setup_64.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/acpi.h>
  32. #include <linux/kallsyms.h>
  33. #include <linux/edd.h>
  34. #include <linux/mmzone.h>
  35. #include <linux/kexec.h>
  36. #include <linux/cpufreq.h>
  37. #include <linux/dmi.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/ctype.h>
  40. #include <asm/mtrr.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/system.h>
  43. #include <asm/io.h>
  44. #include <asm/smp.h>
  45. #include <asm/msr.h>
  46. #include <asm/desc.h>
  47. #include <video/edid.h>
  48. #include <asm/e820.h>
  49. #include <asm/dma.h>
  50. #include <asm/mpspec.h>
  51. #include <asm/mmu_context.h>
  52. #include <asm/proto.h>
  53. #include <asm/setup.h>
  54. #include <asm/mach_apic.h>
  55. #include <asm/numa.h>
  56. #include <asm/sections.h>
  57. #include <asm/dmi.h>
  58. #include <asm/cacheflush.h>
  59. #include <asm/mce.h>
  60. /*
  61. * Machine setup..
  62. */
  63. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  64. EXPORT_SYMBOL(boot_cpu_data);
  65. unsigned long mmu_cr4_features;
  66. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  67. int bootloader_type;
  68. unsigned long saved_video_mode;
  69. int force_mwait __cpuinitdata;
  70. /*
  71. * Early DMI memory
  72. */
  73. int dmi_alloc_index;
  74. char dmi_alloc_data[DMI_MAX_DATA];
  75. /*
  76. * Setup options
  77. */
  78. struct screen_info screen_info;
  79. EXPORT_SYMBOL(screen_info);
  80. struct sys_desc_table_struct {
  81. unsigned short length;
  82. unsigned char table[0];
  83. };
  84. struct edid_info edid_info;
  85. EXPORT_SYMBOL_GPL(edid_info);
  86. extern int root_mountflags;
  87. char __initdata command_line[COMMAND_LINE_SIZE];
  88. struct resource standard_io_resources[] = {
  89. { .name = "dma1", .start = 0x00, .end = 0x1f,
  90. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  91. { .name = "pic1", .start = 0x20, .end = 0x21,
  92. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  93. { .name = "timer0", .start = 0x40, .end = 0x43,
  94. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  95. { .name = "timer1", .start = 0x50, .end = 0x53,
  96. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  97. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  98. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  99. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  100. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  101. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  105. { .name = "fpu", .start = 0xf0, .end = 0xff,
  106. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  107. };
  108. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  109. static struct resource data_resource = {
  110. .name = "Kernel data",
  111. .start = 0,
  112. .end = 0,
  113. .flags = IORESOURCE_RAM,
  114. };
  115. static struct resource code_resource = {
  116. .name = "Kernel code",
  117. .start = 0,
  118. .end = 0,
  119. .flags = IORESOURCE_RAM,
  120. };
  121. static struct resource bss_resource = {
  122. .name = "Kernel bss",
  123. .start = 0,
  124. .end = 0,
  125. .flags = IORESOURCE_RAM,
  126. };
  127. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  128. #ifdef CONFIG_PROC_VMCORE
  129. /* elfcorehdr= specifies the location of elf core header
  130. * stored by the crashed kernel. This option will be passed
  131. * by kexec loader to the capture kernel.
  132. */
  133. static int __init setup_elfcorehdr(char *arg)
  134. {
  135. char *end;
  136. if (!arg)
  137. return -EINVAL;
  138. elfcorehdr_addr = memparse(arg, &end);
  139. return end > arg ? 0 : -EINVAL;
  140. }
  141. early_param("elfcorehdr", setup_elfcorehdr);
  142. #endif
  143. #ifndef CONFIG_NUMA
  144. static void __init
  145. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  146. {
  147. unsigned long bootmap_size, bootmap;
  148. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  149. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  150. if (bootmap == -1L)
  151. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  152. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  153. e820_register_active_regions(0, start_pfn, end_pfn);
  154. free_bootmem_with_active_regions(0, end_pfn);
  155. reserve_bootmem(bootmap, bootmap_size);
  156. }
  157. #endif
  158. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  159. struct edd edd;
  160. #ifdef CONFIG_EDD_MODULE
  161. EXPORT_SYMBOL(edd);
  162. #endif
  163. /**
  164. * copy_edd() - Copy the BIOS EDD information
  165. * from boot_params into a safe place.
  166. *
  167. */
  168. static inline void copy_edd(void)
  169. {
  170. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  171. sizeof(edd.mbr_signature));
  172. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  173. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  174. edd.edd_info_nr = boot_params.eddbuf_entries;
  175. }
  176. #else
  177. static inline void copy_edd(void)
  178. {
  179. }
  180. #endif
  181. #ifdef CONFIG_KEXEC
  182. static void __init reserve_crashkernel(void)
  183. {
  184. unsigned long long free_mem;
  185. unsigned long long crash_size, crash_base;
  186. int ret;
  187. free_mem =
  188. ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  189. ret = parse_crashkernel(boot_command_line, free_mem,
  190. &crash_size, &crash_base);
  191. if (ret == 0 && crash_size) {
  192. if (crash_base > 0) {
  193. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  194. "for crashkernel (System RAM: %ldMB)\n",
  195. (unsigned long)(crash_size >> 20),
  196. (unsigned long)(crash_base >> 20),
  197. (unsigned long)(free_mem >> 20));
  198. crashk_res.start = crash_base;
  199. crashk_res.end = crash_base + crash_size - 1;
  200. reserve_bootmem(crash_base, crash_size);
  201. } else
  202. printk(KERN_INFO "crashkernel reservation failed - "
  203. "you have to specify a base address\n");
  204. }
  205. }
  206. #else
  207. static inline void __init reserve_crashkernel(void)
  208. {}
  209. #endif
  210. #define EBDA_ADDR_POINTER 0x40E
  211. unsigned __initdata ebda_addr;
  212. unsigned __initdata ebda_size;
  213. static void discover_ebda(void)
  214. {
  215. /*
  216. * there is a real-mode segmented pointer pointing to the
  217. * 4K EBDA area at 0x40E
  218. */
  219. ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
  220. ebda_addr <<= 4;
  221. ebda_size = *(unsigned short *)__va(ebda_addr);
  222. /* Round EBDA up to pages */
  223. if (ebda_size == 0)
  224. ebda_size = 1;
  225. ebda_size <<= 10;
  226. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  227. if (ebda_size > 64*1024)
  228. ebda_size = 64*1024;
  229. }
  230. void __init setup_arch(char **cmdline_p)
  231. {
  232. unsigned i;
  233. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  234. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  235. screen_info = boot_params.screen_info;
  236. edid_info = boot_params.edid_info;
  237. saved_video_mode = boot_params.hdr.vid_mode;
  238. bootloader_type = boot_params.hdr.type_of_loader;
  239. #ifdef CONFIG_BLK_DEV_RAM
  240. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  241. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  242. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  243. #endif
  244. setup_memory_region();
  245. copy_edd();
  246. if (!boot_params.hdr.root_flags)
  247. root_mountflags &= ~MS_RDONLY;
  248. init_mm.start_code = (unsigned long) &_text;
  249. init_mm.end_code = (unsigned long) &_etext;
  250. init_mm.end_data = (unsigned long) &_edata;
  251. init_mm.brk = (unsigned long) &_end;
  252. code_resource.start = virt_to_phys(&_text);
  253. code_resource.end = virt_to_phys(&_etext)-1;
  254. data_resource.start = virt_to_phys(&_etext);
  255. data_resource.end = virt_to_phys(&_edata)-1;
  256. bss_resource.start = virt_to_phys(&__bss_start);
  257. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  258. early_identify_cpu(&boot_cpu_data);
  259. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  260. *cmdline_p = command_line;
  261. parse_early_param();
  262. finish_e820_parsing();
  263. e820_register_active_regions(0, 0, -1UL);
  264. /*
  265. * partially used pages are not usable - thus
  266. * we are rounding upwards:
  267. */
  268. end_pfn = e820_end_of_ram();
  269. num_physpages = end_pfn;
  270. check_efer();
  271. discover_ebda();
  272. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  273. dmi_scan_machine();
  274. io_delay_init();
  275. #ifdef CONFIG_SMP
  276. /* setup to use the static apicid table during kernel startup */
  277. x86_cpu_to_apicid_ptr = (void *)&x86_cpu_to_apicid_init;
  278. #endif
  279. #ifdef CONFIG_ACPI
  280. /*
  281. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  282. * Call this early for SRAT node setup.
  283. */
  284. acpi_boot_table_init();
  285. #endif
  286. /* How many end-of-memory variables you have, grandma! */
  287. max_low_pfn = end_pfn;
  288. max_pfn = end_pfn;
  289. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  290. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  291. remove_all_active_ranges();
  292. #ifdef CONFIG_ACPI_NUMA
  293. /*
  294. * Parse SRAT to discover nodes.
  295. */
  296. acpi_numa_init();
  297. #endif
  298. #ifdef CONFIG_NUMA
  299. numa_initmem_init(0, end_pfn);
  300. #else
  301. contig_initmem_init(0, end_pfn);
  302. #endif
  303. /* Reserve direct mapping */
  304. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  305. (table_end - table_start) << PAGE_SHIFT);
  306. /* reserve kernel */
  307. reserve_bootmem_generic(__pa_symbol(&_text),
  308. __pa_symbol(&_end) - __pa_symbol(&_text));
  309. /*
  310. * reserve physical page 0 - it's a special BIOS page on many boxes,
  311. * enabling clean reboots, SMP operation, laptop functions.
  312. */
  313. reserve_bootmem_generic(0, PAGE_SIZE);
  314. /* reserve ebda region */
  315. if (ebda_addr)
  316. reserve_bootmem_generic(ebda_addr, ebda_size);
  317. #ifdef CONFIG_NUMA
  318. /* reserve nodemap region */
  319. if (nodemap_addr)
  320. reserve_bootmem_generic(nodemap_addr, nodemap_size);
  321. #endif
  322. #ifdef CONFIG_SMP
  323. /* Reserve SMP trampoline */
  324. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
  325. #endif
  326. #ifdef CONFIG_ACPI_SLEEP
  327. /*
  328. * Reserve low memory region for sleep support.
  329. */
  330. acpi_reserve_bootmem();
  331. #endif
  332. /*
  333. * Find and reserve possible boot-time SMP configuration:
  334. */
  335. find_smp_config();
  336. #ifdef CONFIG_BLK_DEV_INITRD
  337. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  338. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  339. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  340. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  341. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  342. if (ramdisk_end <= end_of_mem) {
  343. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  344. initrd_start = ramdisk_image + PAGE_OFFSET;
  345. initrd_end = initrd_start+ramdisk_size;
  346. } else {
  347. printk(KERN_ERR "initrd extends beyond end of memory "
  348. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  349. ramdisk_end, end_of_mem);
  350. initrd_start = 0;
  351. }
  352. }
  353. #endif
  354. reserve_crashkernel();
  355. paging_init();
  356. early_quirks();
  357. /*
  358. * set this early, so we dont allocate cpu0
  359. * if MADT list doesnt list BSP first
  360. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  361. */
  362. cpu_set(0, cpu_present_map);
  363. #ifdef CONFIG_ACPI
  364. /*
  365. * Read APIC and some other early information from ACPI tables.
  366. */
  367. acpi_boot_init();
  368. #endif
  369. init_cpu_to_node();
  370. /*
  371. * get boot-time SMP configuration:
  372. */
  373. if (smp_found_config)
  374. get_smp_config();
  375. init_apic_mappings();
  376. ioapic_init_mappings();
  377. /*
  378. * We trust e820 completely. No explicit ROM probing in memory.
  379. */
  380. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  381. e820_mark_nosave_regions();
  382. /* request I/O space for devices used on all i[345]86 PCs */
  383. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  384. request_resource(&ioport_resource, &standard_io_resources[i]);
  385. e820_setup_gap();
  386. #ifdef CONFIG_VT
  387. #if defined(CONFIG_VGA_CONSOLE)
  388. conswitchp = &vga_con;
  389. #elif defined(CONFIG_DUMMY_CONSOLE)
  390. conswitchp = &dummy_con;
  391. #endif
  392. #endif
  393. }
  394. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  395. {
  396. unsigned int *v;
  397. if (c->extended_cpuid_level < 0x80000004)
  398. return 0;
  399. v = (unsigned int *) c->x86_model_id;
  400. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  401. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  402. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  403. c->x86_model_id[48] = 0;
  404. return 1;
  405. }
  406. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  407. {
  408. unsigned int n, dummy, eax, ebx, ecx, edx;
  409. n = c->extended_cpuid_level;
  410. if (n >= 0x80000005) {
  411. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  412. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  413. "D cache %dK (%d bytes/line)\n",
  414. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  415. c->x86_cache_size = (ecx>>24) + (edx>>24);
  416. /* On K8 L1 TLB is inclusive, so don't count it */
  417. c->x86_tlbsize = 0;
  418. }
  419. if (n >= 0x80000006) {
  420. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  421. ecx = cpuid_ecx(0x80000006);
  422. c->x86_cache_size = ecx >> 16;
  423. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  424. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  425. c->x86_cache_size, ecx & 0xFF);
  426. }
  427. if (n >= 0x80000007)
  428. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  429. if (n >= 0x80000008) {
  430. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  431. c->x86_virt_bits = (eax >> 8) & 0xff;
  432. c->x86_phys_bits = eax & 0xff;
  433. }
  434. }
  435. #ifdef CONFIG_NUMA
  436. static int nearby_node(int apicid)
  437. {
  438. int i, node;
  439. for (i = apicid - 1; i >= 0; i--) {
  440. node = apicid_to_node[i];
  441. if (node != NUMA_NO_NODE && node_online(node))
  442. return node;
  443. }
  444. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  445. node = apicid_to_node[i];
  446. if (node != NUMA_NO_NODE && node_online(node))
  447. return node;
  448. }
  449. return first_node(node_online_map); /* Shouldn't happen */
  450. }
  451. #endif
  452. /*
  453. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  454. * Assumes number of cores is a power of two.
  455. */
  456. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  457. {
  458. #ifdef CONFIG_SMP
  459. unsigned bits;
  460. #ifdef CONFIG_NUMA
  461. int cpu = smp_processor_id();
  462. int node = 0;
  463. unsigned apicid = hard_smp_processor_id();
  464. #endif
  465. bits = c->x86_coreid_bits;
  466. /* Low order bits define the core id (index of core in socket) */
  467. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  468. /* Convert the APIC ID into the socket ID */
  469. c->phys_proc_id = phys_pkg_id(bits);
  470. #ifdef CONFIG_NUMA
  471. node = c->phys_proc_id;
  472. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  473. node = apicid_to_node[apicid];
  474. if (!node_online(node)) {
  475. /* Two possibilities here:
  476. - The CPU is missing memory and no node was created.
  477. In that case try picking one from a nearby CPU
  478. - The APIC IDs differ from the HyperTransport node IDs
  479. which the K8 northbridge parsing fills in.
  480. Assume they are all increased by a constant offset,
  481. but in the same order as the HT nodeids.
  482. If that doesn't result in a usable node fall back to the
  483. path for the previous case. */
  484. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  485. if (ht_nodeid >= 0 &&
  486. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  487. node = apicid_to_node[ht_nodeid];
  488. /* Pick a nearby node */
  489. if (!node_online(node))
  490. node = nearby_node(apicid);
  491. }
  492. numa_set_node(cpu, node);
  493. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  494. #endif
  495. #endif
  496. }
  497. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  498. {
  499. #ifdef CONFIG_SMP
  500. unsigned bits, ecx;
  501. /* Multi core CPU? */
  502. if (c->extended_cpuid_level < 0x80000008)
  503. return;
  504. ecx = cpuid_ecx(0x80000008);
  505. c->x86_max_cores = (ecx & 0xff) + 1;
  506. /* CPU telling us the core id bits shift? */
  507. bits = (ecx >> 12) & 0xF;
  508. /* Otherwise recompute */
  509. if (bits == 0) {
  510. while ((1 << bits) < c->x86_max_cores)
  511. bits++;
  512. }
  513. c->x86_coreid_bits = bits;
  514. #endif
  515. }
  516. #define ENABLE_C1E_MASK 0x18000000
  517. #define CPUID_PROCESSOR_SIGNATURE 1
  518. #define CPUID_XFAM 0x0ff00000
  519. #define CPUID_XFAM_K8 0x00000000
  520. #define CPUID_XFAM_10H 0x00100000
  521. #define CPUID_XFAM_11H 0x00200000
  522. #define CPUID_XMOD 0x000f0000
  523. #define CPUID_XMOD_REV_F 0x00040000
  524. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  525. static __cpuinit int amd_apic_timer_broken(void)
  526. {
  527. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  528. switch (eax & CPUID_XFAM) {
  529. case CPUID_XFAM_K8:
  530. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  531. break;
  532. case CPUID_XFAM_10H:
  533. case CPUID_XFAM_11H:
  534. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  535. if (lo & ENABLE_C1E_MASK)
  536. return 1;
  537. break;
  538. default:
  539. /* err on the side of caution */
  540. return 1;
  541. }
  542. return 0;
  543. }
  544. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  545. {
  546. unsigned level;
  547. #ifdef CONFIG_SMP
  548. unsigned long value;
  549. /*
  550. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  551. * bit 6 of msr C001_0015
  552. *
  553. * Errata 63 for SH-B3 steppings
  554. * Errata 122 for all steppings (F+ have it disabled by default)
  555. */
  556. if (c->x86 == 15) {
  557. rdmsrl(MSR_K8_HWCR, value);
  558. value |= 1 << 6;
  559. wrmsrl(MSR_K8_HWCR, value);
  560. }
  561. #endif
  562. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  563. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  564. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  565. /* On C+ stepping K8 rep microcode works well for copy/memset */
  566. level = cpuid_eax(1);
  567. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  568. level >= 0x0f58))
  569. set_bit(X86_FEATURE_REP_GOOD, (unsigned long *)&c->x86_capability);
  570. if (c->x86 == 0x10 || c->x86 == 0x11)
  571. set_bit(X86_FEATURE_REP_GOOD, (unsigned long *)&c->x86_capability);
  572. /* Enable workaround for FXSAVE leak */
  573. if (c->x86 >= 6)
  574. set_bit(X86_FEATURE_FXSAVE_LEAK, (unsigned long *)&c->x86_capability);
  575. level = get_model_name(c);
  576. if (!level) {
  577. switch (c->x86) {
  578. case 15:
  579. /* Should distinguish Models here, but this is only
  580. a fallback anyways. */
  581. strcpy(c->x86_model_id, "Hammer");
  582. break;
  583. }
  584. }
  585. display_cacheinfo(c);
  586. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  587. if (c->x86_power & (1<<8))
  588. set_bit(X86_FEATURE_CONSTANT_TSC, (unsigned long *)&c->x86_capability);
  589. /* Multi core CPU? */
  590. if (c->extended_cpuid_level >= 0x80000008)
  591. amd_detect_cmp(c);
  592. if (c->extended_cpuid_level >= 0x80000006 &&
  593. (cpuid_edx(0x80000006) & 0xf000))
  594. num_cache_leaves = 4;
  595. else
  596. num_cache_leaves = 3;
  597. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  598. set_bit(X86_FEATURE_K8, (unsigned long *)&c->x86_capability);
  599. /* RDTSC can be speculated around */
  600. clear_bit(X86_FEATURE_SYNC_RDTSC, (unsigned long *)&c->x86_capability);
  601. /* Family 10 doesn't support C states in MWAIT so don't use it */
  602. if (c->x86 == 0x10 && !force_mwait)
  603. clear_bit(X86_FEATURE_MWAIT, (unsigned long *)&c->x86_capability);
  604. if (amd_apic_timer_broken())
  605. disable_apic_timer = 1;
  606. }
  607. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  608. {
  609. #ifdef CONFIG_SMP
  610. u32 eax, ebx, ecx, edx;
  611. int index_msb, core_bits;
  612. cpuid(1, &eax, &ebx, &ecx, &edx);
  613. if (!cpu_has(c, X86_FEATURE_HT))
  614. return;
  615. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  616. goto out;
  617. smp_num_siblings = (ebx & 0xff0000) >> 16;
  618. if (smp_num_siblings == 1) {
  619. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  620. } else if (smp_num_siblings > 1) {
  621. if (smp_num_siblings > NR_CPUS) {
  622. printk(KERN_WARNING "CPU: Unsupported number of "
  623. "siblings %d", smp_num_siblings);
  624. smp_num_siblings = 1;
  625. return;
  626. }
  627. index_msb = get_count_order(smp_num_siblings);
  628. c->phys_proc_id = phys_pkg_id(index_msb);
  629. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  630. index_msb = get_count_order(smp_num_siblings);
  631. core_bits = get_count_order(c->x86_max_cores);
  632. c->cpu_core_id = phys_pkg_id(index_msb) &
  633. ((1 << core_bits) - 1);
  634. }
  635. out:
  636. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  637. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  638. c->phys_proc_id);
  639. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  640. c->cpu_core_id);
  641. }
  642. #endif
  643. }
  644. /*
  645. * find out the number of processor cores on the die
  646. */
  647. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  648. {
  649. unsigned int eax, t;
  650. if (c->cpuid_level < 4)
  651. return 1;
  652. cpuid_count(4, 0, &eax, &t, &t, &t);
  653. if (eax & 0x1f)
  654. return ((eax >> 26) + 1);
  655. else
  656. return 1;
  657. }
  658. static void srat_detect_node(void)
  659. {
  660. #ifdef CONFIG_NUMA
  661. unsigned node;
  662. int cpu = smp_processor_id();
  663. int apicid = hard_smp_processor_id();
  664. /* Don't do the funky fallback heuristics the AMD version employs
  665. for now. */
  666. node = apicid_to_node[apicid];
  667. if (node == NUMA_NO_NODE)
  668. node = first_node(node_online_map);
  669. numa_set_node(cpu, node);
  670. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  671. #endif
  672. }
  673. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  674. {
  675. /* Cache sizes */
  676. unsigned n;
  677. init_intel_cacheinfo(c);
  678. if (c->cpuid_level > 9) {
  679. unsigned eax = cpuid_eax(10);
  680. /* Check for version and the number of counters */
  681. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  682. set_bit(X86_FEATURE_ARCH_PERFMON,
  683. (unsigned long *)&c->x86_capability);
  684. }
  685. if (cpu_has_ds) {
  686. unsigned int l1, l2;
  687. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  688. if (!(l1 & (1<<11)))
  689. set_bit(X86_FEATURE_BTS, (unsigned long *)c->x86_capability);
  690. if (!(l1 & (1<<12)))
  691. set_bit(X86_FEATURE_PEBS, (unsigned long *)c->x86_capability);
  692. }
  693. n = c->extended_cpuid_level;
  694. if (n >= 0x80000008) {
  695. unsigned eax = cpuid_eax(0x80000008);
  696. c->x86_virt_bits = (eax >> 8) & 0xff;
  697. c->x86_phys_bits = eax & 0xff;
  698. /* CPUID workaround for Intel 0F34 CPU */
  699. if (c->x86_vendor == X86_VENDOR_INTEL &&
  700. c->x86 == 0xF && c->x86_model == 0x3 &&
  701. c->x86_mask == 0x4)
  702. c->x86_phys_bits = 36;
  703. }
  704. if (c->x86 == 15)
  705. c->x86_cache_alignment = c->x86_clflush_size * 2;
  706. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  707. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  708. set_bit(X86_FEATURE_CONSTANT_TSC, (unsigned long *)&c->x86_capability);
  709. if (c->x86 == 6)
  710. set_bit(X86_FEATURE_REP_GOOD, (unsigned long *)&c->x86_capability);
  711. if (c->x86 == 15)
  712. set_bit(X86_FEATURE_SYNC_RDTSC, (unsigned long *)&c->x86_capability);
  713. else
  714. clear_bit(X86_FEATURE_SYNC_RDTSC, (unsigned long *)&c->x86_capability);
  715. c->x86_max_cores = intel_num_cpu_cores(c);
  716. srat_detect_node();
  717. }
  718. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  719. {
  720. char *v = c->x86_vendor_id;
  721. if (!strcmp(v, "AuthenticAMD"))
  722. c->x86_vendor = X86_VENDOR_AMD;
  723. else if (!strcmp(v, "GenuineIntel"))
  724. c->x86_vendor = X86_VENDOR_INTEL;
  725. else
  726. c->x86_vendor = X86_VENDOR_UNKNOWN;
  727. }
  728. struct cpu_model_info {
  729. int vendor;
  730. int family;
  731. char *model_names[16];
  732. };
  733. /* Do some early cpuid on the boot CPU to get some parameter that are
  734. needed before check_bugs. Everything advanced is in identify_cpu
  735. below. */
  736. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  737. {
  738. u32 tfms, xlvl;
  739. c->loops_per_jiffy = loops_per_jiffy;
  740. c->x86_cache_size = -1;
  741. c->x86_vendor = X86_VENDOR_UNKNOWN;
  742. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  743. c->x86_vendor_id[0] = '\0'; /* Unset */
  744. c->x86_model_id[0] = '\0'; /* Unset */
  745. c->x86_clflush_size = 64;
  746. c->x86_cache_alignment = c->x86_clflush_size;
  747. c->x86_max_cores = 1;
  748. c->x86_coreid_bits = 0;
  749. c->extended_cpuid_level = 0;
  750. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  751. /* Get vendor name */
  752. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  753. (unsigned int *)&c->x86_vendor_id[0],
  754. (unsigned int *)&c->x86_vendor_id[8],
  755. (unsigned int *)&c->x86_vendor_id[4]);
  756. get_cpu_vendor(c);
  757. /* Initialize the standard set of capabilities */
  758. /* Note that the vendor-specific code below might override */
  759. /* Intel-defined flags: level 0x00000001 */
  760. if (c->cpuid_level >= 0x00000001) {
  761. __u32 misc;
  762. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  763. &c->x86_capability[0]);
  764. c->x86 = (tfms >> 8) & 0xf;
  765. c->x86_model = (tfms >> 4) & 0xf;
  766. c->x86_mask = tfms & 0xf;
  767. if (c->x86 == 0xf)
  768. c->x86 += (tfms >> 20) & 0xff;
  769. if (c->x86 >= 0x6)
  770. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  771. if (c->x86_capability[0] & (1<<19))
  772. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  773. } else {
  774. /* Have CPUID level 0 only - unheard of */
  775. c->x86 = 4;
  776. }
  777. #ifdef CONFIG_SMP
  778. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  779. #endif
  780. /* AMD-defined flags: level 0x80000001 */
  781. xlvl = cpuid_eax(0x80000000);
  782. c->extended_cpuid_level = xlvl;
  783. if ((xlvl & 0xffff0000) == 0x80000000) {
  784. if (xlvl >= 0x80000001) {
  785. c->x86_capability[1] = cpuid_edx(0x80000001);
  786. c->x86_capability[6] = cpuid_ecx(0x80000001);
  787. }
  788. if (xlvl >= 0x80000004)
  789. get_model_name(c); /* Default name */
  790. }
  791. /* Transmeta-defined flags: level 0x80860001 */
  792. xlvl = cpuid_eax(0x80860000);
  793. if ((xlvl & 0xffff0000) == 0x80860000) {
  794. /* Don't set x86_cpuid_level here for now to not confuse. */
  795. if (xlvl >= 0x80860001)
  796. c->x86_capability[2] = cpuid_edx(0x80860001);
  797. }
  798. switch (c->x86_vendor) {
  799. case X86_VENDOR_AMD:
  800. early_init_amd(c);
  801. break;
  802. }
  803. }
  804. /*
  805. * This does the hard work of actually picking apart the CPU stuff...
  806. */
  807. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  808. {
  809. int i;
  810. early_identify_cpu(c);
  811. init_scattered_cpuid_features(c);
  812. c->apicid = phys_pkg_id(0);
  813. /*
  814. * Vendor-specific initialization. In this section we
  815. * canonicalize the feature flags, meaning if there are
  816. * features a certain CPU supports which CPUID doesn't
  817. * tell us, CPUID claiming incorrect flags, or other bugs,
  818. * we handle them here.
  819. *
  820. * At the end of this section, c->x86_capability better
  821. * indicate the features this CPU genuinely supports!
  822. */
  823. switch (c->x86_vendor) {
  824. case X86_VENDOR_AMD:
  825. init_amd(c);
  826. break;
  827. case X86_VENDOR_INTEL:
  828. init_intel(c);
  829. break;
  830. case X86_VENDOR_UNKNOWN:
  831. default:
  832. display_cacheinfo(c);
  833. break;
  834. }
  835. select_idle_routine(c);
  836. detect_ht(c);
  837. /*
  838. * On SMP, boot_cpu_data holds the common feature set between
  839. * all CPUs; so make sure that we indicate which features are
  840. * common between the CPUs. The first time this routine gets
  841. * executed, c == &boot_cpu_data.
  842. */
  843. if (c != &boot_cpu_data) {
  844. /* AND the already accumulated flags with these */
  845. for (i = 0; i < NCAPINTS; i++)
  846. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  847. }
  848. #ifdef CONFIG_X86_MCE
  849. mcheck_init(c);
  850. #endif
  851. if (c != &boot_cpu_data)
  852. mtrr_ap_init();
  853. #ifdef CONFIG_NUMA
  854. numa_add_cpu(smp_processor_id());
  855. #endif
  856. }
  857. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  858. {
  859. if (c->x86_model_id[0])
  860. printk(KERN_INFO "%s", c->x86_model_id);
  861. if (c->x86_mask || c->cpuid_level >= 0)
  862. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  863. else
  864. printk(KERN_CONT "\n");
  865. }
  866. /*
  867. * Get CPU information for use by the procfs.
  868. */
  869. static int show_cpuinfo(struct seq_file *m, void *v)
  870. {
  871. struct cpuinfo_x86 *c = v;
  872. int cpu = 0, i;
  873. /*
  874. * These flag bits must match the definitions in <asm/cpufeature.h>.
  875. * NULL means this bit is undefined or reserved; either way it doesn't
  876. * have meaning as far as Linux is concerned. Note that it's important
  877. * to realize there is a difference between this table and CPUID -- if
  878. * applications want to get the raw CPUID data, they should access
  879. * /dev/cpu/<cpu_nr>/cpuid instead.
  880. */
  881. static const char *const x86_cap_flags[] = {
  882. /* Intel-defined */
  883. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  884. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  885. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  886. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
  887. /* AMD-defined */
  888. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  889. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  890. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  891. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  892. "3dnowext", "3dnow",
  893. /* Transmeta-defined */
  894. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  895. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  896. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  897. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  898. /* Other (Linux-defined) */
  899. "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
  900. NULL, NULL, NULL, NULL,
  901. "constant_tsc", "up", NULL, "arch_perfmon",
  902. "pebs", "bts", NULL, "sync_rdtsc",
  903. "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  904. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  905. /* Intel-defined (#2) */
  906. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  907. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  908. NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
  909. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  910. /* VIA/Cyrix/Centaur-defined */
  911. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  912. "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
  913. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  914. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  915. /* AMD-defined (#2) */
  916. "lahf_lm", "cmp_legacy", "svm", "extapic",
  917. "cr8_legacy", "abm", "sse4a", "misalignsse",
  918. "3dnowprefetch", "osvw", "ibs", "sse5",
  919. "skinit", "wdt", NULL, NULL,
  920. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  921. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  922. /* Auxiliary (Linux-defined) */
  923. "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  924. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  925. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  926. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  927. };
  928. static const char *const x86_power_flags[] = {
  929. "ts", /* temperature sensor */
  930. "fid", /* frequency id control */
  931. "vid", /* voltage id control */
  932. "ttp", /* thermal trip */
  933. "tm",
  934. "stc",
  935. "100mhzsteps",
  936. "hwpstate",
  937. "", /* tsc invariant mapped to constant_tsc */
  938. /* nothing */
  939. };
  940. #ifdef CONFIG_SMP
  941. cpu = c->cpu_index;
  942. #endif
  943. seq_printf(m, "processor\t: %u\n"
  944. "vendor_id\t: %s\n"
  945. "cpu family\t: %d\n"
  946. "model\t\t: %d\n"
  947. "model name\t: %s\n",
  948. (unsigned)cpu,
  949. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  950. c->x86,
  951. (int)c->x86_model,
  952. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  953. if (c->x86_mask || c->cpuid_level >= 0)
  954. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  955. else
  956. seq_printf(m, "stepping\t: unknown\n");
  957. if (cpu_has(c, X86_FEATURE_TSC)) {
  958. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  959. if (!freq)
  960. freq = cpu_khz;
  961. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  962. freq / 1000, (freq % 1000));
  963. }
  964. /* Cache size */
  965. if (c->x86_cache_size >= 0)
  966. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  967. #ifdef CONFIG_SMP
  968. if (smp_num_siblings * c->x86_max_cores > 1) {
  969. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  970. seq_printf(m, "siblings\t: %d\n",
  971. cpus_weight(per_cpu(cpu_core_map, cpu)));
  972. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  973. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  974. }
  975. #endif
  976. seq_printf(m,
  977. "fpu\t\t: yes\n"
  978. "fpu_exception\t: yes\n"
  979. "cpuid level\t: %d\n"
  980. "wp\t\t: yes\n"
  981. "flags\t\t:",
  982. c->cpuid_level);
  983. for (i = 0; i < 32*NCAPINTS; i++)
  984. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  985. seq_printf(m, " %s", x86_cap_flags[i]);
  986. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  987. c->loops_per_jiffy/(500000/HZ),
  988. (c->loops_per_jiffy/(5000/HZ)) % 100);
  989. if (c->x86_tlbsize > 0)
  990. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  991. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  992. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  993. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  994. c->x86_phys_bits, c->x86_virt_bits);
  995. seq_printf(m, "power management:");
  996. for (i = 0; i < 32; i++) {
  997. if (c->x86_power & (1 << i)) {
  998. if (i < ARRAY_SIZE(x86_power_flags) &&
  999. x86_power_flags[i])
  1000. seq_printf(m, "%s%s",
  1001. x86_power_flags[i][0]?" ":"",
  1002. x86_power_flags[i]);
  1003. else
  1004. seq_printf(m, " [%d]", i);
  1005. }
  1006. }
  1007. seq_printf(m, "\n\n");
  1008. return 0;
  1009. }
  1010. static void *c_start(struct seq_file *m, loff_t *pos)
  1011. {
  1012. if (*pos == 0) /* just in case, cpu 0 is not the first */
  1013. *pos = first_cpu(cpu_online_map);
  1014. if ((*pos) < NR_CPUS && cpu_online(*pos))
  1015. return &cpu_data(*pos);
  1016. return NULL;
  1017. }
  1018. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1019. {
  1020. *pos = next_cpu(*pos, cpu_online_map);
  1021. return c_start(m, pos);
  1022. }
  1023. static void c_stop(struct seq_file *m, void *v)
  1024. {
  1025. }
  1026. struct seq_operations cpuinfo_op = {
  1027. .start = c_start,
  1028. .next = c_next,
  1029. .stop = c_stop,
  1030. .show = show_cpuinfo,
  1031. };