123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550 |
- /*
- * Copyright (C) 2004-2006 Atmel Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/clk.h>
- #include <linux/init.h>
- #include <linux/initrd.h>
- #include <linux/sched.h>
- #include <linux/console.h>
- #include <linux/ioport.h>
- #include <linux/bootmem.h>
- #include <linux/fs.h>
- #include <linux/module.h>
- #include <linux/pfn.h>
- #include <linux/root_dev.h>
- #include <linux/cpu.h>
- #include <linux/kernel.h>
- #include <asm/sections.h>
- #include <asm/processor.h>
- #include <asm/pgtable.h>
- #include <asm/setup.h>
- #include <asm/sysreg.h>
- #include <asm/arch/board.h>
- #include <asm/arch/init.h>
- extern int root_mountflags;
- /*
- * Bootloader-provided information about physical memory
- */
- struct tag_mem_range *mem_phys;
- struct tag_mem_range *mem_reserved;
- struct tag_mem_range *mem_ramdisk;
- /*
- * Initialize loops_per_jiffy as 5000000 (500MIPS).
- * Better make it too large than too small...
- */
- struct avr32_cpuinfo boot_cpu_data = {
- .loops_per_jiffy = 5000000
- };
- EXPORT_SYMBOL(boot_cpu_data);
- static char __initdata command_line[COMMAND_LINE_SIZE];
- /*
- * Should be more than enough, but if you have a _really_ complex
- * setup, you might need to increase the size of this...
- */
- static struct tag_mem_range __initdata mem_range_cache[32];
- static unsigned mem_range_next_free;
- /*
- * Standard memory resources
- */
- static struct resource mem_res[] = {
- {
- .name = "Kernel code",
- .start = 0,
- .end = 0,
- .flags = IORESOURCE_MEM
- },
- {
- .name = "Kernel data",
- .start = 0,
- .end = 0,
- .flags = IORESOURCE_MEM,
- },
- };
- #define kernel_code mem_res[0]
- #define kernel_data mem_res[1]
- /*
- * Early framebuffer allocation. Works as follows:
- * - If fbmem_size is zero, nothing will be allocated or reserved.
- * - If fbmem_start is zero when setup_bootmem() is called,
- * fbmem_size bytes will be allocated from the bootmem allocator.
- * - If fbmem_start is nonzero, an area of size fbmem_size will be
- * reserved at the physical address fbmem_start if necessary. If
- * the area isn't in a memory region known to the kernel, it will
- * be left alone.
- *
- * Board-specific code may use these variables to set up platform data
- * for the framebuffer driver if fbmem_size is nonzero.
- */
- static unsigned long __initdata fbmem_start;
- static unsigned long __initdata fbmem_size;
- /*
- * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
- * use as framebuffer.
- *
- * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
- * starting at yyy to be reserved for use as framebuffer.
- *
- * The kernel won't verify that the memory region starting at yyy
- * actually contains usable RAM.
- */
- static int __init early_parse_fbmem(char *p)
- {
- fbmem_size = memparse(p, &p);
- if (*p == '@')
- fbmem_start = memparse(p, &p);
- return 0;
- }
- early_param("fbmem", early_parse_fbmem);
- static inline void __init resource_init(void)
- {
- struct tag_mem_range *region;
- kernel_code.start = __pa(init_mm.start_code);
- kernel_code.end = __pa(init_mm.end_code - 1);
- kernel_data.start = __pa(init_mm.end_code);
- kernel_data.end = __pa(init_mm.brk - 1);
- for (region = mem_phys; region; region = region->next) {
- struct resource *res;
- unsigned long phys_start, phys_end;
- if (region->size == 0)
- continue;
- phys_start = region->addr;
- phys_end = phys_start + region->size - 1;
- res = alloc_bootmem_low(sizeof(*res));
- res->name = "System RAM";
- res->start = phys_start;
- res->end = phys_end;
- res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
- request_resource (&iomem_resource, res);
- if (kernel_code.start >= res->start &&
- kernel_code.end <= res->end)
- request_resource (res, &kernel_code);
- if (kernel_data.start >= res->start &&
- kernel_data.end <= res->end)
- request_resource (res, &kernel_data);
- }
- }
- static int __init parse_tag_core(struct tag *tag)
- {
- if (tag->hdr.size > 2) {
- if ((tag->u.core.flags & 1) == 0)
- root_mountflags &= ~MS_RDONLY;
- ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
- }
- return 0;
- }
- __tagtable(ATAG_CORE, parse_tag_core);
- static int __init parse_tag_mem_range(struct tag *tag,
- struct tag_mem_range **root)
- {
- struct tag_mem_range *cur, **pprev;
- struct tag_mem_range *new;
- /*
- * Ignore zero-sized entries. If we're running standalone, the
- * SDRAM code may emit such entries if something goes
- * wrong...
- */
- if (tag->u.mem_range.size == 0)
- return 0;
- /*
- * Copy the data so the bootmem init code doesn't need to care
- * about it.
- */
- if (mem_range_next_free >= ARRAY_SIZE(mem_range_cache))
- panic("Physical memory map too complex!\n");
- new = &mem_range_cache[mem_range_next_free++];
- *new = tag->u.mem_range;
- pprev = root;
- cur = *root;
- while (cur) {
- pprev = &cur->next;
- cur = cur->next;
- }
- *pprev = new;
- new->next = NULL;
- return 0;
- }
- static int __init parse_tag_mem(struct tag *tag)
- {
- return parse_tag_mem_range(tag, &mem_phys);
- }
- __tagtable(ATAG_MEM, parse_tag_mem);
- static int __init parse_tag_cmdline(struct tag *tag)
- {
- strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
- return 0;
- }
- __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
- static int __init parse_tag_rdimg(struct tag *tag)
- {
- return parse_tag_mem_range(tag, &mem_ramdisk);
- }
- __tagtable(ATAG_RDIMG, parse_tag_rdimg);
- static int __init parse_tag_clock(struct tag *tag)
- {
- /*
- * We'll figure out the clocks by peeking at the system
- * manager regs directly.
- */
- return 0;
- }
- __tagtable(ATAG_CLOCK, parse_tag_clock);
- static int __init parse_tag_rsvd_mem(struct tag *tag)
- {
- return parse_tag_mem_range(tag, &mem_reserved);
- }
- __tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
- /*
- * Scan the tag table for this tag, and call its parse function. The
- * tag table is built by the linker from all the __tagtable
- * declarations.
- */
- static int __init parse_tag(struct tag *tag)
- {
- extern struct tagtable __tagtable_begin, __tagtable_end;
- struct tagtable *t;
- for (t = &__tagtable_begin; t < &__tagtable_end; t++)
- if (tag->hdr.tag == t->tag) {
- t->parse(tag);
- break;
- }
- return t < &__tagtable_end;
- }
- /*
- * Parse all tags in the list we got from the boot loader
- */
- static void __init parse_tags(struct tag *t)
- {
- for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
- if (!parse_tag(t))
- printk(KERN_WARNING
- "Ignoring unrecognised tag 0x%08x\n",
- t->hdr.tag);
- }
- static void __init print_memory_map(const char *what,
- struct tag_mem_range *mem)
- {
- printk ("%s:\n", what);
- for (; mem; mem = mem->next) {
- printk (" %08lx - %08lx\n",
- (unsigned long)mem->addr,
- (unsigned long)(mem->addr + mem->size));
- }
- }
- #define MAX_LOWMEM HIGHMEM_START
- #define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM)
- /*
- * Sort a list of memory regions in-place by ascending address.
- *
- * We're using bubble sort because we only have singly linked lists
- * with few elements.
- */
- static void __init sort_mem_list(struct tag_mem_range **pmem)
- {
- int done;
- struct tag_mem_range **a, **b;
- if (!*pmem)
- return;
- do {
- done = 1;
- a = pmem, b = &(*pmem)->next;
- while (*b) {
- if ((*a)->addr > (*b)->addr) {
- struct tag_mem_range *tmp;
- tmp = (*b)->next;
- (*b)->next = *a;
- *a = *b;
- *b = tmp;
- done = 0;
- }
- a = &(*a)->next;
- b = &(*a)->next;
- }
- } while (!done);
- }
- /*
- * Find a free memory region large enough for storing the
- * bootmem bitmap.
- */
- static unsigned long __init
- find_bootmap_pfn(const struct tag_mem_range *mem)
- {
- unsigned long bootmap_pages, bootmap_len;
- unsigned long node_pages = PFN_UP(mem->size);
- unsigned long bootmap_addr = mem->addr;
- struct tag_mem_range *reserved = mem_reserved;
- struct tag_mem_range *ramdisk = mem_ramdisk;
- unsigned long kern_start = __pa(_stext);
- unsigned long kern_end = __pa(_end);
- bootmap_pages = bootmem_bootmap_pages(node_pages);
- bootmap_len = bootmap_pages << PAGE_SHIFT;
- /*
- * Find a large enough region without reserved pages for
- * storing the bootmem bitmap. We can take advantage of the
- * fact that all lists have been sorted.
- *
- * We have to check explicitly reserved regions as well as the
- * kernel image and any RAMDISK images...
- *
- * Oh, and we have to make sure we don't overwrite the taglist
- * since we're going to use it until the bootmem allocator is
- * fully up and running.
- */
- while (1) {
- if ((bootmap_addr < kern_end) &&
- ((bootmap_addr + bootmap_len) > kern_start))
- bootmap_addr = kern_end;
- while (reserved &&
- (bootmap_addr >= (reserved->addr + reserved->size)))
- reserved = reserved->next;
- if (reserved &&
- ((bootmap_addr + bootmap_len) >= reserved->addr)) {
- bootmap_addr = reserved->addr + reserved->size;
- continue;
- }
- while (ramdisk &&
- (bootmap_addr >= (ramdisk->addr + ramdisk->size)))
- ramdisk = ramdisk->next;
- if (!ramdisk ||
- ((bootmap_addr + bootmap_len) < ramdisk->addr))
- break;
- bootmap_addr = ramdisk->addr + ramdisk->size;
- }
- if ((PFN_UP(bootmap_addr) + bootmap_len) >= (mem->addr + mem->size))
- return ~0UL;
- return PFN_UP(bootmap_addr);
- }
- static void __init setup_bootmem(void)
- {
- unsigned bootmap_size;
- unsigned long first_pfn, bootmap_pfn, pages;
- unsigned long max_pfn, max_low_pfn;
- unsigned long kern_start = __pa(_stext);
- unsigned long kern_end = __pa(_end);
- unsigned node = 0;
- struct tag_mem_range *bank, *res;
- sort_mem_list(&mem_phys);
- sort_mem_list(&mem_reserved);
- print_memory_map("Physical memory", mem_phys);
- print_memory_map("Reserved memory", mem_reserved);
- nodes_clear(node_online_map);
- if (mem_ramdisk) {
- #ifdef CONFIG_BLK_DEV_INITRD
- initrd_start = (unsigned long)__va(mem_ramdisk->addr);
- initrd_end = initrd_start + mem_ramdisk->size;
- print_memory_map("RAMDISK images", mem_ramdisk);
- if (mem_ramdisk->next)
- printk(KERN_WARNING
- "Warning: Only the first RAMDISK image "
- "will be used\n");
- sort_mem_list(&mem_ramdisk);
- #else
- printk(KERN_WARNING "RAM disk image present, but "
- "no initrd support in kernel!\n");
- #endif
- }
- if (mem_phys->next)
- printk(KERN_WARNING "Only using first memory bank\n");
- for (bank = mem_phys; bank; bank = NULL) {
- first_pfn = PFN_UP(bank->addr);
- max_low_pfn = max_pfn = PFN_DOWN(bank->addr + bank->size);
- bootmap_pfn = find_bootmap_pfn(bank);
- if (bootmap_pfn > max_pfn)
- panic("No space for bootmem bitmap!\n");
- if (max_low_pfn > MAX_LOWMEM_PFN) {
- max_low_pfn = MAX_LOWMEM_PFN;
- #ifndef CONFIG_HIGHMEM
- /*
- * Lowmem is memory that can be addressed
- * directly through P1/P2
- */
- printk(KERN_WARNING
- "Node %u: Only %ld MiB of memory will be used.\n",
- node, MAX_LOWMEM >> 20);
- printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
- #else
- #error HIGHMEM is not supported by AVR32 yet
- #endif
- }
- /* Initialize the boot-time allocator with low memory only. */
- bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
- first_pfn, max_low_pfn);
- printk("Node %u: bdata = %p, bdata->node_bootmem_map = %p\n",
- node, NODE_DATA(node)->bdata,
- NODE_DATA(node)->bdata->node_bootmem_map);
- /*
- * Register fully available RAM pages with the bootmem
- * allocator.
- */
- pages = max_low_pfn - first_pfn;
- free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
- PFN_PHYS(pages));
- /*
- * Reserve space for the kernel image (if present in
- * this node)...
- */
- if ((kern_start >= PFN_PHYS(first_pfn)) &&
- (kern_start < PFN_PHYS(max_pfn))) {
- printk("Node %u: Kernel image %08lx - %08lx\n",
- node, kern_start, kern_end);
- reserve_bootmem_node(NODE_DATA(node), kern_start,
- kern_end - kern_start);
- }
- /* ...the bootmem bitmap... */
- reserve_bootmem_node(NODE_DATA(node),
- PFN_PHYS(bootmap_pfn),
- bootmap_size);
- /* ...any RAMDISK images... */
- for (res = mem_ramdisk; res; res = res->next) {
- if (res->addr > PFN_PHYS(max_pfn))
- break;
- if (res->addr >= PFN_PHYS(first_pfn)) {
- printk("Node %u: RAMDISK %08lx - %08lx\n",
- node,
- (unsigned long)res->addr,
- (unsigned long)(res->addr + res->size));
- reserve_bootmem_node(NODE_DATA(node),
- res->addr, res->size);
- }
- }
- /* ...and any other reserved regions. */
- for (res = mem_reserved; res; res = res->next) {
- if (res->addr > PFN_PHYS(max_pfn))
- break;
- if (res->addr >= PFN_PHYS(first_pfn)) {
- printk("Node %u: Reserved %08lx - %08lx\n",
- node,
- (unsigned long)res->addr,
- (unsigned long)(res->addr + res->size));
- reserve_bootmem_node(NODE_DATA(node),
- res->addr, res->size);
- }
- }
- node_set_online(node);
- }
- }
- void __init setup_arch (char **cmdline_p)
- {
- struct clk *cpu_clk;
- parse_tags(bootloader_tags);
- setup_processor();
- setup_platform();
- setup_board();
- cpu_clk = clk_get(NULL, "cpu");
- if (IS_ERR(cpu_clk)) {
- printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
- } else {
- unsigned long cpu_hz = clk_get_rate(cpu_clk);
- /*
- * Well, duh, but it's probably a good idea to
- * increment the use count.
- */
- clk_enable(cpu_clk);
- boot_cpu_data.clk = cpu_clk;
- boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
- printk("CPU: Running at %lu.%03lu MHz\n",
- ((cpu_hz + 500) / 1000) / 1000,
- ((cpu_hz + 500) / 1000) % 1000);
- }
- init_mm.start_code = (unsigned long) &_text;
- init_mm.end_code = (unsigned long) &_etext;
- init_mm.end_data = (unsigned long) &_edata;
- init_mm.brk = (unsigned long) &_end;
- strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
- *cmdline_p = command_line;
- parse_early_param();
- setup_bootmem();
- board_setup_fbmem(fbmem_start, fbmem_size);
- #ifdef CONFIG_VT
- conswitchp = &dummy_con;
- #endif
- paging_init();
- resource_init();
- }
|