. */
  888. if (e->ops.trim) {
  889. read_lock(&tasklist_lock);
  890. do_each_thread(g, p) {
  891. task_lock(p);
  892. if (p->io_context)
  893. e->ops.trim(p->io_context);
  894. task_unlock(p);
  895. } while_each_thread(g, p);
  896. read_unlock(&tasklist_lock);
  897. }
  898. spin_lock(&elv_list_lock);
  899. list_del_init(&e->list);
  900. spin_unlock(&elv_list_lock);
  901. }
  902. EXPORT_SYMBOL_GPL(elv_unregister);
  903. /*
  904. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  905. * we don't free the old io scheduler, before we have allocated what we
  906. * need for the new one. this way we have a chance of going back to the old
  907. * one, if the new one fails init for some reason.
  908. */
  909. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  910. {
  911. struct elevator_queue *old_elevator, *e;
  912. void *data;
  913. /*
  914. * Allocate new elevator
  915. */
  916. e = elevator_alloc(q, new_e);
  917. if (!e)
  918. return 0;
  919. data = elevator_init_queue(q, e);
  920. if (!data) {
  921. kobject_put(&e->kobj);
  922. return 0;
  923. }
  924. /*
  925. * Turn on BYPASS and drain all requests w/ elevator private data
  926. */
  927. spin_lock_irq(q->queue_lock);
  928. elv_quiesce_start(q);
  929. /*
  930. * Remember old elevator.
  931. */
  932. old_elevator = q->elevator;
  933. /*
  934. * attach and start new elevator
  935. */
  936. elevator_attach(q, e, data);
  937. spin_unlock_irq(q->queue_lock);
  938. __elv_unregister_queue(old_elevator);
  939. if (elv_register_queue(q))
  940. goto fail_register;
  941. /*
  942. * finally exit old elevator and turn off BYPASS.
  943. */
  944. elevator_exit(old_elevator);
  945. spin_lock_irq(q->queue_lock);
  946. elv_quiesce_end(q);
  947. spin_unlock_irq(q->queue_lock);
  948. blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
  949. return 1;
  950. fail_register:
  951. /*
  952. * switch failed, exit the new io scheduler and reattach the old
  953. * one again (along with re-adding the sysfs dir)
  954. */
  955. elevator_exit(e);
  956. q->elevator = old_elevator;
  957. elv_register_queue(q);
  958. spin_lock_irq(q->queue_lock);
  959. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  960. spin_unlock_irq(q->queue_lock);
  961. return 0;
  962. }
  963. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  964. size_t count)
  965. {
  966. char elevator_name[ELV_NAME_MAX];
  967. struct elevator_type *e;
  968. strlcpy(elevator_name, name, sizeof(elevator_name));
  969. strstrip(elevator_name);
  970. e = elevator_get(elevator_name);
  971. if (!e) {
  972. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  973. return -EINVAL;
  974. }
  975. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  976. elevator_put(e);
  977. return count;
  978. }
  979. if (!elevator_switch(q, e))
  980. printk(KERN_ERR "elevator: switch to %s failed\n",
  981. elevator_name);
  982. return count;
  983. }
  984. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  985. {
  986. struct elevator_queue *e = q->elevator;
  987. struct elevator_type *elv = e->elevator_type;
  988. struct elevator_type *__e;
  989. int len = 0;
  990. spin_lock(&elv_list_lock);
  991. list_for_each_entry(__e, &elv_list, list) {
  992. if (!strcmp(elv->elevator_name, __e->elevator_name))
  993. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  994. else
  995. len += sprintf(name+len, "%s ", __e->elevator_name);
  996. }
  997. spin_unlock(&elv_list_lock);
  998. len += sprintf(len+name, "\n");
  999. return len;
  1000. }
  1001. struct request *elv_rb_former_request(struct request_queue *q,
  1002. struct request *rq)
  1003. {
  1004. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  1005. if (rbprev)
  1006. return rb_entry_rq(rbprev);
  1007. return NULL;
  1008. }
  1009. EXPORT_SYMBOL(elv_rb_former_request);
  1010. struct request *elv_rb_latter_request(struct request_queue *q,
  1011. struct request *rq)
  1012. {
  1013. struct rb_node *rbnext = rb_next(&rq->rb_node);
  1014. if (rbnext)
  1015. return rb_entry_rq(rbnext);
  1016. return NULL;
  1017. }
  1018. EXPORT_SYMBOL(elv_rb_latter_request);