intel_display.c 274 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. };
  58. /* FDI */
  59. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  60. int
  61. intel_pch_rawclk(struct drm_device *dev)
  62. {
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. WARN_ON(!HAS_PCH_SPLIT(dev));
  65. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  66. }
  67. static inline u32 /* units of 100MHz */
  68. intel_fdi_link_freq(struct drm_device *dev)
  69. {
  70. if (IS_GEN5(dev)) {
  71. struct drm_i915_private *dev_priv = dev->dev_private;
  72. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  73. } else
  74. return 27;
  75. }
  76. static const intel_limit_t intel_limits_i8xx_dvo = {
  77. .dot = { .min = 25000, .max = 350000 },
  78. .vco = { .min = 930000, .max = 1400000 },
  79. .n = { .min = 3, .max = 16 },
  80. .m = { .min = 96, .max = 140 },
  81. .m1 = { .min = 18, .max = 26 },
  82. .m2 = { .min = 6, .max = 16 },
  83. .p = { .min = 4, .max = 128 },
  84. .p1 = { .min = 2, .max = 33 },
  85. .p2 = { .dot_limit = 165000,
  86. .p2_slow = 4, .p2_fast = 2 },
  87. };
  88. static const intel_limit_t intel_limits_i8xx_lvds = {
  89. .dot = { .min = 25000, .max = 350000 },
  90. .vco = { .min = 930000, .max = 1400000 },
  91. .n = { .min = 3, .max = 16 },
  92. .m = { .min = 96, .max = 140 },
  93. .m1 = { .min = 18, .max = 26 },
  94. .m2 = { .min = 6, .max = 16 },
  95. .p = { .min = 4, .max = 128 },
  96. .p1 = { .min = 1, .max = 6 },
  97. .p2 = { .dot_limit = 165000,
  98. .p2_slow = 14, .p2_fast = 7 },
  99. };
  100. static const intel_limit_t intel_limits_i9xx_sdvo = {
  101. .dot = { .min = 20000, .max = 400000 },
  102. .vco = { .min = 1400000, .max = 2800000 },
  103. .n = { .min = 1, .max = 6 },
  104. .m = { .min = 70, .max = 120 },
  105. .m1 = { .min = 8, .max = 18 },
  106. .m2 = { .min = 3, .max = 7 },
  107. .p = { .min = 5, .max = 80 },
  108. .p1 = { .min = 1, .max = 8 },
  109. .p2 = { .dot_limit = 200000,
  110. .p2_slow = 10, .p2_fast = 5 },
  111. };
  112. static const intel_limit_t intel_limits_i9xx_lvds = {
  113. .dot = { .min = 20000, .max = 400000 },
  114. .vco = { .min = 1400000, .max = 2800000 },
  115. .n = { .min = 1, .max = 6 },
  116. .m = { .min = 70, .max = 120 },
  117. .m1 = { .min = 8, .max = 18 },
  118. .m2 = { .min = 3, .max = 7 },
  119. .p = { .min = 7, .max = 98 },
  120. .p1 = { .min = 1, .max = 8 },
  121. .p2 = { .dot_limit = 112000,
  122. .p2_slow = 14, .p2_fast = 7 },
  123. };
  124. static const intel_limit_t intel_limits_g4x_sdvo = {
  125. .dot = { .min = 25000, .max = 270000 },
  126. .vco = { .min = 1750000, .max = 3500000},
  127. .n = { .min = 1, .max = 4 },
  128. .m = { .min = 104, .max = 138 },
  129. .m1 = { .min = 17, .max = 23 },
  130. .m2 = { .min = 5, .max = 11 },
  131. .p = { .min = 10, .max = 30 },
  132. .p1 = { .min = 1, .max = 3},
  133. .p2 = { .dot_limit = 270000,
  134. .p2_slow = 10,
  135. .p2_fast = 10
  136. },
  137. };
  138. static const intel_limit_t intel_limits_g4x_hdmi = {
  139. .dot = { .min = 22000, .max = 400000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 16, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 5, .max = 80 },
  146. .p1 = { .min = 1, .max = 8},
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 10, .p2_fast = 5 },
  149. };
  150. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  151. .dot = { .min = 20000, .max = 115000 },
  152. .vco = { .min = 1750000, .max = 3500000 },
  153. .n = { .min = 1, .max = 3 },
  154. .m = { .min = 104, .max = 138 },
  155. .m1 = { .min = 17, .max = 23 },
  156. .m2 = { .min = 5, .max = 11 },
  157. .p = { .min = 28, .max = 112 },
  158. .p1 = { .min = 2, .max = 8 },
  159. .p2 = { .dot_limit = 0,
  160. .p2_slow = 14, .p2_fast = 14
  161. },
  162. };
  163. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  164. .dot = { .min = 80000, .max = 224000 },
  165. .vco = { .min = 1750000, .max = 3500000 },
  166. .n = { .min = 1, .max = 3 },
  167. .m = { .min = 104, .max = 138 },
  168. .m1 = { .min = 17, .max = 23 },
  169. .m2 = { .min = 5, .max = 11 },
  170. .p = { .min = 14, .max = 42 },
  171. .p1 = { .min = 2, .max = 6 },
  172. .p2 = { .dot_limit = 0,
  173. .p2_slow = 7, .p2_fast = 7
  174. },
  175. };
  176. static const intel_limit_t intel_limits_pineview_sdvo = {
  177. .dot = { .min = 20000, .max = 400000},
  178. .vco = { .min = 1700000, .max = 3500000 },
  179. /* Pineview's Ncounter is a ring counter */
  180. .n = { .min = 3, .max = 6 },
  181. .m = { .min = 2, .max = 256 },
  182. /* Pineview only has one combined m divider, which we treat as m2. */
  183. .m1 = { .min = 0, .max = 0 },
  184. .m2 = { .min = 0, .max = 254 },
  185. .p = { .min = 5, .max = 80 },
  186. .p1 = { .min = 1, .max = 8 },
  187. .p2 = { .dot_limit = 200000,
  188. .p2_slow = 10, .p2_fast = 5 },
  189. };
  190. static const intel_limit_t intel_limits_pineview_lvds = {
  191. .dot = { .min = 20000, .max = 400000 },
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. .n = { .min = 3, .max = 6 },
  194. .m = { .min = 2, .max = 256 },
  195. .m1 = { .min = 0, .max = 0 },
  196. .m2 = { .min = 0, .max = 254 },
  197. .p = { .min = 7, .max = 112 },
  198. .p1 = { .min = 1, .max = 8 },
  199. .p2 = { .dot_limit = 112000,
  200. .p2_slow = 14, .p2_fast = 14 },
  201. };
  202. /* Ironlake / Sandybridge
  203. *
  204. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  205. * the range value for them is (actual_value - 2).
  206. */
  207. static const intel_limit_t intel_limits_ironlake_dac = {
  208. .dot = { .min = 25000, .max = 350000 },
  209. .vco = { .min = 1760000, .max = 3510000 },
  210. .n = { .min = 1, .max = 5 },
  211. .m = { .min = 79, .max = 127 },
  212. .m1 = { .min = 12, .max = 22 },
  213. .m2 = { .min = 5, .max = 9 },
  214. .p = { .min = 5, .max = 80 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 225000,
  217. .p2_slow = 10, .p2_fast = 5 },
  218. };
  219. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  220. .dot = { .min = 25000, .max = 350000 },
  221. .vco = { .min = 1760000, .max = 3510000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 79, .max = 118 },
  224. .m1 = { .min = 12, .max = 22 },
  225. .m2 = { .min = 5, .max = 9 },
  226. .p = { .min = 28, .max = 112 },
  227. .p1 = { .min = 2, .max = 8 },
  228. .p2 = { .dot_limit = 225000,
  229. .p2_slow = 14, .p2_fast = 14 },
  230. };
  231. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  232. .dot = { .min = 25000, .max = 350000 },
  233. .vco = { .min = 1760000, .max = 3510000 },
  234. .n = { .min = 1, .max = 3 },
  235. .m = { .min = 79, .max = 127 },
  236. .m1 = { .min = 12, .max = 22 },
  237. .m2 = { .min = 5, .max = 9 },
  238. .p = { .min = 14, .max = 56 },
  239. .p1 = { .min = 2, .max = 8 },
  240. .p2 = { .dot_limit = 225000,
  241. .p2_slow = 7, .p2_fast = 7 },
  242. };
  243. /* LVDS 100mhz refclk limits. */
  244. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  245. .dot = { .min = 25000, .max = 350000 },
  246. .vco = { .min = 1760000, .max = 3510000 },
  247. .n = { .min = 1, .max = 2 },
  248. .m = { .min = 79, .max = 126 },
  249. .m1 = { .min = 12, .max = 22 },
  250. .m2 = { .min = 5, .max = 9 },
  251. .p = { .min = 28, .max = 112 },
  252. .p1 = { .min = 2, .max = 8 },
  253. .p2 = { .dot_limit = 225000,
  254. .p2_slow = 14, .p2_fast = 14 },
  255. };
  256. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  257. .dot = { .min = 25000, .max = 350000 },
  258. .vco = { .min = 1760000, .max = 3510000 },
  259. .n = { .min = 1, .max = 3 },
  260. .m = { .min = 79, .max = 126 },
  261. .m1 = { .min = 12, .max = 22 },
  262. .m2 = { .min = 5, .max = 9 },
  263. .p = { .min = 14, .max = 42 },
  264. .p1 = { .min = 2, .max = 6 },
  265. .p2 = { .dot_limit = 225000,
  266. .p2_slow = 7, .p2_fast = 7 },
  267. };
  268. static const intel_limit_t intel_limits_vlv_dac = {
  269. .dot = { .min = 25000, .max = 270000 },
  270. .vco = { .min = 4000000, .max = 6000000 },
  271. .n = { .min = 1, .max = 7 },
  272. .m = { .min = 22, .max = 450 }, /* guess */
  273. .m1 = { .min = 2, .max = 3 },
  274. .m2 = { .min = 11, .max = 156 },
  275. .p = { .min = 10, .max = 30 },
  276. .p1 = { .min = 1, .max = 3 },
  277. .p2 = { .dot_limit = 270000,
  278. .p2_slow = 2, .p2_fast = 20 },
  279. };
  280. static const intel_limit_t intel_limits_vlv_hdmi = {
  281. .dot = { .min = 25000, .max = 270000 },
  282. .vco = { .min = 4000000, .max = 6000000 },
  283. .n = { .min = 1, .max = 7 },
  284. .m = { .min = 60, .max = 300 }, /* guess */
  285. .m1 = { .min = 2, .max = 3 },
  286. .m2 = { .min = 11, .max = 156 },
  287. .p = { .min = 10, .max = 30 },
  288. .p1 = { .min = 2, .max = 3 },
  289. .p2 = { .dot_limit = 270000,
  290. .p2_slow = 2, .p2_fast = 20 },
  291. };
  292. static const intel_limit_t intel_limits_vlv_dp = {
  293. .dot = { .min = 25000, .max = 270000 },
  294. .vco = { .min = 4000000, .max = 6000000 },
  295. .n = { .min = 1, .max = 7 },
  296. .m = { .min = 22, .max = 450 },
  297. .m1 = { .min = 2, .max = 3 },
  298. .m2 = { .min = 11, .max = 156 },
  299. .p = { .min = 10, .max = 30 },
  300. .p1 = { .min = 1, .max = 3 },
  301. .p2 = { .dot_limit = 270000,
  302. .p2_slow = 2, .p2_fast = 20 },
  303. };
  304. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  305. int refclk)
  306. {
  307. struct drm_device *dev = crtc->dev;
  308. const intel_limit_t *limit;
  309. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  310. if (intel_is_dual_link_lvds(dev)) {
  311. if (refclk == 100000)
  312. limit = &intel_limits_ironlake_dual_lvds_100m;
  313. else
  314. limit = &intel_limits_ironlake_dual_lvds;
  315. } else {
  316. if (refclk == 100000)
  317. limit = &intel_limits_ironlake_single_lvds_100m;
  318. else
  319. limit = &intel_limits_ironlake_single_lvds;
  320. }
  321. } else
  322. limit = &intel_limits_ironlake_dac;
  323. return limit;
  324. }
  325. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  326. {
  327. struct drm_device *dev = crtc->dev;
  328. const intel_limit_t *limit;
  329. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  330. if (intel_is_dual_link_lvds(dev))
  331. limit = &intel_limits_g4x_dual_channel_lvds;
  332. else
  333. limit = &intel_limits_g4x_single_channel_lvds;
  334. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  335. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  336. limit = &intel_limits_g4x_hdmi;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  338. limit = &intel_limits_g4x_sdvo;
  339. } else /* The option is for other outputs */
  340. limit = &intel_limits_i9xx_sdvo;
  341. return limit;
  342. }
  343. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  344. {
  345. struct drm_device *dev = crtc->dev;
  346. const intel_limit_t *limit;
  347. if (HAS_PCH_SPLIT(dev))
  348. limit = intel_ironlake_limit(crtc, refclk);
  349. else if (IS_G4X(dev)) {
  350. limit = intel_g4x_limit(crtc);
  351. } else if (IS_PINEVIEW(dev)) {
  352. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  353. limit = &intel_limits_pineview_lvds;
  354. else
  355. limit = &intel_limits_pineview_sdvo;
  356. } else if (IS_VALLEYVIEW(dev)) {
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  358. limit = &intel_limits_vlv_dac;
  359. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  360. limit = &intel_limits_vlv_hdmi;
  361. else
  362. limit = &intel_limits_vlv_dp;
  363. } else if (!IS_GEN2(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_i9xx_lvds;
  366. else
  367. limit = &intel_limits_i9xx_sdvo;
  368. } else {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_i8xx_lvds;
  371. else
  372. limit = &intel_limits_i8xx_dvo;
  373. }
  374. return limit;
  375. }
  376. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  377. static void pineview_clock(int refclk, intel_clock_t *clock)
  378. {
  379. clock->m = clock->m2 + 2;
  380. clock->p = clock->p1 * clock->p2;
  381. clock->vco = refclk * clock->m / clock->n;
  382. clock->dot = clock->vco / clock->p;
  383. }
  384. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  385. {
  386. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  387. }
  388. static void i9xx_clock(int refclk, intel_clock_t *clock)
  389. {
  390. clock->m = i9xx_dpll_compute_m(clock);
  391. clock->p = clock->p1 * clock->p2;
  392. clock->vco = refclk * clock->m / (clock->n + 2);
  393. clock->dot = clock->vco / clock->p;
  394. }
  395. /**
  396. * Returns whether any output on the specified pipe is of the specified type
  397. */
  398. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  399. {
  400. struct drm_device *dev = crtc->dev;
  401. struct intel_encoder *encoder;
  402. for_each_encoder_on_crtc(dev, crtc, encoder)
  403. if (encoder->type == type)
  404. return true;
  405. return false;
  406. }
  407. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  408. /**
  409. * Returns whether the given set of divisors are valid for a given refclk with
  410. * the given connectors.
  411. */
  412. static bool intel_PLL_is_valid(struct drm_device *dev,
  413. const intel_limit_t *limit,
  414. const intel_clock_t *clock)
  415. {
  416. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  417. INTELPllInvalid("p1 out of range\n");
  418. if (clock->p < limit->p.min || limit->p.max < clock->p)
  419. INTELPllInvalid("p out of range\n");
  420. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  421. INTELPllInvalid("m2 out of range\n");
  422. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  423. INTELPllInvalid("m1 out of range\n");
  424. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  425. INTELPllInvalid("m1 <= m2\n");
  426. if (clock->m < limit->m.min || limit->m.max < clock->m)
  427. INTELPllInvalid("m out of range\n");
  428. if (clock->n < limit->n.min || limit->n.max < clock->n)
  429. INTELPllInvalid("n out of range\n");
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  603. u32 m, n, fastclk;
  604. u32 updrate, minupdate, fracbits, p;
  605. unsigned long bestppm, ppm, absppm;
  606. int dotclk, flag;
  607. flag = 0;
  608. dotclk = target * 1000;
  609. bestppm = 1000000;
  610. ppm = absppm = 0;
  611. fastclk = dotclk / (2*100);
  612. updrate = 0;
  613. minupdate = 19200;
  614. fracbits = 1;
  615. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  616. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  617. /* based on hardware requirement, prefer smaller n to precision */
  618. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  619. updrate = refclk / n;
  620. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  621. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  622. if (p2 > 10)
  623. p2 = p2 - 1;
  624. p = p1 * p2;
  625. /* based on hardware requirement, prefer bigger m1,m2 values */
  626. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  627. m2 = (((2*(fastclk * p * n / m1 )) +
  628. refclk) / (2*refclk));
  629. m = m1 * m2;
  630. vco = updrate * m;
  631. if (vco >= limit->vco.min && vco < limit->vco.max) {
  632. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  633. absppm = (ppm > 0) ? ppm : (-ppm);
  634. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  635. bestppm = 0;
  636. flag = 1;
  637. }
  638. if (absppm < bestppm - 10) {
  639. bestppm = absppm;
  640. flag = 1;
  641. }
  642. if (flag) {
  643. bestn = n;
  644. bestm1 = m1;
  645. bestm2 = m2;
  646. bestp1 = p1;
  647. bestp2 = p2;
  648. flag = 0;
  649. }
  650. }
  651. }
  652. }
  653. }
  654. }
  655. best_clock->n = bestn;
  656. best_clock->m1 = bestm1;
  657. best_clock->m2 = bestm2;
  658. best_clock->p1 = bestp1;
  659. best_clock->p2 = bestp2;
  660. return true;
  661. }
  662. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  663. enum pipe pipe)
  664. {
  665. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. return intel_crtc->config.cpu_transcoder;
  668. }
  669. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. u32 frame, frame_reg = PIPEFRAME(pipe);
  673. frame = I915_READ(frame_reg);
  674. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  675. DRM_DEBUG_KMS("vblank wait timed out\n");
  676. }
  677. /**
  678. * intel_wait_for_vblank - wait for vblank on a given pipe
  679. * @dev: drm device
  680. * @pipe: pipe to wait for
  681. *
  682. * Wait for vblank to occur on a given pipe. Needed for various bits of
  683. * mode setting code.
  684. */
  685. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  686. {
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. int pipestat_reg = PIPESTAT(pipe);
  689. if (INTEL_INFO(dev)->gen >= 5) {
  690. ironlake_wait_for_vblank(dev, pipe);
  691. return;
  692. }
  693. /* Clear existing vblank status. Note this will clear any other
  694. * sticky status fields as well.
  695. *
  696. * This races with i915_driver_irq_handler() with the result
  697. * that either function could miss a vblank event. Here it is not
  698. * fatal, as we will either wait upon the next vblank interrupt or
  699. * timeout. Generally speaking intel_wait_for_vblank() is only
  700. * called during modeset at which time the GPU should be idle and
  701. * should *not* be performing page flips and thus not waiting on
  702. * vblanks...
  703. * Currently, the result of us stealing a vblank from the irq
  704. * handler is that a single frame will be skipped during swapbuffers.
  705. */
  706. I915_WRITE(pipestat_reg,
  707. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  708. /* Wait for vblank interrupt bit to set */
  709. if (wait_for(I915_READ(pipestat_reg) &
  710. PIPE_VBLANK_INTERRUPT_STATUS,
  711. 50))
  712. DRM_DEBUG_KMS("vblank wait timed out\n");
  713. }
  714. /*
  715. * intel_wait_for_pipe_off - wait for pipe to turn off
  716. * @dev: drm device
  717. * @pipe: pipe to wait for
  718. *
  719. * After disabling a pipe, we can't wait for vblank in the usual way,
  720. * spinning on the vblank interrupt status bit, since we won't actually
  721. * see an interrupt when the pipe is disabled.
  722. *
  723. * On Gen4 and above:
  724. * wait for the pipe register state bit to turn off
  725. *
  726. * Otherwise:
  727. * wait for the display line value to settle (it usually
  728. * ends up stopping at the start of the next frame).
  729. *
  730. */
  731. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  735. pipe);
  736. if (INTEL_INFO(dev)->gen >= 4) {
  737. int reg = PIPECONF(cpu_transcoder);
  738. /* Wait for the Pipe State to go off */
  739. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  740. 100))
  741. WARN(1, "pipe_off wait timed out\n");
  742. } else {
  743. u32 last_line, line_mask;
  744. int reg = PIPEDSL(pipe);
  745. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  746. if (IS_GEN2(dev))
  747. line_mask = DSL_LINEMASK_GEN2;
  748. else
  749. line_mask = DSL_LINEMASK_GEN3;
  750. /* Wait for the display line to settle */
  751. do {
  752. last_line = I915_READ(reg) & line_mask;
  753. mdelay(5);
  754. } while (((I915_READ(reg) & line_mask) != last_line) &&
  755. time_after(timeout, jiffies));
  756. if (time_after(jiffies, timeout))
  757. WARN(1, "pipe_off wait timed out\n");
  758. }
  759. }
  760. /*
  761. * ibx_digital_port_connected - is the specified port connected?
  762. * @dev_priv: i915 private structure
  763. * @port: the port to test
  764. *
  765. * Returns true if @port is connected, false otherwise.
  766. */
  767. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  768. struct intel_digital_port *port)
  769. {
  770. u32 bit;
  771. if (HAS_PCH_IBX(dev_priv->dev)) {
  772. switch(port->port) {
  773. case PORT_B:
  774. bit = SDE_PORTB_HOTPLUG;
  775. break;
  776. case PORT_C:
  777. bit = SDE_PORTC_HOTPLUG;
  778. break;
  779. case PORT_D:
  780. bit = SDE_PORTD_HOTPLUG;
  781. break;
  782. default:
  783. return true;
  784. }
  785. } else {
  786. switch(port->port) {
  787. case PORT_B:
  788. bit = SDE_PORTB_HOTPLUG_CPT;
  789. break;
  790. case PORT_C:
  791. bit = SDE_PORTC_HOTPLUG_CPT;
  792. break;
  793. case PORT_D:
  794. bit = SDE_PORTD_HOTPLUG_CPT;
  795. break;
  796. default:
  797. return true;
  798. }
  799. }
  800. return I915_READ(SDEISR) & bit;
  801. }
  802. static const char *state_string(bool enabled)
  803. {
  804. return enabled ? "on" : "off";
  805. }
  806. /* Only for pre-ILK configs */
  807. void assert_pll(struct drm_i915_private *dev_priv,
  808. enum pipe pipe, bool state)
  809. {
  810. int reg;
  811. u32 val;
  812. bool cur_state;
  813. reg = DPLL(pipe);
  814. val = I915_READ(reg);
  815. cur_state = !!(val & DPLL_VCO_ENABLE);
  816. WARN(cur_state != state,
  817. "PLL state assertion failure (expected %s, current %s)\n",
  818. state_string(state), state_string(cur_state));
  819. }
  820. struct intel_shared_dpll *
  821. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  822. {
  823. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  824. if (crtc->config.shared_dpll < 0)
  825. return NULL;
  826. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  827. }
  828. /* For ILK+ */
  829. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  830. struct intel_shared_dpll *pll,
  831. bool state)
  832. {
  833. bool cur_state;
  834. struct intel_dpll_hw_state hw_state;
  835. if (HAS_PCH_LPT(dev_priv->dev)) {
  836. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  837. return;
  838. }
  839. if (WARN (!pll,
  840. "asserting DPLL %s with no DPLL\n", state_string(state)))
  841. return;
  842. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  843. WARN(cur_state != state,
  844. "%s assertion failure (expected %s, current %s)\n",
  845. pll->name, state_string(state), state_string(cur_state));
  846. }
  847. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  848. enum pipe pipe, bool state)
  849. {
  850. int reg;
  851. u32 val;
  852. bool cur_state;
  853. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  854. pipe);
  855. if (HAS_DDI(dev_priv->dev)) {
  856. /* DDI does not have a specific FDI_TX register */
  857. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  858. val = I915_READ(reg);
  859. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  860. } else {
  861. reg = FDI_TX_CTL(pipe);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & FDI_TX_ENABLE);
  864. }
  865. WARN(cur_state != state,
  866. "FDI TX state assertion failure (expected %s, current %s)\n",
  867. state_string(state), state_string(cur_state));
  868. }
  869. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  870. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  871. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  872. enum pipe pipe, bool state)
  873. {
  874. int reg;
  875. u32 val;
  876. bool cur_state;
  877. reg = FDI_RX_CTL(pipe);
  878. val = I915_READ(reg);
  879. cur_state = !!(val & FDI_RX_ENABLE);
  880. WARN(cur_state != state,
  881. "FDI RX state assertion failure (expected %s, current %s)\n",
  882. state_string(state), state_string(cur_state));
  883. }
  884. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  885. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  886. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  887. enum pipe pipe)
  888. {
  889. int reg;
  890. u32 val;
  891. /* ILK FDI PLL is always enabled */
  892. if (dev_priv->info->gen == 5)
  893. return;
  894. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  895. if (HAS_DDI(dev_priv->dev))
  896. return;
  897. reg = FDI_TX_CTL(pipe);
  898. val = I915_READ(reg);
  899. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  900. }
  901. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  902. enum pipe pipe, bool state)
  903. {
  904. int reg;
  905. u32 val;
  906. bool cur_state;
  907. reg = FDI_RX_CTL(pipe);
  908. val = I915_READ(reg);
  909. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  910. WARN(cur_state != state,
  911. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  912. state_string(state), state_string(cur_state));
  913. }
  914. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  915. enum pipe pipe)
  916. {
  917. int pp_reg, lvds_reg;
  918. u32 val;
  919. enum pipe panel_pipe = PIPE_A;
  920. bool locked = true;
  921. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  922. pp_reg = PCH_PP_CONTROL;
  923. lvds_reg = PCH_LVDS;
  924. } else {
  925. pp_reg = PP_CONTROL;
  926. lvds_reg = LVDS;
  927. }
  928. val = I915_READ(pp_reg);
  929. if (!(val & PANEL_POWER_ON) ||
  930. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  931. locked = false;
  932. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  933. panel_pipe = PIPE_B;
  934. WARN(panel_pipe == pipe && locked,
  935. "panel assertion failure, pipe %c regs locked\n",
  936. pipe_name(pipe));
  937. }
  938. void assert_pipe(struct drm_i915_private *dev_priv,
  939. enum pipe pipe, bool state)
  940. {
  941. int reg;
  942. u32 val;
  943. bool cur_state;
  944. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  945. pipe);
  946. /* if we need the pipe A quirk it must be always on */
  947. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  948. state = true;
  949. if (!intel_display_power_enabled(dev_priv->dev,
  950. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  951. cur_state = false;
  952. } else {
  953. reg = PIPECONF(cpu_transcoder);
  954. val = I915_READ(reg);
  955. cur_state = !!(val & PIPECONF_ENABLE);
  956. }
  957. WARN(cur_state != state,
  958. "pipe %c assertion failure (expected %s, current %s)\n",
  959. pipe_name(pipe), state_string(state), state_string(cur_state));
  960. }
  961. static void assert_plane(struct drm_i915_private *dev_priv,
  962. enum plane plane, bool state)
  963. {
  964. int reg;
  965. u32 val;
  966. bool cur_state;
  967. reg = DSPCNTR(plane);
  968. val = I915_READ(reg);
  969. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  970. WARN(cur_state != state,
  971. "plane %c assertion failure (expected %s, current %s)\n",
  972. plane_name(plane), state_string(state), state_string(cur_state));
  973. }
  974. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  975. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  976. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  977. enum pipe pipe)
  978. {
  979. struct drm_device *dev = dev_priv->dev;
  980. int reg, i;
  981. u32 val;
  982. int cur_pipe;
  983. /* Primary planes are fixed to pipes on gen4+ */
  984. if (INTEL_INFO(dev)->gen >= 4) {
  985. reg = DSPCNTR(pipe);
  986. val = I915_READ(reg);
  987. WARN((val & DISPLAY_PLANE_ENABLE),
  988. "plane %c assertion failure, should be disabled but not\n",
  989. plane_name(pipe));
  990. return;
  991. }
  992. /* Need to check both planes against the pipe */
  993. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  994. reg = DSPCNTR(i);
  995. val = I915_READ(reg);
  996. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  997. DISPPLANE_SEL_PIPE_SHIFT;
  998. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  999. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1000. plane_name(i), pipe_name(pipe));
  1001. }
  1002. }
  1003. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1004. enum pipe pipe)
  1005. {
  1006. struct drm_device *dev = dev_priv->dev;
  1007. int reg, i;
  1008. u32 val;
  1009. if (IS_VALLEYVIEW(dev)) {
  1010. for (i = 0; i < dev_priv->num_plane; i++) {
  1011. reg = SPCNTR(pipe, i);
  1012. val = I915_READ(reg);
  1013. WARN((val & SP_ENABLE),
  1014. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1015. sprite_name(pipe, i), pipe_name(pipe));
  1016. }
  1017. } else if (INTEL_INFO(dev)->gen >= 7) {
  1018. reg = SPRCTL(pipe);
  1019. val = I915_READ(reg);
  1020. WARN((val & SPRITE_ENABLE),
  1021. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1022. plane_name(pipe), pipe_name(pipe));
  1023. } else if (INTEL_INFO(dev)->gen >= 5) {
  1024. reg = DVSCNTR(pipe);
  1025. val = I915_READ(reg);
  1026. WARN((val & DVS_ENABLE),
  1027. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1028. plane_name(pipe), pipe_name(pipe));
  1029. }
  1030. }
  1031. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1032. {
  1033. u32 val;
  1034. bool enabled;
  1035. if (HAS_PCH_LPT(dev_priv->dev)) {
  1036. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1037. return;
  1038. }
  1039. val = I915_READ(PCH_DREF_CONTROL);
  1040. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1041. DREF_SUPERSPREAD_SOURCE_MASK));
  1042. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1043. }
  1044. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1045. enum pipe pipe)
  1046. {
  1047. int reg;
  1048. u32 val;
  1049. bool enabled;
  1050. reg = PCH_TRANSCONF(pipe);
  1051. val = I915_READ(reg);
  1052. enabled = !!(val & TRANS_ENABLE);
  1053. WARN(enabled,
  1054. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1055. pipe_name(pipe));
  1056. }
  1057. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1058. enum pipe pipe, u32 port_sel, u32 val)
  1059. {
  1060. if ((val & DP_PORT_EN) == 0)
  1061. return false;
  1062. if (HAS_PCH_CPT(dev_priv->dev)) {
  1063. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1064. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1065. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1066. return false;
  1067. } else {
  1068. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1069. return false;
  1070. }
  1071. return true;
  1072. }
  1073. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1074. enum pipe pipe, u32 val)
  1075. {
  1076. if ((val & SDVO_ENABLE) == 0)
  1077. return false;
  1078. if (HAS_PCH_CPT(dev_priv->dev)) {
  1079. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1080. return false;
  1081. } else {
  1082. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1083. return false;
  1084. }
  1085. return true;
  1086. }
  1087. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1088. enum pipe pipe, u32 val)
  1089. {
  1090. if ((val & LVDS_PORT_EN) == 0)
  1091. return false;
  1092. if (HAS_PCH_CPT(dev_priv->dev)) {
  1093. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1094. return false;
  1095. } else {
  1096. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1097. return false;
  1098. }
  1099. return true;
  1100. }
  1101. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1102. enum pipe pipe, u32 val)
  1103. {
  1104. if ((val & ADPA_DAC_ENABLE) == 0)
  1105. return false;
  1106. if (HAS_PCH_CPT(dev_priv->dev)) {
  1107. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1108. return false;
  1109. } else {
  1110. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1111. return false;
  1112. }
  1113. return true;
  1114. }
  1115. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1116. enum pipe pipe, int reg, u32 port_sel)
  1117. {
  1118. u32 val = I915_READ(reg);
  1119. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1120. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1121. reg, pipe_name(pipe));
  1122. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1123. && (val & DP_PIPEB_SELECT),
  1124. "IBX PCH dp port still using transcoder B\n");
  1125. }
  1126. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1127. enum pipe pipe, int reg)
  1128. {
  1129. u32 val = I915_READ(reg);
  1130. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1131. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1132. reg, pipe_name(pipe));
  1133. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1134. && (val & SDVO_PIPE_B_SELECT),
  1135. "IBX PCH hdmi port still using transcoder B\n");
  1136. }
  1137. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1138. enum pipe pipe)
  1139. {
  1140. int reg;
  1141. u32 val;
  1142. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1143. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1144. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1145. reg = PCH_ADPA;
  1146. val = I915_READ(reg);
  1147. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1148. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1149. pipe_name(pipe));
  1150. reg = PCH_LVDS;
  1151. val = I915_READ(reg);
  1152. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1153. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1154. pipe_name(pipe));
  1155. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1156. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1157. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1158. }
  1159. static void vlv_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1160. {
  1161. int reg;
  1162. u32 val;
  1163. assert_pipe_disabled(dev_priv, pipe);
  1164. /* No really, not for ILK+ */
  1165. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1166. /* PLL is protected by panel, make sure we can write it */
  1167. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1168. assert_panel_unlocked(dev_priv, pipe);
  1169. reg = DPLL(pipe);
  1170. val = I915_READ(reg);
  1171. val |= DPLL_VCO_ENABLE;
  1172. /* We do this three times for luck */
  1173. I915_WRITE(reg, val);
  1174. POSTING_READ(reg);
  1175. udelay(150); /* wait for warmup */
  1176. I915_WRITE(reg, val);
  1177. POSTING_READ(reg);
  1178. udelay(150); /* wait for warmup */
  1179. I915_WRITE(reg, val);
  1180. POSTING_READ(reg);
  1181. udelay(150); /* wait for warmup */
  1182. }
  1183. static void i9xx_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1184. {
  1185. int reg;
  1186. u32 val;
  1187. assert_pipe_disabled(dev_priv, pipe);
  1188. /* No really, not for ILK+ */
  1189. BUG_ON(dev_priv->info->gen >= 5);
  1190. /* PLL is protected by panel, make sure we can write it */
  1191. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1192. assert_panel_unlocked(dev_priv, pipe);
  1193. reg = DPLL(pipe);
  1194. val = I915_READ(reg);
  1195. val |= DPLL_VCO_ENABLE;
  1196. /* We do this three times for luck */
  1197. I915_WRITE(reg, val);
  1198. POSTING_READ(reg);
  1199. udelay(150); /* wait for warmup */
  1200. I915_WRITE(reg, val);
  1201. POSTING_READ(reg);
  1202. udelay(150); /* wait for warmup */
  1203. I915_WRITE(reg, val);
  1204. POSTING_READ(reg);
  1205. udelay(150); /* wait for warmup */
  1206. }
  1207. /**
  1208. * intel_disable_pll - disable a PLL
  1209. * @dev_priv: i915 private structure
  1210. * @pipe: pipe PLL to disable
  1211. *
  1212. * Disable the PLL for @pipe, making sure the pipe is off first.
  1213. *
  1214. * Note! This is for pre-ILK only.
  1215. */
  1216. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1217. {
  1218. int reg;
  1219. u32 val;
  1220. /* Don't disable pipe A or pipe A PLLs if needed */
  1221. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1222. return;
  1223. /* Make sure the pipe isn't still relying on us */
  1224. assert_pipe_disabled(dev_priv, pipe);
  1225. reg = DPLL(pipe);
  1226. val = I915_READ(reg);
  1227. val &= ~DPLL_VCO_ENABLE;
  1228. I915_WRITE(reg, val);
  1229. POSTING_READ(reg);
  1230. }
  1231. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1232. {
  1233. u32 port_mask;
  1234. if (!port)
  1235. port_mask = DPLL_PORTB_READY_MASK;
  1236. else
  1237. port_mask = DPLL_PORTC_READY_MASK;
  1238. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1239. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1240. 'B' + port, I915_READ(DPLL(0)));
  1241. }
  1242. /**
  1243. * ironlake_enable_shared_dpll - enable PCH PLL
  1244. * @dev_priv: i915 private structure
  1245. * @pipe: pipe PLL to enable
  1246. *
  1247. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1248. * drives the transcoder clock.
  1249. */
  1250. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1251. {
  1252. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1253. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1254. /* PCH PLLs only available on ILK, SNB and IVB */
  1255. BUG_ON(dev_priv->info->gen < 5);
  1256. if (WARN_ON(pll == NULL))
  1257. return;
  1258. if (WARN_ON(pll->refcount == 0))
  1259. return;
  1260. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1261. pll->name, pll->active, pll->on,
  1262. crtc->base.base.id);
  1263. if (pll->active++) {
  1264. WARN_ON(!pll->on);
  1265. assert_shared_dpll_enabled(dev_priv, pll);
  1266. return;
  1267. }
  1268. WARN_ON(pll->on);
  1269. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1270. pll->enable(dev_priv, pll);
  1271. pll->on = true;
  1272. }
  1273. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1274. {
  1275. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1276. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1277. /* PCH only available on ILK+ */
  1278. BUG_ON(dev_priv->info->gen < 5);
  1279. if (WARN_ON(pll == NULL))
  1280. return;
  1281. if (WARN_ON(pll->refcount == 0))
  1282. return;
  1283. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1284. pll->name, pll->active, pll->on,
  1285. crtc->base.base.id);
  1286. if (WARN_ON(pll->active == 0)) {
  1287. assert_shared_dpll_disabled(dev_priv, pll);
  1288. return;
  1289. }
  1290. assert_shared_dpll_enabled(dev_priv, pll);
  1291. WARN_ON(!pll->on);
  1292. if (--pll->active)
  1293. return;
  1294. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1295. pll->disable(dev_priv, pll);
  1296. pll->on = false;
  1297. }
  1298. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1299. enum pipe pipe)
  1300. {
  1301. struct drm_device *dev = dev_priv->dev;
  1302. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1303. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1304. uint32_t reg, val, pipeconf_val;
  1305. /* PCH only available on ILK+ */
  1306. BUG_ON(dev_priv->info->gen < 5);
  1307. /* Make sure PCH DPLL is enabled */
  1308. assert_shared_dpll_enabled(dev_priv,
  1309. intel_crtc_to_shared_dpll(intel_crtc));
  1310. /* FDI must be feeding us bits for PCH ports */
  1311. assert_fdi_tx_enabled(dev_priv, pipe);
  1312. assert_fdi_rx_enabled(dev_priv, pipe);
  1313. if (HAS_PCH_CPT(dev)) {
  1314. /* Workaround: Set the timing override bit before enabling the
  1315. * pch transcoder. */
  1316. reg = TRANS_CHICKEN2(pipe);
  1317. val = I915_READ(reg);
  1318. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1319. I915_WRITE(reg, val);
  1320. }
  1321. reg = PCH_TRANSCONF(pipe);
  1322. val = I915_READ(reg);
  1323. pipeconf_val = I915_READ(PIPECONF(pipe));
  1324. if (HAS_PCH_IBX(dev_priv->dev)) {
  1325. /*
  1326. * make the BPC in transcoder be consistent with
  1327. * that in pipeconf reg.
  1328. */
  1329. val &= ~PIPECONF_BPC_MASK;
  1330. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1331. }
  1332. val &= ~TRANS_INTERLACE_MASK;
  1333. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1334. if (HAS_PCH_IBX(dev_priv->dev) &&
  1335. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1336. val |= TRANS_LEGACY_INTERLACED_ILK;
  1337. else
  1338. val |= TRANS_INTERLACED;
  1339. else
  1340. val |= TRANS_PROGRESSIVE;
  1341. I915_WRITE(reg, val | TRANS_ENABLE);
  1342. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1343. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1344. }
  1345. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1346. enum transcoder cpu_transcoder)
  1347. {
  1348. u32 val, pipeconf_val;
  1349. /* PCH only available on ILK+ */
  1350. BUG_ON(dev_priv->info->gen < 5);
  1351. /* FDI must be feeding us bits for PCH ports */
  1352. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1353. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1354. /* Workaround: set timing override bit. */
  1355. val = I915_READ(_TRANSA_CHICKEN2);
  1356. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1357. I915_WRITE(_TRANSA_CHICKEN2, val);
  1358. val = TRANS_ENABLE;
  1359. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1360. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1361. PIPECONF_INTERLACED_ILK)
  1362. val |= TRANS_INTERLACED;
  1363. else
  1364. val |= TRANS_PROGRESSIVE;
  1365. I915_WRITE(LPT_TRANSCONF, val);
  1366. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1367. DRM_ERROR("Failed to enable PCH transcoder\n");
  1368. }
  1369. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1370. enum pipe pipe)
  1371. {
  1372. struct drm_device *dev = dev_priv->dev;
  1373. uint32_t reg, val;
  1374. /* FDI relies on the transcoder */
  1375. assert_fdi_tx_disabled(dev_priv, pipe);
  1376. assert_fdi_rx_disabled(dev_priv, pipe);
  1377. /* Ports must be off as well */
  1378. assert_pch_ports_disabled(dev_priv, pipe);
  1379. reg = PCH_TRANSCONF(pipe);
  1380. val = I915_READ(reg);
  1381. val &= ~TRANS_ENABLE;
  1382. I915_WRITE(reg, val);
  1383. /* wait for PCH transcoder off, transcoder state */
  1384. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1385. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1386. if (!HAS_PCH_IBX(dev)) {
  1387. /* Workaround: Clear the timing override chicken bit again. */
  1388. reg = TRANS_CHICKEN2(pipe);
  1389. val = I915_READ(reg);
  1390. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1391. I915_WRITE(reg, val);
  1392. }
  1393. }
  1394. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1395. {
  1396. u32 val;
  1397. val = I915_READ(LPT_TRANSCONF);
  1398. val &= ~TRANS_ENABLE;
  1399. I915_WRITE(LPT_TRANSCONF, val);
  1400. /* wait for PCH transcoder off, transcoder state */
  1401. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1402. DRM_ERROR("Failed to disable PCH transcoder\n");
  1403. /* Workaround: clear timing override bit. */
  1404. val = I915_READ(_TRANSA_CHICKEN2);
  1405. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1406. I915_WRITE(_TRANSA_CHICKEN2, val);
  1407. }
  1408. /**
  1409. * intel_enable_pipe - enable a pipe, asserting requirements
  1410. * @dev_priv: i915 private structure
  1411. * @pipe: pipe to enable
  1412. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1413. *
  1414. * Enable @pipe, making sure that various hardware specific requirements
  1415. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1416. *
  1417. * @pipe should be %PIPE_A or %PIPE_B.
  1418. *
  1419. * Will wait until the pipe is actually running (i.e. first vblank) before
  1420. * returning.
  1421. */
  1422. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1423. bool pch_port)
  1424. {
  1425. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1426. pipe);
  1427. enum pipe pch_transcoder;
  1428. int reg;
  1429. u32 val;
  1430. assert_planes_disabled(dev_priv, pipe);
  1431. assert_sprites_disabled(dev_priv, pipe);
  1432. if (HAS_PCH_LPT(dev_priv->dev))
  1433. pch_transcoder = TRANSCODER_A;
  1434. else
  1435. pch_transcoder = pipe;
  1436. /*
  1437. * A pipe without a PLL won't actually be able to drive bits from
  1438. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1439. * need the check.
  1440. */
  1441. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1442. assert_pll_enabled(dev_priv, pipe);
  1443. else {
  1444. if (pch_port) {
  1445. /* if driving the PCH, we need FDI enabled */
  1446. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1447. assert_fdi_tx_pll_enabled(dev_priv,
  1448. (enum pipe) cpu_transcoder);
  1449. }
  1450. /* FIXME: assert CPU port conditions for SNB+ */
  1451. }
  1452. reg = PIPECONF(cpu_transcoder);
  1453. val = I915_READ(reg);
  1454. if (val & PIPECONF_ENABLE)
  1455. return;
  1456. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1457. intel_wait_for_vblank(dev_priv->dev, pipe);
  1458. }
  1459. /**
  1460. * intel_disable_pipe - disable a pipe, asserting requirements
  1461. * @dev_priv: i915 private structure
  1462. * @pipe: pipe to disable
  1463. *
  1464. * Disable @pipe, making sure that various hardware specific requirements
  1465. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1466. *
  1467. * @pipe should be %PIPE_A or %PIPE_B.
  1468. *
  1469. * Will wait until the pipe has shut down before returning.
  1470. */
  1471. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1472. enum pipe pipe)
  1473. {
  1474. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1475. pipe);
  1476. int reg;
  1477. u32 val;
  1478. /*
  1479. * Make sure planes won't keep trying to pump pixels to us,
  1480. * or we might hang the display.
  1481. */
  1482. assert_planes_disabled(dev_priv, pipe);
  1483. assert_sprites_disabled(dev_priv, pipe);
  1484. /* Don't disable pipe A or pipe A PLLs if needed */
  1485. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1486. return;
  1487. reg = PIPECONF(cpu_transcoder);
  1488. val = I915_READ(reg);
  1489. if ((val & PIPECONF_ENABLE) == 0)
  1490. return;
  1491. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1492. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1493. }
  1494. /*
  1495. * Plane regs are double buffered, going from enabled->disabled needs a
  1496. * trigger in order to latch. The display address reg provides this.
  1497. */
  1498. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1499. enum plane plane)
  1500. {
  1501. if (dev_priv->info->gen >= 4)
  1502. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1503. else
  1504. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1505. }
  1506. /**
  1507. * intel_enable_plane - enable a display plane on a given pipe
  1508. * @dev_priv: i915 private structure
  1509. * @plane: plane to enable
  1510. * @pipe: pipe being fed
  1511. *
  1512. * Enable @plane on @pipe, making sure that @pipe is running first.
  1513. */
  1514. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1515. enum plane plane, enum pipe pipe)
  1516. {
  1517. int reg;
  1518. u32 val;
  1519. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1520. assert_pipe_enabled(dev_priv, pipe);
  1521. reg = DSPCNTR(plane);
  1522. val = I915_READ(reg);
  1523. if (val & DISPLAY_PLANE_ENABLE)
  1524. return;
  1525. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1526. intel_flush_display_plane(dev_priv, plane);
  1527. intel_wait_for_vblank(dev_priv->dev, pipe);
  1528. }
  1529. /**
  1530. * intel_disable_plane - disable a display plane
  1531. * @dev_priv: i915 private structure
  1532. * @plane: plane to disable
  1533. * @pipe: pipe consuming the data
  1534. *
  1535. * Disable @plane; should be an independent operation.
  1536. */
  1537. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1538. enum plane plane, enum pipe pipe)
  1539. {
  1540. int reg;
  1541. u32 val;
  1542. reg = DSPCNTR(plane);
  1543. val = I915_READ(reg);
  1544. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1545. return;
  1546. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1547. intel_flush_display_plane(dev_priv, plane);
  1548. intel_wait_for_vblank(dev_priv->dev, pipe);
  1549. }
  1550. static bool need_vtd_wa(struct drm_device *dev)
  1551. {
  1552. #ifdef CONFIG_INTEL_IOMMU
  1553. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1554. return true;
  1555. #endif
  1556. return false;
  1557. }
  1558. int
  1559. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1560. struct drm_i915_gem_object *obj,
  1561. struct intel_ring_buffer *pipelined)
  1562. {
  1563. struct drm_i915_private *dev_priv = dev->dev_private;
  1564. u32 alignment;
  1565. int ret;
  1566. switch (obj->tiling_mode) {
  1567. case I915_TILING_NONE:
  1568. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1569. alignment = 128 * 1024;
  1570. else if (INTEL_INFO(dev)->gen >= 4)
  1571. alignment = 4 * 1024;
  1572. else
  1573. alignment = 64 * 1024;
  1574. break;
  1575. case I915_TILING_X:
  1576. /* pin() will align the object as required by fence */
  1577. alignment = 0;
  1578. break;
  1579. case I915_TILING_Y:
  1580. /* Despite that we check this in framebuffer_init userspace can
  1581. * screw us over and change the tiling after the fact. Only
  1582. * pinned buffers can't change their tiling. */
  1583. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1584. return -EINVAL;
  1585. default:
  1586. BUG();
  1587. }
  1588. /* Note that the w/a also requires 64 PTE of padding following the
  1589. * bo. We currently fill all unused PTE with the shadow page and so
  1590. * we should always have valid PTE following the scanout preventing
  1591. * the VT-d warning.
  1592. */
  1593. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1594. alignment = 256 * 1024;
  1595. dev_priv->mm.interruptible = false;
  1596. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1597. if (ret)
  1598. goto err_interruptible;
  1599. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1600. * fence, whereas 965+ only requires a fence if using
  1601. * framebuffer compression. For simplicity, we always install
  1602. * a fence as the cost is not that onerous.
  1603. */
  1604. ret = i915_gem_object_get_fence(obj);
  1605. if (ret)
  1606. goto err_unpin;
  1607. i915_gem_object_pin_fence(obj);
  1608. dev_priv->mm.interruptible = true;
  1609. return 0;
  1610. err_unpin:
  1611. i915_gem_object_unpin(obj);
  1612. err_interruptible:
  1613. dev_priv->mm.interruptible = true;
  1614. return ret;
  1615. }
  1616. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1617. {
  1618. i915_gem_object_unpin_fence(obj);
  1619. i915_gem_object_unpin(obj);
  1620. }
  1621. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1622. * is assumed to be a power-of-two. */
  1623. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1624. unsigned int tiling_mode,
  1625. unsigned int cpp,
  1626. unsigned int pitch)
  1627. {
  1628. if (tiling_mode != I915_TILING_NONE) {
  1629. unsigned int tile_rows, tiles;
  1630. tile_rows = *y / 8;
  1631. *y %= 8;
  1632. tiles = *x / (512/cpp);
  1633. *x %= 512/cpp;
  1634. return tile_rows * pitch * 8 + tiles * 4096;
  1635. } else {
  1636. unsigned int offset;
  1637. offset = *y * pitch + *x * cpp;
  1638. *y = 0;
  1639. *x = (offset & 4095) / cpp;
  1640. return offset & -4096;
  1641. }
  1642. }
  1643. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1644. int x, int y)
  1645. {
  1646. struct drm_device *dev = crtc->dev;
  1647. struct drm_i915_private *dev_priv = dev->dev_private;
  1648. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1649. struct intel_framebuffer *intel_fb;
  1650. struct drm_i915_gem_object *obj;
  1651. int plane = intel_crtc->plane;
  1652. unsigned long linear_offset;
  1653. u32 dspcntr;
  1654. u32 reg;
  1655. switch (plane) {
  1656. case 0:
  1657. case 1:
  1658. break;
  1659. default:
  1660. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1661. return -EINVAL;
  1662. }
  1663. intel_fb = to_intel_framebuffer(fb);
  1664. obj = intel_fb->obj;
  1665. reg = DSPCNTR(plane);
  1666. dspcntr = I915_READ(reg);
  1667. /* Mask out pixel format bits in case we change it */
  1668. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1669. switch (fb->pixel_format) {
  1670. case DRM_FORMAT_C8:
  1671. dspcntr |= DISPPLANE_8BPP;
  1672. break;
  1673. case DRM_FORMAT_XRGB1555:
  1674. case DRM_FORMAT_ARGB1555:
  1675. dspcntr |= DISPPLANE_BGRX555;
  1676. break;
  1677. case DRM_FORMAT_RGB565:
  1678. dspcntr |= DISPPLANE_BGRX565;
  1679. break;
  1680. case DRM_FORMAT_XRGB8888:
  1681. case DRM_FORMAT_ARGB8888:
  1682. dspcntr |= DISPPLANE_BGRX888;
  1683. break;
  1684. case DRM_FORMAT_XBGR8888:
  1685. case DRM_FORMAT_ABGR8888:
  1686. dspcntr |= DISPPLANE_RGBX888;
  1687. break;
  1688. case DRM_FORMAT_XRGB2101010:
  1689. case DRM_FORMAT_ARGB2101010:
  1690. dspcntr |= DISPPLANE_BGRX101010;
  1691. break;
  1692. case DRM_FORMAT_XBGR2101010:
  1693. case DRM_FORMAT_ABGR2101010:
  1694. dspcntr |= DISPPLANE_RGBX101010;
  1695. break;
  1696. default:
  1697. BUG();
  1698. }
  1699. if (INTEL_INFO(dev)->gen >= 4) {
  1700. if (obj->tiling_mode != I915_TILING_NONE)
  1701. dspcntr |= DISPPLANE_TILED;
  1702. else
  1703. dspcntr &= ~DISPPLANE_TILED;
  1704. }
  1705. if (IS_G4X(dev))
  1706. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1707. I915_WRITE(reg, dspcntr);
  1708. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1709. if (INTEL_INFO(dev)->gen >= 4) {
  1710. intel_crtc->dspaddr_offset =
  1711. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1712. fb->bits_per_pixel / 8,
  1713. fb->pitches[0]);
  1714. linear_offset -= intel_crtc->dspaddr_offset;
  1715. } else {
  1716. intel_crtc->dspaddr_offset = linear_offset;
  1717. }
  1718. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1719. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1720. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1721. if (INTEL_INFO(dev)->gen >= 4) {
  1722. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1723. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1724. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1725. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1726. } else
  1727. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1728. POSTING_READ(reg);
  1729. return 0;
  1730. }
  1731. static int ironlake_update_plane(struct drm_crtc *crtc,
  1732. struct drm_framebuffer *fb, int x, int y)
  1733. {
  1734. struct drm_device *dev = crtc->dev;
  1735. struct drm_i915_private *dev_priv = dev->dev_private;
  1736. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1737. struct intel_framebuffer *intel_fb;
  1738. struct drm_i915_gem_object *obj;
  1739. int plane = intel_crtc->plane;
  1740. unsigned long linear_offset;
  1741. u32 dspcntr;
  1742. u32 reg;
  1743. switch (plane) {
  1744. case 0:
  1745. case 1:
  1746. case 2:
  1747. break;
  1748. default:
  1749. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1750. return -EINVAL;
  1751. }
  1752. intel_fb = to_intel_framebuffer(fb);
  1753. obj = intel_fb->obj;
  1754. reg = DSPCNTR(plane);
  1755. dspcntr = I915_READ(reg);
  1756. /* Mask out pixel format bits in case we change it */
  1757. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1758. switch (fb->pixel_format) {
  1759. case DRM_FORMAT_C8:
  1760. dspcntr |= DISPPLANE_8BPP;
  1761. break;
  1762. case DRM_FORMAT_RGB565:
  1763. dspcntr |= DISPPLANE_BGRX565;
  1764. break;
  1765. case DRM_FORMAT_XRGB8888:
  1766. case DRM_FORMAT_ARGB8888:
  1767. dspcntr |= DISPPLANE_BGRX888;
  1768. break;
  1769. case DRM_FORMAT_XBGR8888:
  1770. case DRM_FORMAT_ABGR8888:
  1771. dspcntr |= DISPPLANE_RGBX888;
  1772. break;
  1773. case DRM_FORMAT_XRGB2101010:
  1774. case DRM_FORMAT_ARGB2101010:
  1775. dspcntr |= DISPPLANE_BGRX101010;
  1776. break;
  1777. case DRM_FORMAT_XBGR2101010:
  1778. case DRM_FORMAT_ABGR2101010:
  1779. dspcntr |= DISPPLANE_RGBX101010;
  1780. break;
  1781. default:
  1782. BUG();
  1783. }
  1784. if (obj->tiling_mode != I915_TILING_NONE)
  1785. dspcntr |= DISPPLANE_TILED;
  1786. else
  1787. dspcntr &= ~DISPPLANE_TILED;
  1788. /* must disable */
  1789. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1790. I915_WRITE(reg, dspcntr);
  1791. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1792. intel_crtc->dspaddr_offset =
  1793. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1794. fb->bits_per_pixel / 8,
  1795. fb->pitches[0]);
  1796. linear_offset -= intel_crtc->dspaddr_offset;
  1797. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1798. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1799. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1800. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1801. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1802. if (IS_HASWELL(dev)) {
  1803. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1804. } else {
  1805. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1806. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1807. }
  1808. POSTING_READ(reg);
  1809. return 0;
  1810. }
  1811. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1812. static int
  1813. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1814. int x, int y, enum mode_set_atomic state)
  1815. {
  1816. struct drm_device *dev = crtc->dev;
  1817. struct drm_i915_private *dev_priv = dev->dev_private;
  1818. if (dev_priv->display.disable_fbc)
  1819. dev_priv->display.disable_fbc(dev);
  1820. intel_increase_pllclock(crtc);
  1821. return dev_priv->display.update_plane(crtc, fb, x, y);
  1822. }
  1823. void intel_display_handle_reset(struct drm_device *dev)
  1824. {
  1825. struct drm_i915_private *dev_priv = dev->dev_private;
  1826. struct drm_crtc *crtc;
  1827. /*
  1828. * Flips in the rings have been nuked by the reset,
  1829. * so complete all pending flips so that user space
  1830. * will get its events and not get stuck.
  1831. *
  1832. * Also update the base address of all primary
  1833. * planes to the the last fb to make sure we're
  1834. * showing the correct fb after a reset.
  1835. *
  1836. * Need to make two loops over the crtcs so that we
  1837. * don't try to grab a crtc mutex before the
  1838. * pending_flip_queue really got woken up.
  1839. */
  1840. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1841. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1842. enum plane plane = intel_crtc->plane;
  1843. intel_prepare_page_flip(dev, plane);
  1844. intel_finish_page_flip_plane(dev, plane);
  1845. }
  1846. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1847. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1848. mutex_lock(&crtc->mutex);
  1849. if (intel_crtc->active)
  1850. dev_priv->display.update_plane(crtc, crtc->fb,
  1851. crtc->x, crtc->y);
  1852. mutex_unlock(&crtc->mutex);
  1853. }
  1854. }
  1855. static int
  1856. intel_finish_fb(struct drm_framebuffer *old_fb)
  1857. {
  1858. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1859. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1860. bool was_interruptible = dev_priv->mm.interruptible;
  1861. int ret;
  1862. /* Big Hammer, we also need to ensure that any pending
  1863. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1864. * current scanout is retired before unpinning the old
  1865. * framebuffer.
  1866. *
  1867. * This should only fail upon a hung GPU, in which case we
  1868. * can safely continue.
  1869. */
  1870. dev_priv->mm.interruptible = false;
  1871. ret = i915_gem_object_finish_gpu(obj);
  1872. dev_priv->mm.interruptible = was_interruptible;
  1873. return ret;
  1874. }
  1875. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1876. {
  1877. struct drm_device *dev = crtc->dev;
  1878. struct drm_i915_master_private *master_priv;
  1879. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1880. if (!dev->primary->master)
  1881. return;
  1882. master_priv = dev->primary->master->driver_priv;
  1883. if (!master_priv->sarea_priv)
  1884. return;
  1885. switch (intel_crtc->pipe) {
  1886. case 0:
  1887. master_priv->sarea_priv->pipeA_x = x;
  1888. master_priv->sarea_priv->pipeA_y = y;
  1889. break;
  1890. case 1:
  1891. master_priv->sarea_priv->pipeB_x = x;
  1892. master_priv->sarea_priv->pipeB_y = y;
  1893. break;
  1894. default:
  1895. break;
  1896. }
  1897. }
  1898. static int
  1899. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1900. struct drm_framebuffer *fb)
  1901. {
  1902. struct drm_device *dev = crtc->dev;
  1903. struct drm_i915_private *dev_priv = dev->dev_private;
  1904. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1905. struct drm_framebuffer *old_fb;
  1906. int ret;
  1907. /* no fb bound */
  1908. if (!fb) {
  1909. DRM_ERROR("No FB bound\n");
  1910. return 0;
  1911. }
  1912. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1913. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1914. plane_name(intel_crtc->plane),
  1915. INTEL_INFO(dev)->num_pipes);
  1916. return -EINVAL;
  1917. }
  1918. mutex_lock(&dev->struct_mutex);
  1919. ret = intel_pin_and_fence_fb_obj(dev,
  1920. to_intel_framebuffer(fb)->obj,
  1921. NULL);
  1922. if (ret != 0) {
  1923. mutex_unlock(&dev->struct_mutex);
  1924. DRM_ERROR("pin & fence failed\n");
  1925. return ret;
  1926. }
  1927. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1928. if (ret) {
  1929. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1930. mutex_unlock(&dev->struct_mutex);
  1931. DRM_ERROR("failed to update base address\n");
  1932. return ret;
  1933. }
  1934. old_fb = crtc->fb;
  1935. crtc->fb = fb;
  1936. crtc->x = x;
  1937. crtc->y = y;
  1938. if (old_fb) {
  1939. if (intel_crtc->active && old_fb != fb)
  1940. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1941. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1942. }
  1943. intel_update_fbc(dev);
  1944. mutex_unlock(&dev->struct_mutex);
  1945. intel_crtc_update_sarea_pos(crtc, x, y);
  1946. return 0;
  1947. }
  1948. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1949. {
  1950. struct drm_device *dev = crtc->dev;
  1951. struct drm_i915_private *dev_priv = dev->dev_private;
  1952. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1953. int pipe = intel_crtc->pipe;
  1954. u32 reg, temp;
  1955. /* enable normal train */
  1956. reg = FDI_TX_CTL(pipe);
  1957. temp = I915_READ(reg);
  1958. if (IS_IVYBRIDGE(dev)) {
  1959. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1960. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1961. } else {
  1962. temp &= ~FDI_LINK_TRAIN_NONE;
  1963. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1964. }
  1965. I915_WRITE(reg, temp);
  1966. reg = FDI_RX_CTL(pipe);
  1967. temp = I915_READ(reg);
  1968. if (HAS_PCH_CPT(dev)) {
  1969. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1970. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1971. } else {
  1972. temp &= ~FDI_LINK_TRAIN_NONE;
  1973. temp |= FDI_LINK_TRAIN_NONE;
  1974. }
  1975. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1976. /* wait one idle pattern time */
  1977. POSTING_READ(reg);
  1978. udelay(1000);
  1979. /* IVB wants error correction enabled */
  1980. if (IS_IVYBRIDGE(dev))
  1981. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1982. FDI_FE_ERRC_ENABLE);
  1983. }
  1984. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  1985. {
  1986. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  1987. }
  1988. static void ivb_modeset_global_resources(struct drm_device *dev)
  1989. {
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct intel_crtc *pipe_B_crtc =
  1992. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  1993. struct intel_crtc *pipe_C_crtc =
  1994. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  1995. uint32_t temp;
  1996. /*
  1997. * When everything is off disable fdi C so that we could enable fdi B
  1998. * with all lanes. Note that we don't care about enabled pipes without
  1999. * an enabled pch encoder.
  2000. */
  2001. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2002. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2003. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2004. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2005. temp = I915_READ(SOUTH_CHICKEN1);
  2006. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2007. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2008. I915_WRITE(SOUTH_CHICKEN1, temp);
  2009. }
  2010. }
  2011. /* The FDI link training functions for ILK/Ibexpeak. */
  2012. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2013. {
  2014. struct drm_device *dev = crtc->dev;
  2015. struct drm_i915_private *dev_priv = dev->dev_private;
  2016. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2017. int pipe = intel_crtc->pipe;
  2018. int plane = intel_crtc->plane;
  2019. u32 reg, temp, tries;
  2020. /* FDI needs bits from pipe & plane first */
  2021. assert_pipe_enabled(dev_priv, pipe);
  2022. assert_plane_enabled(dev_priv, plane);
  2023. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2024. for train result */
  2025. reg = FDI_RX_IMR(pipe);
  2026. temp = I915_READ(reg);
  2027. temp &= ~FDI_RX_SYMBOL_LOCK;
  2028. temp &= ~FDI_RX_BIT_LOCK;
  2029. I915_WRITE(reg, temp);
  2030. I915_READ(reg);
  2031. udelay(150);
  2032. /* enable CPU FDI TX and PCH FDI RX */
  2033. reg = FDI_TX_CTL(pipe);
  2034. temp = I915_READ(reg);
  2035. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2036. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2037. temp &= ~FDI_LINK_TRAIN_NONE;
  2038. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2039. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2040. reg = FDI_RX_CTL(pipe);
  2041. temp = I915_READ(reg);
  2042. temp &= ~FDI_LINK_TRAIN_NONE;
  2043. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2044. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2045. POSTING_READ(reg);
  2046. udelay(150);
  2047. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2048. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2049. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2050. FDI_RX_PHASE_SYNC_POINTER_EN);
  2051. reg = FDI_RX_IIR(pipe);
  2052. for (tries = 0; tries < 5; tries++) {
  2053. temp = I915_READ(reg);
  2054. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2055. if ((temp & FDI_RX_BIT_LOCK)) {
  2056. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2057. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2058. break;
  2059. }
  2060. }
  2061. if (tries == 5)
  2062. DRM_ERROR("FDI train 1 fail!\n");
  2063. /* Train 2 */
  2064. reg = FDI_TX_CTL(pipe);
  2065. temp = I915_READ(reg);
  2066. temp &= ~FDI_LINK_TRAIN_NONE;
  2067. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2068. I915_WRITE(reg, temp);
  2069. reg = FDI_RX_CTL(pipe);
  2070. temp = I915_READ(reg);
  2071. temp &= ~FDI_LINK_TRAIN_NONE;
  2072. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2073. I915_WRITE(reg, temp);
  2074. POSTING_READ(reg);
  2075. udelay(150);
  2076. reg = FDI_RX_IIR(pipe);
  2077. for (tries = 0; tries < 5; tries++) {
  2078. temp = I915_READ(reg);
  2079. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2080. if (temp & FDI_RX_SYMBOL_LOCK) {
  2081. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2082. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2083. break;
  2084. }
  2085. }
  2086. if (tries == 5)
  2087. DRM_ERROR("FDI train 2 fail!\n");
  2088. DRM_DEBUG_KMS("FDI train done\n");
  2089. }
  2090. static const int snb_b_fdi_train_param[] = {
  2091. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2092. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2093. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2094. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2095. };
  2096. /* The FDI link training functions for SNB/Cougarpoint. */
  2097. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2098. {
  2099. struct drm_device *dev = crtc->dev;
  2100. struct drm_i915_private *dev_priv = dev->dev_private;
  2101. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2102. int pipe = intel_crtc->pipe;
  2103. u32 reg, temp, i, retry;
  2104. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2105. for train result */
  2106. reg = FDI_RX_IMR(pipe);
  2107. temp = I915_READ(reg);
  2108. temp &= ~FDI_RX_SYMBOL_LOCK;
  2109. temp &= ~FDI_RX_BIT_LOCK;
  2110. I915_WRITE(reg, temp);
  2111. POSTING_READ(reg);
  2112. udelay(150);
  2113. /* enable CPU FDI TX and PCH FDI RX */
  2114. reg = FDI_TX_CTL(pipe);
  2115. temp = I915_READ(reg);
  2116. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2117. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2118. temp &= ~FDI_LINK_TRAIN_NONE;
  2119. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2120. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2121. /* SNB-B */
  2122. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2123. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2124. I915_WRITE(FDI_RX_MISC(pipe),
  2125. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2126. reg = FDI_RX_CTL(pipe);
  2127. temp = I915_READ(reg);
  2128. if (HAS_PCH_CPT(dev)) {
  2129. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2130. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2131. } else {
  2132. temp &= ~FDI_LINK_TRAIN_NONE;
  2133. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2134. }
  2135. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2136. POSTING_READ(reg);
  2137. udelay(150);
  2138. for (i = 0; i < 4; i++) {
  2139. reg = FDI_TX_CTL(pipe);
  2140. temp = I915_READ(reg);
  2141. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2142. temp |= snb_b_fdi_train_param[i];
  2143. I915_WRITE(reg, temp);
  2144. POSTING_READ(reg);
  2145. udelay(500);
  2146. for (retry = 0; retry < 5; retry++) {
  2147. reg = FDI_RX_IIR(pipe);
  2148. temp = I915_READ(reg);
  2149. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2150. if (temp & FDI_RX_BIT_LOCK) {
  2151. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2152. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2153. break;
  2154. }
  2155. udelay(50);
  2156. }
  2157. if (retry < 5)
  2158. break;
  2159. }
  2160. if (i == 4)
  2161. DRM_ERROR("FDI train 1 fail!\n");
  2162. /* Train 2 */
  2163. reg = FDI_TX_CTL(pipe);
  2164. temp = I915_READ(reg);
  2165. temp &= ~FDI_LINK_TRAIN_NONE;
  2166. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2167. if (IS_GEN6(dev)) {
  2168. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2169. /* SNB-B */
  2170. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2171. }
  2172. I915_WRITE(reg, temp);
  2173. reg = FDI_RX_CTL(pipe);
  2174. temp = I915_READ(reg);
  2175. if (HAS_PCH_CPT(dev)) {
  2176. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2177. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2178. } else {
  2179. temp &= ~FDI_LINK_TRAIN_NONE;
  2180. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2181. }
  2182. I915_WRITE(reg, temp);
  2183. POSTING_READ(reg);
  2184. udelay(150);
  2185. for (i = 0; i < 4; i++) {
  2186. reg = FDI_TX_CTL(pipe);
  2187. temp = I915_READ(reg);
  2188. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2189. temp |= snb_b_fdi_train_param[i];
  2190. I915_WRITE(reg, temp);
  2191. POSTING_READ(reg);
  2192. udelay(500);
  2193. for (retry = 0; retry < 5; retry++) {
  2194. reg = FDI_RX_IIR(pipe);
  2195. temp = I915_READ(reg);
  2196. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2197. if (temp & FDI_RX_SYMBOL_LOCK) {
  2198. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2199. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2200. break;
  2201. }
  2202. udelay(50);
  2203. }
  2204. if (retry < 5)
  2205. break;
  2206. }
  2207. if (i == 4)
  2208. DRM_ERROR("FDI train 2 fail!\n");
  2209. DRM_DEBUG_KMS("FDI train done.\n");
  2210. }
  2211. /* Manual link training for Ivy Bridge A0 parts */
  2212. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2213. {
  2214. struct drm_device *dev = crtc->dev;
  2215. struct drm_i915_private *dev_priv = dev->dev_private;
  2216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2217. int pipe = intel_crtc->pipe;
  2218. u32 reg, temp, i;
  2219. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2220. for train result */
  2221. reg = FDI_RX_IMR(pipe);
  2222. temp = I915_READ(reg);
  2223. temp &= ~FDI_RX_SYMBOL_LOCK;
  2224. temp &= ~FDI_RX_BIT_LOCK;
  2225. I915_WRITE(reg, temp);
  2226. POSTING_READ(reg);
  2227. udelay(150);
  2228. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2229. I915_READ(FDI_RX_IIR(pipe)));
  2230. /* enable CPU FDI TX and PCH FDI RX */
  2231. reg = FDI_TX_CTL(pipe);
  2232. temp = I915_READ(reg);
  2233. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2234. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2235. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2236. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2237. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2238. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2239. temp |= FDI_COMPOSITE_SYNC;
  2240. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2241. I915_WRITE(FDI_RX_MISC(pipe),
  2242. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2243. reg = FDI_RX_CTL(pipe);
  2244. temp = I915_READ(reg);
  2245. temp &= ~FDI_LINK_TRAIN_AUTO;
  2246. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2247. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2248. temp |= FDI_COMPOSITE_SYNC;
  2249. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2250. POSTING_READ(reg);
  2251. udelay(150);
  2252. for (i = 0; i < 4; i++) {
  2253. reg = FDI_TX_CTL(pipe);
  2254. temp = I915_READ(reg);
  2255. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2256. temp |= snb_b_fdi_train_param[i];
  2257. I915_WRITE(reg, temp);
  2258. POSTING_READ(reg);
  2259. udelay(500);
  2260. reg = FDI_RX_IIR(pipe);
  2261. temp = I915_READ(reg);
  2262. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2263. if (temp & FDI_RX_BIT_LOCK ||
  2264. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2265. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2266. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2267. break;
  2268. }
  2269. }
  2270. if (i == 4)
  2271. DRM_ERROR("FDI train 1 fail!\n");
  2272. /* Train 2 */
  2273. reg = FDI_TX_CTL(pipe);
  2274. temp = I915_READ(reg);
  2275. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2276. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2277. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2278. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2279. I915_WRITE(reg, temp);
  2280. reg = FDI_RX_CTL(pipe);
  2281. temp = I915_READ(reg);
  2282. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2283. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2284. I915_WRITE(reg, temp);
  2285. POSTING_READ(reg);
  2286. udelay(150);
  2287. for (i = 0; i < 4; i++) {
  2288. reg = FDI_TX_CTL(pipe);
  2289. temp = I915_READ(reg);
  2290. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2291. temp |= snb_b_fdi_train_param[i];
  2292. I915_WRITE(reg, temp);
  2293. POSTING_READ(reg);
  2294. udelay(500);
  2295. reg = FDI_RX_IIR(pipe);
  2296. temp = I915_READ(reg);
  2297. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2298. if (temp & FDI_RX_SYMBOL_LOCK) {
  2299. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2300. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2301. break;
  2302. }
  2303. }
  2304. if (i == 4)
  2305. DRM_ERROR("FDI train 2 fail!\n");
  2306. DRM_DEBUG_KMS("FDI train done.\n");
  2307. }
  2308. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2309. {
  2310. struct drm_device *dev = intel_crtc->base.dev;
  2311. struct drm_i915_private *dev_priv = dev->dev_private;
  2312. int pipe = intel_crtc->pipe;
  2313. u32 reg, temp;
  2314. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2315. reg = FDI_RX_CTL(pipe);
  2316. temp = I915_READ(reg);
  2317. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2318. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2319. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2320. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2321. POSTING_READ(reg);
  2322. udelay(200);
  2323. /* Switch from Rawclk to PCDclk */
  2324. temp = I915_READ(reg);
  2325. I915_WRITE(reg, temp | FDI_PCDCLK);
  2326. POSTING_READ(reg);
  2327. udelay(200);
  2328. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2329. reg = FDI_TX_CTL(pipe);
  2330. temp = I915_READ(reg);
  2331. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2332. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2333. POSTING_READ(reg);
  2334. udelay(100);
  2335. }
  2336. }
  2337. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2338. {
  2339. struct drm_device *dev = intel_crtc->base.dev;
  2340. struct drm_i915_private *dev_priv = dev->dev_private;
  2341. int pipe = intel_crtc->pipe;
  2342. u32 reg, temp;
  2343. /* Switch from PCDclk to Rawclk */
  2344. reg = FDI_RX_CTL(pipe);
  2345. temp = I915_READ(reg);
  2346. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2347. /* Disable CPU FDI TX PLL */
  2348. reg = FDI_TX_CTL(pipe);
  2349. temp = I915_READ(reg);
  2350. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2351. POSTING_READ(reg);
  2352. udelay(100);
  2353. reg = FDI_RX_CTL(pipe);
  2354. temp = I915_READ(reg);
  2355. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2356. /* Wait for the clocks to turn off. */
  2357. POSTING_READ(reg);
  2358. udelay(100);
  2359. }
  2360. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2361. {
  2362. struct drm_device *dev = crtc->dev;
  2363. struct drm_i915_private *dev_priv = dev->dev_private;
  2364. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2365. int pipe = intel_crtc->pipe;
  2366. u32 reg, temp;
  2367. /* disable CPU FDI tx and PCH FDI rx */
  2368. reg = FDI_TX_CTL(pipe);
  2369. temp = I915_READ(reg);
  2370. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2371. POSTING_READ(reg);
  2372. reg = FDI_RX_CTL(pipe);
  2373. temp = I915_READ(reg);
  2374. temp &= ~(0x7 << 16);
  2375. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2376. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2377. POSTING_READ(reg);
  2378. udelay(100);
  2379. /* Ironlake workaround, disable clock pointer after downing FDI */
  2380. if (HAS_PCH_IBX(dev)) {
  2381. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2382. }
  2383. /* still set train pattern 1 */
  2384. reg = FDI_TX_CTL(pipe);
  2385. temp = I915_READ(reg);
  2386. temp &= ~FDI_LINK_TRAIN_NONE;
  2387. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2388. I915_WRITE(reg, temp);
  2389. reg = FDI_RX_CTL(pipe);
  2390. temp = I915_READ(reg);
  2391. if (HAS_PCH_CPT(dev)) {
  2392. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2393. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2394. } else {
  2395. temp &= ~FDI_LINK_TRAIN_NONE;
  2396. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2397. }
  2398. /* BPC in FDI rx is consistent with that in PIPECONF */
  2399. temp &= ~(0x07 << 16);
  2400. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2401. I915_WRITE(reg, temp);
  2402. POSTING_READ(reg);
  2403. udelay(100);
  2404. }
  2405. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2406. {
  2407. struct drm_device *dev = crtc->dev;
  2408. struct drm_i915_private *dev_priv = dev->dev_private;
  2409. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2410. unsigned long flags;
  2411. bool pending;
  2412. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2413. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2414. return false;
  2415. spin_lock_irqsave(&dev->event_lock, flags);
  2416. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2417. spin_unlock_irqrestore(&dev->event_lock, flags);
  2418. return pending;
  2419. }
  2420. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2421. {
  2422. struct drm_device *dev = crtc->dev;
  2423. struct drm_i915_private *dev_priv = dev->dev_private;
  2424. if (crtc->fb == NULL)
  2425. return;
  2426. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2427. wait_event(dev_priv->pending_flip_queue,
  2428. !intel_crtc_has_pending_flip(crtc));
  2429. mutex_lock(&dev->struct_mutex);
  2430. intel_finish_fb(crtc->fb);
  2431. mutex_unlock(&dev->struct_mutex);
  2432. }
  2433. /* Program iCLKIP clock to the desired frequency */
  2434. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2435. {
  2436. struct drm_device *dev = crtc->dev;
  2437. struct drm_i915_private *dev_priv = dev->dev_private;
  2438. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2439. u32 temp;
  2440. mutex_lock(&dev_priv->dpio_lock);
  2441. /* It is necessary to ungate the pixclk gate prior to programming
  2442. * the divisors, and gate it back when it is done.
  2443. */
  2444. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2445. /* Disable SSCCTL */
  2446. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2447. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2448. SBI_SSCCTL_DISABLE,
  2449. SBI_ICLK);
  2450. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2451. if (crtc->mode.clock == 20000) {
  2452. auxdiv = 1;
  2453. divsel = 0x41;
  2454. phaseinc = 0x20;
  2455. } else {
  2456. /* The iCLK virtual clock root frequency is in MHz,
  2457. * but the crtc->mode.clock in in KHz. To get the divisors,
  2458. * it is necessary to divide one by another, so we
  2459. * convert the virtual clock precision to KHz here for higher
  2460. * precision.
  2461. */
  2462. u32 iclk_virtual_root_freq = 172800 * 1000;
  2463. u32 iclk_pi_range = 64;
  2464. u32 desired_divisor, msb_divisor_value, pi_value;
  2465. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2466. msb_divisor_value = desired_divisor / iclk_pi_range;
  2467. pi_value = desired_divisor % iclk_pi_range;
  2468. auxdiv = 0;
  2469. divsel = msb_divisor_value - 2;
  2470. phaseinc = pi_value;
  2471. }
  2472. /* This should not happen with any sane values */
  2473. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2474. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2475. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2476. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2477. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2478. crtc->mode.clock,
  2479. auxdiv,
  2480. divsel,
  2481. phasedir,
  2482. phaseinc);
  2483. /* Program SSCDIVINTPHASE6 */
  2484. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2485. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2486. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2487. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2488. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2489. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2490. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2491. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2492. /* Program SSCAUXDIV */
  2493. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2494. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2495. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2496. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2497. /* Enable modulator and associated divider */
  2498. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2499. temp &= ~SBI_SSCCTL_DISABLE;
  2500. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2501. /* Wait for initialization time */
  2502. udelay(24);
  2503. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2504. mutex_unlock(&dev_priv->dpio_lock);
  2505. }
  2506. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2507. enum pipe pch_transcoder)
  2508. {
  2509. struct drm_device *dev = crtc->base.dev;
  2510. struct drm_i915_private *dev_priv = dev->dev_private;
  2511. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2512. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2513. I915_READ(HTOTAL(cpu_transcoder)));
  2514. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2515. I915_READ(HBLANK(cpu_transcoder)));
  2516. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2517. I915_READ(HSYNC(cpu_transcoder)));
  2518. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2519. I915_READ(VTOTAL(cpu_transcoder)));
  2520. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2521. I915_READ(VBLANK(cpu_transcoder)));
  2522. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2523. I915_READ(VSYNC(cpu_transcoder)));
  2524. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2525. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2526. }
  2527. /*
  2528. * Enable PCH resources required for PCH ports:
  2529. * - PCH PLLs
  2530. * - FDI training & RX/TX
  2531. * - update transcoder timings
  2532. * - DP transcoding bits
  2533. * - transcoder
  2534. */
  2535. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2536. {
  2537. struct drm_device *dev = crtc->dev;
  2538. struct drm_i915_private *dev_priv = dev->dev_private;
  2539. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2540. int pipe = intel_crtc->pipe;
  2541. u32 reg, temp;
  2542. assert_pch_transcoder_disabled(dev_priv, pipe);
  2543. /* Write the TU size bits before fdi link training, so that error
  2544. * detection works. */
  2545. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2546. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2547. /* For PCH output, training FDI link */
  2548. dev_priv->display.fdi_link_train(crtc);
  2549. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2550. * transcoder, and we actually should do this to not upset any PCH
  2551. * transcoder that already use the clock when we share it.
  2552. *
  2553. * Note that enable_shared_dpll tries to do the right thing, but
  2554. * get_shared_dpll unconditionally resets the pll - we need that to have
  2555. * the right LVDS enable sequence. */
  2556. ironlake_enable_shared_dpll(intel_crtc);
  2557. if (HAS_PCH_CPT(dev)) {
  2558. u32 sel;
  2559. temp = I915_READ(PCH_DPLL_SEL);
  2560. temp |= TRANS_DPLL_ENABLE(pipe);
  2561. sel = TRANS_DPLLB_SEL(pipe);
  2562. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2563. temp |= sel;
  2564. else
  2565. temp &= ~sel;
  2566. I915_WRITE(PCH_DPLL_SEL, temp);
  2567. }
  2568. /* set transcoder timing, panel must allow it */
  2569. assert_panel_unlocked(dev_priv, pipe);
  2570. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2571. intel_fdi_normal_train(crtc);
  2572. /* For PCH DP, enable TRANS_DP_CTL */
  2573. if (HAS_PCH_CPT(dev) &&
  2574. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2575. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2576. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2577. reg = TRANS_DP_CTL(pipe);
  2578. temp = I915_READ(reg);
  2579. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2580. TRANS_DP_SYNC_MASK |
  2581. TRANS_DP_BPC_MASK);
  2582. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2583. TRANS_DP_ENH_FRAMING);
  2584. temp |= bpc << 9; /* same format but at 11:9 */
  2585. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2586. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2587. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2588. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2589. switch (intel_trans_dp_port_sel(crtc)) {
  2590. case PCH_DP_B:
  2591. temp |= TRANS_DP_PORT_SEL_B;
  2592. break;
  2593. case PCH_DP_C:
  2594. temp |= TRANS_DP_PORT_SEL_C;
  2595. break;
  2596. case PCH_DP_D:
  2597. temp |= TRANS_DP_PORT_SEL_D;
  2598. break;
  2599. default:
  2600. BUG();
  2601. }
  2602. I915_WRITE(reg, temp);
  2603. }
  2604. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2605. }
  2606. static void lpt_pch_enable(struct drm_crtc *crtc)
  2607. {
  2608. struct drm_device *dev = crtc->dev;
  2609. struct drm_i915_private *dev_priv = dev->dev_private;
  2610. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2611. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2612. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2613. lpt_program_iclkip(crtc);
  2614. /* Set transcoder timing. */
  2615. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2616. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2617. }
  2618. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2619. {
  2620. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2621. if (pll == NULL)
  2622. return;
  2623. if (pll->refcount == 0) {
  2624. WARN(1, "bad %s refcount\n", pll->name);
  2625. return;
  2626. }
  2627. if (--pll->refcount == 0) {
  2628. WARN_ON(pll->on);
  2629. WARN_ON(pll->active);
  2630. }
  2631. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2632. }
  2633. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2634. {
  2635. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2636. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2637. enum intel_dpll_id i;
  2638. if (pll) {
  2639. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2640. crtc->base.base.id, pll->name);
  2641. intel_put_shared_dpll(crtc);
  2642. }
  2643. if (HAS_PCH_IBX(dev_priv->dev)) {
  2644. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2645. i = crtc->pipe;
  2646. pll = &dev_priv->shared_dplls[i];
  2647. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2648. crtc->base.base.id, pll->name);
  2649. goto found;
  2650. }
  2651. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2652. pll = &dev_priv->shared_dplls[i];
  2653. /* Only want to check enabled timings first */
  2654. if (pll->refcount == 0)
  2655. continue;
  2656. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2657. sizeof(pll->hw_state)) == 0) {
  2658. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2659. crtc->base.base.id,
  2660. pll->name, pll->refcount, pll->active);
  2661. goto found;
  2662. }
  2663. }
  2664. /* Ok no matching timings, maybe there's a free one? */
  2665. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2666. pll = &dev_priv->shared_dplls[i];
  2667. if (pll->refcount == 0) {
  2668. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2669. crtc->base.base.id, pll->name);
  2670. goto found;
  2671. }
  2672. }
  2673. return NULL;
  2674. found:
  2675. crtc->config.shared_dpll = i;
  2676. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2677. pipe_name(crtc->pipe));
  2678. if (pll->active == 0) {
  2679. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2680. sizeof(pll->hw_state));
  2681. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2682. WARN_ON(pll->on);
  2683. assert_shared_dpll_disabled(dev_priv, pll);
  2684. pll->mode_set(dev_priv, pll);
  2685. }
  2686. pll->refcount++;
  2687. return pll;
  2688. }
  2689. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2690. {
  2691. struct drm_i915_private *dev_priv = dev->dev_private;
  2692. int dslreg = PIPEDSL(pipe);
  2693. u32 temp;
  2694. temp = I915_READ(dslreg);
  2695. udelay(500);
  2696. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2697. if (wait_for(I915_READ(dslreg) != temp, 5))
  2698. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2699. }
  2700. }
  2701. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2702. {
  2703. struct drm_device *dev = crtc->base.dev;
  2704. struct drm_i915_private *dev_priv = dev->dev_private;
  2705. int pipe = crtc->pipe;
  2706. if (crtc->config.pch_pfit.size) {
  2707. /* Force use of hard-coded filter coefficients
  2708. * as some pre-programmed values are broken,
  2709. * e.g. x201.
  2710. */
  2711. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2712. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2713. PF_PIPE_SEL_IVB(pipe));
  2714. else
  2715. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2716. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2717. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2718. }
  2719. }
  2720. static void intel_enable_planes(struct drm_crtc *crtc)
  2721. {
  2722. struct drm_device *dev = crtc->dev;
  2723. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2724. struct intel_plane *intel_plane;
  2725. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2726. if (intel_plane->pipe == pipe)
  2727. intel_plane_restore(&intel_plane->base);
  2728. }
  2729. static void intel_disable_planes(struct drm_crtc *crtc)
  2730. {
  2731. struct drm_device *dev = crtc->dev;
  2732. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2733. struct intel_plane *intel_plane;
  2734. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2735. if (intel_plane->pipe == pipe)
  2736. intel_plane_disable(&intel_plane->base);
  2737. }
  2738. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2739. {
  2740. struct drm_device *dev = crtc->dev;
  2741. struct drm_i915_private *dev_priv = dev->dev_private;
  2742. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2743. struct intel_encoder *encoder;
  2744. int pipe = intel_crtc->pipe;
  2745. int plane = intel_crtc->plane;
  2746. WARN_ON(!crtc->enabled);
  2747. if (intel_crtc->active)
  2748. return;
  2749. intel_crtc->active = true;
  2750. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2751. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2752. intel_update_watermarks(dev);
  2753. for_each_encoder_on_crtc(dev, crtc, encoder)
  2754. if (encoder->pre_pll_enable)
  2755. encoder->pre_pll_enable(encoder);
  2756. if (intel_crtc->config.has_pch_encoder) {
  2757. /* Note: FDI PLL enabling _must_ be done before we enable the
  2758. * cpu pipes, hence this is separate from all the other fdi/pch
  2759. * enabling. */
  2760. ironlake_fdi_pll_enable(intel_crtc);
  2761. } else {
  2762. assert_fdi_tx_disabled(dev_priv, pipe);
  2763. assert_fdi_rx_disabled(dev_priv, pipe);
  2764. }
  2765. for_each_encoder_on_crtc(dev, crtc, encoder)
  2766. if (encoder->pre_enable)
  2767. encoder->pre_enable(encoder);
  2768. ironlake_pfit_enable(intel_crtc);
  2769. /*
  2770. * On ILK+ LUT must be loaded before the pipe is running but with
  2771. * clocks enabled
  2772. */
  2773. intel_crtc_load_lut(crtc);
  2774. intel_enable_pipe(dev_priv, pipe,
  2775. intel_crtc->config.has_pch_encoder);
  2776. intel_enable_plane(dev_priv, plane, pipe);
  2777. intel_enable_planes(crtc);
  2778. intel_crtc_update_cursor(crtc, true);
  2779. if (intel_crtc->config.has_pch_encoder)
  2780. ironlake_pch_enable(crtc);
  2781. mutex_lock(&dev->struct_mutex);
  2782. intel_update_fbc(dev);
  2783. mutex_unlock(&dev->struct_mutex);
  2784. for_each_encoder_on_crtc(dev, crtc, encoder)
  2785. encoder->enable(encoder);
  2786. if (HAS_PCH_CPT(dev))
  2787. cpt_verify_modeset(dev, intel_crtc->pipe);
  2788. /*
  2789. * There seems to be a race in PCH platform hw (at least on some
  2790. * outputs) where an enabled pipe still completes any pageflip right
  2791. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2792. * as the first vblank happend, everything works as expected. Hence just
  2793. * wait for one vblank before returning to avoid strange things
  2794. * happening.
  2795. */
  2796. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2797. }
  2798. /* IPS only exists on ULT machines and is tied to pipe A. */
  2799. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2800. {
  2801. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2802. }
  2803. static void hsw_enable_ips(struct intel_crtc *crtc)
  2804. {
  2805. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2806. if (!crtc->config.ips_enabled)
  2807. return;
  2808. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2809. * We guarantee that the plane is enabled by calling intel_enable_ips
  2810. * only after intel_enable_plane. And intel_enable_plane already waits
  2811. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2812. assert_plane_enabled(dev_priv, crtc->plane);
  2813. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2814. }
  2815. static void hsw_disable_ips(struct intel_crtc *crtc)
  2816. {
  2817. struct drm_device *dev = crtc->base.dev;
  2818. struct drm_i915_private *dev_priv = dev->dev_private;
  2819. if (!crtc->config.ips_enabled)
  2820. return;
  2821. assert_plane_enabled(dev_priv, crtc->plane);
  2822. I915_WRITE(IPS_CTL, 0);
  2823. /* We need to wait for a vblank before we can disable the plane. */
  2824. intel_wait_for_vblank(dev, crtc->pipe);
  2825. }
  2826. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2827. {
  2828. struct drm_device *dev = crtc->dev;
  2829. struct drm_i915_private *dev_priv = dev->dev_private;
  2830. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2831. struct intel_encoder *encoder;
  2832. int pipe = intel_crtc->pipe;
  2833. int plane = intel_crtc->plane;
  2834. WARN_ON(!crtc->enabled);
  2835. if (intel_crtc->active)
  2836. return;
  2837. intel_crtc->active = true;
  2838. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2839. if (intel_crtc->config.has_pch_encoder)
  2840. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2841. intel_update_watermarks(dev);
  2842. if (intel_crtc->config.has_pch_encoder)
  2843. dev_priv->display.fdi_link_train(crtc);
  2844. for_each_encoder_on_crtc(dev, crtc, encoder)
  2845. if (encoder->pre_enable)
  2846. encoder->pre_enable(encoder);
  2847. intel_ddi_enable_pipe_clock(intel_crtc);
  2848. ironlake_pfit_enable(intel_crtc);
  2849. /*
  2850. * On ILK+ LUT must be loaded before the pipe is running but with
  2851. * clocks enabled
  2852. */
  2853. intel_crtc_load_lut(crtc);
  2854. intel_ddi_set_pipe_settings(crtc);
  2855. intel_ddi_enable_transcoder_func(crtc);
  2856. intel_enable_pipe(dev_priv, pipe,
  2857. intel_crtc->config.has_pch_encoder);
  2858. intel_enable_plane(dev_priv, plane, pipe);
  2859. intel_enable_planes(crtc);
  2860. intel_crtc_update_cursor(crtc, true);
  2861. hsw_enable_ips(intel_crtc);
  2862. if (intel_crtc->config.has_pch_encoder)
  2863. lpt_pch_enable(crtc);
  2864. mutex_lock(&dev->struct_mutex);
  2865. intel_update_fbc(dev);
  2866. mutex_unlock(&dev->struct_mutex);
  2867. for_each_encoder_on_crtc(dev, crtc, encoder)
  2868. encoder->enable(encoder);
  2869. /*
  2870. * There seems to be a race in PCH platform hw (at least on some
  2871. * outputs) where an enabled pipe still completes any pageflip right
  2872. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2873. * as the first vblank happend, everything works as expected. Hence just
  2874. * wait for one vblank before returning to avoid strange things
  2875. * happening.
  2876. */
  2877. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2878. }
  2879. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2880. {
  2881. struct drm_device *dev = crtc->base.dev;
  2882. struct drm_i915_private *dev_priv = dev->dev_private;
  2883. int pipe = crtc->pipe;
  2884. /* To avoid upsetting the power well on haswell only disable the pfit if
  2885. * it's in use. The hw state code will make sure we get this right. */
  2886. if (crtc->config.pch_pfit.size) {
  2887. I915_WRITE(PF_CTL(pipe), 0);
  2888. I915_WRITE(PF_WIN_POS(pipe), 0);
  2889. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2890. }
  2891. }
  2892. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2893. {
  2894. struct drm_device *dev = crtc->dev;
  2895. struct drm_i915_private *dev_priv = dev->dev_private;
  2896. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2897. struct intel_encoder *encoder;
  2898. int pipe = intel_crtc->pipe;
  2899. int plane = intel_crtc->plane;
  2900. u32 reg, temp;
  2901. if (!intel_crtc->active)
  2902. return;
  2903. for_each_encoder_on_crtc(dev, crtc, encoder)
  2904. encoder->disable(encoder);
  2905. intel_crtc_wait_for_pending_flips(crtc);
  2906. drm_vblank_off(dev, pipe);
  2907. if (dev_priv->cfb_plane == plane)
  2908. intel_disable_fbc(dev);
  2909. intel_crtc_update_cursor(crtc, false);
  2910. intel_disable_planes(crtc);
  2911. intel_disable_plane(dev_priv, plane, pipe);
  2912. if (intel_crtc->config.has_pch_encoder)
  2913. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2914. intel_disable_pipe(dev_priv, pipe);
  2915. ironlake_pfit_disable(intel_crtc);
  2916. for_each_encoder_on_crtc(dev, crtc, encoder)
  2917. if (encoder->post_disable)
  2918. encoder->post_disable(encoder);
  2919. if (intel_crtc->config.has_pch_encoder) {
  2920. ironlake_fdi_disable(crtc);
  2921. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2922. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2923. if (HAS_PCH_CPT(dev)) {
  2924. /* disable TRANS_DP_CTL */
  2925. reg = TRANS_DP_CTL(pipe);
  2926. temp = I915_READ(reg);
  2927. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2928. TRANS_DP_PORT_SEL_MASK);
  2929. temp |= TRANS_DP_PORT_SEL_NONE;
  2930. I915_WRITE(reg, temp);
  2931. /* disable DPLL_SEL */
  2932. temp = I915_READ(PCH_DPLL_SEL);
  2933. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2934. I915_WRITE(PCH_DPLL_SEL, temp);
  2935. }
  2936. /* disable PCH DPLL */
  2937. intel_disable_shared_dpll(intel_crtc);
  2938. ironlake_fdi_pll_disable(intel_crtc);
  2939. }
  2940. intel_crtc->active = false;
  2941. intel_update_watermarks(dev);
  2942. mutex_lock(&dev->struct_mutex);
  2943. intel_update_fbc(dev);
  2944. mutex_unlock(&dev->struct_mutex);
  2945. }
  2946. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2947. {
  2948. struct drm_device *dev = crtc->dev;
  2949. struct drm_i915_private *dev_priv = dev->dev_private;
  2950. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2951. struct intel_encoder *encoder;
  2952. int pipe = intel_crtc->pipe;
  2953. int plane = intel_crtc->plane;
  2954. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2955. if (!intel_crtc->active)
  2956. return;
  2957. for_each_encoder_on_crtc(dev, crtc, encoder)
  2958. encoder->disable(encoder);
  2959. intel_crtc_wait_for_pending_flips(crtc);
  2960. drm_vblank_off(dev, pipe);
  2961. /* FBC must be disabled before disabling the plane on HSW. */
  2962. if (dev_priv->cfb_plane == plane)
  2963. intel_disable_fbc(dev);
  2964. hsw_disable_ips(intel_crtc);
  2965. intel_crtc_update_cursor(crtc, false);
  2966. intel_disable_planes(crtc);
  2967. intel_disable_plane(dev_priv, plane, pipe);
  2968. if (intel_crtc->config.has_pch_encoder)
  2969. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  2970. intel_disable_pipe(dev_priv, pipe);
  2971. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  2972. ironlake_pfit_disable(intel_crtc);
  2973. intel_ddi_disable_pipe_clock(intel_crtc);
  2974. for_each_encoder_on_crtc(dev, crtc, encoder)
  2975. if (encoder->post_disable)
  2976. encoder->post_disable(encoder);
  2977. if (intel_crtc->config.has_pch_encoder) {
  2978. lpt_disable_pch_transcoder(dev_priv);
  2979. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2980. intel_ddi_fdi_disable(crtc);
  2981. }
  2982. intel_crtc->active = false;
  2983. intel_update_watermarks(dev);
  2984. mutex_lock(&dev->struct_mutex);
  2985. intel_update_fbc(dev);
  2986. mutex_unlock(&dev->struct_mutex);
  2987. }
  2988. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2989. {
  2990. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2991. intel_put_shared_dpll(intel_crtc);
  2992. }
  2993. static void haswell_crtc_off(struct drm_crtc *crtc)
  2994. {
  2995. intel_ddi_put_crtc_pll(crtc);
  2996. }
  2997. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2998. {
  2999. if (!enable && intel_crtc->overlay) {
  3000. struct drm_device *dev = intel_crtc->base.dev;
  3001. struct drm_i915_private *dev_priv = dev->dev_private;
  3002. mutex_lock(&dev->struct_mutex);
  3003. dev_priv->mm.interruptible = false;
  3004. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3005. dev_priv->mm.interruptible = true;
  3006. mutex_unlock(&dev->struct_mutex);
  3007. }
  3008. /* Let userspace switch the overlay on again. In most cases userspace
  3009. * has to recompute where to put it anyway.
  3010. */
  3011. }
  3012. /**
  3013. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3014. * cursor plane briefly if not already running after enabling the display
  3015. * plane.
  3016. * This workaround avoids occasional blank screens when self refresh is
  3017. * enabled.
  3018. */
  3019. static void
  3020. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3021. {
  3022. u32 cntl = I915_READ(CURCNTR(pipe));
  3023. if ((cntl & CURSOR_MODE) == 0) {
  3024. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3025. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3026. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3027. intel_wait_for_vblank(dev_priv->dev, pipe);
  3028. I915_WRITE(CURCNTR(pipe), cntl);
  3029. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3030. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3031. }
  3032. }
  3033. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3034. {
  3035. struct drm_device *dev = crtc->base.dev;
  3036. struct drm_i915_private *dev_priv = dev->dev_private;
  3037. struct intel_crtc_config *pipe_config = &crtc->config;
  3038. if (!crtc->config.gmch_pfit.control)
  3039. return;
  3040. /*
  3041. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3042. * according to register description and PRM.
  3043. */
  3044. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3045. assert_pipe_disabled(dev_priv, crtc->pipe);
  3046. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3047. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3048. /* Border color in case we don't scale up to the full screen. Black by
  3049. * default, change to something else for debugging. */
  3050. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3051. }
  3052. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3053. {
  3054. struct drm_device *dev = crtc->dev;
  3055. struct drm_i915_private *dev_priv = dev->dev_private;
  3056. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3057. struct intel_encoder *encoder;
  3058. int pipe = intel_crtc->pipe;
  3059. int plane = intel_crtc->plane;
  3060. WARN_ON(!crtc->enabled);
  3061. if (intel_crtc->active)
  3062. return;
  3063. intel_crtc->active = true;
  3064. intel_update_watermarks(dev);
  3065. mutex_lock(&dev_priv->dpio_lock);
  3066. for_each_encoder_on_crtc(dev, crtc, encoder)
  3067. if (encoder->pre_pll_enable)
  3068. encoder->pre_pll_enable(encoder);
  3069. vlv_enable_pll(dev_priv, pipe);
  3070. for_each_encoder_on_crtc(dev, crtc, encoder)
  3071. if (encoder->pre_enable)
  3072. encoder->pre_enable(encoder);
  3073. /* VLV wants encoder enabling _before_ the pipe is up. */
  3074. for_each_encoder_on_crtc(dev, crtc, encoder)
  3075. encoder->enable(encoder);
  3076. i9xx_pfit_enable(intel_crtc);
  3077. intel_crtc_load_lut(crtc);
  3078. intel_enable_pipe(dev_priv, pipe, false);
  3079. intel_enable_plane(dev_priv, plane, pipe);
  3080. intel_enable_planes(crtc);
  3081. intel_crtc_update_cursor(crtc, true);
  3082. intel_update_fbc(dev);
  3083. mutex_unlock(&dev_priv->dpio_lock);
  3084. }
  3085. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3086. {
  3087. struct drm_device *dev = crtc->dev;
  3088. struct drm_i915_private *dev_priv = dev->dev_private;
  3089. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3090. struct intel_encoder *encoder;
  3091. int pipe = intel_crtc->pipe;
  3092. int plane = intel_crtc->plane;
  3093. WARN_ON(!crtc->enabled);
  3094. if (intel_crtc->active)
  3095. return;
  3096. intel_crtc->active = true;
  3097. intel_update_watermarks(dev);
  3098. i9xx_enable_pll(dev_priv, pipe);
  3099. for_each_encoder_on_crtc(dev, crtc, encoder)
  3100. if (encoder->pre_enable)
  3101. encoder->pre_enable(encoder);
  3102. i9xx_pfit_enable(intel_crtc);
  3103. intel_crtc_load_lut(crtc);
  3104. intel_enable_pipe(dev_priv, pipe, false);
  3105. intel_enable_plane(dev_priv, plane, pipe);
  3106. intel_enable_planes(crtc);
  3107. /* The fixup needs to happen before cursor is enabled */
  3108. if (IS_G4X(dev))
  3109. g4x_fixup_plane(dev_priv, pipe);
  3110. intel_crtc_update_cursor(crtc, true);
  3111. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3112. intel_crtc_dpms_overlay(intel_crtc, true);
  3113. intel_update_fbc(dev);
  3114. for_each_encoder_on_crtc(dev, crtc, encoder)
  3115. encoder->enable(encoder);
  3116. }
  3117. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3118. {
  3119. struct drm_device *dev = crtc->base.dev;
  3120. struct drm_i915_private *dev_priv = dev->dev_private;
  3121. if (!crtc->config.gmch_pfit.control)
  3122. return;
  3123. assert_pipe_disabled(dev_priv, crtc->pipe);
  3124. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3125. I915_READ(PFIT_CONTROL));
  3126. I915_WRITE(PFIT_CONTROL, 0);
  3127. }
  3128. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3129. {
  3130. struct drm_device *dev = crtc->dev;
  3131. struct drm_i915_private *dev_priv = dev->dev_private;
  3132. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3133. struct intel_encoder *encoder;
  3134. int pipe = intel_crtc->pipe;
  3135. int plane = intel_crtc->plane;
  3136. if (!intel_crtc->active)
  3137. return;
  3138. for_each_encoder_on_crtc(dev, crtc, encoder)
  3139. encoder->disable(encoder);
  3140. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3141. intel_crtc_wait_for_pending_flips(crtc);
  3142. drm_vblank_off(dev, pipe);
  3143. if (dev_priv->cfb_plane == plane)
  3144. intel_disable_fbc(dev);
  3145. intel_crtc_dpms_overlay(intel_crtc, false);
  3146. intel_crtc_update_cursor(crtc, false);
  3147. intel_disable_planes(crtc);
  3148. intel_disable_plane(dev_priv, plane, pipe);
  3149. intel_disable_pipe(dev_priv, pipe);
  3150. i9xx_pfit_disable(intel_crtc);
  3151. for_each_encoder_on_crtc(dev, crtc, encoder)
  3152. if (encoder->post_disable)
  3153. encoder->post_disable(encoder);
  3154. intel_disable_pll(dev_priv, pipe);
  3155. intel_crtc->active = false;
  3156. intel_update_fbc(dev);
  3157. intel_update_watermarks(dev);
  3158. }
  3159. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3160. {
  3161. }
  3162. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3163. bool enabled)
  3164. {
  3165. struct drm_device *dev = crtc->dev;
  3166. struct drm_i915_master_private *master_priv;
  3167. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3168. int pipe = intel_crtc->pipe;
  3169. if (!dev->primary->master)
  3170. return;
  3171. master_priv = dev->primary->master->driver_priv;
  3172. if (!master_priv->sarea_priv)
  3173. return;
  3174. switch (pipe) {
  3175. case 0:
  3176. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3177. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3178. break;
  3179. case 1:
  3180. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3181. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3182. break;
  3183. default:
  3184. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3185. break;
  3186. }
  3187. }
  3188. /**
  3189. * Sets the power management mode of the pipe and plane.
  3190. */
  3191. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3192. {
  3193. struct drm_device *dev = crtc->dev;
  3194. struct drm_i915_private *dev_priv = dev->dev_private;
  3195. struct intel_encoder *intel_encoder;
  3196. bool enable = false;
  3197. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3198. enable |= intel_encoder->connectors_active;
  3199. if (enable)
  3200. dev_priv->display.crtc_enable(crtc);
  3201. else
  3202. dev_priv->display.crtc_disable(crtc);
  3203. intel_crtc_update_sarea(crtc, enable);
  3204. }
  3205. static void intel_crtc_disable(struct drm_crtc *crtc)
  3206. {
  3207. struct drm_device *dev = crtc->dev;
  3208. struct drm_connector *connector;
  3209. struct drm_i915_private *dev_priv = dev->dev_private;
  3210. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3211. /* crtc should still be enabled when we disable it. */
  3212. WARN_ON(!crtc->enabled);
  3213. dev_priv->display.crtc_disable(crtc);
  3214. intel_crtc->eld_vld = false;
  3215. intel_crtc_update_sarea(crtc, false);
  3216. dev_priv->display.off(crtc);
  3217. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3218. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3219. if (crtc->fb) {
  3220. mutex_lock(&dev->struct_mutex);
  3221. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3222. mutex_unlock(&dev->struct_mutex);
  3223. crtc->fb = NULL;
  3224. }
  3225. /* Update computed state. */
  3226. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3227. if (!connector->encoder || !connector->encoder->crtc)
  3228. continue;
  3229. if (connector->encoder->crtc != crtc)
  3230. continue;
  3231. connector->dpms = DRM_MODE_DPMS_OFF;
  3232. to_intel_encoder(connector->encoder)->connectors_active = false;
  3233. }
  3234. }
  3235. void intel_modeset_disable(struct drm_device *dev)
  3236. {
  3237. struct drm_crtc *crtc;
  3238. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3239. if (crtc->enabled)
  3240. intel_crtc_disable(crtc);
  3241. }
  3242. }
  3243. void intel_encoder_destroy(struct drm_encoder *encoder)
  3244. {
  3245. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3246. drm_encoder_cleanup(encoder);
  3247. kfree(intel_encoder);
  3248. }
  3249. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3250. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3251. * state of the entire output pipe. */
  3252. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3253. {
  3254. if (mode == DRM_MODE_DPMS_ON) {
  3255. encoder->connectors_active = true;
  3256. intel_crtc_update_dpms(encoder->base.crtc);
  3257. } else {
  3258. encoder->connectors_active = false;
  3259. intel_crtc_update_dpms(encoder->base.crtc);
  3260. }
  3261. }
  3262. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3263. * internal consistency). */
  3264. static void intel_connector_check_state(struct intel_connector *connector)
  3265. {
  3266. if (connector->get_hw_state(connector)) {
  3267. struct intel_encoder *encoder = connector->encoder;
  3268. struct drm_crtc *crtc;
  3269. bool encoder_enabled;
  3270. enum pipe pipe;
  3271. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3272. connector->base.base.id,
  3273. drm_get_connector_name(&connector->base));
  3274. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3275. "wrong connector dpms state\n");
  3276. WARN(connector->base.encoder != &encoder->base,
  3277. "active connector not linked to encoder\n");
  3278. WARN(!encoder->connectors_active,
  3279. "encoder->connectors_active not set\n");
  3280. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3281. WARN(!encoder_enabled, "encoder not enabled\n");
  3282. if (WARN_ON(!encoder->base.crtc))
  3283. return;
  3284. crtc = encoder->base.crtc;
  3285. WARN(!crtc->enabled, "crtc not enabled\n");
  3286. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3287. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3288. "encoder active on the wrong pipe\n");
  3289. }
  3290. }
  3291. /* Even simpler default implementation, if there's really no special case to
  3292. * consider. */
  3293. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3294. {
  3295. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3296. /* All the simple cases only support two dpms states. */
  3297. if (mode != DRM_MODE_DPMS_ON)
  3298. mode = DRM_MODE_DPMS_OFF;
  3299. if (mode == connector->dpms)
  3300. return;
  3301. connector->dpms = mode;
  3302. /* Only need to change hw state when actually enabled */
  3303. if (encoder->base.crtc)
  3304. intel_encoder_dpms(encoder, mode);
  3305. else
  3306. WARN_ON(encoder->connectors_active != false);
  3307. intel_modeset_check_state(connector->dev);
  3308. }
  3309. /* Simple connector->get_hw_state implementation for encoders that support only
  3310. * one connector and no cloning and hence the encoder state determines the state
  3311. * of the connector. */
  3312. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3313. {
  3314. enum pipe pipe = 0;
  3315. struct intel_encoder *encoder = connector->encoder;
  3316. return encoder->get_hw_state(encoder, &pipe);
  3317. }
  3318. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3319. struct intel_crtc_config *pipe_config)
  3320. {
  3321. struct drm_i915_private *dev_priv = dev->dev_private;
  3322. struct intel_crtc *pipe_B_crtc =
  3323. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3324. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3325. pipe_name(pipe), pipe_config->fdi_lanes);
  3326. if (pipe_config->fdi_lanes > 4) {
  3327. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3328. pipe_name(pipe), pipe_config->fdi_lanes);
  3329. return false;
  3330. }
  3331. if (IS_HASWELL(dev)) {
  3332. if (pipe_config->fdi_lanes > 2) {
  3333. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3334. pipe_config->fdi_lanes);
  3335. return false;
  3336. } else {
  3337. return true;
  3338. }
  3339. }
  3340. if (INTEL_INFO(dev)->num_pipes == 2)
  3341. return true;
  3342. /* Ivybridge 3 pipe is really complicated */
  3343. switch (pipe) {
  3344. case PIPE_A:
  3345. return true;
  3346. case PIPE_B:
  3347. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3348. pipe_config->fdi_lanes > 2) {
  3349. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3350. pipe_name(pipe), pipe_config->fdi_lanes);
  3351. return false;
  3352. }
  3353. return true;
  3354. case PIPE_C:
  3355. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3356. pipe_B_crtc->config.fdi_lanes <= 2) {
  3357. if (pipe_config->fdi_lanes > 2) {
  3358. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3359. pipe_name(pipe), pipe_config->fdi_lanes);
  3360. return false;
  3361. }
  3362. } else {
  3363. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3364. return false;
  3365. }
  3366. return true;
  3367. default:
  3368. BUG();
  3369. }
  3370. }
  3371. #define RETRY 1
  3372. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3373. struct intel_crtc_config *pipe_config)
  3374. {
  3375. struct drm_device *dev = intel_crtc->base.dev;
  3376. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3377. int lane, link_bw, fdi_dotclock;
  3378. bool setup_ok, needs_recompute = false;
  3379. retry:
  3380. /* FDI is a binary signal running at ~2.7GHz, encoding
  3381. * each output octet as 10 bits. The actual frequency
  3382. * is stored as a divider into a 100MHz clock, and the
  3383. * mode pixel clock is stored in units of 1KHz.
  3384. * Hence the bw of each lane in terms of the mode signal
  3385. * is:
  3386. */
  3387. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3388. fdi_dotclock = adjusted_mode->clock;
  3389. fdi_dotclock /= pipe_config->pixel_multiplier;
  3390. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3391. pipe_config->pipe_bpp);
  3392. pipe_config->fdi_lanes = lane;
  3393. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3394. link_bw, &pipe_config->fdi_m_n);
  3395. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3396. intel_crtc->pipe, pipe_config);
  3397. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3398. pipe_config->pipe_bpp -= 2*3;
  3399. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3400. pipe_config->pipe_bpp);
  3401. needs_recompute = true;
  3402. pipe_config->bw_constrained = true;
  3403. goto retry;
  3404. }
  3405. if (needs_recompute)
  3406. return RETRY;
  3407. return setup_ok ? 0 : -EINVAL;
  3408. }
  3409. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3410. struct intel_crtc_config *pipe_config)
  3411. {
  3412. pipe_config->ips_enabled = i915_enable_ips &&
  3413. hsw_crtc_supports_ips(crtc) &&
  3414. pipe_config->pipe_bpp == 24;
  3415. }
  3416. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3417. struct intel_crtc_config *pipe_config)
  3418. {
  3419. struct drm_device *dev = crtc->base.dev;
  3420. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3421. if (HAS_PCH_SPLIT(dev)) {
  3422. /* FDI link clock is fixed at 2.7G */
  3423. if (pipe_config->requested_mode.clock * 3
  3424. > IRONLAKE_FDI_FREQ * 4)
  3425. return -EINVAL;
  3426. }
  3427. /* All interlaced capable intel hw wants timings in frames. Note though
  3428. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3429. * timings, so we need to be careful not to clobber these.*/
  3430. if (!pipe_config->timings_set)
  3431. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3432. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3433. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3434. */
  3435. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3436. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3437. return -EINVAL;
  3438. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3439. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3440. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3441. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3442. * for lvds. */
  3443. pipe_config->pipe_bpp = 8*3;
  3444. }
  3445. if (HAS_IPS(dev))
  3446. hsw_compute_ips_config(crtc, pipe_config);
  3447. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3448. * clock survives for now. */
  3449. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3450. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3451. if (pipe_config->has_pch_encoder)
  3452. return ironlake_fdi_compute_config(crtc, pipe_config);
  3453. return 0;
  3454. }
  3455. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3456. {
  3457. return 400000; /* FIXME */
  3458. }
  3459. static int i945_get_display_clock_speed(struct drm_device *dev)
  3460. {
  3461. return 400000;
  3462. }
  3463. static int i915_get_display_clock_speed(struct drm_device *dev)
  3464. {
  3465. return 333000;
  3466. }
  3467. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3468. {
  3469. return 200000;
  3470. }
  3471. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3472. {
  3473. u16 gcfgc = 0;
  3474. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3475. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3476. return 133000;
  3477. else {
  3478. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3479. case GC_DISPLAY_CLOCK_333_MHZ:
  3480. return 333000;
  3481. default:
  3482. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3483. return 190000;
  3484. }
  3485. }
  3486. }
  3487. static int i865_get_display_clock_speed(struct drm_device *dev)
  3488. {
  3489. return 266000;
  3490. }
  3491. static int i855_get_display_clock_speed(struct drm_device *dev)
  3492. {
  3493. u16 hpllcc = 0;
  3494. /* Assume that the hardware is in the high speed state. This
  3495. * should be the default.
  3496. */
  3497. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3498. case GC_CLOCK_133_200:
  3499. case GC_CLOCK_100_200:
  3500. return 200000;
  3501. case GC_CLOCK_166_250:
  3502. return 250000;
  3503. case GC_CLOCK_100_133:
  3504. return 133000;
  3505. }
  3506. /* Shouldn't happen */
  3507. return 0;
  3508. }
  3509. static int i830_get_display_clock_speed(struct drm_device *dev)
  3510. {
  3511. return 133000;
  3512. }
  3513. static void
  3514. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3515. {
  3516. while (*num > DATA_LINK_M_N_MASK ||
  3517. *den > DATA_LINK_M_N_MASK) {
  3518. *num >>= 1;
  3519. *den >>= 1;
  3520. }
  3521. }
  3522. static void compute_m_n(unsigned int m, unsigned int n,
  3523. uint32_t *ret_m, uint32_t *ret_n)
  3524. {
  3525. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3526. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3527. intel_reduce_m_n_ratio(ret_m, ret_n);
  3528. }
  3529. void
  3530. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3531. int pixel_clock, int link_clock,
  3532. struct intel_link_m_n *m_n)
  3533. {
  3534. m_n->tu = 64;
  3535. compute_m_n(bits_per_pixel * pixel_clock,
  3536. link_clock * nlanes * 8,
  3537. &m_n->gmch_m, &m_n->gmch_n);
  3538. compute_m_n(pixel_clock, link_clock,
  3539. &m_n->link_m, &m_n->link_n);
  3540. }
  3541. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3542. {
  3543. if (i915_panel_use_ssc >= 0)
  3544. return i915_panel_use_ssc != 0;
  3545. return dev_priv->vbt.lvds_use_ssc
  3546. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3547. }
  3548. static int vlv_get_refclk(struct drm_crtc *crtc)
  3549. {
  3550. struct drm_device *dev = crtc->dev;
  3551. struct drm_i915_private *dev_priv = dev->dev_private;
  3552. int refclk = 27000; /* for DP & HDMI */
  3553. return 100000; /* only one validated so far */
  3554. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3555. refclk = 96000;
  3556. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3557. if (intel_panel_use_ssc(dev_priv))
  3558. refclk = 100000;
  3559. else
  3560. refclk = 96000;
  3561. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3562. refclk = 100000;
  3563. }
  3564. return refclk;
  3565. }
  3566. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3567. {
  3568. struct drm_device *dev = crtc->dev;
  3569. struct drm_i915_private *dev_priv = dev->dev_private;
  3570. int refclk;
  3571. if (IS_VALLEYVIEW(dev)) {
  3572. refclk = vlv_get_refclk(crtc);
  3573. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3574. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3575. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3576. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3577. refclk / 1000);
  3578. } else if (!IS_GEN2(dev)) {
  3579. refclk = 96000;
  3580. } else {
  3581. refclk = 48000;
  3582. }
  3583. return refclk;
  3584. }
  3585. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3586. {
  3587. return (1 << dpll->n) << 16 | dpll->m2;
  3588. }
  3589. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3590. {
  3591. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3592. }
  3593. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3594. intel_clock_t *reduced_clock)
  3595. {
  3596. struct drm_device *dev = crtc->base.dev;
  3597. struct drm_i915_private *dev_priv = dev->dev_private;
  3598. int pipe = crtc->pipe;
  3599. u32 fp, fp2 = 0;
  3600. if (IS_PINEVIEW(dev)) {
  3601. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3602. if (reduced_clock)
  3603. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3604. } else {
  3605. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3606. if (reduced_clock)
  3607. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3608. }
  3609. I915_WRITE(FP0(pipe), fp);
  3610. crtc->lowfreq_avail = false;
  3611. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3612. reduced_clock && i915_powersave) {
  3613. I915_WRITE(FP1(pipe), fp2);
  3614. crtc->lowfreq_avail = true;
  3615. } else {
  3616. I915_WRITE(FP1(pipe), fp);
  3617. }
  3618. }
  3619. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3620. {
  3621. u32 reg_val;
  3622. /*
  3623. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3624. * and set it to a reasonable value instead.
  3625. */
  3626. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3627. reg_val &= 0xffffff00;
  3628. reg_val |= 0x00000030;
  3629. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3630. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3631. reg_val &= 0x8cffffff;
  3632. reg_val = 0x8c000000;
  3633. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3634. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3635. reg_val &= 0xffffff00;
  3636. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3637. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3638. reg_val &= 0x00ffffff;
  3639. reg_val |= 0xb0000000;
  3640. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3641. }
  3642. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3643. struct intel_link_m_n *m_n)
  3644. {
  3645. struct drm_device *dev = crtc->base.dev;
  3646. struct drm_i915_private *dev_priv = dev->dev_private;
  3647. int pipe = crtc->pipe;
  3648. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3649. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3650. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3651. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3652. }
  3653. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3654. struct intel_link_m_n *m_n)
  3655. {
  3656. struct drm_device *dev = crtc->base.dev;
  3657. struct drm_i915_private *dev_priv = dev->dev_private;
  3658. int pipe = crtc->pipe;
  3659. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3660. if (INTEL_INFO(dev)->gen >= 5) {
  3661. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3662. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3663. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3664. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3665. } else {
  3666. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3667. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3668. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3669. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3670. }
  3671. }
  3672. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3673. {
  3674. if (crtc->config.has_pch_encoder)
  3675. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3676. else
  3677. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3678. }
  3679. static void vlv_update_pll(struct intel_crtc *crtc)
  3680. {
  3681. struct drm_device *dev = crtc->base.dev;
  3682. struct drm_i915_private *dev_priv = dev->dev_private;
  3683. struct intel_encoder *encoder;
  3684. int pipe = crtc->pipe;
  3685. u32 dpll, mdiv;
  3686. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3687. bool is_hdmi;
  3688. u32 coreclk, reg_val, dpll_md;
  3689. mutex_lock(&dev_priv->dpio_lock);
  3690. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3691. bestn = crtc->config.dpll.n;
  3692. bestm1 = crtc->config.dpll.m1;
  3693. bestm2 = crtc->config.dpll.m2;
  3694. bestp1 = crtc->config.dpll.p1;
  3695. bestp2 = crtc->config.dpll.p2;
  3696. /* See eDP HDMI DPIO driver vbios notes doc */
  3697. /* PLL B needs special handling */
  3698. if (pipe)
  3699. vlv_pllb_recal_opamp(dev_priv);
  3700. /* Set up Tx target for periodic Rcomp update */
  3701. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3702. /* Disable target IRef on PLL */
  3703. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3704. reg_val &= 0x00ffffff;
  3705. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3706. /* Disable fast lock */
  3707. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3708. /* Set idtafcrecal before PLL is enabled */
  3709. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3710. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3711. mdiv |= ((bestn << DPIO_N_SHIFT));
  3712. mdiv |= (1 << DPIO_K_SHIFT);
  3713. /*
  3714. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3715. * but we don't support that).
  3716. * Note: don't use the DAC post divider as it seems unstable.
  3717. */
  3718. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3719. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3720. mdiv |= DPIO_ENABLE_CALIBRATION;
  3721. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3722. /* Set HBR and RBR LPF coefficients */
  3723. if (crtc->config.port_clock == 162000 ||
  3724. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3725. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3726. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3727. 0x005f0021);
  3728. else
  3729. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3730. 0x00d0000f);
  3731. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3732. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3733. /* Use SSC source */
  3734. if (!pipe)
  3735. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3736. 0x0df40000);
  3737. else
  3738. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3739. 0x0df70000);
  3740. } else { /* HDMI or VGA */
  3741. /* Use bend source */
  3742. if (!pipe)
  3743. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3744. 0x0df70000);
  3745. else
  3746. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3747. 0x0df40000);
  3748. }
  3749. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3750. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3751. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3752. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3753. coreclk |= 0x01000000;
  3754. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3755. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3756. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3757. if (encoder->pre_pll_enable)
  3758. encoder->pre_pll_enable(encoder);
  3759. /* Enable DPIO clock input */
  3760. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3761. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3762. if (pipe)
  3763. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3764. dpll |= DPLL_VCO_ENABLE;
  3765. I915_WRITE(DPLL(pipe), dpll);
  3766. POSTING_READ(DPLL(pipe));
  3767. udelay(150);
  3768. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3769. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3770. dpll_md = (crtc->config.pixel_multiplier - 1)
  3771. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3772. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3773. POSTING_READ(DPLL_MD(pipe));
  3774. if (crtc->config.has_dp_encoder)
  3775. intel_dp_set_m_n(crtc);
  3776. mutex_unlock(&dev_priv->dpio_lock);
  3777. }
  3778. static void i9xx_update_pll(struct intel_crtc *crtc,
  3779. intel_clock_t *reduced_clock,
  3780. int num_connectors)
  3781. {
  3782. struct drm_device *dev = crtc->base.dev;
  3783. struct drm_i915_private *dev_priv = dev->dev_private;
  3784. struct intel_encoder *encoder;
  3785. int pipe = crtc->pipe;
  3786. u32 dpll;
  3787. bool is_sdvo;
  3788. struct dpll *clock = &crtc->config.dpll;
  3789. i9xx_update_pll_dividers(crtc, reduced_clock);
  3790. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3791. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3792. dpll = DPLL_VGA_MODE_DIS;
  3793. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3794. dpll |= DPLLB_MODE_LVDS;
  3795. else
  3796. dpll |= DPLLB_MODE_DAC_SERIAL;
  3797. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3798. dpll |= (crtc->config.pixel_multiplier - 1)
  3799. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3800. }
  3801. if (is_sdvo)
  3802. dpll |= DPLL_DVO_HIGH_SPEED;
  3803. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3804. dpll |= DPLL_DVO_HIGH_SPEED;
  3805. /* compute bitmask from p1 value */
  3806. if (IS_PINEVIEW(dev))
  3807. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3808. else {
  3809. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3810. if (IS_G4X(dev) && reduced_clock)
  3811. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3812. }
  3813. switch (clock->p2) {
  3814. case 5:
  3815. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3816. break;
  3817. case 7:
  3818. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3819. break;
  3820. case 10:
  3821. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3822. break;
  3823. case 14:
  3824. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3825. break;
  3826. }
  3827. if (INTEL_INFO(dev)->gen >= 4)
  3828. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3829. if (crtc->config.sdvo_tv_clock)
  3830. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3831. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3832. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3833. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3834. else
  3835. dpll |= PLL_REF_INPUT_DREFCLK;
  3836. dpll |= DPLL_VCO_ENABLE;
  3837. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3838. POSTING_READ(DPLL(pipe));
  3839. udelay(150);
  3840. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3841. if (encoder->pre_pll_enable)
  3842. encoder->pre_pll_enable(encoder);
  3843. if (crtc->config.has_dp_encoder)
  3844. intel_dp_set_m_n(crtc);
  3845. I915_WRITE(DPLL(pipe), dpll);
  3846. /* Wait for the clocks to stabilize. */
  3847. POSTING_READ(DPLL(pipe));
  3848. udelay(150);
  3849. if (INTEL_INFO(dev)->gen >= 4) {
  3850. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3851. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3852. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3853. } else {
  3854. /* The pixel multiplier can only be updated once the
  3855. * DPLL is enabled and the clocks are stable.
  3856. *
  3857. * So write it again.
  3858. */
  3859. I915_WRITE(DPLL(pipe), dpll);
  3860. }
  3861. }
  3862. static void i8xx_update_pll(struct intel_crtc *crtc,
  3863. intel_clock_t *reduced_clock,
  3864. int num_connectors)
  3865. {
  3866. struct drm_device *dev = crtc->base.dev;
  3867. struct drm_i915_private *dev_priv = dev->dev_private;
  3868. struct intel_encoder *encoder;
  3869. int pipe = crtc->pipe;
  3870. u32 dpll;
  3871. struct dpll *clock = &crtc->config.dpll;
  3872. i9xx_update_pll_dividers(crtc, reduced_clock);
  3873. dpll = DPLL_VGA_MODE_DIS;
  3874. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3875. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3876. } else {
  3877. if (clock->p1 == 2)
  3878. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3879. else
  3880. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3881. if (clock->p2 == 4)
  3882. dpll |= PLL_P2_DIVIDE_BY_4;
  3883. }
  3884. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3885. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3886. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3887. else
  3888. dpll |= PLL_REF_INPUT_DREFCLK;
  3889. dpll |= DPLL_VCO_ENABLE;
  3890. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3891. POSTING_READ(DPLL(pipe));
  3892. udelay(150);
  3893. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3894. if (encoder->pre_pll_enable)
  3895. encoder->pre_pll_enable(encoder);
  3896. I915_WRITE(DPLL(pipe), dpll);
  3897. /* Wait for the clocks to stabilize. */
  3898. POSTING_READ(DPLL(pipe));
  3899. udelay(150);
  3900. /* The pixel multiplier can only be updated once the
  3901. * DPLL is enabled and the clocks are stable.
  3902. *
  3903. * So write it again.
  3904. */
  3905. I915_WRITE(DPLL(pipe), dpll);
  3906. }
  3907. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3908. {
  3909. struct drm_device *dev = intel_crtc->base.dev;
  3910. struct drm_i915_private *dev_priv = dev->dev_private;
  3911. enum pipe pipe = intel_crtc->pipe;
  3912. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3913. struct drm_display_mode *adjusted_mode =
  3914. &intel_crtc->config.adjusted_mode;
  3915. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3916. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3917. /* We need to be careful not to changed the adjusted mode, for otherwise
  3918. * the hw state checker will get angry at the mismatch. */
  3919. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3920. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3921. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3922. /* the chip adds 2 halflines automatically */
  3923. crtc_vtotal -= 1;
  3924. crtc_vblank_end -= 1;
  3925. vsyncshift = adjusted_mode->crtc_hsync_start
  3926. - adjusted_mode->crtc_htotal / 2;
  3927. } else {
  3928. vsyncshift = 0;
  3929. }
  3930. if (INTEL_INFO(dev)->gen > 3)
  3931. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3932. I915_WRITE(HTOTAL(cpu_transcoder),
  3933. (adjusted_mode->crtc_hdisplay - 1) |
  3934. ((adjusted_mode->crtc_htotal - 1) << 16));
  3935. I915_WRITE(HBLANK(cpu_transcoder),
  3936. (adjusted_mode->crtc_hblank_start - 1) |
  3937. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3938. I915_WRITE(HSYNC(cpu_transcoder),
  3939. (adjusted_mode->crtc_hsync_start - 1) |
  3940. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3941. I915_WRITE(VTOTAL(cpu_transcoder),
  3942. (adjusted_mode->crtc_vdisplay - 1) |
  3943. ((crtc_vtotal - 1) << 16));
  3944. I915_WRITE(VBLANK(cpu_transcoder),
  3945. (adjusted_mode->crtc_vblank_start - 1) |
  3946. ((crtc_vblank_end - 1) << 16));
  3947. I915_WRITE(VSYNC(cpu_transcoder),
  3948. (adjusted_mode->crtc_vsync_start - 1) |
  3949. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3950. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3951. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3952. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3953. * bits. */
  3954. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3955. (pipe == PIPE_B || pipe == PIPE_C))
  3956. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3957. /* pipesrc controls the size that is scaled from, which should
  3958. * always be the user's requested size.
  3959. */
  3960. I915_WRITE(PIPESRC(pipe),
  3961. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3962. }
  3963. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3964. struct intel_crtc_config *pipe_config)
  3965. {
  3966. struct drm_device *dev = crtc->base.dev;
  3967. struct drm_i915_private *dev_priv = dev->dev_private;
  3968. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3969. uint32_t tmp;
  3970. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3971. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3972. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3973. tmp = I915_READ(HBLANK(cpu_transcoder));
  3974. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3975. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3976. tmp = I915_READ(HSYNC(cpu_transcoder));
  3977. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3978. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3979. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3980. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3981. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3982. tmp = I915_READ(VBLANK(cpu_transcoder));
  3983. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3984. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  3985. tmp = I915_READ(VSYNC(cpu_transcoder));
  3986. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  3987. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  3988. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  3989. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  3990. pipe_config->adjusted_mode.crtc_vtotal += 1;
  3991. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  3992. }
  3993. tmp = I915_READ(PIPESRC(crtc->pipe));
  3994. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  3995. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  3996. }
  3997. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  3998. {
  3999. struct drm_device *dev = intel_crtc->base.dev;
  4000. struct drm_i915_private *dev_priv = dev->dev_private;
  4001. uint32_t pipeconf;
  4002. pipeconf = 0;
  4003. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4004. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4005. * core speed.
  4006. *
  4007. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4008. * pipe == 0 check?
  4009. */
  4010. if (intel_crtc->config.requested_mode.clock >
  4011. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4012. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4013. }
  4014. /* only g4x and later have fancy bpc/dither controls */
  4015. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4016. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4017. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4018. pipeconf |= PIPECONF_DITHER_EN |
  4019. PIPECONF_DITHER_TYPE_SP;
  4020. switch (intel_crtc->config.pipe_bpp) {
  4021. case 18:
  4022. pipeconf |= PIPECONF_6BPC;
  4023. break;
  4024. case 24:
  4025. pipeconf |= PIPECONF_8BPC;
  4026. break;
  4027. case 30:
  4028. pipeconf |= PIPECONF_10BPC;
  4029. break;
  4030. default:
  4031. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4032. BUG();
  4033. }
  4034. }
  4035. if (HAS_PIPE_CXSR(dev)) {
  4036. if (intel_crtc->lowfreq_avail) {
  4037. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4038. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4039. } else {
  4040. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4041. }
  4042. }
  4043. if (!IS_GEN2(dev) &&
  4044. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4045. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4046. else
  4047. pipeconf |= PIPECONF_PROGRESSIVE;
  4048. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4049. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4050. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4051. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4052. }
  4053. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4054. int x, int y,
  4055. struct drm_framebuffer *fb)
  4056. {
  4057. struct drm_device *dev = crtc->dev;
  4058. struct drm_i915_private *dev_priv = dev->dev_private;
  4059. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4060. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4061. int pipe = intel_crtc->pipe;
  4062. int plane = intel_crtc->plane;
  4063. int refclk, num_connectors = 0;
  4064. intel_clock_t clock, reduced_clock;
  4065. u32 dspcntr;
  4066. bool ok, has_reduced_clock = false;
  4067. bool is_lvds = false;
  4068. struct intel_encoder *encoder;
  4069. const intel_limit_t *limit;
  4070. int ret;
  4071. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4072. switch (encoder->type) {
  4073. case INTEL_OUTPUT_LVDS:
  4074. is_lvds = true;
  4075. break;
  4076. }
  4077. num_connectors++;
  4078. }
  4079. refclk = i9xx_get_refclk(crtc, num_connectors);
  4080. /*
  4081. * Returns a set of divisors for the desired target clock with the given
  4082. * refclk, or FALSE. The returned values represent the clock equation:
  4083. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4084. */
  4085. limit = intel_limit(crtc, refclk);
  4086. ok = dev_priv->display.find_dpll(limit, crtc,
  4087. intel_crtc->config.port_clock,
  4088. refclk, NULL, &clock);
  4089. if (!ok && !intel_crtc->config.clock_set) {
  4090. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4091. return -EINVAL;
  4092. }
  4093. /* Ensure that the cursor is valid for the new mode before changing... */
  4094. intel_crtc_update_cursor(crtc, true);
  4095. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4096. /*
  4097. * Ensure we match the reduced clock's P to the target clock.
  4098. * If the clocks don't match, we can't switch the display clock
  4099. * by using the FP0/FP1. In such case we will disable the LVDS
  4100. * downclock feature.
  4101. */
  4102. has_reduced_clock =
  4103. dev_priv->display.find_dpll(limit, crtc,
  4104. dev_priv->lvds_downclock,
  4105. refclk, &clock,
  4106. &reduced_clock);
  4107. }
  4108. /* Compat-code for transition, will disappear. */
  4109. if (!intel_crtc->config.clock_set) {
  4110. intel_crtc->config.dpll.n = clock.n;
  4111. intel_crtc->config.dpll.m1 = clock.m1;
  4112. intel_crtc->config.dpll.m2 = clock.m2;
  4113. intel_crtc->config.dpll.p1 = clock.p1;
  4114. intel_crtc->config.dpll.p2 = clock.p2;
  4115. }
  4116. if (IS_GEN2(dev))
  4117. i8xx_update_pll(intel_crtc,
  4118. has_reduced_clock ? &reduced_clock : NULL,
  4119. num_connectors);
  4120. else if (IS_VALLEYVIEW(dev))
  4121. vlv_update_pll(intel_crtc);
  4122. else
  4123. i9xx_update_pll(intel_crtc,
  4124. has_reduced_clock ? &reduced_clock : NULL,
  4125. num_connectors);
  4126. /* Set up the display plane register */
  4127. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4128. if (!IS_VALLEYVIEW(dev)) {
  4129. if (pipe == 0)
  4130. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4131. else
  4132. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4133. }
  4134. intel_set_pipe_timings(intel_crtc);
  4135. /* pipesrc and dspsize control the size that is scaled from,
  4136. * which should always be the user's requested size.
  4137. */
  4138. I915_WRITE(DSPSIZE(plane),
  4139. ((mode->vdisplay - 1) << 16) |
  4140. (mode->hdisplay - 1));
  4141. I915_WRITE(DSPPOS(plane), 0);
  4142. i9xx_set_pipeconf(intel_crtc);
  4143. I915_WRITE(DSPCNTR(plane), dspcntr);
  4144. POSTING_READ(DSPCNTR(plane));
  4145. ret = intel_pipe_set_base(crtc, x, y, fb);
  4146. intel_update_watermarks(dev);
  4147. return ret;
  4148. }
  4149. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4150. struct intel_crtc_config *pipe_config)
  4151. {
  4152. struct drm_device *dev = crtc->base.dev;
  4153. struct drm_i915_private *dev_priv = dev->dev_private;
  4154. uint32_t tmp;
  4155. tmp = I915_READ(PFIT_CONTROL);
  4156. if (INTEL_INFO(dev)->gen < 4) {
  4157. if (crtc->pipe != PIPE_B)
  4158. return;
  4159. /* gen2/3 store dither state in pfit control, needs to match */
  4160. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4161. } else {
  4162. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4163. return;
  4164. }
  4165. if (!(tmp & PFIT_ENABLE))
  4166. return;
  4167. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4168. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4169. if (INTEL_INFO(dev)->gen < 5)
  4170. pipe_config->gmch_pfit.lvds_border_bits =
  4171. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4172. }
  4173. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4174. struct intel_crtc_config *pipe_config)
  4175. {
  4176. struct drm_device *dev = crtc->base.dev;
  4177. struct drm_i915_private *dev_priv = dev->dev_private;
  4178. uint32_t tmp;
  4179. pipe_config->cpu_transcoder = crtc->pipe;
  4180. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4181. tmp = I915_READ(PIPECONF(crtc->pipe));
  4182. if (!(tmp & PIPECONF_ENABLE))
  4183. return false;
  4184. intel_get_pipe_timings(crtc, pipe_config);
  4185. i9xx_get_pfit_config(crtc, pipe_config);
  4186. if (INTEL_INFO(dev)->gen >= 4) {
  4187. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4188. pipe_config->pixel_multiplier =
  4189. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4190. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4191. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4192. tmp = I915_READ(DPLL(crtc->pipe));
  4193. pipe_config->pixel_multiplier =
  4194. ((tmp & SDVO_MULTIPLIER_MASK)
  4195. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4196. } else {
  4197. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4198. * port and will be fixed up in the encoder->get_config
  4199. * function. */
  4200. pipe_config->pixel_multiplier = 1;
  4201. }
  4202. return true;
  4203. }
  4204. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4205. {
  4206. struct drm_i915_private *dev_priv = dev->dev_private;
  4207. struct drm_mode_config *mode_config = &dev->mode_config;
  4208. struct intel_encoder *encoder;
  4209. u32 val, final;
  4210. bool has_lvds = false;
  4211. bool has_cpu_edp = false;
  4212. bool has_panel = false;
  4213. bool has_ck505 = false;
  4214. bool can_ssc = false;
  4215. /* We need to take the global config into account */
  4216. list_for_each_entry(encoder, &mode_config->encoder_list,
  4217. base.head) {
  4218. switch (encoder->type) {
  4219. case INTEL_OUTPUT_LVDS:
  4220. has_panel = true;
  4221. has_lvds = true;
  4222. break;
  4223. case INTEL_OUTPUT_EDP:
  4224. has_panel = true;
  4225. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4226. has_cpu_edp = true;
  4227. break;
  4228. }
  4229. }
  4230. if (HAS_PCH_IBX(dev)) {
  4231. has_ck505 = dev_priv->vbt.display_clock_mode;
  4232. can_ssc = has_ck505;
  4233. } else {
  4234. has_ck505 = false;
  4235. can_ssc = true;
  4236. }
  4237. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4238. has_panel, has_lvds, has_ck505);
  4239. /* Ironlake: try to setup display ref clock before DPLL
  4240. * enabling. This is only under driver's control after
  4241. * PCH B stepping, previous chipset stepping should be
  4242. * ignoring this setting.
  4243. */
  4244. val = I915_READ(PCH_DREF_CONTROL);
  4245. /* As we must carefully and slowly disable/enable each source in turn,
  4246. * compute the final state we want first and check if we need to
  4247. * make any changes at all.
  4248. */
  4249. final = val;
  4250. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4251. if (has_ck505)
  4252. final |= DREF_NONSPREAD_CK505_ENABLE;
  4253. else
  4254. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4255. final &= ~DREF_SSC_SOURCE_MASK;
  4256. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4257. final &= ~DREF_SSC1_ENABLE;
  4258. if (has_panel) {
  4259. final |= DREF_SSC_SOURCE_ENABLE;
  4260. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4261. final |= DREF_SSC1_ENABLE;
  4262. if (has_cpu_edp) {
  4263. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4264. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4265. else
  4266. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4267. } else
  4268. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4269. } else {
  4270. final |= DREF_SSC_SOURCE_DISABLE;
  4271. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4272. }
  4273. if (final == val)
  4274. return;
  4275. /* Always enable nonspread source */
  4276. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4277. if (has_ck505)
  4278. val |= DREF_NONSPREAD_CK505_ENABLE;
  4279. else
  4280. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4281. if (has_panel) {
  4282. val &= ~DREF_SSC_SOURCE_MASK;
  4283. val |= DREF_SSC_SOURCE_ENABLE;
  4284. /* SSC must be turned on before enabling the CPU output */
  4285. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4286. DRM_DEBUG_KMS("Using SSC on panel\n");
  4287. val |= DREF_SSC1_ENABLE;
  4288. } else
  4289. val &= ~DREF_SSC1_ENABLE;
  4290. /* Get SSC going before enabling the outputs */
  4291. I915_WRITE(PCH_DREF_CONTROL, val);
  4292. POSTING_READ(PCH_DREF_CONTROL);
  4293. udelay(200);
  4294. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4295. /* Enable CPU source on CPU attached eDP */
  4296. if (has_cpu_edp) {
  4297. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4298. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4299. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4300. }
  4301. else
  4302. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4303. } else
  4304. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4305. I915_WRITE(PCH_DREF_CONTROL, val);
  4306. POSTING_READ(PCH_DREF_CONTROL);
  4307. udelay(200);
  4308. } else {
  4309. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4310. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4311. /* Turn off CPU output */
  4312. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4313. I915_WRITE(PCH_DREF_CONTROL, val);
  4314. POSTING_READ(PCH_DREF_CONTROL);
  4315. udelay(200);
  4316. /* Turn off the SSC source */
  4317. val &= ~DREF_SSC_SOURCE_MASK;
  4318. val |= DREF_SSC_SOURCE_DISABLE;
  4319. /* Turn off SSC1 */
  4320. val &= ~DREF_SSC1_ENABLE;
  4321. I915_WRITE(PCH_DREF_CONTROL, val);
  4322. POSTING_READ(PCH_DREF_CONTROL);
  4323. udelay(200);
  4324. }
  4325. BUG_ON(val != final);
  4326. }
  4327. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4328. static void lpt_init_pch_refclk(struct drm_device *dev)
  4329. {
  4330. struct drm_i915_private *dev_priv = dev->dev_private;
  4331. struct drm_mode_config *mode_config = &dev->mode_config;
  4332. struct intel_encoder *encoder;
  4333. bool has_vga = false;
  4334. bool is_sdv = false;
  4335. u32 tmp;
  4336. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4337. switch (encoder->type) {
  4338. case INTEL_OUTPUT_ANALOG:
  4339. has_vga = true;
  4340. break;
  4341. }
  4342. }
  4343. if (!has_vga)
  4344. return;
  4345. mutex_lock(&dev_priv->dpio_lock);
  4346. /* XXX: Rip out SDV support once Haswell ships for real. */
  4347. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4348. is_sdv = true;
  4349. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4350. tmp &= ~SBI_SSCCTL_DISABLE;
  4351. tmp |= SBI_SSCCTL_PATHALT;
  4352. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4353. udelay(24);
  4354. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4355. tmp &= ~SBI_SSCCTL_PATHALT;
  4356. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4357. if (!is_sdv) {
  4358. tmp = I915_READ(SOUTH_CHICKEN2);
  4359. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4360. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4361. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4362. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4363. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4364. tmp = I915_READ(SOUTH_CHICKEN2);
  4365. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4366. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4367. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4368. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4369. 100))
  4370. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4371. }
  4372. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4373. tmp &= ~(0xFF << 24);
  4374. tmp |= (0x12 << 24);
  4375. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4376. if (is_sdv) {
  4377. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4378. tmp |= 0x7FFF;
  4379. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4380. }
  4381. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4382. tmp |= (1 << 11);
  4383. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4384. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4385. tmp |= (1 << 11);
  4386. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4387. if (is_sdv) {
  4388. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4389. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4390. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4391. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4392. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4393. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4394. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4395. tmp |= (0x3F << 8);
  4396. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4397. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4398. tmp |= (0x3F << 8);
  4399. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4400. }
  4401. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4402. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4403. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4404. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4405. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4406. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4407. if (!is_sdv) {
  4408. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4409. tmp &= ~(7 << 13);
  4410. tmp |= (5 << 13);
  4411. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4412. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4413. tmp &= ~(7 << 13);
  4414. tmp |= (5 << 13);
  4415. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4416. }
  4417. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4418. tmp &= ~0xFF;
  4419. tmp |= 0x1C;
  4420. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4421. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4422. tmp &= ~0xFF;
  4423. tmp |= 0x1C;
  4424. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4425. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4426. tmp &= ~(0xFF << 16);
  4427. tmp |= (0x1C << 16);
  4428. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4429. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4430. tmp &= ~(0xFF << 16);
  4431. tmp |= (0x1C << 16);
  4432. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4433. if (!is_sdv) {
  4434. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4435. tmp |= (1 << 27);
  4436. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4437. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4438. tmp |= (1 << 27);
  4439. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4440. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4441. tmp &= ~(0xF << 28);
  4442. tmp |= (4 << 28);
  4443. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4444. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4445. tmp &= ~(0xF << 28);
  4446. tmp |= (4 << 28);
  4447. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4448. }
  4449. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4450. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4451. tmp |= SBI_DBUFF0_ENABLE;
  4452. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4453. mutex_unlock(&dev_priv->dpio_lock);
  4454. }
  4455. /*
  4456. * Initialize reference clocks when the driver loads
  4457. */
  4458. void intel_init_pch_refclk(struct drm_device *dev)
  4459. {
  4460. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4461. ironlake_init_pch_refclk(dev);
  4462. else if (HAS_PCH_LPT(dev))
  4463. lpt_init_pch_refclk(dev);
  4464. }
  4465. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4466. {
  4467. struct drm_device *dev = crtc->dev;
  4468. struct drm_i915_private *dev_priv = dev->dev_private;
  4469. struct intel_encoder *encoder;
  4470. int num_connectors = 0;
  4471. bool is_lvds = false;
  4472. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4473. switch (encoder->type) {
  4474. case INTEL_OUTPUT_LVDS:
  4475. is_lvds = true;
  4476. break;
  4477. }
  4478. num_connectors++;
  4479. }
  4480. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4481. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4482. dev_priv->vbt.lvds_ssc_freq);
  4483. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4484. }
  4485. return 120000;
  4486. }
  4487. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4488. {
  4489. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4490. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4491. int pipe = intel_crtc->pipe;
  4492. uint32_t val;
  4493. val = 0;
  4494. switch (intel_crtc->config.pipe_bpp) {
  4495. case 18:
  4496. val |= PIPECONF_6BPC;
  4497. break;
  4498. case 24:
  4499. val |= PIPECONF_8BPC;
  4500. break;
  4501. case 30:
  4502. val |= PIPECONF_10BPC;
  4503. break;
  4504. case 36:
  4505. val |= PIPECONF_12BPC;
  4506. break;
  4507. default:
  4508. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4509. BUG();
  4510. }
  4511. if (intel_crtc->config.dither)
  4512. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4513. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4514. val |= PIPECONF_INTERLACED_ILK;
  4515. else
  4516. val |= PIPECONF_PROGRESSIVE;
  4517. if (intel_crtc->config.limited_color_range)
  4518. val |= PIPECONF_COLOR_RANGE_SELECT;
  4519. I915_WRITE(PIPECONF(pipe), val);
  4520. POSTING_READ(PIPECONF(pipe));
  4521. }
  4522. /*
  4523. * Set up the pipe CSC unit.
  4524. *
  4525. * Currently only full range RGB to limited range RGB conversion
  4526. * is supported, but eventually this should handle various
  4527. * RGB<->YCbCr scenarios as well.
  4528. */
  4529. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4530. {
  4531. struct drm_device *dev = crtc->dev;
  4532. struct drm_i915_private *dev_priv = dev->dev_private;
  4533. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4534. int pipe = intel_crtc->pipe;
  4535. uint16_t coeff = 0x7800; /* 1.0 */
  4536. /*
  4537. * TODO: Check what kind of values actually come out of the pipe
  4538. * with these coeff/postoff values and adjust to get the best
  4539. * accuracy. Perhaps we even need to take the bpc value into
  4540. * consideration.
  4541. */
  4542. if (intel_crtc->config.limited_color_range)
  4543. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4544. /*
  4545. * GY/GU and RY/RU should be the other way around according
  4546. * to BSpec, but reality doesn't agree. Just set them up in
  4547. * a way that results in the correct picture.
  4548. */
  4549. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4550. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4551. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4552. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4553. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4554. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4555. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4556. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4557. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4558. if (INTEL_INFO(dev)->gen > 6) {
  4559. uint16_t postoff = 0;
  4560. if (intel_crtc->config.limited_color_range)
  4561. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4562. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4563. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4564. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4565. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4566. } else {
  4567. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4568. if (intel_crtc->config.limited_color_range)
  4569. mode |= CSC_BLACK_SCREEN_OFFSET;
  4570. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4571. }
  4572. }
  4573. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4574. {
  4575. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4576. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4577. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4578. uint32_t val;
  4579. val = 0;
  4580. if (intel_crtc->config.dither)
  4581. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4582. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4583. val |= PIPECONF_INTERLACED_ILK;
  4584. else
  4585. val |= PIPECONF_PROGRESSIVE;
  4586. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4587. POSTING_READ(PIPECONF(cpu_transcoder));
  4588. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4589. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4590. }
  4591. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4592. intel_clock_t *clock,
  4593. bool *has_reduced_clock,
  4594. intel_clock_t *reduced_clock)
  4595. {
  4596. struct drm_device *dev = crtc->dev;
  4597. struct drm_i915_private *dev_priv = dev->dev_private;
  4598. struct intel_encoder *intel_encoder;
  4599. int refclk;
  4600. const intel_limit_t *limit;
  4601. bool ret, is_lvds = false;
  4602. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4603. switch (intel_encoder->type) {
  4604. case INTEL_OUTPUT_LVDS:
  4605. is_lvds = true;
  4606. break;
  4607. }
  4608. }
  4609. refclk = ironlake_get_refclk(crtc);
  4610. /*
  4611. * Returns a set of divisors for the desired target clock with the given
  4612. * refclk, or FALSE. The returned values represent the clock equation:
  4613. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4614. */
  4615. limit = intel_limit(crtc, refclk);
  4616. ret = dev_priv->display.find_dpll(limit, crtc,
  4617. to_intel_crtc(crtc)->config.port_clock,
  4618. refclk, NULL, clock);
  4619. if (!ret)
  4620. return false;
  4621. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4622. /*
  4623. * Ensure we match the reduced clock's P to the target clock.
  4624. * If the clocks don't match, we can't switch the display clock
  4625. * by using the FP0/FP1. In such case we will disable the LVDS
  4626. * downclock feature.
  4627. */
  4628. *has_reduced_clock =
  4629. dev_priv->display.find_dpll(limit, crtc,
  4630. dev_priv->lvds_downclock,
  4631. refclk, clock,
  4632. reduced_clock);
  4633. }
  4634. return true;
  4635. }
  4636. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4637. {
  4638. struct drm_i915_private *dev_priv = dev->dev_private;
  4639. uint32_t temp;
  4640. temp = I915_READ(SOUTH_CHICKEN1);
  4641. if (temp & FDI_BC_BIFURCATION_SELECT)
  4642. return;
  4643. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4644. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4645. temp |= FDI_BC_BIFURCATION_SELECT;
  4646. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4647. I915_WRITE(SOUTH_CHICKEN1, temp);
  4648. POSTING_READ(SOUTH_CHICKEN1);
  4649. }
  4650. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4651. {
  4652. struct drm_device *dev = intel_crtc->base.dev;
  4653. struct drm_i915_private *dev_priv = dev->dev_private;
  4654. switch (intel_crtc->pipe) {
  4655. case PIPE_A:
  4656. break;
  4657. case PIPE_B:
  4658. if (intel_crtc->config.fdi_lanes > 2)
  4659. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4660. else
  4661. cpt_enable_fdi_bc_bifurcation(dev);
  4662. break;
  4663. case PIPE_C:
  4664. cpt_enable_fdi_bc_bifurcation(dev);
  4665. break;
  4666. default:
  4667. BUG();
  4668. }
  4669. }
  4670. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4671. {
  4672. /*
  4673. * Account for spread spectrum to avoid
  4674. * oversubscribing the link. Max center spread
  4675. * is 2.5%; use 5% for safety's sake.
  4676. */
  4677. u32 bps = target_clock * bpp * 21 / 20;
  4678. return bps / (link_bw * 8) + 1;
  4679. }
  4680. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4681. {
  4682. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4683. }
  4684. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4685. u32 *fp,
  4686. intel_clock_t *reduced_clock, u32 *fp2)
  4687. {
  4688. struct drm_crtc *crtc = &intel_crtc->base;
  4689. struct drm_device *dev = crtc->dev;
  4690. struct drm_i915_private *dev_priv = dev->dev_private;
  4691. struct intel_encoder *intel_encoder;
  4692. uint32_t dpll;
  4693. int factor, num_connectors = 0;
  4694. bool is_lvds = false, is_sdvo = false;
  4695. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4696. switch (intel_encoder->type) {
  4697. case INTEL_OUTPUT_LVDS:
  4698. is_lvds = true;
  4699. break;
  4700. case INTEL_OUTPUT_SDVO:
  4701. case INTEL_OUTPUT_HDMI:
  4702. is_sdvo = true;
  4703. break;
  4704. }
  4705. num_connectors++;
  4706. }
  4707. /* Enable autotuning of the PLL clock (if permissible) */
  4708. factor = 21;
  4709. if (is_lvds) {
  4710. if ((intel_panel_use_ssc(dev_priv) &&
  4711. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4712. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4713. factor = 25;
  4714. } else if (intel_crtc->config.sdvo_tv_clock)
  4715. factor = 20;
  4716. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4717. *fp |= FP_CB_TUNE;
  4718. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4719. *fp2 |= FP_CB_TUNE;
  4720. dpll = 0;
  4721. if (is_lvds)
  4722. dpll |= DPLLB_MODE_LVDS;
  4723. else
  4724. dpll |= DPLLB_MODE_DAC_SERIAL;
  4725. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4726. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4727. if (is_sdvo)
  4728. dpll |= DPLL_DVO_HIGH_SPEED;
  4729. if (intel_crtc->config.has_dp_encoder)
  4730. dpll |= DPLL_DVO_HIGH_SPEED;
  4731. /* compute bitmask from p1 value */
  4732. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4733. /* also FPA1 */
  4734. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4735. switch (intel_crtc->config.dpll.p2) {
  4736. case 5:
  4737. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4738. break;
  4739. case 7:
  4740. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4741. break;
  4742. case 10:
  4743. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4744. break;
  4745. case 14:
  4746. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4747. break;
  4748. }
  4749. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4750. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4751. else
  4752. dpll |= PLL_REF_INPUT_DREFCLK;
  4753. return dpll | DPLL_VCO_ENABLE;
  4754. }
  4755. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4756. int x, int y,
  4757. struct drm_framebuffer *fb)
  4758. {
  4759. struct drm_device *dev = crtc->dev;
  4760. struct drm_i915_private *dev_priv = dev->dev_private;
  4761. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4762. int pipe = intel_crtc->pipe;
  4763. int plane = intel_crtc->plane;
  4764. int num_connectors = 0;
  4765. intel_clock_t clock, reduced_clock;
  4766. u32 dpll = 0, fp = 0, fp2 = 0;
  4767. bool ok, has_reduced_clock = false;
  4768. bool is_lvds = false;
  4769. struct intel_encoder *encoder;
  4770. struct intel_shared_dpll *pll;
  4771. int ret;
  4772. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4773. switch (encoder->type) {
  4774. case INTEL_OUTPUT_LVDS:
  4775. is_lvds = true;
  4776. break;
  4777. }
  4778. num_connectors++;
  4779. }
  4780. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4781. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4782. ok = ironlake_compute_clocks(crtc, &clock,
  4783. &has_reduced_clock, &reduced_clock);
  4784. if (!ok && !intel_crtc->config.clock_set) {
  4785. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4786. return -EINVAL;
  4787. }
  4788. /* Compat-code for transition, will disappear. */
  4789. if (!intel_crtc->config.clock_set) {
  4790. intel_crtc->config.dpll.n = clock.n;
  4791. intel_crtc->config.dpll.m1 = clock.m1;
  4792. intel_crtc->config.dpll.m2 = clock.m2;
  4793. intel_crtc->config.dpll.p1 = clock.p1;
  4794. intel_crtc->config.dpll.p2 = clock.p2;
  4795. }
  4796. /* Ensure that the cursor is valid for the new mode before changing... */
  4797. intel_crtc_update_cursor(crtc, true);
  4798. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4799. if (intel_crtc->config.has_pch_encoder) {
  4800. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4801. if (has_reduced_clock)
  4802. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4803. dpll = ironlake_compute_dpll(intel_crtc,
  4804. &fp, &reduced_clock,
  4805. has_reduced_clock ? &fp2 : NULL);
  4806. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4807. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4808. if (has_reduced_clock)
  4809. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4810. else
  4811. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4812. pll = intel_get_shared_dpll(intel_crtc);
  4813. if (pll == NULL) {
  4814. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4815. pipe_name(pipe));
  4816. return -EINVAL;
  4817. }
  4818. } else
  4819. intel_put_shared_dpll(intel_crtc);
  4820. if (intel_crtc->config.has_dp_encoder)
  4821. intel_dp_set_m_n(intel_crtc);
  4822. if (is_lvds && has_reduced_clock && i915_powersave)
  4823. intel_crtc->lowfreq_avail = true;
  4824. else
  4825. intel_crtc->lowfreq_avail = false;
  4826. if (intel_crtc->config.has_pch_encoder) {
  4827. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4828. }
  4829. intel_set_pipe_timings(intel_crtc);
  4830. if (intel_crtc->config.has_pch_encoder) {
  4831. intel_cpu_transcoder_set_m_n(intel_crtc,
  4832. &intel_crtc->config.fdi_m_n);
  4833. }
  4834. if (IS_IVYBRIDGE(dev))
  4835. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4836. ironlake_set_pipeconf(crtc);
  4837. /* Set up the display plane register */
  4838. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4839. POSTING_READ(DSPCNTR(plane));
  4840. ret = intel_pipe_set_base(crtc, x, y, fb);
  4841. intel_update_watermarks(dev);
  4842. return ret;
  4843. }
  4844. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4845. struct intel_crtc_config *pipe_config)
  4846. {
  4847. struct drm_device *dev = crtc->base.dev;
  4848. struct drm_i915_private *dev_priv = dev->dev_private;
  4849. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4850. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4851. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4852. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4853. & ~TU_SIZE_MASK;
  4854. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4855. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4856. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4857. }
  4858. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4859. struct intel_crtc_config *pipe_config)
  4860. {
  4861. struct drm_device *dev = crtc->base.dev;
  4862. struct drm_i915_private *dev_priv = dev->dev_private;
  4863. uint32_t tmp;
  4864. tmp = I915_READ(PF_CTL(crtc->pipe));
  4865. if (tmp & PF_ENABLE) {
  4866. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4867. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4868. /* We currently do not free assignements of panel fitters on
  4869. * ivb/hsw (since we don't use the higher upscaling modes which
  4870. * differentiates them) so just WARN about this case for now. */
  4871. if (IS_GEN7(dev)) {
  4872. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4873. PF_PIPE_SEL_IVB(crtc->pipe));
  4874. }
  4875. }
  4876. }
  4877. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4878. struct intel_crtc_config *pipe_config)
  4879. {
  4880. struct drm_device *dev = crtc->base.dev;
  4881. struct drm_i915_private *dev_priv = dev->dev_private;
  4882. uint32_t tmp;
  4883. pipe_config->cpu_transcoder = crtc->pipe;
  4884. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4885. tmp = I915_READ(PIPECONF(crtc->pipe));
  4886. if (!(tmp & PIPECONF_ENABLE))
  4887. return false;
  4888. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4889. struct intel_shared_dpll *pll;
  4890. pipe_config->has_pch_encoder = true;
  4891. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4892. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4893. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4894. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4895. /* XXX: Can't properly read out the pch dpll pixel multiplier
  4896. * since we don't have state tracking for pch clocks yet. */
  4897. pipe_config->pixel_multiplier = 1;
  4898. if (HAS_PCH_IBX(dev_priv->dev)) {
  4899. pipe_config->shared_dpll = crtc->pipe;
  4900. } else {
  4901. tmp = I915_READ(PCH_DPLL_SEL);
  4902. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4903. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4904. else
  4905. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4906. }
  4907. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4908. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4909. &pipe_config->dpll_hw_state));
  4910. } else {
  4911. pipe_config->pixel_multiplier = 1;
  4912. }
  4913. intel_get_pipe_timings(crtc, pipe_config);
  4914. ironlake_get_pfit_config(crtc, pipe_config);
  4915. return true;
  4916. }
  4917. static void haswell_modeset_global_resources(struct drm_device *dev)
  4918. {
  4919. bool enable = false;
  4920. struct intel_crtc *crtc;
  4921. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4922. if (!crtc->base.enabled)
  4923. continue;
  4924. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4925. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4926. enable = true;
  4927. }
  4928. intel_set_power_well(dev, enable);
  4929. }
  4930. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4931. int x, int y,
  4932. struct drm_framebuffer *fb)
  4933. {
  4934. struct drm_device *dev = crtc->dev;
  4935. struct drm_i915_private *dev_priv = dev->dev_private;
  4936. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4937. int plane = intel_crtc->plane;
  4938. int ret;
  4939. if (!intel_ddi_pll_mode_set(crtc))
  4940. return -EINVAL;
  4941. /* Ensure that the cursor is valid for the new mode before changing... */
  4942. intel_crtc_update_cursor(crtc, true);
  4943. if (intel_crtc->config.has_dp_encoder)
  4944. intel_dp_set_m_n(intel_crtc);
  4945. intel_crtc->lowfreq_avail = false;
  4946. intel_set_pipe_timings(intel_crtc);
  4947. if (intel_crtc->config.has_pch_encoder) {
  4948. intel_cpu_transcoder_set_m_n(intel_crtc,
  4949. &intel_crtc->config.fdi_m_n);
  4950. }
  4951. haswell_set_pipeconf(crtc);
  4952. intel_set_pipe_csc(crtc);
  4953. /* Set up the display plane register */
  4954. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4955. POSTING_READ(DSPCNTR(plane));
  4956. ret = intel_pipe_set_base(crtc, x, y, fb);
  4957. intel_update_watermarks(dev);
  4958. return ret;
  4959. }
  4960. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4961. struct intel_crtc_config *pipe_config)
  4962. {
  4963. struct drm_device *dev = crtc->base.dev;
  4964. struct drm_i915_private *dev_priv = dev->dev_private;
  4965. enum intel_display_power_domain pfit_domain;
  4966. uint32_t tmp;
  4967. pipe_config->cpu_transcoder = crtc->pipe;
  4968. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4969. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4970. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  4971. enum pipe trans_edp_pipe;
  4972. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  4973. default:
  4974. WARN(1, "unknown pipe linked to edp transcoder\n");
  4975. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  4976. case TRANS_DDI_EDP_INPUT_A_ON:
  4977. trans_edp_pipe = PIPE_A;
  4978. break;
  4979. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  4980. trans_edp_pipe = PIPE_B;
  4981. break;
  4982. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  4983. trans_edp_pipe = PIPE_C;
  4984. break;
  4985. }
  4986. if (trans_edp_pipe == crtc->pipe)
  4987. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  4988. }
  4989. if (!intel_display_power_enabled(dev,
  4990. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  4991. return false;
  4992. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  4993. if (!(tmp & PIPECONF_ENABLE))
  4994. return false;
  4995. /*
  4996. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  4997. * DDI E. So just check whether this pipe is wired to DDI E and whether
  4998. * the PCH transcoder is on.
  4999. */
  5000. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5001. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5002. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5003. pipe_config->has_pch_encoder = true;
  5004. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5005. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5006. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5007. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5008. }
  5009. intel_get_pipe_timings(crtc, pipe_config);
  5010. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5011. if (intel_display_power_enabled(dev, pfit_domain))
  5012. ironlake_get_pfit_config(crtc, pipe_config);
  5013. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5014. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5015. pipe_config->pixel_multiplier = 1;
  5016. return true;
  5017. }
  5018. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5019. int x, int y,
  5020. struct drm_framebuffer *fb)
  5021. {
  5022. struct drm_device *dev = crtc->dev;
  5023. struct drm_i915_private *dev_priv = dev->dev_private;
  5024. struct drm_encoder_helper_funcs *encoder_funcs;
  5025. struct intel_encoder *encoder;
  5026. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5027. struct drm_display_mode *adjusted_mode =
  5028. &intel_crtc->config.adjusted_mode;
  5029. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5030. int pipe = intel_crtc->pipe;
  5031. int ret;
  5032. drm_vblank_pre_modeset(dev, pipe);
  5033. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5034. drm_vblank_post_modeset(dev, pipe);
  5035. if (ret != 0)
  5036. return ret;
  5037. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5038. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5039. encoder->base.base.id,
  5040. drm_get_encoder_name(&encoder->base),
  5041. mode->base.id, mode->name);
  5042. if (encoder->mode_set) {
  5043. encoder->mode_set(encoder);
  5044. } else {
  5045. encoder_funcs = encoder->base.helper_private;
  5046. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5047. }
  5048. }
  5049. return 0;
  5050. }
  5051. static bool intel_eld_uptodate(struct drm_connector *connector,
  5052. int reg_eldv, uint32_t bits_eldv,
  5053. int reg_elda, uint32_t bits_elda,
  5054. int reg_edid)
  5055. {
  5056. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5057. uint8_t *eld = connector->eld;
  5058. uint32_t i;
  5059. i = I915_READ(reg_eldv);
  5060. i &= bits_eldv;
  5061. if (!eld[0])
  5062. return !i;
  5063. if (!i)
  5064. return false;
  5065. i = I915_READ(reg_elda);
  5066. i &= ~bits_elda;
  5067. I915_WRITE(reg_elda, i);
  5068. for (i = 0; i < eld[2]; i++)
  5069. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5070. return false;
  5071. return true;
  5072. }
  5073. static void g4x_write_eld(struct drm_connector *connector,
  5074. struct drm_crtc *crtc)
  5075. {
  5076. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5077. uint8_t *eld = connector->eld;
  5078. uint32_t eldv;
  5079. uint32_t len;
  5080. uint32_t i;
  5081. i = I915_READ(G4X_AUD_VID_DID);
  5082. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5083. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5084. else
  5085. eldv = G4X_ELDV_DEVCTG;
  5086. if (intel_eld_uptodate(connector,
  5087. G4X_AUD_CNTL_ST, eldv,
  5088. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5089. G4X_HDMIW_HDMIEDID))
  5090. return;
  5091. i = I915_READ(G4X_AUD_CNTL_ST);
  5092. i &= ~(eldv | G4X_ELD_ADDR);
  5093. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5094. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5095. if (!eld[0])
  5096. return;
  5097. len = min_t(uint8_t, eld[2], len);
  5098. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5099. for (i = 0; i < len; i++)
  5100. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5101. i = I915_READ(G4X_AUD_CNTL_ST);
  5102. i |= eldv;
  5103. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5104. }
  5105. static void haswell_write_eld(struct drm_connector *connector,
  5106. struct drm_crtc *crtc)
  5107. {
  5108. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5109. uint8_t *eld = connector->eld;
  5110. struct drm_device *dev = crtc->dev;
  5111. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5112. uint32_t eldv;
  5113. uint32_t i;
  5114. int len;
  5115. int pipe = to_intel_crtc(crtc)->pipe;
  5116. int tmp;
  5117. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5118. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5119. int aud_config = HSW_AUD_CFG(pipe);
  5120. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5121. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5122. /* Audio output enable */
  5123. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5124. tmp = I915_READ(aud_cntrl_st2);
  5125. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5126. I915_WRITE(aud_cntrl_st2, tmp);
  5127. /* Wait for 1 vertical blank */
  5128. intel_wait_for_vblank(dev, pipe);
  5129. /* Set ELD valid state */
  5130. tmp = I915_READ(aud_cntrl_st2);
  5131. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5132. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5133. I915_WRITE(aud_cntrl_st2, tmp);
  5134. tmp = I915_READ(aud_cntrl_st2);
  5135. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5136. /* Enable HDMI mode */
  5137. tmp = I915_READ(aud_config);
  5138. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5139. /* clear N_programing_enable and N_value_index */
  5140. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5141. I915_WRITE(aud_config, tmp);
  5142. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5143. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5144. intel_crtc->eld_vld = true;
  5145. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5146. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5147. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5148. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5149. } else
  5150. I915_WRITE(aud_config, 0);
  5151. if (intel_eld_uptodate(connector,
  5152. aud_cntrl_st2, eldv,
  5153. aud_cntl_st, IBX_ELD_ADDRESS,
  5154. hdmiw_hdmiedid))
  5155. return;
  5156. i = I915_READ(aud_cntrl_st2);
  5157. i &= ~eldv;
  5158. I915_WRITE(aud_cntrl_st2, i);
  5159. if (!eld[0])
  5160. return;
  5161. i = I915_READ(aud_cntl_st);
  5162. i &= ~IBX_ELD_ADDRESS;
  5163. I915_WRITE(aud_cntl_st, i);
  5164. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5165. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5166. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5167. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5168. for (i = 0; i < len; i++)
  5169. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5170. i = I915_READ(aud_cntrl_st2);
  5171. i |= eldv;
  5172. I915_WRITE(aud_cntrl_st2, i);
  5173. }
  5174. static void ironlake_write_eld(struct drm_connector *connector,
  5175. struct drm_crtc *crtc)
  5176. {
  5177. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5178. uint8_t *eld = connector->eld;
  5179. uint32_t eldv;
  5180. uint32_t i;
  5181. int len;
  5182. int hdmiw_hdmiedid;
  5183. int aud_config;
  5184. int aud_cntl_st;
  5185. int aud_cntrl_st2;
  5186. int pipe = to_intel_crtc(crtc)->pipe;
  5187. if (HAS_PCH_IBX(connector->dev)) {
  5188. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5189. aud_config = IBX_AUD_CFG(pipe);
  5190. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5191. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5192. } else {
  5193. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5194. aud_config = CPT_AUD_CFG(pipe);
  5195. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5196. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5197. }
  5198. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5199. i = I915_READ(aud_cntl_st);
  5200. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5201. if (!i) {
  5202. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5203. /* operate blindly on all ports */
  5204. eldv = IBX_ELD_VALIDB;
  5205. eldv |= IBX_ELD_VALIDB << 4;
  5206. eldv |= IBX_ELD_VALIDB << 8;
  5207. } else {
  5208. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5209. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5210. }
  5211. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5212. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5213. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5214. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5215. } else
  5216. I915_WRITE(aud_config, 0);
  5217. if (intel_eld_uptodate(connector,
  5218. aud_cntrl_st2, eldv,
  5219. aud_cntl_st, IBX_ELD_ADDRESS,
  5220. hdmiw_hdmiedid))
  5221. return;
  5222. i = I915_READ(aud_cntrl_st2);
  5223. i &= ~eldv;
  5224. I915_WRITE(aud_cntrl_st2, i);
  5225. if (!eld[0])
  5226. return;
  5227. i = I915_READ(aud_cntl_st);
  5228. i &= ~IBX_ELD_ADDRESS;
  5229. I915_WRITE(aud_cntl_st, i);
  5230. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5231. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5232. for (i = 0; i < len; i++)
  5233. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5234. i = I915_READ(aud_cntrl_st2);
  5235. i |= eldv;
  5236. I915_WRITE(aud_cntrl_st2, i);
  5237. }
  5238. void intel_write_eld(struct drm_encoder *encoder,
  5239. struct drm_display_mode *mode)
  5240. {
  5241. struct drm_crtc *crtc = encoder->crtc;
  5242. struct drm_connector *connector;
  5243. struct drm_device *dev = encoder->dev;
  5244. struct drm_i915_private *dev_priv = dev->dev_private;
  5245. connector = drm_select_eld(encoder, mode);
  5246. if (!connector)
  5247. return;
  5248. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5249. connector->base.id,
  5250. drm_get_connector_name(connector),
  5251. connector->encoder->base.id,
  5252. drm_get_encoder_name(connector->encoder));
  5253. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5254. if (dev_priv->display.write_eld)
  5255. dev_priv->display.write_eld(connector, crtc);
  5256. }
  5257. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5258. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5259. {
  5260. struct drm_device *dev = crtc->dev;
  5261. struct drm_i915_private *dev_priv = dev->dev_private;
  5262. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5263. enum pipe pipe = intel_crtc->pipe;
  5264. int palreg = PALETTE(pipe);
  5265. int i;
  5266. bool reenable_ips = false;
  5267. /* The clocks have to be on to load the palette. */
  5268. if (!crtc->enabled || !intel_crtc->active)
  5269. return;
  5270. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5271. assert_pll_enabled(dev_priv, pipe);
  5272. /* use legacy palette for Ironlake */
  5273. if (HAS_PCH_SPLIT(dev))
  5274. palreg = LGC_PALETTE(pipe);
  5275. /* Workaround : Do not read or write the pipe palette/gamma data while
  5276. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5277. */
  5278. if (intel_crtc->config.ips_enabled &&
  5279. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5280. GAMMA_MODE_MODE_SPLIT)) {
  5281. hsw_disable_ips(intel_crtc);
  5282. reenable_ips = true;
  5283. }
  5284. for (i = 0; i < 256; i++) {
  5285. I915_WRITE(palreg + 4 * i,
  5286. (intel_crtc->lut_r[i] << 16) |
  5287. (intel_crtc->lut_g[i] << 8) |
  5288. intel_crtc->lut_b[i]);
  5289. }
  5290. if (reenable_ips)
  5291. hsw_enable_ips(intel_crtc);
  5292. }
  5293. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5294. {
  5295. struct drm_device *dev = crtc->dev;
  5296. struct drm_i915_private *dev_priv = dev->dev_private;
  5297. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5298. bool visible = base != 0;
  5299. u32 cntl;
  5300. if (intel_crtc->cursor_visible == visible)
  5301. return;
  5302. cntl = I915_READ(_CURACNTR);
  5303. if (visible) {
  5304. /* On these chipsets we can only modify the base whilst
  5305. * the cursor is disabled.
  5306. */
  5307. I915_WRITE(_CURABASE, base);
  5308. cntl &= ~(CURSOR_FORMAT_MASK);
  5309. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5310. cntl |= CURSOR_ENABLE |
  5311. CURSOR_GAMMA_ENABLE |
  5312. CURSOR_FORMAT_ARGB;
  5313. } else
  5314. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5315. I915_WRITE(_CURACNTR, cntl);
  5316. intel_crtc->cursor_visible = visible;
  5317. }
  5318. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5319. {
  5320. struct drm_device *dev = crtc->dev;
  5321. struct drm_i915_private *dev_priv = dev->dev_private;
  5322. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5323. int pipe = intel_crtc->pipe;
  5324. bool visible = base != 0;
  5325. if (intel_crtc->cursor_visible != visible) {
  5326. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5327. if (base) {
  5328. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5329. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5330. cntl |= pipe << 28; /* Connect to correct pipe */
  5331. } else {
  5332. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5333. cntl |= CURSOR_MODE_DISABLE;
  5334. }
  5335. I915_WRITE(CURCNTR(pipe), cntl);
  5336. intel_crtc->cursor_visible = visible;
  5337. }
  5338. /* and commit changes on next vblank */
  5339. I915_WRITE(CURBASE(pipe), base);
  5340. }
  5341. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5342. {
  5343. struct drm_device *dev = crtc->dev;
  5344. struct drm_i915_private *dev_priv = dev->dev_private;
  5345. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5346. int pipe = intel_crtc->pipe;
  5347. bool visible = base != 0;
  5348. if (intel_crtc->cursor_visible != visible) {
  5349. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5350. if (base) {
  5351. cntl &= ~CURSOR_MODE;
  5352. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5353. } else {
  5354. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5355. cntl |= CURSOR_MODE_DISABLE;
  5356. }
  5357. if (IS_HASWELL(dev))
  5358. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5359. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5360. intel_crtc->cursor_visible = visible;
  5361. }
  5362. /* and commit changes on next vblank */
  5363. I915_WRITE(CURBASE_IVB(pipe), base);
  5364. }
  5365. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5366. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5367. bool on)
  5368. {
  5369. struct drm_device *dev = crtc->dev;
  5370. struct drm_i915_private *dev_priv = dev->dev_private;
  5371. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5372. int pipe = intel_crtc->pipe;
  5373. int x = intel_crtc->cursor_x;
  5374. int y = intel_crtc->cursor_y;
  5375. u32 base, pos;
  5376. bool visible;
  5377. pos = 0;
  5378. if (on && crtc->enabled && crtc->fb) {
  5379. base = intel_crtc->cursor_addr;
  5380. if (x > (int) crtc->fb->width)
  5381. base = 0;
  5382. if (y > (int) crtc->fb->height)
  5383. base = 0;
  5384. } else
  5385. base = 0;
  5386. if (x < 0) {
  5387. if (x + intel_crtc->cursor_width < 0)
  5388. base = 0;
  5389. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5390. x = -x;
  5391. }
  5392. pos |= x << CURSOR_X_SHIFT;
  5393. if (y < 0) {
  5394. if (y + intel_crtc->cursor_height < 0)
  5395. base = 0;
  5396. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5397. y = -y;
  5398. }
  5399. pos |= y << CURSOR_Y_SHIFT;
  5400. visible = base != 0;
  5401. if (!visible && !intel_crtc->cursor_visible)
  5402. return;
  5403. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5404. I915_WRITE(CURPOS_IVB(pipe), pos);
  5405. ivb_update_cursor(crtc, base);
  5406. } else {
  5407. I915_WRITE(CURPOS(pipe), pos);
  5408. if (IS_845G(dev) || IS_I865G(dev))
  5409. i845_update_cursor(crtc, base);
  5410. else
  5411. i9xx_update_cursor(crtc, base);
  5412. }
  5413. }
  5414. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5415. struct drm_file *file,
  5416. uint32_t handle,
  5417. uint32_t width, uint32_t height)
  5418. {
  5419. struct drm_device *dev = crtc->dev;
  5420. struct drm_i915_private *dev_priv = dev->dev_private;
  5421. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5422. struct drm_i915_gem_object *obj;
  5423. uint32_t addr;
  5424. int ret;
  5425. /* if we want to turn off the cursor ignore width and height */
  5426. if (!handle) {
  5427. DRM_DEBUG_KMS("cursor off\n");
  5428. addr = 0;
  5429. obj = NULL;
  5430. mutex_lock(&dev->struct_mutex);
  5431. goto finish;
  5432. }
  5433. /* Currently we only support 64x64 cursors */
  5434. if (width != 64 || height != 64) {
  5435. DRM_ERROR("we currently only support 64x64 cursors\n");
  5436. return -EINVAL;
  5437. }
  5438. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5439. if (&obj->base == NULL)
  5440. return -ENOENT;
  5441. if (obj->base.size < width * height * 4) {
  5442. DRM_ERROR("buffer is to small\n");
  5443. ret = -ENOMEM;
  5444. goto fail;
  5445. }
  5446. /* we only need to pin inside GTT if cursor is non-phy */
  5447. mutex_lock(&dev->struct_mutex);
  5448. if (!dev_priv->info->cursor_needs_physical) {
  5449. unsigned alignment;
  5450. if (obj->tiling_mode) {
  5451. DRM_ERROR("cursor cannot be tiled\n");
  5452. ret = -EINVAL;
  5453. goto fail_locked;
  5454. }
  5455. /* Note that the w/a also requires 2 PTE of padding following
  5456. * the bo. We currently fill all unused PTE with the shadow
  5457. * page and so we should always have valid PTE following the
  5458. * cursor preventing the VT-d warning.
  5459. */
  5460. alignment = 0;
  5461. if (need_vtd_wa(dev))
  5462. alignment = 64*1024;
  5463. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5464. if (ret) {
  5465. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5466. goto fail_locked;
  5467. }
  5468. ret = i915_gem_object_put_fence(obj);
  5469. if (ret) {
  5470. DRM_ERROR("failed to release fence for cursor");
  5471. goto fail_unpin;
  5472. }
  5473. addr = obj->gtt_offset;
  5474. } else {
  5475. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5476. ret = i915_gem_attach_phys_object(dev, obj,
  5477. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5478. align);
  5479. if (ret) {
  5480. DRM_ERROR("failed to attach phys object\n");
  5481. goto fail_locked;
  5482. }
  5483. addr = obj->phys_obj->handle->busaddr;
  5484. }
  5485. if (IS_GEN2(dev))
  5486. I915_WRITE(CURSIZE, (height << 12) | width);
  5487. finish:
  5488. if (intel_crtc->cursor_bo) {
  5489. if (dev_priv->info->cursor_needs_physical) {
  5490. if (intel_crtc->cursor_bo != obj)
  5491. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5492. } else
  5493. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5494. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5495. }
  5496. mutex_unlock(&dev->struct_mutex);
  5497. intel_crtc->cursor_addr = addr;
  5498. intel_crtc->cursor_bo = obj;
  5499. intel_crtc->cursor_width = width;
  5500. intel_crtc->cursor_height = height;
  5501. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5502. return 0;
  5503. fail_unpin:
  5504. i915_gem_object_unpin(obj);
  5505. fail_locked:
  5506. mutex_unlock(&dev->struct_mutex);
  5507. fail:
  5508. drm_gem_object_unreference_unlocked(&obj->base);
  5509. return ret;
  5510. }
  5511. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5512. {
  5513. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5514. intel_crtc->cursor_x = x;
  5515. intel_crtc->cursor_y = y;
  5516. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5517. return 0;
  5518. }
  5519. /** Sets the color ramps on behalf of RandR */
  5520. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5521. u16 blue, int regno)
  5522. {
  5523. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5524. intel_crtc->lut_r[regno] = red >> 8;
  5525. intel_crtc->lut_g[regno] = green >> 8;
  5526. intel_crtc->lut_b[regno] = blue >> 8;
  5527. }
  5528. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5529. u16 *blue, int regno)
  5530. {
  5531. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5532. *red = intel_crtc->lut_r[regno] << 8;
  5533. *green = intel_crtc->lut_g[regno] << 8;
  5534. *blue = intel_crtc->lut_b[regno] << 8;
  5535. }
  5536. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5537. u16 *blue, uint32_t start, uint32_t size)
  5538. {
  5539. int end = (start + size > 256) ? 256 : start + size, i;
  5540. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5541. for (i = start; i < end; i++) {
  5542. intel_crtc->lut_r[i] = red[i] >> 8;
  5543. intel_crtc->lut_g[i] = green[i] >> 8;
  5544. intel_crtc->lut_b[i] = blue[i] >> 8;
  5545. }
  5546. intel_crtc_load_lut(crtc);
  5547. }
  5548. /* VESA 640x480x72Hz mode to set on the pipe */
  5549. static struct drm_display_mode load_detect_mode = {
  5550. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5551. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5552. };
  5553. static struct drm_framebuffer *
  5554. intel_framebuffer_create(struct drm_device *dev,
  5555. struct drm_mode_fb_cmd2 *mode_cmd,
  5556. struct drm_i915_gem_object *obj)
  5557. {
  5558. struct intel_framebuffer *intel_fb;
  5559. int ret;
  5560. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5561. if (!intel_fb) {
  5562. drm_gem_object_unreference_unlocked(&obj->base);
  5563. return ERR_PTR(-ENOMEM);
  5564. }
  5565. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5566. if (ret) {
  5567. drm_gem_object_unreference_unlocked(&obj->base);
  5568. kfree(intel_fb);
  5569. return ERR_PTR(ret);
  5570. }
  5571. return &intel_fb->base;
  5572. }
  5573. static u32
  5574. intel_framebuffer_pitch_for_width(int width, int bpp)
  5575. {
  5576. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5577. return ALIGN(pitch, 64);
  5578. }
  5579. static u32
  5580. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5581. {
  5582. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5583. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5584. }
  5585. static struct drm_framebuffer *
  5586. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5587. struct drm_display_mode *mode,
  5588. int depth, int bpp)
  5589. {
  5590. struct drm_i915_gem_object *obj;
  5591. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5592. obj = i915_gem_alloc_object(dev,
  5593. intel_framebuffer_size_for_mode(mode, bpp));
  5594. if (obj == NULL)
  5595. return ERR_PTR(-ENOMEM);
  5596. mode_cmd.width = mode->hdisplay;
  5597. mode_cmd.height = mode->vdisplay;
  5598. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5599. bpp);
  5600. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5601. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5602. }
  5603. static struct drm_framebuffer *
  5604. mode_fits_in_fbdev(struct drm_device *dev,
  5605. struct drm_display_mode *mode)
  5606. {
  5607. struct drm_i915_private *dev_priv = dev->dev_private;
  5608. struct drm_i915_gem_object *obj;
  5609. struct drm_framebuffer *fb;
  5610. if (dev_priv->fbdev == NULL)
  5611. return NULL;
  5612. obj = dev_priv->fbdev->ifb.obj;
  5613. if (obj == NULL)
  5614. return NULL;
  5615. fb = &dev_priv->fbdev->ifb.base;
  5616. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5617. fb->bits_per_pixel))
  5618. return NULL;
  5619. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5620. return NULL;
  5621. return fb;
  5622. }
  5623. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5624. struct drm_display_mode *mode,
  5625. struct intel_load_detect_pipe *old)
  5626. {
  5627. struct intel_crtc *intel_crtc;
  5628. struct intel_encoder *intel_encoder =
  5629. intel_attached_encoder(connector);
  5630. struct drm_crtc *possible_crtc;
  5631. struct drm_encoder *encoder = &intel_encoder->base;
  5632. struct drm_crtc *crtc = NULL;
  5633. struct drm_device *dev = encoder->dev;
  5634. struct drm_framebuffer *fb;
  5635. int i = -1;
  5636. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5637. connector->base.id, drm_get_connector_name(connector),
  5638. encoder->base.id, drm_get_encoder_name(encoder));
  5639. /*
  5640. * Algorithm gets a little messy:
  5641. *
  5642. * - if the connector already has an assigned crtc, use it (but make
  5643. * sure it's on first)
  5644. *
  5645. * - try to find the first unused crtc that can drive this connector,
  5646. * and use that if we find one
  5647. */
  5648. /* See if we already have a CRTC for this connector */
  5649. if (encoder->crtc) {
  5650. crtc = encoder->crtc;
  5651. mutex_lock(&crtc->mutex);
  5652. old->dpms_mode = connector->dpms;
  5653. old->load_detect_temp = false;
  5654. /* Make sure the crtc and connector are running */
  5655. if (connector->dpms != DRM_MODE_DPMS_ON)
  5656. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5657. return true;
  5658. }
  5659. /* Find an unused one (if possible) */
  5660. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5661. i++;
  5662. if (!(encoder->possible_crtcs & (1 << i)))
  5663. continue;
  5664. if (!possible_crtc->enabled) {
  5665. crtc = possible_crtc;
  5666. break;
  5667. }
  5668. }
  5669. /*
  5670. * If we didn't find an unused CRTC, don't use any.
  5671. */
  5672. if (!crtc) {
  5673. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5674. return false;
  5675. }
  5676. mutex_lock(&crtc->mutex);
  5677. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5678. to_intel_connector(connector)->new_encoder = intel_encoder;
  5679. intel_crtc = to_intel_crtc(crtc);
  5680. old->dpms_mode = connector->dpms;
  5681. old->load_detect_temp = true;
  5682. old->release_fb = NULL;
  5683. if (!mode)
  5684. mode = &load_detect_mode;
  5685. /* We need a framebuffer large enough to accommodate all accesses
  5686. * that the plane may generate whilst we perform load detection.
  5687. * We can not rely on the fbcon either being present (we get called
  5688. * during its initialisation to detect all boot displays, or it may
  5689. * not even exist) or that it is large enough to satisfy the
  5690. * requested mode.
  5691. */
  5692. fb = mode_fits_in_fbdev(dev, mode);
  5693. if (fb == NULL) {
  5694. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5695. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5696. old->release_fb = fb;
  5697. } else
  5698. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5699. if (IS_ERR(fb)) {
  5700. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5701. mutex_unlock(&crtc->mutex);
  5702. return false;
  5703. }
  5704. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5705. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5706. if (old->release_fb)
  5707. old->release_fb->funcs->destroy(old->release_fb);
  5708. mutex_unlock(&crtc->mutex);
  5709. return false;
  5710. }
  5711. /* let the connector get through one full cycle before testing */
  5712. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5713. return true;
  5714. }
  5715. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5716. struct intel_load_detect_pipe *old)
  5717. {
  5718. struct intel_encoder *intel_encoder =
  5719. intel_attached_encoder(connector);
  5720. struct drm_encoder *encoder = &intel_encoder->base;
  5721. struct drm_crtc *crtc = encoder->crtc;
  5722. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5723. connector->base.id, drm_get_connector_name(connector),
  5724. encoder->base.id, drm_get_encoder_name(encoder));
  5725. if (old->load_detect_temp) {
  5726. to_intel_connector(connector)->new_encoder = NULL;
  5727. intel_encoder->new_crtc = NULL;
  5728. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5729. if (old->release_fb) {
  5730. drm_framebuffer_unregister_private(old->release_fb);
  5731. drm_framebuffer_unreference(old->release_fb);
  5732. }
  5733. mutex_unlock(&crtc->mutex);
  5734. return;
  5735. }
  5736. /* Switch crtc and encoder back off if necessary */
  5737. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5738. connector->funcs->dpms(connector, old->dpms_mode);
  5739. mutex_unlock(&crtc->mutex);
  5740. }
  5741. /* Returns the clock of the currently programmed mode of the given pipe. */
  5742. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5743. {
  5744. struct drm_i915_private *dev_priv = dev->dev_private;
  5745. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5746. int pipe = intel_crtc->pipe;
  5747. u32 dpll = I915_READ(DPLL(pipe));
  5748. u32 fp;
  5749. intel_clock_t clock;
  5750. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5751. fp = I915_READ(FP0(pipe));
  5752. else
  5753. fp = I915_READ(FP1(pipe));
  5754. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5755. if (IS_PINEVIEW(dev)) {
  5756. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5757. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5758. } else {
  5759. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5760. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5761. }
  5762. if (!IS_GEN2(dev)) {
  5763. if (IS_PINEVIEW(dev))
  5764. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5765. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5766. else
  5767. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5768. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5769. switch (dpll & DPLL_MODE_MASK) {
  5770. case DPLLB_MODE_DAC_SERIAL:
  5771. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5772. 5 : 10;
  5773. break;
  5774. case DPLLB_MODE_LVDS:
  5775. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5776. 7 : 14;
  5777. break;
  5778. default:
  5779. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5780. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5781. return 0;
  5782. }
  5783. if (IS_PINEVIEW(dev))
  5784. pineview_clock(96000, &clock);
  5785. else
  5786. i9xx_clock(96000, &clock);
  5787. } else {
  5788. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5789. if (is_lvds) {
  5790. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5791. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5792. clock.p2 = 14;
  5793. if ((dpll & PLL_REF_INPUT_MASK) ==
  5794. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5795. /* XXX: might not be 66MHz */
  5796. i9xx_clock(66000, &clock);
  5797. } else
  5798. i9xx_clock(48000, &clock);
  5799. } else {
  5800. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5801. clock.p1 = 2;
  5802. else {
  5803. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5804. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5805. }
  5806. if (dpll & PLL_P2_DIVIDE_BY_4)
  5807. clock.p2 = 4;
  5808. else
  5809. clock.p2 = 2;
  5810. i9xx_clock(48000, &clock);
  5811. }
  5812. }
  5813. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5814. * i830PllIsValid() because it relies on the xf86_config connector
  5815. * configuration being accurate, which it isn't necessarily.
  5816. */
  5817. return clock.dot;
  5818. }
  5819. /** Returns the currently programmed mode of the given pipe. */
  5820. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5821. struct drm_crtc *crtc)
  5822. {
  5823. struct drm_i915_private *dev_priv = dev->dev_private;
  5824. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5825. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5826. struct drm_display_mode *mode;
  5827. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5828. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5829. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5830. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5831. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5832. if (!mode)
  5833. return NULL;
  5834. mode->clock = intel_crtc_clock_get(dev, crtc);
  5835. mode->hdisplay = (htot & 0xffff) + 1;
  5836. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5837. mode->hsync_start = (hsync & 0xffff) + 1;
  5838. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5839. mode->vdisplay = (vtot & 0xffff) + 1;
  5840. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5841. mode->vsync_start = (vsync & 0xffff) + 1;
  5842. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5843. drm_mode_set_name(mode);
  5844. return mode;
  5845. }
  5846. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5847. {
  5848. struct drm_device *dev = crtc->dev;
  5849. drm_i915_private_t *dev_priv = dev->dev_private;
  5850. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5851. int pipe = intel_crtc->pipe;
  5852. int dpll_reg = DPLL(pipe);
  5853. int dpll;
  5854. if (HAS_PCH_SPLIT(dev))
  5855. return;
  5856. if (!dev_priv->lvds_downclock_avail)
  5857. return;
  5858. dpll = I915_READ(dpll_reg);
  5859. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5860. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5861. assert_panel_unlocked(dev_priv, pipe);
  5862. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5863. I915_WRITE(dpll_reg, dpll);
  5864. intel_wait_for_vblank(dev, pipe);
  5865. dpll = I915_READ(dpll_reg);
  5866. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5867. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5868. }
  5869. }
  5870. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5871. {
  5872. struct drm_device *dev = crtc->dev;
  5873. drm_i915_private_t *dev_priv = dev->dev_private;
  5874. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5875. if (HAS_PCH_SPLIT(dev))
  5876. return;
  5877. if (!dev_priv->lvds_downclock_avail)
  5878. return;
  5879. /*
  5880. * Since this is called by a timer, we should never get here in
  5881. * the manual case.
  5882. */
  5883. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5884. int pipe = intel_crtc->pipe;
  5885. int dpll_reg = DPLL(pipe);
  5886. int dpll;
  5887. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5888. assert_panel_unlocked(dev_priv, pipe);
  5889. dpll = I915_READ(dpll_reg);
  5890. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5891. I915_WRITE(dpll_reg, dpll);
  5892. intel_wait_for_vblank(dev, pipe);
  5893. dpll = I915_READ(dpll_reg);
  5894. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5895. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5896. }
  5897. }
  5898. void intel_mark_busy(struct drm_device *dev)
  5899. {
  5900. i915_update_gfx_val(dev->dev_private);
  5901. }
  5902. void intel_mark_idle(struct drm_device *dev)
  5903. {
  5904. struct drm_crtc *crtc;
  5905. if (!i915_powersave)
  5906. return;
  5907. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5908. if (!crtc->fb)
  5909. continue;
  5910. intel_decrease_pllclock(crtc);
  5911. }
  5912. }
  5913. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  5914. struct intel_ring_buffer *ring)
  5915. {
  5916. struct drm_device *dev = obj->base.dev;
  5917. struct drm_crtc *crtc;
  5918. if (!i915_powersave)
  5919. return;
  5920. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5921. if (!crtc->fb)
  5922. continue;
  5923. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  5924. continue;
  5925. intel_increase_pllclock(crtc);
  5926. if (ring && intel_fbc_enabled(dev))
  5927. ring->fbc_dirty = true;
  5928. }
  5929. }
  5930. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5931. {
  5932. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5933. struct drm_device *dev = crtc->dev;
  5934. struct intel_unpin_work *work;
  5935. unsigned long flags;
  5936. spin_lock_irqsave(&dev->event_lock, flags);
  5937. work = intel_crtc->unpin_work;
  5938. intel_crtc->unpin_work = NULL;
  5939. spin_unlock_irqrestore(&dev->event_lock, flags);
  5940. if (work) {
  5941. cancel_work_sync(&work->work);
  5942. kfree(work);
  5943. }
  5944. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5945. drm_crtc_cleanup(crtc);
  5946. kfree(intel_crtc);
  5947. }
  5948. static void intel_unpin_work_fn(struct work_struct *__work)
  5949. {
  5950. struct intel_unpin_work *work =
  5951. container_of(__work, struct intel_unpin_work, work);
  5952. struct drm_device *dev = work->crtc->dev;
  5953. mutex_lock(&dev->struct_mutex);
  5954. intel_unpin_fb_obj(work->old_fb_obj);
  5955. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5956. drm_gem_object_unreference(&work->old_fb_obj->base);
  5957. intel_update_fbc(dev);
  5958. mutex_unlock(&dev->struct_mutex);
  5959. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5960. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5961. kfree(work);
  5962. }
  5963. static void do_intel_finish_page_flip(struct drm_device *dev,
  5964. struct drm_crtc *crtc)
  5965. {
  5966. drm_i915_private_t *dev_priv = dev->dev_private;
  5967. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5968. struct intel_unpin_work *work;
  5969. unsigned long flags;
  5970. /* Ignore early vblank irqs */
  5971. if (intel_crtc == NULL)
  5972. return;
  5973. spin_lock_irqsave(&dev->event_lock, flags);
  5974. work = intel_crtc->unpin_work;
  5975. /* Ensure we don't miss a work->pending update ... */
  5976. smp_rmb();
  5977. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5978. spin_unlock_irqrestore(&dev->event_lock, flags);
  5979. return;
  5980. }
  5981. /* and that the unpin work is consistent wrt ->pending. */
  5982. smp_rmb();
  5983. intel_crtc->unpin_work = NULL;
  5984. if (work->event)
  5985. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5986. drm_vblank_put(dev, intel_crtc->pipe);
  5987. spin_unlock_irqrestore(&dev->event_lock, flags);
  5988. wake_up_all(&dev_priv->pending_flip_queue);
  5989. queue_work(dev_priv->wq, &work->work);
  5990. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5991. }
  5992. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5993. {
  5994. drm_i915_private_t *dev_priv = dev->dev_private;
  5995. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5996. do_intel_finish_page_flip(dev, crtc);
  5997. }
  5998. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5999. {
  6000. drm_i915_private_t *dev_priv = dev->dev_private;
  6001. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6002. do_intel_finish_page_flip(dev, crtc);
  6003. }
  6004. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6005. {
  6006. drm_i915_private_t *dev_priv = dev->dev_private;
  6007. struct intel_crtc *intel_crtc =
  6008. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6009. unsigned long flags;
  6010. /* NB: An MMIO update of the plane base pointer will also
  6011. * generate a page-flip completion irq, i.e. every modeset
  6012. * is also accompanied by a spurious intel_prepare_page_flip().
  6013. */
  6014. spin_lock_irqsave(&dev->event_lock, flags);
  6015. if (intel_crtc->unpin_work)
  6016. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6017. spin_unlock_irqrestore(&dev->event_lock, flags);
  6018. }
  6019. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6020. {
  6021. /* Ensure that the work item is consistent when activating it ... */
  6022. smp_wmb();
  6023. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6024. /* and that it is marked active as soon as the irq could fire. */
  6025. smp_wmb();
  6026. }
  6027. static int intel_gen2_queue_flip(struct drm_device *dev,
  6028. struct drm_crtc *crtc,
  6029. struct drm_framebuffer *fb,
  6030. struct drm_i915_gem_object *obj)
  6031. {
  6032. struct drm_i915_private *dev_priv = dev->dev_private;
  6033. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6034. u32 flip_mask;
  6035. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6036. int ret;
  6037. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6038. if (ret)
  6039. goto err;
  6040. ret = intel_ring_begin(ring, 6);
  6041. if (ret)
  6042. goto err_unpin;
  6043. /* Can't queue multiple flips, so wait for the previous
  6044. * one to finish before executing the next.
  6045. */
  6046. if (intel_crtc->plane)
  6047. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6048. else
  6049. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6050. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6051. intel_ring_emit(ring, MI_NOOP);
  6052. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6053. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6054. intel_ring_emit(ring, fb->pitches[0]);
  6055. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6056. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6057. intel_mark_page_flip_active(intel_crtc);
  6058. intel_ring_advance(ring);
  6059. return 0;
  6060. err_unpin:
  6061. intel_unpin_fb_obj(obj);
  6062. err:
  6063. return ret;
  6064. }
  6065. static int intel_gen3_queue_flip(struct drm_device *dev,
  6066. struct drm_crtc *crtc,
  6067. struct drm_framebuffer *fb,
  6068. struct drm_i915_gem_object *obj)
  6069. {
  6070. struct drm_i915_private *dev_priv = dev->dev_private;
  6071. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6072. u32 flip_mask;
  6073. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6074. int ret;
  6075. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6076. if (ret)
  6077. goto err;
  6078. ret = intel_ring_begin(ring, 6);
  6079. if (ret)
  6080. goto err_unpin;
  6081. if (intel_crtc->plane)
  6082. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6083. else
  6084. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6085. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6086. intel_ring_emit(ring, MI_NOOP);
  6087. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6088. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6089. intel_ring_emit(ring, fb->pitches[0]);
  6090. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6091. intel_ring_emit(ring, MI_NOOP);
  6092. intel_mark_page_flip_active(intel_crtc);
  6093. intel_ring_advance(ring);
  6094. return 0;
  6095. err_unpin:
  6096. intel_unpin_fb_obj(obj);
  6097. err:
  6098. return ret;
  6099. }
  6100. static int intel_gen4_queue_flip(struct drm_device *dev,
  6101. struct drm_crtc *crtc,
  6102. struct drm_framebuffer *fb,
  6103. struct drm_i915_gem_object *obj)
  6104. {
  6105. struct drm_i915_private *dev_priv = dev->dev_private;
  6106. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6107. uint32_t pf, pipesrc;
  6108. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6109. int ret;
  6110. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6111. if (ret)
  6112. goto err;
  6113. ret = intel_ring_begin(ring, 4);
  6114. if (ret)
  6115. goto err_unpin;
  6116. /* i965+ uses the linear or tiled offsets from the
  6117. * Display Registers (which do not change across a page-flip)
  6118. * so we need only reprogram the base address.
  6119. */
  6120. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6121. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6122. intel_ring_emit(ring, fb->pitches[0]);
  6123. intel_ring_emit(ring,
  6124. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6125. obj->tiling_mode);
  6126. /* XXX Enabling the panel-fitter across page-flip is so far
  6127. * untested on non-native modes, so ignore it for now.
  6128. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6129. */
  6130. pf = 0;
  6131. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6132. intel_ring_emit(ring, pf | pipesrc);
  6133. intel_mark_page_flip_active(intel_crtc);
  6134. intel_ring_advance(ring);
  6135. return 0;
  6136. err_unpin:
  6137. intel_unpin_fb_obj(obj);
  6138. err:
  6139. return ret;
  6140. }
  6141. static int intel_gen6_queue_flip(struct drm_device *dev,
  6142. struct drm_crtc *crtc,
  6143. struct drm_framebuffer *fb,
  6144. struct drm_i915_gem_object *obj)
  6145. {
  6146. struct drm_i915_private *dev_priv = dev->dev_private;
  6147. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6148. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6149. uint32_t pf, pipesrc;
  6150. int ret;
  6151. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6152. if (ret)
  6153. goto err;
  6154. ret = intel_ring_begin(ring, 4);
  6155. if (ret)
  6156. goto err_unpin;
  6157. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6158. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6159. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6160. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6161. /* Contrary to the suggestions in the documentation,
  6162. * "Enable Panel Fitter" does not seem to be required when page
  6163. * flipping with a non-native mode, and worse causes a normal
  6164. * modeset to fail.
  6165. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6166. */
  6167. pf = 0;
  6168. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6169. intel_ring_emit(ring, pf | pipesrc);
  6170. intel_mark_page_flip_active(intel_crtc);
  6171. intel_ring_advance(ring);
  6172. return 0;
  6173. err_unpin:
  6174. intel_unpin_fb_obj(obj);
  6175. err:
  6176. return ret;
  6177. }
  6178. /*
  6179. * On gen7 we currently use the blit ring because (in early silicon at least)
  6180. * the render ring doesn't give us interrpts for page flip completion, which
  6181. * means clients will hang after the first flip is queued. Fortunately the
  6182. * blit ring generates interrupts properly, so use it instead.
  6183. */
  6184. static int intel_gen7_queue_flip(struct drm_device *dev,
  6185. struct drm_crtc *crtc,
  6186. struct drm_framebuffer *fb,
  6187. struct drm_i915_gem_object *obj)
  6188. {
  6189. struct drm_i915_private *dev_priv = dev->dev_private;
  6190. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6191. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6192. uint32_t plane_bit = 0;
  6193. int ret;
  6194. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6195. if (ret)
  6196. goto err;
  6197. switch(intel_crtc->plane) {
  6198. case PLANE_A:
  6199. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6200. break;
  6201. case PLANE_B:
  6202. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6203. break;
  6204. case PLANE_C:
  6205. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6206. break;
  6207. default:
  6208. WARN_ONCE(1, "unknown plane in flip command\n");
  6209. ret = -ENODEV;
  6210. goto err_unpin;
  6211. }
  6212. ret = intel_ring_begin(ring, 4);
  6213. if (ret)
  6214. goto err_unpin;
  6215. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6216. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6217. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6218. intel_ring_emit(ring, (MI_NOOP));
  6219. intel_mark_page_flip_active(intel_crtc);
  6220. intel_ring_advance(ring);
  6221. return 0;
  6222. err_unpin:
  6223. intel_unpin_fb_obj(obj);
  6224. err:
  6225. return ret;
  6226. }
  6227. static int intel_default_queue_flip(struct drm_device *dev,
  6228. struct drm_crtc *crtc,
  6229. struct drm_framebuffer *fb,
  6230. struct drm_i915_gem_object *obj)
  6231. {
  6232. return -ENODEV;
  6233. }
  6234. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6235. struct drm_framebuffer *fb,
  6236. struct drm_pending_vblank_event *event)
  6237. {
  6238. struct drm_device *dev = crtc->dev;
  6239. struct drm_i915_private *dev_priv = dev->dev_private;
  6240. struct drm_framebuffer *old_fb = crtc->fb;
  6241. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6242. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6243. struct intel_unpin_work *work;
  6244. unsigned long flags;
  6245. int ret;
  6246. /* Can't change pixel format via MI display flips. */
  6247. if (fb->pixel_format != crtc->fb->pixel_format)
  6248. return -EINVAL;
  6249. /*
  6250. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6251. * Note that pitch changes could also affect these register.
  6252. */
  6253. if (INTEL_INFO(dev)->gen > 3 &&
  6254. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6255. fb->pitches[0] != crtc->fb->pitches[0]))
  6256. return -EINVAL;
  6257. work = kzalloc(sizeof *work, GFP_KERNEL);
  6258. if (work == NULL)
  6259. return -ENOMEM;
  6260. work->event = event;
  6261. work->crtc = crtc;
  6262. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6263. INIT_WORK(&work->work, intel_unpin_work_fn);
  6264. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6265. if (ret)
  6266. goto free_work;
  6267. /* We borrow the event spin lock for protecting unpin_work */
  6268. spin_lock_irqsave(&dev->event_lock, flags);
  6269. if (intel_crtc->unpin_work) {
  6270. spin_unlock_irqrestore(&dev->event_lock, flags);
  6271. kfree(work);
  6272. drm_vblank_put(dev, intel_crtc->pipe);
  6273. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6274. return -EBUSY;
  6275. }
  6276. intel_crtc->unpin_work = work;
  6277. spin_unlock_irqrestore(&dev->event_lock, flags);
  6278. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6279. flush_workqueue(dev_priv->wq);
  6280. ret = i915_mutex_lock_interruptible(dev);
  6281. if (ret)
  6282. goto cleanup;
  6283. /* Reference the objects for the scheduled work. */
  6284. drm_gem_object_reference(&work->old_fb_obj->base);
  6285. drm_gem_object_reference(&obj->base);
  6286. crtc->fb = fb;
  6287. work->pending_flip_obj = obj;
  6288. work->enable_stall_check = true;
  6289. atomic_inc(&intel_crtc->unpin_work_count);
  6290. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6291. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6292. if (ret)
  6293. goto cleanup_pending;
  6294. intel_disable_fbc(dev);
  6295. intel_mark_fb_busy(obj, NULL);
  6296. mutex_unlock(&dev->struct_mutex);
  6297. trace_i915_flip_request(intel_crtc->plane, obj);
  6298. return 0;
  6299. cleanup_pending:
  6300. atomic_dec(&intel_crtc->unpin_work_count);
  6301. crtc->fb = old_fb;
  6302. drm_gem_object_unreference(&work->old_fb_obj->base);
  6303. drm_gem_object_unreference(&obj->base);
  6304. mutex_unlock(&dev->struct_mutex);
  6305. cleanup:
  6306. spin_lock_irqsave(&dev->event_lock, flags);
  6307. intel_crtc->unpin_work = NULL;
  6308. spin_unlock_irqrestore(&dev->event_lock, flags);
  6309. drm_vblank_put(dev, intel_crtc->pipe);
  6310. free_work:
  6311. kfree(work);
  6312. return ret;
  6313. }
  6314. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6315. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6316. .load_lut = intel_crtc_load_lut,
  6317. };
  6318. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6319. struct drm_crtc *crtc)
  6320. {
  6321. struct drm_device *dev;
  6322. struct drm_crtc *tmp;
  6323. int crtc_mask = 1;
  6324. WARN(!crtc, "checking null crtc?\n");
  6325. dev = crtc->dev;
  6326. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6327. if (tmp == crtc)
  6328. break;
  6329. crtc_mask <<= 1;
  6330. }
  6331. if (encoder->possible_crtcs & crtc_mask)
  6332. return true;
  6333. return false;
  6334. }
  6335. /**
  6336. * intel_modeset_update_staged_output_state
  6337. *
  6338. * Updates the staged output configuration state, e.g. after we've read out the
  6339. * current hw state.
  6340. */
  6341. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6342. {
  6343. struct intel_encoder *encoder;
  6344. struct intel_connector *connector;
  6345. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6346. base.head) {
  6347. connector->new_encoder =
  6348. to_intel_encoder(connector->base.encoder);
  6349. }
  6350. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6351. base.head) {
  6352. encoder->new_crtc =
  6353. to_intel_crtc(encoder->base.crtc);
  6354. }
  6355. }
  6356. /**
  6357. * intel_modeset_commit_output_state
  6358. *
  6359. * This function copies the stage display pipe configuration to the real one.
  6360. */
  6361. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6362. {
  6363. struct intel_encoder *encoder;
  6364. struct intel_connector *connector;
  6365. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6366. base.head) {
  6367. connector->base.encoder = &connector->new_encoder->base;
  6368. }
  6369. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6370. base.head) {
  6371. encoder->base.crtc = &encoder->new_crtc->base;
  6372. }
  6373. }
  6374. static void
  6375. connected_sink_compute_bpp(struct intel_connector * connector,
  6376. struct intel_crtc_config *pipe_config)
  6377. {
  6378. int bpp = pipe_config->pipe_bpp;
  6379. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6380. connector->base.base.id,
  6381. drm_get_connector_name(&connector->base));
  6382. /* Don't use an invalid EDID bpc value */
  6383. if (connector->base.display_info.bpc &&
  6384. connector->base.display_info.bpc * 3 < bpp) {
  6385. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6386. bpp, connector->base.display_info.bpc*3);
  6387. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6388. }
  6389. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6390. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6391. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6392. bpp);
  6393. pipe_config->pipe_bpp = 24;
  6394. }
  6395. }
  6396. static int
  6397. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6398. struct drm_framebuffer *fb,
  6399. struct intel_crtc_config *pipe_config)
  6400. {
  6401. struct drm_device *dev = crtc->base.dev;
  6402. struct intel_connector *connector;
  6403. int bpp;
  6404. switch (fb->pixel_format) {
  6405. case DRM_FORMAT_C8:
  6406. bpp = 8*3; /* since we go through a colormap */
  6407. break;
  6408. case DRM_FORMAT_XRGB1555:
  6409. case DRM_FORMAT_ARGB1555:
  6410. /* checked in intel_framebuffer_init already */
  6411. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6412. return -EINVAL;
  6413. case DRM_FORMAT_RGB565:
  6414. bpp = 6*3; /* min is 18bpp */
  6415. break;
  6416. case DRM_FORMAT_XBGR8888:
  6417. case DRM_FORMAT_ABGR8888:
  6418. /* checked in intel_framebuffer_init already */
  6419. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6420. return -EINVAL;
  6421. case DRM_FORMAT_XRGB8888:
  6422. case DRM_FORMAT_ARGB8888:
  6423. bpp = 8*3;
  6424. break;
  6425. case DRM_FORMAT_XRGB2101010:
  6426. case DRM_FORMAT_ARGB2101010:
  6427. case DRM_FORMAT_XBGR2101010:
  6428. case DRM_FORMAT_ABGR2101010:
  6429. /* checked in intel_framebuffer_init already */
  6430. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6431. return -EINVAL;
  6432. bpp = 10*3;
  6433. break;
  6434. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6435. default:
  6436. DRM_DEBUG_KMS("unsupported depth\n");
  6437. return -EINVAL;
  6438. }
  6439. pipe_config->pipe_bpp = bpp;
  6440. /* Clamp display bpp to EDID value */
  6441. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6442. base.head) {
  6443. if (!connector->new_encoder ||
  6444. connector->new_encoder->new_crtc != crtc)
  6445. continue;
  6446. connected_sink_compute_bpp(connector, pipe_config);
  6447. }
  6448. return bpp;
  6449. }
  6450. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6451. struct intel_crtc_config *pipe_config,
  6452. const char *context)
  6453. {
  6454. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6455. context, pipe_name(crtc->pipe));
  6456. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6457. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6458. pipe_config->pipe_bpp, pipe_config->dither);
  6459. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6460. pipe_config->has_pch_encoder,
  6461. pipe_config->fdi_lanes,
  6462. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6463. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6464. pipe_config->fdi_m_n.tu);
  6465. DRM_DEBUG_KMS("requested mode:\n");
  6466. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6467. DRM_DEBUG_KMS("adjusted mode:\n");
  6468. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6469. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6470. pipe_config->gmch_pfit.control,
  6471. pipe_config->gmch_pfit.pgm_ratios,
  6472. pipe_config->gmch_pfit.lvds_border_bits);
  6473. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6474. pipe_config->pch_pfit.pos,
  6475. pipe_config->pch_pfit.size);
  6476. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6477. }
  6478. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6479. {
  6480. int num_encoders = 0;
  6481. bool uncloneable_encoders = false;
  6482. struct intel_encoder *encoder;
  6483. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6484. base.head) {
  6485. if (&encoder->new_crtc->base != crtc)
  6486. continue;
  6487. num_encoders++;
  6488. if (!encoder->cloneable)
  6489. uncloneable_encoders = true;
  6490. }
  6491. return !(num_encoders > 1 && uncloneable_encoders);
  6492. }
  6493. static struct intel_crtc_config *
  6494. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6495. struct drm_framebuffer *fb,
  6496. struct drm_display_mode *mode)
  6497. {
  6498. struct drm_device *dev = crtc->dev;
  6499. struct drm_encoder_helper_funcs *encoder_funcs;
  6500. struct intel_encoder *encoder;
  6501. struct intel_crtc_config *pipe_config;
  6502. int plane_bpp, ret = -EINVAL;
  6503. bool retry = true;
  6504. if (!check_encoder_cloning(crtc)) {
  6505. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6506. return ERR_PTR(-EINVAL);
  6507. }
  6508. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6509. if (!pipe_config)
  6510. return ERR_PTR(-ENOMEM);
  6511. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6512. drm_mode_copy(&pipe_config->requested_mode, mode);
  6513. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6514. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6515. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6516. * plane pixel format and any sink constraints into account. Returns the
  6517. * source plane bpp so that dithering can be selected on mismatches
  6518. * after encoders and crtc also have had their say. */
  6519. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6520. fb, pipe_config);
  6521. if (plane_bpp < 0)
  6522. goto fail;
  6523. encoder_retry:
  6524. /* Ensure the port clock defaults are reset when retrying. */
  6525. pipe_config->port_clock = 0;
  6526. pipe_config->pixel_multiplier = 1;
  6527. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6528. * adjust it according to limitations or connector properties, and also
  6529. * a chance to reject the mode entirely.
  6530. */
  6531. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6532. base.head) {
  6533. if (&encoder->new_crtc->base != crtc)
  6534. continue;
  6535. if (encoder->compute_config) {
  6536. if (!(encoder->compute_config(encoder, pipe_config))) {
  6537. DRM_DEBUG_KMS("Encoder config failure\n");
  6538. goto fail;
  6539. }
  6540. continue;
  6541. }
  6542. encoder_funcs = encoder->base.helper_private;
  6543. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6544. &pipe_config->requested_mode,
  6545. &pipe_config->adjusted_mode))) {
  6546. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6547. goto fail;
  6548. }
  6549. }
  6550. /* Set default port clock if not overwritten by the encoder. Needs to be
  6551. * done afterwards in case the encoder adjusts the mode. */
  6552. if (!pipe_config->port_clock)
  6553. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6554. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6555. if (ret < 0) {
  6556. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6557. goto fail;
  6558. }
  6559. if (ret == RETRY) {
  6560. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6561. ret = -EINVAL;
  6562. goto fail;
  6563. }
  6564. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6565. retry = false;
  6566. goto encoder_retry;
  6567. }
  6568. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6569. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6570. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6571. return pipe_config;
  6572. fail:
  6573. kfree(pipe_config);
  6574. return ERR_PTR(ret);
  6575. }
  6576. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6577. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6578. static void
  6579. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6580. unsigned *prepare_pipes, unsigned *disable_pipes)
  6581. {
  6582. struct intel_crtc *intel_crtc;
  6583. struct drm_device *dev = crtc->dev;
  6584. struct intel_encoder *encoder;
  6585. struct intel_connector *connector;
  6586. struct drm_crtc *tmp_crtc;
  6587. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6588. /* Check which crtcs have changed outputs connected to them, these need
  6589. * to be part of the prepare_pipes mask. We don't (yet) support global
  6590. * modeset across multiple crtcs, so modeset_pipes will only have one
  6591. * bit set at most. */
  6592. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6593. base.head) {
  6594. if (connector->base.encoder == &connector->new_encoder->base)
  6595. continue;
  6596. if (connector->base.encoder) {
  6597. tmp_crtc = connector->base.encoder->crtc;
  6598. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6599. }
  6600. if (connector->new_encoder)
  6601. *prepare_pipes |=
  6602. 1 << connector->new_encoder->new_crtc->pipe;
  6603. }
  6604. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6605. base.head) {
  6606. if (encoder->base.crtc == &encoder->new_crtc->base)
  6607. continue;
  6608. if (encoder->base.crtc) {
  6609. tmp_crtc = encoder->base.crtc;
  6610. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6611. }
  6612. if (encoder->new_crtc)
  6613. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6614. }
  6615. /* Check for any pipes that will be fully disabled ... */
  6616. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6617. base.head) {
  6618. bool used = false;
  6619. /* Don't try to disable disabled crtcs. */
  6620. if (!intel_crtc->base.enabled)
  6621. continue;
  6622. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6623. base.head) {
  6624. if (encoder->new_crtc == intel_crtc)
  6625. used = true;
  6626. }
  6627. if (!used)
  6628. *disable_pipes |= 1 << intel_crtc->pipe;
  6629. }
  6630. /* set_mode is also used to update properties on life display pipes. */
  6631. intel_crtc = to_intel_crtc(crtc);
  6632. if (crtc->enabled)
  6633. *prepare_pipes |= 1 << intel_crtc->pipe;
  6634. /*
  6635. * For simplicity do a full modeset on any pipe where the output routing
  6636. * changed. We could be more clever, but that would require us to be
  6637. * more careful with calling the relevant encoder->mode_set functions.
  6638. */
  6639. if (*prepare_pipes)
  6640. *modeset_pipes = *prepare_pipes;
  6641. /* ... and mask these out. */
  6642. *modeset_pipes &= ~(*disable_pipes);
  6643. *prepare_pipes &= ~(*disable_pipes);
  6644. /*
  6645. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6646. * obies this rule, but the modeset restore mode of
  6647. * intel_modeset_setup_hw_state does not.
  6648. */
  6649. *modeset_pipes &= 1 << intel_crtc->pipe;
  6650. *prepare_pipes &= 1 << intel_crtc->pipe;
  6651. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6652. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6653. }
  6654. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6655. {
  6656. struct drm_encoder *encoder;
  6657. struct drm_device *dev = crtc->dev;
  6658. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6659. if (encoder->crtc == crtc)
  6660. return true;
  6661. return false;
  6662. }
  6663. static void
  6664. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6665. {
  6666. struct intel_encoder *intel_encoder;
  6667. struct intel_crtc *intel_crtc;
  6668. struct drm_connector *connector;
  6669. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6670. base.head) {
  6671. if (!intel_encoder->base.crtc)
  6672. continue;
  6673. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6674. if (prepare_pipes & (1 << intel_crtc->pipe))
  6675. intel_encoder->connectors_active = false;
  6676. }
  6677. intel_modeset_commit_output_state(dev);
  6678. /* Update computed state. */
  6679. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6680. base.head) {
  6681. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6682. }
  6683. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6684. if (!connector->encoder || !connector->encoder->crtc)
  6685. continue;
  6686. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6687. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6688. struct drm_property *dpms_property =
  6689. dev->mode_config.dpms_property;
  6690. connector->dpms = DRM_MODE_DPMS_ON;
  6691. drm_object_property_set_value(&connector->base,
  6692. dpms_property,
  6693. DRM_MODE_DPMS_ON);
  6694. intel_encoder = to_intel_encoder(connector->encoder);
  6695. intel_encoder->connectors_active = true;
  6696. }
  6697. }
  6698. }
  6699. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6700. list_for_each_entry((intel_crtc), \
  6701. &(dev)->mode_config.crtc_list, \
  6702. base.head) \
  6703. if (mask & (1 <<(intel_crtc)->pipe))
  6704. static bool
  6705. intel_pipe_config_compare(struct drm_device *dev,
  6706. struct intel_crtc_config *current_config,
  6707. struct intel_crtc_config *pipe_config)
  6708. {
  6709. #define PIPE_CONF_CHECK_X(name) \
  6710. if (current_config->name != pipe_config->name) { \
  6711. DRM_ERROR("mismatch in " #name " " \
  6712. "(expected 0x%08x, found 0x%08x)\n", \
  6713. current_config->name, \
  6714. pipe_config->name); \
  6715. return false; \
  6716. }
  6717. #define PIPE_CONF_CHECK_I(name) \
  6718. if (current_config->name != pipe_config->name) { \
  6719. DRM_ERROR("mismatch in " #name " " \
  6720. "(expected %i, found %i)\n", \
  6721. current_config->name, \
  6722. pipe_config->name); \
  6723. return false; \
  6724. }
  6725. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6726. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6727. DRM_ERROR("mismatch in " #name " " \
  6728. "(expected %i, found %i)\n", \
  6729. current_config->name & (mask), \
  6730. pipe_config->name & (mask)); \
  6731. return false; \
  6732. }
  6733. #define PIPE_CONF_QUIRK(quirk) \
  6734. ((current_config->quirks | pipe_config->quirks) & (quirk))
  6735. PIPE_CONF_CHECK_I(cpu_transcoder);
  6736. PIPE_CONF_CHECK_I(has_pch_encoder);
  6737. PIPE_CONF_CHECK_I(fdi_lanes);
  6738. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6739. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6740. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6741. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6742. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6743. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6744. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6745. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6746. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6747. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6748. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6749. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6750. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6751. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6752. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6753. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6754. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6755. if (!HAS_PCH_SPLIT(dev))
  6756. PIPE_CONF_CHECK_I(pixel_multiplier);
  6757. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6758. DRM_MODE_FLAG_INTERLACE);
  6759. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  6760. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6761. DRM_MODE_FLAG_PHSYNC);
  6762. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6763. DRM_MODE_FLAG_NHSYNC);
  6764. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6765. DRM_MODE_FLAG_PVSYNC);
  6766. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6767. DRM_MODE_FLAG_NVSYNC);
  6768. }
  6769. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6770. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6771. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6772. /* pfit ratios are autocomputed by the hw on gen4+ */
  6773. if (INTEL_INFO(dev)->gen < 4)
  6774. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6775. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6776. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6777. PIPE_CONF_CHECK_I(pch_pfit.size);
  6778. PIPE_CONF_CHECK_I(ips_enabled);
  6779. PIPE_CONF_CHECK_I(shared_dpll);
  6780. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  6781. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  6782. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  6783. #undef PIPE_CONF_CHECK_X
  6784. #undef PIPE_CONF_CHECK_I
  6785. #undef PIPE_CONF_CHECK_FLAGS
  6786. #undef PIPE_CONF_QUIRK
  6787. return true;
  6788. }
  6789. static void
  6790. check_connector_state(struct drm_device *dev)
  6791. {
  6792. struct intel_connector *connector;
  6793. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6794. base.head) {
  6795. /* This also checks the encoder/connector hw state with the
  6796. * ->get_hw_state callbacks. */
  6797. intel_connector_check_state(connector);
  6798. WARN(&connector->new_encoder->base != connector->base.encoder,
  6799. "connector's staged encoder doesn't match current encoder\n");
  6800. }
  6801. }
  6802. static void
  6803. check_encoder_state(struct drm_device *dev)
  6804. {
  6805. struct intel_encoder *encoder;
  6806. struct intel_connector *connector;
  6807. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6808. base.head) {
  6809. bool enabled = false;
  6810. bool active = false;
  6811. enum pipe pipe, tracked_pipe;
  6812. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6813. encoder->base.base.id,
  6814. drm_get_encoder_name(&encoder->base));
  6815. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6816. "encoder's stage crtc doesn't match current crtc\n");
  6817. WARN(encoder->connectors_active && !encoder->base.crtc,
  6818. "encoder's active_connectors set, but no crtc\n");
  6819. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6820. base.head) {
  6821. if (connector->base.encoder != &encoder->base)
  6822. continue;
  6823. enabled = true;
  6824. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6825. active = true;
  6826. }
  6827. WARN(!!encoder->base.crtc != enabled,
  6828. "encoder's enabled state mismatch "
  6829. "(expected %i, found %i)\n",
  6830. !!encoder->base.crtc, enabled);
  6831. WARN(active && !encoder->base.crtc,
  6832. "active encoder with no crtc\n");
  6833. WARN(encoder->connectors_active != active,
  6834. "encoder's computed active state doesn't match tracked active state "
  6835. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6836. active = encoder->get_hw_state(encoder, &pipe);
  6837. WARN(active != encoder->connectors_active,
  6838. "encoder's hw state doesn't match sw tracking "
  6839. "(expected %i, found %i)\n",
  6840. encoder->connectors_active, active);
  6841. if (!encoder->base.crtc)
  6842. continue;
  6843. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6844. WARN(active && pipe != tracked_pipe,
  6845. "active encoder's pipe doesn't match"
  6846. "(expected %i, found %i)\n",
  6847. tracked_pipe, pipe);
  6848. }
  6849. }
  6850. static void
  6851. check_crtc_state(struct drm_device *dev)
  6852. {
  6853. drm_i915_private_t *dev_priv = dev->dev_private;
  6854. struct intel_crtc *crtc;
  6855. struct intel_encoder *encoder;
  6856. struct intel_crtc_config pipe_config;
  6857. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6858. base.head) {
  6859. bool enabled = false;
  6860. bool active = false;
  6861. memset(&pipe_config, 0, sizeof(pipe_config));
  6862. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6863. crtc->base.base.id);
  6864. WARN(crtc->active && !crtc->base.enabled,
  6865. "active crtc, but not enabled in sw tracking\n");
  6866. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6867. base.head) {
  6868. if (encoder->base.crtc != &crtc->base)
  6869. continue;
  6870. enabled = true;
  6871. if (encoder->connectors_active)
  6872. active = true;
  6873. }
  6874. WARN(active != crtc->active,
  6875. "crtc's computed active state doesn't match tracked active state "
  6876. "(expected %i, found %i)\n", active, crtc->active);
  6877. WARN(enabled != crtc->base.enabled,
  6878. "crtc's computed enabled state doesn't match tracked enabled state "
  6879. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6880. active = dev_priv->display.get_pipe_config(crtc,
  6881. &pipe_config);
  6882. /* hw state is inconsistent with the pipe A quirk */
  6883. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  6884. active = crtc->active;
  6885. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6886. base.head) {
  6887. if (encoder->base.crtc != &crtc->base)
  6888. continue;
  6889. if (encoder->get_config)
  6890. encoder->get_config(encoder, &pipe_config);
  6891. }
  6892. WARN(crtc->active != active,
  6893. "crtc active state doesn't match with hw state "
  6894. "(expected %i, found %i)\n", crtc->active, active);
  6895. if (active &&
  6896. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6897. WARN(1, "pipe state doesn't match!\n");
  6898. intel_dump_pipe_config(crtc, &pipe_config,
  6899. "[hw state]");
  6900. intel_dump_pipe_config(crtc, &crtc->config,
  6901. "[sw state]");
  6902. }
  6903. }
  6904. }
  6905. static void
  6906. check_shared_dpll_state(struct drm_device *dev)
  6907. {
  6908. drm_i915_private_t *dev_priv = dev->dev_private;
  6909. struct intel_crtc *crtc;
  6910. struct intel_dpll_hw_state dpll_hw_state;
  6911. int i;
  6912. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  6913. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  6914. int enabled_crtcs = 0, active_crtcs = 0;
  6915. bool active;
  6916. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  6917. DRM_DEBUG_KMS("%s\n", pll->name);
  6918. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  6919. WARN(pll->active > pll->refcount,
  6920. "more active pll users than references: %i vs %i\n",
  6921. pll->active, pll->refcount);
  6922. WARN(pll->active && !pll->on,
  6923. "pll in active use but not on in sw tracking\n");
  6924. WARN(pll->on != active,
  6925. "pll on state mismatch (expected %i, found %i)\n",
  6926. pll->on, active);
  6927. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6928. base.head) {
  6929. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  6930. enabled_crtcs++;
  6931. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  6932. active_crtcs++;
  6933. }
  6934. WARN(pll->active != active_crtcs,
  6935. "pll active crtcs mismatch (expected %i, found %i)\n",
  6936. pll->active, active_crtcs);
  6937. WARN(pll->refcount != enabled_crtcs,
  6938. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  6939. pll->refcount, enabled_crtcs);
  6940. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  6941. sizeof(dpll_hw_state)),
  6942. "pll hw state mismatch\n");
  6943. }
  6944. }
  6945. void
  6946. intel_modeset_check_state(struct drm_device *dev)
  6947. {
  6948. check_connector_state(dev);
  6949. check_encoder_state(dev);
  6950. check_crtc_state(dev);
  6951. check_shared_dpll_state(dev);
  6952. }
  6953. static int __intel_set_mode(struct drm_crtc *crtc,
  6954. struct drm_display_mode *mode,
  6955. int x, int y, struct drm_framebuffer *fb)
  6956. {
  6957. struct drm_device *dev = crtc->dev;
  6958. drm_i915_private_t *dev_priv = dev->dev_private;
  6959. struct drm_display_mode *saved_mode, *saved_hwmode;
  6960. struct intel_crtc_config *pipe_config = NULL;
  6961. struct intel_crtc *intel_crtc;
  6962. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6963. int ret = 0;
  6964. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6965. if (!saved_mode)
  6966. return -ENOMEM;
  6967. saved_hwmode = saved_mode + 1;
  6968. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6969. &prepare_pipes, &disable_pipes);
  6970. *saved_hwmode = crtc->hwmode;
  6971. *saved_mode = crtc->mode;
  6972. /* Hack: Because we don't (yet) support global modeset on multiple
  6973. * crtcs, we don't keep track of the new mode for more than one crtc.
  6974. * Hence simply check whether any bit is set in modeset_pipes in all the
  6975. * pieces of code that are not yet converted to deal with mutliple crtcs
  6976. * changing their mode at the same time. */
  6977. if (modeset_pipes) {
  6978. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6979. if (IS_ERR(pipe_config)) {
  6980. ret = PTR_ERR(pipe_config);
  6981. pipe_config = NULL;
  6982. goto out;
  6983. }
  6984. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6985. "[modeset]");
  6986. }
  6987. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6988. intel_crtc_disable(&intel_crtc->base);
  6989. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6990. if (intel_crtc->base.enabled)
  6991. dev_priv->display.crtc_disable(&intel_crtc->base);
  6992. }
  6993. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6994. * to set it here already despite that we pass it down the callchain.
  6995. */
  6996. if (modeset_pipes) {
  6997. crtc->mode = *mode;
  6998. /* mode_set/enable/disable functions rely on a correct pipe
  6999. * config. */
  7000. to_intel_crtc(crtc)->config = *pipe_config;
  7001. }
  7002. /* Only after disabling all output pipelines that will be changed can we
  7003. * update the the output configuration. */
  7004. intel_modeset_update_state(dev, prepare_pipes);
  7005. if (dev_priv->display.modeset_global_resources)
  7006. dev_priv->display.modeset_global_resources(dev);
  7007. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7008. * on the DPLL.
  7009. */
  7010. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7011. ret = intel_crtc_mode_set(&intel_crtc->base,
  7012. x, y, fb);
  7013. if (ret)
  7014. goto done;
  7015. }
  7016. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7017. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7018. dev_priv->display.crtc_enable(&intel_crtc->base);
  7019. if (modeset_pipes) {
  7020. /* Store real post-adjustment hardware mode. */
  7021. crtc->hwmode = pipe_config->adjusted_mode;
  7022. /* Calculate and store various constants which
  7023. * are later needed by vblank and swap-completion
  7024. * timestamping. They are derived from true hwmode.
  7025. */
  7026. drm_calc_timestamping_constants(crtc);
  7027. }
  7028. /* FIXME: add subpixel order */
  7029. done:
  7030. if (ret && crtc->enabled) {
  7031. crtc->hwmode = *saved_hwmode;
  7032. crtc->mode = *saved_mode;
  7033. }
  7034. out:
  7035. kfree(pipe_config);
  7036. kfree(saved_mode);
  7037. return ret;
  7038. }
  7039. int intel_set_mode(struct drm_crtc *crtc,
  7040. struct drm_display_mode *mode,
  7041. int x, int y, struct drm_framebuffer *fb)
  7042. {
  7043. int ret;
  7044. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7045. if (ret == 0)
  7046. intel_modeset_check_state(crtc->dev);
  7047. return ret;
  7048. }
  7049. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7050. {
  7051. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7052. }
  7053. #undef for_each_intel_crtc_masked
  7054. static void intel_set_config_free(struct intel_set_config *config)
  7055. {
  7056. if (!config)
  7057. return;
  7058. kfree(config->save_connector_encoders);
  7059. kfree(config->save_encoder_crtcs);
  7060. kfree(config);
  7061. }
  7062. static int intel_set_config_save_state(struct drm_device *dev,
  7063. struct intel_set_config *config)
  7064. {
  7065. struct drm_encoder *encoder;
  7066. struct drm_connector *connector;
  7067. int count;
  7068. config->save_encoder_crtcs =
  7069. kcalloc(dev->mode_config.num_encoder,
  7070. sizeof(struct drm_crtc *), GFP_KERNEL);
  7071. if (!config->save_encoder_crtcs)
  7072. return -ENOMEM;
  7073. config->save_connector_encoders =
  7074. kcalloc(dev->mode_config.num_connector,
  7075. sizeof(struct drm_encoder *), GFP_KERNEL);
  7076. if (!config->save_connector_encoders)
  7077. return -ENOMEM;
  7078. /* Copy data. Note that driver private data is not affected.
  7079. * Should anything bad happen only the expected state is
  7080. * restored, not the drivers personal bookkeeping.
  7081. */
  7082. count = 0;
  7083. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7084. config->save_encoder_crtcs[count++] = encoder->crtc;
  7085. }
  7086. count = 0;
  7087. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7088. config->save_connector_encoders[count++] = connector->encoder;
  7089. }
  7090. return 0;
  7091. }
  7092. static void intel_set_config_restore_state(struct drm_device *dev,
  7093. struct intel_set_config *config)
  7094. {
  7095. struct intel_encoder *encoder;
  7096. struct intel_connector *connector;
  7097. int count;
  7098. count = 0;
  7099. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7100. encoder->new_crtc =
  7101. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7102. }
  7103. count = 0;
  7104. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7105. connector->new_encoder =
  7106. to_intel_encoder(config->save_connector_encoders[count++]);
  7107. }
  7108. }
  7109. static bool
  7110. is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
  7111. int num_connectors)
  7112. {
  7113. int i;
  7114. for (i = 0; i < num_connectors; i++)
  7115. if (connectors[i].encoder &&
  7116. connectors[i].encoder->crtc == crtc &&
  7117. connectors[i].dpms != DRM_MODE_DPMS_ON)
  7118. return true;
  7119. return false;
  7120. }
  7121. static void
  7122. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7123. struct intel_set_config *config)
  7124. {
  7125. /* We should be able to check here if the fb has the same properties
  7126. * and then just flip_or_move it */
  7127. if (set->connectors != NULL &&
  7128. is_crtc_connector_off(set->crtc, *set->connectors,
  7129. set->num_connectors)) {
  7130. config->mode_changed = true;
  7131. } else if (set->crtc->fb != set->fb) {
  7132. /* If we have no fb then treat it as a full mode set */
  7133. if (set->crtc->fb == NULL) {
  7134. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7135. config->mode_changed = true;
  7136. } else if (set->fb == NULL) {
  7137. config->mode_changed = true;
  7138. } else if (set->fb->pixel_format !=
  7139. set->crtc->fb->pixel_format) {
  7140. config->mode_changed = true;
  7141. } else {
  7142. config->fb_changed = true;
  7143. }
  7144. }
  7145. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7146. config->fb_changed = true;
  7147. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7148. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7149. drm_mode_debug_printmodeline(&set->crtc->mode);
  7150. drm_mode_debug_printmodeline(set->mode);
  7151. config->mode_changed = true;
  7152. }
  7153. }
  7154. static int
  7155. intel_modeset_stage_output_state(struct drm_device *dev,
  7156. struct drm_mode_set *set,
  7157. struct intel_set_config *config)
  7158. {
  7159. struct drm_crtc *new_crtc;
  7160. struct intel_connector *connector;
  7161. struct intel_encoder *encoder;
  7162. int count, ro;
  7163. /* The upper layers ensure that we either disable a crtc or have a list
  7164. * of connectors. For paranoia, double-check this. */
  7165. WARN_ON(!set->fb && (set->num_connectors != 0));
  7166. WARN_ON(set->fb && (set->num_connectors == 0));
  7167. count = 0;
  7168. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7169. base.head) {
  7170. /* Otherwise traverse passed in connector list and get encoders
  7171. * for them. */
  7172. for (ro = 0; ro < set->num_connectors; ro++) {
  7173. if (set->connectors[ro] == &connector->base) {
  7174. connector->new_encoder = connector->encoder;
  7175. break;
  7176. }
  7177. }
  7178. /* If we disable the crtc, disable all its connectors. Also, if
  7179. * the connector is on the changing crtc but not on the new
  7180. * connector list, disable it. */
  7181. if ((!set->fb || ro == set->num_connectors) &&
  7182. connector->base.encoder &&
  7183. connector->base.encoder->crtc == set->crtc) {
  7184. connector->new_encoder = NULL;
  7185. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7186. connector->base.base.id,
  7187. drm_get_connector_name(&connector->base));
  7188. }
  7189. if (&connector->new_encoder->base != connector->base.encoder) {
  7190. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7191. config->mode_changed = true;
  7192. }
  7193. }
  7194. /* connector->new_encoder is now updated for all connectors. */
  7195. /* Update crtc of enabled connectors. */
  7196. count = 0;
  7197. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7198. base.head) {
  7199. if (!connector->new_encoder)
  7200. continue;
  7201. new_crtc = connector->new_encoder->base.crtc;
  7202. for (ro = 0; ro < set->num_connectors; ro++) {
  7203. if (set->connectors[ro] == &connector->base)
  7204. new_crtc = set->crtc;
  7205. }
  7206. /* Make sure the new CRTC will work with the encoder */
  7207. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7208. new_crtc)) {
  7209. return -EINVAL;
  7210. }
  7211. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7212. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7213. connector->base.base.id,
  7214. drm_get_connector_name(&connector->base),
  7215. new_crtc->base.id);
  7216. }
  7217. /* Check for any encoders that needs to be disabled. */
  7218. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7219. base.head) {
  7220. list_for_each_entry(connector,
  7221. &dev->mode_config.connector_list,
  7222. base.head) {
  7223. if (connector->new_encoder == encoder) {
  7224. WARN_ON(!connector->new_encoder->new_crtc);
  7225. goto next_encoder;
  7226. }
  7227. }
  7228. encoder->new_crtc = NULL;
  7229. next_encoder:
  7230. /* Only now check for crtc changes so we don't miss encoders
  7231. * that will be disabled. */
  7232. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7233. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7234. config->mode_changed = true;
  7235. }
  7236. }
  7237. /* Now we've also updated encoder->new_crtc for all encoders. */
  7238. return 0;
  7239. }
  7240. static int intel_crtc_set_config(struct drm_mode_set *set)
  7241. {
  7242. struct drm_device *dev;
  7243. struct drm_mode_set save_set;
  7244. struct intel_set_config *config;
  7245. int ret;
  7246. BUG_ON(!set);
  7247. BUG_ON(!set->crtc);
  7248. BUG_ON(!set->crtc->helper_private);
  7249. /* Enforce sane interface api - has been abused by the fb helper. */
  7250. BUG_ON(!set->mode && set->fb);
  7251. BUG_ON(set->fb && set->num_connectors == 0);
  7252. if (set->fb) {
  7253. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7254. set->crtc->base.id, set->fb->base.id,
  7255. (int)set->num_connectors, set->x, set->y);
  7256. } else {
  7257. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7258. }
  7259. dev = set->crtc->dev;
  7260. ret = -ENOMEM;
  7261. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7262. if (!config)
  7263. goto out_config;
  7264. ret = intel_set_config_save_state(dev, config);
  7265. if (ret)
  7266. goto out_config;
  7267. save_set.crtc = set->crtc;
  7268. save_set.mode = &set->crtc->mode;
  7269. save_set.x = set->crtc->x;
  7270. save_set.y = set->crtc->y;
  7271. save_set.fb = set->crtc->fb;
  7272. /* Compute whether we need a full modeset, only an fb base update or no
  7273. * change at all. In the future we might also check whether only the
  7274. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7275. * such cases. */
  7276. intel_set_config_compute_mode_changes(set, config);
  7277. ret = intel_modeset_stage_output_state(dev, set, config);
  7278. if (ret)
  7279. goto fail;
  7280. if (config->mode_changed) {
  7281. ret = intel_set_mode(set->crtc, set->mode,
  7282. set->x, set->y, set->fb);
  7283. } else if (config->fb_changed) {
  7284. intel_crtc_wait_for_pending_flips(set->crtc);
  7285. ret = intel_pipe_set_base(set->crtc,
  7286. set->x, set->y, set->fb);
  7287. }
  7288. if (ret) {
  7289. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7290. set->crtc->base.id, ret);
  7291. fail:
  7292. intel_set_config_restore_state(dev, config);
  7293. /* Try to restore the config */
  7294. if (config->mode_changed &&
  7295. intel_set_mode(save_set.crtc, save_set.mode,
  7296. save_set.x, save_set.y, save_set.fb))
  7297. DRM_ERROR("failed to restore config after modeset failure\n");
  7298. }
  7299. out_config:
  7300. intel_set_config_free(config);
  7301. return ret;
  7302. }
  7303. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7304. .cursor_set = intel_crtc_cursor_set,
  7305. .cursor_move = intel_crtc_cursor_move,
  7306. .gamma_set = intel_crtc_gamma_set,
  7307. .set_config = intel_crtc_set_config,
  7308. .destroy = intel_crtc_destroy,
  7309. .page_flip = intel_crtc_page_flip,
  7310. };
  7311. static void intel_cpu_pll_init(struct drm_device *dev)
  7312. {
  7313. if (HAS_DDI(dev))
  7314. intel_ddi_pll_init(dev);
  7315. }
  7316. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7317. struct intel_shared_dpll *pll,
  7318. struct intel_dpll_hw_state *hw_state)
  7319. {
  7320. uint32_t val;
  7321. val = I915_READ(PCH_DPLL(pll->id));
  7322. hw_state->dpll = val;
  7323. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7324. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7325. return val & DPLL_VCO_ENABLE;
  7326. }
  7327. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7328. struct intel_shared_dpll *pll)
  7329. {
  7330. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7331. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7332. }
  7333. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7334. struct intel_shared_dpll *pll)
  7335. {
  7336. /* PCH refclock must be enabled first */
  7337. assert_pch_refclk_enabled(dev_priv);
  7338. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7339. /* Wait for the clocks to stabilize. */
  7340. POSTING_READ(PCH_DPLL(pll->id));
  7341. udelay(150);
  7342. /* The pixel multiplier can only be updated once the
  7343. * DPLL is enabled and the clocks are stable.
  7344. *
  7345. * So write it again.
  7346. */
  7347. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7348. POSTING_READ(PCH_DPLL(pll->id));
  7349. udelay(200);
  7350. }
  7351. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7352. struct intel_shared_dpll *pll)
  7353. {
  7354. struct drm_device *dev = dev_priv->dev;
  7355. struct intel_crtc *crtc;
  7356. /* Make sure no transcoder isn't still depending on us. */
  7357. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7358. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7359. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7360. }
  7361. I915_WRITE(PCH_DPLL(pll->id), 0);
  7362. POSTING_READ(PCH_DPLL(pll->id));
  7363. udelay(200);
  7364. }
  7365. static char *ibx_pch_dpll_names[] = {
  7366. "PCH DPLL A",
  7367. "PCH DPLL B",
  7368. };
  7369. static void ibx_pch_dpll_init(struct drm_device *dev)
  7370. {
  7371. struct drm_i915_private *dev_priv = dev->dev_private;
  7372. int i;
  7373. dev_priv->num_shared_dpll = 2;
  7374. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7375. dev_priv->shared_dplls[i].id = i;
  7376. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7377. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7378. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7379. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7380. dev_priv->shared_dplls[i].get_hw_state =
  7381. ibx_pch_dpll_get_hw_state;
  7382. }
  7383. }
  7384. static void intel_shared_dpll_init(struct drm_device *dev)
  7385. {
  7386. struct drm_i915_private *dev_priv = dev->dev_private;
  7387. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7388. ibx_pch_dpll_init(dev);
  7389. else
  7390. dev_priv->num_shared_dpll = 0;
  7391. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7392. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7393. dev_priv->num_shared_dpll);
  7394. }
  7395. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7396. {
  7397. drm_i915_private_t *dev_priv = dev->dev_private;
  7398. struct intel_crtc *intel_crtc;
  7399. int i;
  7400. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7401. if (intel_crtc == NULL)
  7402. return;
  7403. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7404. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7405. for (i = 0; i < 256; i++) {
  7406. intel_crtc->lut_r[i] = i;
  7407. intel_crtc->lut_g[i] = i;
  7408. intel_crtc->lut_b[i] = i;
  7409. }
  7410. /* Swap pipes & planes for FBC on pre-965 */
  7411. intel_crtc->pipe = pipe;
  7412. intel_crtc->plane = pipe;
  7413. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7414. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7415. intel_crtc->plane = !pipe;
  7416. }
  7417. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7418. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7419. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7420. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7421. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7422. }
  7423. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7424. struct drm_file *file)
  7425. {
  7426. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7427. struct drm_mode_object *drmmode_obj;
  7428. struct intel_crtc *crtc;
  7429. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7430. return -ENODEV;
  7431. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7432. DRM_MODE_OBJECT_CRTC);
  7433. if (!drmmode_obj) {
  7434. DRM_ERROR("no such CRTC id\n");
  7435. return -EINVAL;
  7436. }
  7437. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7438. pipe_from_crtc_id->pipe = crtc->pipe;
  7439. return 0;
  7440. }
  7441. static int intel_encoder_clones(struct intel_encoder *encoder)
  7442. {
  7443. struct drm_device *dev = encoder->base.dev;
  7444. struct intel_encoder *source_encoder;
  7445. int index_mask = 0;
  7446. int entry = 0;
  7447. list_for_each_entry(source_encoder,
  7448. &dev->mode_config.encoder_list, base.head) {
  7449. if (encoder == source_encoder)
  7450. index_mask |= (1 << entry);
  7451. /* Intel hw has only one MUX where enocoders could be cloned. */
  7452. if (encoder->cloneable && source_encoder->cloneable)
  7453. index_mask |= (1 << entry);
  7454. entry++;
  7455. }
  7456. return index_mask;
  7457. }
  7458. static bool has_edp_a(struct drm_device *dev)
  7459. {
  7460. struct drm_i915_private *dev_priv = dev->dev_private;
  7461. if (!IS_MOBILE(dev))
  7462. return false;
  7463. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7464. return false;
  7465. if (IS_GEN5(dev) &&
  7466. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7467. return false;
  7468. return true;
  7469. }
  7470. static void intel_setup_outputs(struct drm_device *dev)
  7471. {
  7472. struct drm_i915_private *dev_priv = dev->dev_private;
  7473. struct intel_encoder *encoder;
  7474. bool dpd_is_edp = false;
  7475. intel_lvds_init(dev);
  7476. if (!IS_ULT(dev))
  7477. intel_crt_init(dev);
  7478. if (HAS_DDI(dev)) {
  7479. int found;
  7480. /* Haswell uses DDI functions to detect digital outputs */
  7481. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7482. /* DDI A only supports eDP */
  7483. if (found)
  7484. intel_ddi_init(dev, PORT_A);
  7485. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7486. * register */
  7487. found = I915_READ(SFUSE_STRAP);
  7488. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7489. intel_ddi_init(dev, PORT_B);
  7490. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7491. intel_ddi_init(dev, PORT_C);
  7492. if (found & SFUSE_STRAP_DDID_DETECTED)
  7493. intel_ddi_init(dev, PORT_D);
  7494. } else if (HAS_PCH_SPLIT(dev)) {
  7495. int found;
  7496. dpd_is_edp = intel_dpd_is_edp(dev);
  7497. if (has_edp_a(dev))
  7498. intel_dp_init(dev, DP_A, PORT_A);
  7499. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7500. /* PCH SDVOB multiplex with HDMIB */
  7501. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7502. if (!found)
  7503. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7504. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7505. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7506. }
  7507. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7508. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7509. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7510. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7511. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7512. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7513. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7514. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7515. } else if (IS_VALLEYVIEW(dev)) {
  7516. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7517. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7518. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7519. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7520. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7521. PORT_B);
  7522. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7523. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7524. }
  7525. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7526. bool found = false;
  7527. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7528. DRM_DEBUG_KMS("probing SDVOB\n");
  7529. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7530. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7531. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7532. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7533. }
  7534. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7535. intel_dp_init(dev, DP_B, PORT_B);
  7536. }
  7537. /* Before G4X SDVOC doesn't have its own detect register */
  7538. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7539. DRM_DEBUG_KMS("probing SDVOC\n");
  7540. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7541. }
  7542. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7543. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7544. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7545. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7546. }
  7547. if (SUPPORTS_INTEGRATED_DP(dev))
  7548. intel_dp_init(dev, DP_C, PORT_C);
  7549. }
  7550. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7551. (I915_READ(DP_D) & DP_DETECTED))
  7552. intel_dp_init(dev, DP_D, PORT_D);
  7553. } else if (IS_GEN2(dev))
  7554. intel_dvo_init(dev);
  7555. if (SUPPORTS_TV(dev))
  7556. intel_tv_init(dev);
  7557. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7558. encoder->base.possible_crtcs = encoder->crtc_mask;
  7559. encoder->base.possible_clones =
  7560. intel_encoder_clones(encoder);
  7561. }
  7562. intel_init_pch_refclk(dev);
  7563. drm_helper_move_panel_connectors_to_head(dev);
  7564. }
  7565. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7566. {
  7567. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7568. drm_framebuffer_cleanup(fb);
  7569. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7570. kfree(intel_fb);
  7571. }
  7572. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7573. struct drm_file *file,
  7574. unsigned int *handle)
  7575. {
  7576. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7577. struct drm_i915_gem_object *obj = intel_fb->obj;
  7578. return drm_gem_handle_create(file, &obj->base, handle);
  7579. }
  7580. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7581. .destroy = intel_user_framebuffer_destroy,
  7582. .create_handle = intel_user_framebuffer_create_handle,
  7583. };
  7584. int intel_framebuffer_init(struct drm_device *dev,
  7585. struct intel_framebuffer *intel_fb,
  7586. struct drm_mode_fb_cmd2 *mode_cmd,
  7587. struct drm_i915_gem_object *obj)
  7588. {
  7589. int pitch_limit;
  7590. int ret;
  7591. if (obj->tiling_mode == I915_TILING_Y) {
  7592. DRM_DEBUG("hardware does not support tiling Y\n");
  7593. return -EINVAL;
  7594. }
  7595. if (mode_cmd->pitches[0] & 63) {
  7596. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7597. mode_cmd->pitches[0]);
  7598. return -EINVAL;
  7599. }
  7600. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  7601. pitch_limit = 32*1024;
  7602. } else if (INTEL_INFO(dev)->gen >= 4) {
  7603. if (obj->tiling_mode)
  7604. pitch_limit = 16*1024;
  7605. else
  7606. pitch_limit = 32*1024;
  7607. } else if (INTEL_INFO(dev)->gen >= 3) {
  7608. if (obj->tiling_mode)
  7609. pitch_limit = 8*1024;
  7610. else
  7611. pitch_limit = 16*1024;
  7612. } else
  7613. /* XXX DSPC is limited to 4k tiled */
  7614. pitch_limit = 8*1024;
  7615. if (mode_cmd->pitches[0] > pitch_limit) {
  7616. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  7617. obj->tiling_mode ? "tiled" : "linear",
  7618. mode_cmd->pitches[0], pitch_limit);
  7619. return -EINVAL;
  7620. }
  7621. if (obj->tiling_mode != I915_TILING_NONE &&
  7622. mode_cmd->pitches[0] != obj->stride) {
  7623. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7624. mode_cmd->pitches[0], obj->stride);
  7625. return -EINVAL;
  7626. }
  7627. /* Reject formats not supported by any plane early. */
  7628. switch (mode_cmd->pixel_format) {
  7629. case DRM_FORMAT_C8:
  7630. case DRM_FORMAT_RGB565:
  7631. case DRM_FORMAT_XRGB8888:
  7632. case DRM_FORMAT_ARGB8888:
  7633. break;
  7634. case DRM_FORMAT_XRGB1555:
  7635. case DRM_FORMAT_ARGB1555:
  7636. if (INTEL_INFO(dev)->gen > 3) {
  7637. DRM_DEBUG("unsupported pixel format: %s\n",
  7638. drm_get_format_name(mode_cmd->pixel_format));
  7639. return -EINVAL;
  7640. }
  7641. break;
  7642. case DRM_FORMAT_XBGR8888:
  7643. case DRM_FORMAT_ABGR8888:
  7644. case DRM_FORMAT_XRGB2101010:
  7645. case DRM_FORMAT_ARGB2101010:
  7646. case DRM_FORMAT_XBGR2101010:
  7647. case DRM_FORMAT_ABGR2101010:
  7648. if (INTEL_INFO(dev)->gen < 4) {
  7649. DRM_DEBUG("unsupported pixel format: %s\n",
  7650. drm_get_format_name(mode_cmd->pixel_format));
  7651. return -EINVAL;
  7652. }
  7653. break;
  7654. case DRM_FORMAT_YUYV:
  7655. case DRM_FORMAT_UYVY:
  7656. case DRM_FORMAT_YVYU:
  7657. case DRM_FORMAT_VYUY:
  7658. if (INTEL_INFO(dev)->gen < 5) {
  7659. DRM_DEBUG("unsupported pixel format: %s\n",
  7660. drm_get_format_name(mode_cmd->pixel_format));
  7661. return -EINVAL;
  7662. }
  7663. break;
  7664. default:
  7665. DRM_DEBUG("unsupported pixel format: %s\n",
  7666. drm_get_format_name(mode_cmd->pixel_format));
  7667. return -EINVAL;
  7668. }
  7669. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7670. if (mode_cmd->offsets[0] != 0)
  7671. return -EINVAL;
  7672. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7673. intel_fb->obj = obj;
  7674. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7675. if (ret) {
  7676. DRM_ERROR("framebuffer init failed %d\n", ret);
  7677. return ret;
  7678. }
  7679. return 0;
  7680. }
  7681. static struct drm_framebuffer *
  7682. intel_user_framebuffer_create(struct drm_device *dev,
  7683. struct drm_file *filp,
  7684. struct drm_mode_fb_cmd2 *mode_cmd)
  7685. {
  7686. struct drm_i915_gem_object *obj;
  7687. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7688. mode_cmd->handles[0]));
  7689. if (&obj->base == NULL)
  7690. return ERR_PTR(-ENOENT);
  7691. return intel_framebuffer_create(dev, mode_cmd, obj);
  7692. }
  7693. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7694. .fb_create = intel_user_framebuffer_create,
  7695. .output_poll_changed = intel_fb_output_poll_changed,
  7696. };
  7697. /* Set up chip specific display functions */
  7698. static void intel_init_display(struct drm_device *dev)
  7699. {
  7700. struct drm_i915_private *dev_priv = dev->dev_private;
  7701. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7702. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7703. else if (IS_VALLEYVIEW(dev))
  7704. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7705. else if (IS_PINEVIEW(dev))
  7706. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7707. else
  7708. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7709. if (HAS_DDI(dev)) {
  7710. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7711. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7712. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7713. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7714. dev_priv->display.off = haswell_crtc_off;
  7715. dev_priv->display.update_plane = ironlake_update_plane;
  7716. } else if (HAS_PCH_SPLIT(dev)) {
  7717. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7718. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7719. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7720. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7721. dev_priv->display.off = ironlake_crtc_off;
  7722. dev_priv->display.update_plane = ironlake_update_plane;
  7723. } else if (IS_VALLEYVIEW(dev)) {
  7724. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7725. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7726. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7727. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7728. dev_priv->display.off = i9xx_crtc_off;
  7729. dev_priv->display.update_plane = i9xx_update_plane;
  7730. } else {
  7731. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7732. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7733. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7734. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7735. dev_priv->display.off = i9xx_crtc_off;
  7736. dev_priv->display.update_plane = i9xx_update_plane;
  7737. }
  7738. /* Returns the core display clock speed */
  7739. if (IS_VALLEYVIEW(dev))
  7740. dev_priv->display.get_display_clock_speed =
  7741. valleyview_get_display_clock_speed;
  7742. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7743. dev_priv->display.get_display_clock_speed =
  7744. i945_get_display_clock_speed;
  7745. else if (IS_I915G(dev))
  7746. dev_priv->display.get_display_clock_speed =
  7747. i915_get_display_clock_speed;
  7748. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7749. dev_priv->display.get_display_clock_speed =
  7750. i9xx_misc_get_display_clock_speed;
  7751. else if (IS_I915GM(dev))
  7752. dev_priv->display.get_display_clock_speed =
  7753. i915gm_get_display_clock_speed;
  7754. else if (IS_I865G(dev))
  7755. dev_priv->display.get_display_clock_speed =
  7756. i865_get_display_clock_speed;
  7757. else if (IS_I85X(dev))
  7758. dev_priv->display.get_display_clock_speed =
  7759. i855_get_display_clock_speed;
  7760. else /* 852, 830 */
  7761. dev_priv->display.get_display_clock_speed =
  7762. i830_get_display_clock_speed;
  7763. if (HAS_PCH_SPLIT(dev)) {
  7764. if (IS_GEN5(dev)) {
  7765. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7766. dev_priv->display.write_eld = ironlake_write_eld;
  7767. } else if (IS_GEN6(dev)) {
  7768. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7769. dev_priv->display.write_eld = ironlake_write_eld;
  7770. } else if (IS_IVYBRIDGE(dev)) {
  7771. /* FIXME: detect B0+ stepping and use auto training */
  7772. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7773. dev_priv->display.write_eld = ironlake_write_eld;
  7774. dev_priv->display.modeset_global_resources =
  7775. ivb_modeset_global_resources;
  7776. } else if (IS_HASWELL(dev)) {
  7777. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7778. dev_priv->display.write_eld = haswell_write_eld;
  7779. dev_priv->display.modeset_global_resources =
  7780. haswell_modeset_global_resources;
  7781. }
  7782. } else if (IS_G4X(dev)) {
  7783. dev_priv->display.write_eld = g4x_write_eld;
  7784. }
  7785. /* Default just returns -ENODEV to indicate unsupported */
  7786. dev_priv->display.queue_flip = intel_default_queue_flip;
  7787. switch (INTEL_INFO(dev)->gen) {
  7788. case 2:
  7789. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7790. break;
  7791. case 3:
  7792. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7793. break;
  7794. case 4:
  7795. case 5:
  7796. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7797. break;
  7798. case 6:
  7799. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7800. break;
  7801. case 7:
  7802. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7803. break;
  7804. }
  7805. }
  7806. /*
  7807. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7808. * resume, or other times. This quirk makes sure that's the case for
  7809. * affected systems.
  7810. */
  7811. static void quirk_pipea_force(struct drm_device *dev)
  7812. {
  7813. struct drm_i915_private *dev_priv = dev->dev_private;
  7814. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7815. DRM_INFO("applying pipe a force quirk\n");
  7816. }
  7817. /*
  7818. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7819. */
  7820. static void quirk_ssc_force_disable(struct drm_device *dev)
  7821. {
  7822. struct drm_i915_private *dev_priv = dev->dev_private;
  7823. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7824. DRM_INFO("applying lvds SSC disable quirk\n");
  7825. }
  7826. /*
  7827. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7828. * brightness value
  7829. */
  7830. static void quirk_invert_brightness(struct drm_device *dev)
  7831. {
  7832. struct drm_i915_private *dev_priv = dev->dev_private;
  7833. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7834. DRM_INFO("applying inverted panel brightness quirk\n");
  7835. }
  7836. struct intel_quirk {
  7837. int device;
  7838. int subsystem_vendor;
  7839. int subsystem_device;
  7840. void (*hook)(struct drm_device *dev);
  7841. };
  7842. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7843. struct intel_dmi_quirk {
  7844. void (*hook)(struct drm_device *dev);
  7845. const struct dmi_system_id (*dmi_id_list)[];
  7846. };
  7847. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7848. {
  7849. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7850. return 1;
  7851. }
  7852. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7853. {
  7854. .dmi_id_list = &(const struct dmi_system_id[]) {
  7855. {
  7856. .callback = intel_dmi_reverse_brightness,
  7857. .ident = "NCR Corporation",
  7858. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7859. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7860. },
  7861. },
  7862. { } /* terminating entry */
  7863. },
  7864. .hook = quirk_invert_brightness,
  7865. },
  7866. };
  7867. static struct intel_quirk intel_quirks[] = {
  7868. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7869. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7870. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7871. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7872. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7873. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7874. /* 830/845 need to leave pipe A & dpll A up */
  7875. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7876. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7877. /* Lenovo U160 cannot use SSC on LVDS */
  7878. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7879. /* Sony Vaio Y cannot use SSC on LVDS */
  7880. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7881. /* Acer Aspire 5734Z must invert backlight brightness */
  7882. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7883. /* Acer/eMachines G725 */
  7884. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7885. /* Acer/eMachines e725 */
  7886. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7887. /* Acer/Packard Bell NCL20 */
  7888. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7889. /* Acer Aspire 4736Z */
  7890. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7891. };
  7892. static void intel_init_quirks(struct drm_device *dev)
  7893. {
  7894. struct pci_dev *d = dev->pdev;
  7895. int i;
  7896. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7897. struct intel_quirk *q = &intel_quirks[i];
  7898. if (d->device == q->device &&
  7899. (d->subsystem_vendor == q->subsystem_vendor ||
  7900. q->subsystem_vendor == PCI_ANY_ID) &&
  7901. (d->subsystem_device == q->subsystem_device ||
  7902. q->subsystem_device == PCI_ANY_ID))
  7903. q->hook(dev);
  7904. }
  7905. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7906. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7907. intel_dmi_quirks[i].hook(dev);
  7908. }
  7909. }
  7910. /* Disable the VGA plane that we never use */
  7911. static void i915_disable_vga(struct drm_device *dev)
  7912. {
  7913. struct drm_i915_private *dev_priv = dev->dev_private;
  7914. u8 sr1;
  7915. u32 vga_reg = i915_vgacntrl_reg(dev);
  7916. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7917. outb(SR01, VGA_SR_INDEX);
  7918. sr1 = inb(VGA_SR_DATA);
  7919. outb(sr1 | 1<<5, VGA_SR_DATA);
  7920. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7921. udelay(300);
  7922. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7923. POSTING_READ(vga_reg);
  7924. }
  7925. void intel_modeset_init_hw(struct drm_device *dev)
  7926. {
  7927. intel_init_power_well(dev);
  7928. intel_prepare_ddi(dev);
  7929. intel_init_clock_gating(dev);
  7930. mutex_lock(&dev->struct_mutex);
  7931. intel_enable_gt_powersave(dev);
  7932. mutex_unlock(&dev->struct_mutex);
  7933. }
  7934. void intel_modeset_suspend_hw(struct drm_device *dev)
  7935. {
  7936. intel_suspend_hw(dev);
  7937. }
  7938. void intel_modeset_init(struct drm_device *dev)
  7939. {
  7940. struct drm_i915_private *dev_priv = dev->dev_private;
  7941. int i, j, ret;
  7942. drm_mode_config_init(dev);
  7943. dev->mode_config.min_width = 0;
  7944. dev->mode_config.min_height = 0;
  7945. dev->mode_config.preferred_depth = 24;
  7946. dev->mode_config.prefer_shadow = 1;
  7947. dev->mode_config.funcs = &intel_mode_funcs;
  7948. intel_init_quirks(dev);
  7949. intel_init_pm(dev);
  7950. if (INTEL_INFO(dev)->num_pipes == 0)
  7951. return;
  7952. intel_init_display(dev);
  7953. if (IS_GEN2(dev)) {
  7954. dev->mode_config.max_width = 2048;
  7955. dev->mode_config.max_height = 2048;
  7956. } else if (IS_GEN3(dev)) {
  7957. dev->mode_config.max_width = 4096;
  7958. dev->mode_config.max_height = 4096;
  7959. } else {
  7960. dev->mode_config.max_width = 8192;
  7961. dev->mode_config.max_height = 8192;
  7962. }
  7963. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7964. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7965. INTEL_INFO(dev)->num_pipes,
  7966. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7967. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7968. intel_crtc_init(dev, i);
  7969. for (j = 0; j < dev_priv->num_plane; j++) {
  7970. ret = intel_plane_init(dev, i, j);
  7971. if (ret)
  7972. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7973. pipe_name(i), sprite_name(i, j), ret);
  7974. }
  7975. }
  7976. intel_cpu_pll_init(dev);
  7977. intel_shared_dpll_init(dev);
  7978. /* Just disable it once at startup */
  7979. i915_disable_vga(dev);
  7980. intel_setup_outputs(dev);
  7981. /* Just in case the BIOS is doing something questionable. */
  7982. intel_disable_fbc(dev);
  7983. }
  7984. static void
  7985. intel_connector_break_all_links(struct intel_connector *connector)
  7986. {
  7987. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7988. connector->base.encoder = NULL;
  7989. connector->encoder->connectors_active = false;
  7990. connector->encoder->base.crtc = NULL;
  7991. }
  7992. static void intel_enable_pipe_a(struct drm_device *dev)
  7993. {
  7994. struct intel_connector *connector;
  7995. struct drm_connector *crt = NULL;
  7996. struct intel_load_detect_pipe load_detect_temp;
  7997. /* We can't just switch on the pipe A, we need to set things up with a
  7998. * proper mode and output configuration. As a gross hack, enable pipe A
  7999. * by enabling the load detect pipe once. */
  8000. list_for_each_entry(connector,
  8001. &dev->mode_config.connector_list,
  8002. base.head) {
  8003. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8004. crt = &connector->base;
  8005. break;
  8006. }
  8007. }
  8008. if (!crt)
  8009. return;
  8010. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8011. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8012. }
  8013. static bool
  8014. intel_check_plane_mapping(struct intel_crtc *crtc)
  8015. {
  8016. struct drm_device *dev = crtc->base.dev;
  8017. struct drm_i915_private *dev_priv = dev->dev_private;
  8018. u32 reg, val;
  8019. if (INTEL_INFO(dev)->num_pipes == 1)
  8020. return true;
  8021. reg = DSPCNTR(!crtc->plane);
  8022. val = I915_READ(reg);
  8023. if ((val & DISPLAY_PLANE_ENABLE) &&
  8024. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8025. return false;
  8026. return true;
  8027. }
  8028. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8029. {
  8030. struct drm_device *dev = crtc->base.dev;
  8031. struct drm_i915_private *dev_priv = dev->dev_private;
  8032. u32 reg;
  8033. /* Clear any frame start delays used for debugging left by the BIOS */
  8034. reg = PIPECONF(crtc->config.cpu_transcoder);
  8035. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8036. /* We need to sanitize the plane -> pipe mapping first because this will
  8037. * disable the crtc (and hence change the state) if it is wrong. Note
  8038. * that gen4+ has a fixed plane -> pipe mapping. */
  8039. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8040. struct intel_connector *connector;
  8041. bool plane;
  8042. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8043. crtc->base.base.id);
  8044. /* Pipe has the wrong plane attached and the plane is active.
  8045. * Temporarily change the plane mapping and disable everything
  8046. * ... */
  8047. plane = crtc->plane;
  8048. crtc->plane = !plane;
  8049. dev_priv->display.crtc_disable(&crtc->base);
  8050. crtc->plane = plane;
  8051. /* ... and break all links. */
  8052. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8053. base.head) {
  8054. if (connector->encoder->base.crtc != &crtc->base)
  8055. continue;
  8056. intel_connector_break_all_links(connector);
  8057. }
  8058. WARN_ON(crtc->active);
  8059. crtc->base.enabled = false;
  8060. }
  8061. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8062. crtc->pipe == PIPE_A && !crtc->active) {
  8063. /* BIOS forgot to enable pipe A, this mostly happens after
  8064. * resume. Force-enable the pipe to fix this, the update_dpms
  8065. * call below we restore the pipe to the right state, but leave
  8066. * the required bits on. */
  8067. intel_enable_pipe_a(dev);
  8068. }
  8069. /* Adjust the state of the output pipe according to whether we
  8070. * have active connectors/encoders. */
  8071. intel_crtc_update_dpms(&crtc->base);
  8072. if (crtc->active != crtc->base.enabled) {
  8073. struct intel_encoder *encoder;
  8074. /* This can happen either due to bugs in the get_hw_state
  8075. * functions or because the pipe is force-enabled due to the
  8076. * pipe A quirk. */
  8077. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8078. crtc->base.base.id,
  8079. crtc->base.enabled ? "enabled" : "disabled",
  8080. crtc->active ? "enabled" : "disabled");
  8081. crtc->base.enabled = crtc->active;
  8082. /* Because we only establish the connector -> encoder ->
  8083. * crtc links if something is active, this means the
  8084. * crtc is now deactivated. Break the links. connector
  8085. * -> encoder links are only establish when things are
  8086. * actually up, hence no need to break them. */
  8087. WARN_ON(crtc->active);
  8088. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8089. WARN_ON(encoder->connectors_active);
  8090. encoder->base.crtc = NULL;
  8091. }
  8092. }
  8093. }
  8094. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8095. {
  8096. struct intel_connector *connector;
  8097. struct drm_device *dev = encoder->base.dev;
  8098. /* We need to check both for a crtc link (meaning that the
  8099. * encoder is active and trying to read from a pipe) and the
  8100. * pipe itself being active. */
  8101. bool has_active_crtc = encoder->base.crtc &&
  8102. to_intel_crtc(encoder->base.crtc)->active;
  8103. if (encoder->connectors_active && !has_active_crtc) {
  8104. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8105. encoder->base.base.id,
  8106. drm_get_encoder_name(&encoder->base));
  8107. /* Connector is active, but has no active pipe. This is
  8108. * fallout from our resume register restoring. Disable
  8109. * the encoder manually again. */
  8110. if (encoder->base.crtc) {
  8111. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8112. encoder->base.base.id,
  8113. drm_get_encoder_name(&encoder->base));
  8114. encoder->disable(encoder);
  8115. }
  8116. /* Inconsistent output/port/pipe state happens presumably due to
  8117. * a bug in one of the get_hw_state functions. Or someplace else
  8118. * in our code, like the register restore mess on resume. Clamp
  8119. * things to off as a safer default. */
  8120. list_for_each_entry(connector,
  8121. &dev->mode_config.connector_list,
  8122. base.head) {
  8123. if (connector->encoder != encoder)
  8124. continue;
  8125. intel_connector_break_all_links(connector);
  8126. }
  8127. }
  8128. /* Enabled encoders without active connectors will be fixed in
  8129. * the crtc fixup. */
  8130. }
  8131. void i915_redisable_vga(struct drm_device *dev)
  8132. {
  8133. struct drm_i915_private *dev_priv = dev->dev_private;
  8134. u32 vga_reg = i915_vgacntrl_reg(dev);
  8135. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8136. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8137. i915_disable_vga(dev);
  8138. }
  8139. }
  8140. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8141. {
  8142. struct drm_i915_private *dev_priv = dev->dev_private;
  8143. enum pipe pipe;
  8144. struct intel_crtc *crtc;
  8145. struct intel_encoder *encoder;
  8146. struct intel_connector *connector;
  8147. int i;
  8148. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8149. base.head) {
  8150. memset(&crtc->config, 0, sizeof(crtc->config));
  8151. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8152. &crtc->config);
  8153. crtc->base.enabled = crtc->active;
  8154. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8155. crtc->base.base.id,
  8156. crtc->active ? "enabled" : "disabled");
  8157. }
  8158. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8159. if (HAS_DDI(dev))
  8160. intel_ddi_setup_hw_pll_state(dev);
  8161. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8162. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8163. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8164. pll->active = 0;
  8165. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8166. base.head) {
  8167. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8168. pll->active++;
  8169. }
  8170. pll->refcount = pll->active;
  8171. DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
  8172. pll->name, pll->refcount);
  8173. }
  8174. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8175. base.head) {
  8176. pipe = 0;
  8177. if (encoder->get_hw_state(encoder, &pipe)) {
  8178. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8179. encoder->base.crtc = &crtc->base;
  8180. if (encoder->get_config)
  8181. encoder->get_config(encoder, &crtc->config);
  8182. } else {
  8183. encoder->base.crtc = NULL;
  8184. }
  8185. encoder->connectors_active = false;
  8186. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8187. encoder->base.base.id,
  8188. drm_get_encoder_name(&encoder->base),
  8189. encoder->base.crtc ? "enabled" : "disabled",
  8190. pipe);
  8191. }
  8192. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8193. base.head) {
  8194. if (connector->get_hw_state(connector)) {
  8195. connector->base.dpms = DRM_MODE_DPMS_ON;
  8196. connector->encoder->connectors_active = true;
  8197. connector->base.encoder = &connector->encoder->base;
  8198. } else {
  8199. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8200. connector->base.encoder = NULL;
  8201. }
  8202. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8203. connector->base.base.id,
  8204. drm_get_connector_name(&connector->base),
  8205. connector->base.encoder ? "enabled" : "disabled");
  8206. }
  8207. }
  8208. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8209. * and i915 state tracking structures. */
  8210. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8211. bool force_restore)
  8212. {
  8213. struct drm_i915_private *dev_priv = dev->dev_private;
  8214. enum pipe pipe;
  8215. struct drm_plane *plane;
  8216. struct intel_crtc *crtc;
  8217. struct intel_encoder *encoder;
  8218. intel_modeset_readout_hw_state(dev);
  8219. /* HW state is read out, now we need to sanitize this mess. */
  8220. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8221. base.head) {
  8222. intel_sanitize_encoder(encoder);
  8223. }
  8224. for_each_pipe(pipe) {
  8225. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8226. intel_sanitize_crtc(crtc);
  8227. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8228. }
  8229. if (force_restore) {
  8230. /*
  8231. * We need to use raw interfaces for restoring state to avoid
  8232. * checking (bogus) intermediate states.
  8233. */
  8234. for_each_pipe(pipe) {
  8235. struct drm_crtc *crtc =
  8236. dev_priv->pipe_to_crtc_mapping[pipe];
  8237. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8238. crtc->fb);
  8239. }
  8240. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8241. intel_plane_restore(plane);
  8242. i915_redisable_vga(dev);
  8243. } else {
  8244. intel_modeset_update_staged_output_state(dev);
  8245. }
  8246. intel_modeset_check_state(dev);
  8247. drm_mode_config_reset(dev);
  8248. }
  8249. void intel_modeset_gem_init(struct drm_device *dev)
  8250. {
  8251. intel_modeset_init_hw(dev);
  8252. intel_setup_overlay(dev);
  8253. intel_modeset_setup_hw_state(dev, false);
  8254. }
  8255. void intel_modeset_cleanup(struct drm_device *dev)
  8256. {
  8257. struct drm_i915_private *dev_priv = dev->dev_private;
  8258. struct drm_crtc *crtc;
  8259. struct intel_crtc *intel_crtc;
  8260. /*
  8261. * Interrupts and polling as the first thing to avoid creating havoc.
  8262. * Too much stuff here (turning of rps, connectors, ...) would
  8263. * experience fancy races otherwise.
  8264. */
  8265. drm_irq_uninstall(dev);
  8266. cancel_work_sync(&dev_priv->hotplug_work);
  8267. /*
  8268. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8269. * poll handlers. Hence disable polling after hpd handling is shut down.
  8270. */
  8271. drm_kms_helper_poll_fini(dev);
  8272. mutex_lock(&dev->struct_mutex);
  8273. intel_unregister_dsm_handler();
  8274. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8275. /* Skip inactive CRTCs */
  8276. if (!crtc->fb)
  8277. continue;
  8278. intel_crtc = to_intel_crtc(crtc);
  8279. intel_increase_pllclock(crtc);
  8280. }
  8281. intel_disable_fbc(dev);
  8282. intel_disable_gt_powersave(dev);
  8283. ironlake_teardown_rc6(dev);
  8284. mutex_unlock(&dev->struct_mutex);
  8285. /* flush any delayed tasks or pending work */
  8286. flush_scheduled_work();
  8287. /* destroy backlight, if any, before the connectors */
  8288. intel_panel_destroy_backlight(dev);
  8289. drm_mode_config_cleanup(dev);
  8290. intel_cleanup_overlay(dev);
  8291. }
  8292. /*
  8293. * Return which encoder is currently attached for connector.
  8294. */
  8295. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8296. {
  8297. return &intel_attached_encoder(connector)->base;
  8298. }
  8299. void intel_connector_attach_encoder(struct intel_connector *connector,
  8300. struct intel_encoder *encoder)
  8301. {
  8302. connector->encoder = encoder;
  8303. drm_mode_connector_attach_encoder(&connector->base,
  8304. &encoder->base);
  8305. }
  8306. /*
  8307. * set vga decode state - true == enable VGA decode
  8308. */
  8309. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8310. {
  8311. struct drm_i915_private *dev_priv = dev->dev_private;
  8312. u16 gmch_ctrl;
  8313. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8314. if (state)
  8315. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8316. else
  8317. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8318. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8319. return 0;
  8320. }
  8321. #ifdef CONFIG_DEBUG_FS
  8322. #include <linux/seq_file.h>
  8323. struct intel_display_error_state {
  8324. u32 power_well_driver;
  8325. struct intel_cursor_error_state {
  8326. u32 control;
  8327. u32 position;
  8328. u32 base;
  8329. u32 size;
  8330. } cursor[I915_MAX_PIPES];
  8331. struct intel_pipe_error_state {
  8332. enum transcoder cpu_transcoder;
  8333. u32 conf;
  8334. u32 source;
  8335. u32 htotal;
  8336. u32 hblank;
  8337. u32 hsync;
  8338. u32 vtotal;
  8339. u32 vblank;
  8340. u32 vsync;
  8341. } pipe[I915_MAX_PIPES];
  8342. struct intel_plane_error_state {
  8343. u32 control;
  8344. u32 stride;
  8345. u32 size;
  8346. u32 pos;
  8347. u32 addr;
  8348. u32 surface;
  8349. u32 tile_offset;
  8350. } plane[I915_MAX_PIPES];
  8351. };
  8352. struct intel_display_error_state *
  8353. intel_display_capture_error_state(struct drm_device *dev)
  8354. {
  8355. drm_i915_private_t *dev_priv = dev->dev_private;
  8356. struct intel_display_error_state *error;
  8357. enum transcoder cpu_transcoder;
  8358. int i;
  8359. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8360. if (error == NULL)
  8361. return NULL;
  8362. if (HAS_POWER_WELL(dev))
  8363. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8364. for_each_pipe(i) {
  8365. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8366. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8367. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8368. error->cursor[i].control = I915_READ(CURCNTR(i));
  8369. error->cursor[i].position = I915_READ(CURPOS(i));
  8370. error->cursor[i].base = I915_READ(CURBASE(i));
  8371. } else {
  8372. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8373. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8374. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8375. }
  8376. error->plane[i].control = I915_READ(DSPCNTR(i));
  8377. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8378. if (INTEL_INFO(dev)->gen <= 3) {
  8379. error->plane[i].size = I915_READ(DSPSIZE(i));
  8380. error->plane[i].pos = I915_READ(DSPPOS(i));
  8381. }
  8382. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8383. error->plane[i].addr = I915_READ(DSPADDR(i));
  8384. if (INTEL_INFO(dev)->gen >= 4) {
  8385. error->plane[i].surface = I915_READ(DSPSURF(i));
  8386. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8387. }
  8388. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8389. error->pipe[i].source = I915_READ(PIPESRC(i));
  8390. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8391. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8392. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8393. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8394. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8395. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8396. }
  8397. /* In the code above we read the registers without checking if the power
  8398. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8399. * prevent the next I915_WRITE from detecting it and printing an error
  8400. * message. */
  8401. if (HAS_POWER_WELL(dev))
  8402. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8403. return error;
  8404. }
  8405. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8406. void
  8407. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8408. struct drm_device *dev,
  8409. struct intel_display_error_state *error)
  8410. {
  8411. int i;
  8412. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8413. if (HAS_POWER_WELL(dev))
  8414. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8415. error->power_well_driver);
  8416. for_each_pipe(i) {
  8417. err_printf(m, "Pipe [%d]:\n", i);
  8418. err_printf(m, " CPU transcoder: %c\n",
  8419. transcoder_name(error->pipe[i].cpu_transcoder));
  8420. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8421. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8422. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8423. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8424. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8425. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8426. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8427. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8428. err_printf(m, "Plane [%d]:\n", i);
  8429. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8430. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8431. if (INTEL_INFO(dev)->gen <= 3) {
  8432. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8433. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8434. }
  8435. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8436. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8437. if (INTEL_INFO(dev)->gen >= 4) {
  8438. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8439. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8440. }
  8441. err_printf(m, "Cursor [%d]:\n", i);
  8442. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8443. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8444. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8445. }
  8446. }
  8447. #endif