memcontrol.c 186 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * This program is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License as published by
  19. * the Free Software Foundation; either version 2 of the License, or
  20. * (at your option) any later version.
  21. *
  22. * This program is distributed in the hope that it will be useful,
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  25. * GNU General Public License for more details.
  26. */
  27. #include <linux/res_counter.h>
  28. #include <linux/memcontrol.h>
  29. #include <linux/cgroup.h>
  30. #include <linux/mm.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/smp.h>
  34. #include <linux/page-flags.h>
  35. #include <linux/backing-dev.h>
  36. #include <linux/bit_spinlock.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/limits.h>
  39. #include <linux/export.h>
  40. #include <linux/mutex.h>
  41. #include <linux/rbtree.h>
  42. #include <linux/slab.h>
  43. #include <linux/swap.h>
  44. #include <linux/swapops.h>
  45. #include <linux/spinlock.h>
  46. #include <linux/eventfd.h>
  47. #include <linux/sort.h>
  48. #include <linux/fs.h>
  49. #include <linux/seq_file.h>
  50. #include <linux/vmalloc.h>
  51. #include <linux/vmpressure.h>
  52. #include <linux/mm_inline.h>
  53. #include <linux/page_cgroup.h>
  54. #include <linux/cpu.h>
  55. #include <linux/oom.h>
  56. #include "internal.h"
  57. #include <net/sock.h>
  58. #include <net/ip.h>
  59. #include <net/tcp_memcontrol.h>
  60. #include <asm/uaccess.h>
  61. #include <trace/events/vmscan.h>
  62. struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  63. EXPORT_SYMBOL(mem_cgroup_subsys);
  64. #define MEM_CGROUP_RECLAIM_RETRIES 5
  65. static struct mem_cgroup *root_mem_cgroup __read_mostly;
  66. #ifdef CONFIG_MEMCG_SWAP
  67. /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  68. int do_swap_account __read_mostly;
  69. /* for remember boot option*/
  70. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  71. static int really_do_swap_account __initdata = 1;
  72. #else
  73. static int really_do_swap_account __initdata = 0;
  74. #endif
  75. #else
  76. #define do_swap_account 0
  77. #endif
  78. /*
  79. * Statistics for memory cgroup.
  80. */
  81. enum mem_cgroup_stat_index {
  82. /*
  83. * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  84. */
  85. MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
  86. MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
  87. MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
  88. MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
  89. MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
  90. MEM_CGROUP_STAT_NSTATS,
  91. };
  92. static const char * const mem_cgroup_stat_names[] = {
  93. "cache",
  94. "rss",
  95. "rss_huge",
  96. "mapped_file",
  97. "swap",
  98. };
  99. enum mem_cgroup_events_index {
  100. MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
  101. MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
  102. MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
  103. MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
  104. MEM_CGROUP_EVENTS_NSTATS,
  105. };
  106. static const char * const mem_cgroup_events_names[] = {
  107. "pgpgin",
  108. "pgpgout",
  109. "pgfault",
  110. "pgmajfault",
  111. };
  112. static const char * const mem_cgroup_lru_names[] = {
  113. "inactive_anon",
  114. "active_anon",
  115. "inactive_file",
  116. "active_file",
  117. "unevictable",
  118. };
  119. /*
  120. * Per memcg event counter is incremented at every pagein/pageout. With THP,
  121. * it will be incremated by the number of pages. This counter is used for
  122. * for trigger some periodic events. This is straightforward and better
  123. * than using jiffies etc. to handle periodic memcg event.
  124. */
  125. enum mem_cgroup_events_target {
  126. MEM_CGROUP_TARGET_THRESH,
  127. MEM_CGROUP_TARGET_SOFTLIMIT,
  128. MEM_CGROUP_TARGET_NUMAINFO,
  129. MEM_CGROUP_NTARGETS,
  130. };
  131. #define THRESHOLDS_EVENTS_TARGET 128
  132. #define SOFTLIMIT_EVENTS_TARGET 1024
  133. #define NUMAINFO_EVENTS_TARGET 1024
  134. struct mem_cgroup_stat_cpu {
  135. long count[MEM_CGROUP_STAT_NSTATS];
  136. unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
  137. unsigned long nr_page_events;
  138. unsigned long targets[MEM_CGROUP_NTARGETS];
  139. };
  140. struct mem_cgroup_reclaim_iter {
  141. /*
  142. * last scanned hierarchy member. Valid only if last_dead_count
  143. * matches memcg->dead_count of the hierarchy root group.
  144. */
  145. struct mem_cgroup *last_visited;
  146. unsigned long last_dead_count;
  147. /* scan generation, increased every round-trip */
  148. unsigned int generation;
  149. };
  150. /*
  151. * per-zone information in memory controller.
  152. */
  153. struct mem_cgroup_per_zone {
  154. struct lruvec lruvec;
  155. unsigned long lru_size[NR_LRU_LISTS];
  156. struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
  157. struct rb_node tree_node; /* RB tree node */
  158. unsigned long long usage_in_excess;/* Set to the value by which */
  159. /* the soft limit is exceeded*/
  160. bool on_tree;
  161. struct mem_cgroup *memcg; /* Back pointer, we cannot */
  162. /* use container_of */
  163. };
  164. struct mem_cgroup_per_node {
  165. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  166. };
  167. /*
  168. * Cgroups above their limits are maintained in a RB-Tree, independent of
  169. * their hierarchy representation
  170. */
  171. struct mem_cgroup_tree_per_zone {
  172. struct rb_root rb_root;
  173. spinlock_t lock;
  174. };
  175. struct mem_cgroup_tree_per_node {
  176. struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
  177. };
  178. struct mem_cgroup_tree {
  179. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  180. };
  181. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  182. struct mem_cgroup_threshold {
  183. struct eventfd_ctx *eventfd;
  184. u64 threshold;
  185. };
  186. /* For threshold */
  187. struct mem_cgroup_threshold_ary {
  188. /* An array index points to threshold just below or equal to usage. */
  189. int current_threshold;
  190. /* Size of entries[] */
  191. unsigned int size;
  192. /* Array of thresholds */
  193. struct mem_cgroup_threshold entries[0];
  194. };
  195. struct mem_cgroup_thresholds {
  196. /* Primary thresholds array */
  197. struct mem_cgroup_threshold_ary *primary;
  198. /*
  199. * Spare threshold array.
  200. * This is needed to make mem_cgroup_unregister_event() "never fail".
  201. * It must be able to store at least primary->size - 1 entries.
  202. */
  203. struct mem_cgroup_threshold_ary *spare;
  204. };
  205. /* for OOM */
  206. struct mem_cgroup_eventfd_list {
  207. struct list_head list;
  208. struct eventfd_ctx *eventfd;
  209. };
  210. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  211. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  212. /*
  213. * The memory controller data structure. The memory controller controls both
  214. * page cache and RSS per cgroup. We would eventually like to provide
  215. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  216. * to help the administrator determine what knobs to tune.
  217. *
  218. * TODO: Add a water mark for the memory controller. Reclaim will begin when
  219. * we hit the water mark. May be even add a low water mark, such that
  220. * no reclaim occurs from a cgroup at it's low water mark, this is
  221. * a feature that will be implemented much later in the future.
  222. */
  223. struct mem_cgroup {
  224. struct cgroup_subsys_state css;
  225. /*
  226. * the counter to account for memory usage
  227. */
  228. struct res_counter res;
  229. /* vmpressure notifications */
  230. struct vmpressure vmpressure;
  231. union {
  232. /*
  233. * the counter to account for mem+swap usage.
  234. */
  235. struct res_counter memsw;
  236. /*
  237. * rcu_freeing is used only when freeing struct mem_cgroup,
  238. * so put it into a union to avoid wasting more memory.
  239. * It must be disjoint from the css field. It could be
  240. * in a union with the res field, but res plays a much
  241. * larger part in mem_cgroup life than memsw, and might
  242. * be of interest, even at time of free, when debugging.
  243. * So share rcu_head with the less interesting memsw.
  244. */
  245. struct rcu_head rcu_freeing;
  246. /*
  247. * We also need some space for a worker in deferred freeing.
  248. * By the time we call it, rcu_freeing is no longer in use.
  249. */
  250. struct work_struct work_freeing;
  251. };
  252. /*
  253. * the counter to account for kernel memory usage.
  254. */
  255. struct res_counter kmem;
  256. /*
  257. * Should the accounting and control be hierarchical, per subtree?
  258. */
  259. bool use_hierarchy;
  260. unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
  261. bool oom_lock;
  262. atomic_t under_oom;
  263. atomic_t refcnt;
  264. int swappiness;
  265. /* OOM-Killer disable */
  266. int oom_kill_disable;
  267. /* set when res.limit == memsw.limit */
  268. bool memsw_is_minimum;
  269. /* protect arrays of thresholds */
  270. struct mutex thresholds_lock;
  271. /* thresholds for memory usage. RCU-protected */
  272. struct mem_cgroup_thresholds thresholds;
  273. /* thresholds for mem+swap usage. RCU-protected */
  274. struct mem_cgroup_thresholds memsw_thresholds;
  275. /* For oom notifier event fd */
  276. struct list_head oom_notify;
  277. /*
  278. * Should we move charges of a task when a task is moved into this
  279. * mem_cgroup ? And what type of charges should we move ?
  280. */
  281. unsigned long move_charge_at_immigrate;
  282. /*
  283. * set > 0 if pages under this cgroup are moving to other cgroup.
  284. */
  285. atomic_t moving_account;
  286. /* taken only while moving_account > 0 */
  287. spinlock_t move_lock;
  288. /*
  289. * percpu counter.
  290. */
  291. struct mem_cgroup_stat_cpu __percpu *stat;
  292. /*
  293. * used when a cpu is offlined or other synchronizations
  294. * See mem_cgroup_read_stat().
  295. */
  296. struct mem_cgroup_stat_cpu nocpu_base;
  297. spinlock_t pcp_counter_lock;
  298. atomic_t dead_count;
  299. #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
  300. struct tcp_memcontrol tcp_mem;
  301. #endif
  302. #if defined(CONFIG_MEMCG_KMEM)
  303. /* analogous to slab_common's slab_caches list. per-memcg */
  304. struct list_head memcg_slab_caches;
  305. /* Not a spinlock, we can take a lot of time walking the list */
  306. struct mutex slab_caches_mutex;
  307. /* Index in the kmem_cache->memcg_params->memcg_caches array */
  308. int kmemcg_id;
  309. #endif
  310. int last_scanned_node;
  311. #if MAX_NUMNODES > 1
  312. nodemask_t scan_nodes;
  313. atomic_t numainfo_events;
  314. atomic_t numainfo_updating;
  315. #endif
  316. struct mem_cgroup_per_node *nodeinfo[0];
  317. /* WARNING: nodeinfo must be the last member here */
  318. };
  319. static size_t memcg_size(void)
  320. {
  321. return sizeof(struct mem_cgroup) +
  322. nr_node_ids * sizeof(struct mem_cgroup_per_node);
  323. }
  324. /* internal only representation about the status of kmem accounting. */
  325. enum {
  326. KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
  327. KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
  328. KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
  329. };
  330. /* We account when limit is on, but only after call sites are patched */
  331. #define KMEM_ACCOUNTED_MASK \
  332. ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
  333. #ifdef CONFIG_MEMCG_KMEM
  334. static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
  335. {
  336. set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
  337. }
  338. static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
  339. {
  340. return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
  341. }
  342. static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
  343. {
  344. set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
  345. }
  346. static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
  347. {
  348. clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
  349. }
  350. static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
  351. {
  352. if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
  353. set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
  354. }
  355. static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
  356. {
  357. return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
  358. &memcg->kmem_account_flags);
  359. }
  360. #endif
  361. /* Stuffs for move charges at task migration. */
  362. /*
  363. * Types of charges to be moved. "move_charge_at_immitgrate" and
  364. * "immigrate_flags" are treated as a left-shifted bitmap of these types.
  365. */
  366. enum move_type {
  367. MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
  368. MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
  369. NR_MOVE_TYPE,
  370. };
  371. /* "mc" and its members are protected by cgroup_mutex */
  372. static struct move_charge_struct {
  373. spinlock_t lock; /* for from, to */
  374. struct mem_cgroup *from;
  375. struct mem_cgroup *to;
  376. unsigned long immigrate_flags;
  377. unsigned long precharge;
  378. unsigned long moved_charge;
  379. unsigned long moved_swap;
  380. struct task_struct *moving_task; /* a task moving charges */
  381. wait_queue_head_t waitq; /* a waitq for other context */
  382. } mc = {
  383. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  384. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  385. };
  386. static bool move_anon(void)
  387. {
  388. return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
  389. }
  390. static bool move_file(void)
  391. {
  392. return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
  393. }
  394. /*
  395. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  396. * limit reclaim to prevent infinite loops, if they ever occur.
  397. */
  398. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  399. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  400. enum charge_type {
  401. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  402. MEM_CGROUP_CHARGE_TYPE_ANON,
  403. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  404. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  405. NR_CHARGE_TYPE,
  406. };
  407. /* for encoding cft->private value on file */
  408. enum res_type {
  409. _MEM,
  410. _MEMSWAP,
  411. _OOM_TYPE,
  412. _KMEM,
  413. };
  414. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  415. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  416. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  417. /* Used for OOM nofiier */
  418. #define OOM_CONTROL (0)
  419. /*
  420. * Reclaim flags for mem_cgroup_hierarchical_reclaim
  421. */
  422. #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
  423. #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
  424. #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
  425. #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
  426. /*
  427. * The memcg_create_mutex will be held whenever a new cgroup is created.
  428. * As a consequence, any change that needs to protect against new child cgroups
  429. * appearing has to hold it as well.
  430. */
  431. static DEFINE_MUTEX(memcg_create_mutex);
  432. static void mem_cgroup_get(struct mem_cgroup *memcg);
  433. static void mem_cgroup_put(struct mem_cgroup *memcg);
  434. static inline
  435. struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
  436. {
  437. return container_of(s, struct mem_cgroup, css);
  438. }
  439. /* Some nice accessors for the vmpressure. */
  440. struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
  441. {
  442. if (!memcg)
  443. memcg = root_mem_cgroup;
  444. return &memcg->vmpressure;
  445. }
  446. struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
  447. {
  448. return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
  449. }
  450. struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
  451. {
  452. return &mem_cgroup_from_css(css)->vmpressure;
  453. }
  454. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  455. {
  456. return (memcg == root_mem_cgroup);
  457. }
  458. /* Writing them here to avoid exposing memcg's inner layout */
  459. #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
  460. void sock_update_memcg(struct sock *sk)
  461. {
  462. if (mem_cgroup_sockets_enabled) {
  463. struct mem_cgroup *memcg;
  464. struct cg_proto *cg_proto;
  465. BUG_ON(!sk->sk_prot->proto_cgroup);
  466. /* Socket cloning can throw us here with sk_cgrp already
  467. * filled. It won't however, necessarily happen from
  468. * process context. So the test for root memcg given
  469. * the current task's memcg won't help us in this case.
  470. *
  471. * Respecting the original socket's memcg is a better
  472. * decision in this case.
  473. */
  474. if (sk->sk_cgrp) {
  475. BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
  476. mem_cgroup_get(sk->sk_cgrp->memcg);
  477. return;
  478. }
  479. rcu_read_lock();
  480. memcg = mem_cgroup_from_task(current);
  481. cg_proto = sk->sk_prot->proto_cgroup(memcg);
  482. if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
  483. mem_cgroup_get(memcg);
  484. sk->sk_cgrp = cg_proto;
  485. }
  486. rcu_read_unlock();
  487. }
  488. }
  489. EXPORT_SYMBOL(sock_update_memcg);
  490. void sock_release_memcg(struct sock *sk)
  491. {
  492. if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
  493. struct mem_cgroup *memcg;
  494. WARN_ON(!sk->sk_cgrp->memcg);
  495. memcg = sk->sk_cgrp->memcg;
  496. mem_cgroup_put(memcg);
  497. }
  498. }
  499. struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
  500. {
  501. if (!memcg || mem_cgroup_is_root(memcg))
  502. return NULL;
  503. return &memcg->tcp_mem.cg_proto;
  504. }
  505. EXPORT_SYMBOL(tcp_proto_cgroup);
  506. static void disarm_sock_keys(struct mem_cgroup *memcg)
  507. {
  508. if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
  509. return;
  510. static_key_slow_dec(&memcg_socket_limit_enabled);
  511. }
  512. #else
  513. static void disarm_sock_keys(struct mem_cgroup *memcg)
  514. {
  515. }
  516. #endif
  517. #ifdef CONFIG_MEMCG_KMEM
  518. /*
  519. * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
  520. * There are two main reasons for not using the css_id for this:
  521. * 1) this works better in sparse environments, where we have a lot of memcgs,
  522. * but only a few kmem-limited. Or also, if we have, for instance, 200
  523. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  524. * 200 entry array for that.
  525. *
  526. * 2) In order not to violate the cgroup API, we would like to do all memory
  527. * allocation in ->create(). At that point, we haven't yet allocated the
  528. * css_id. Having a separate index prevents us from messing with the cgroup
  529. * core for this
  530. *
  531. * The current size of the caches array is stored in
  532. * memcg_limited_groups_array_size. It will double each time we have to
  533. * increase it.
  534. */
  535. static DEFINE_IDA(kmem_limited_groups);
  536. int memcg_limited_groups_array_size;
  537. /*
  538. * MIN_SIZE is different than 1, because we would like to avoid going through
  539. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  540. * cgroups is a reasonable guess. In the future, it could be a parameter or
  541. * tunable, but that is strictly not necessary.
  542. *
  543. * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
  544. * this constant directly from cgroup, but it is understandable that this is
  545. * better kept as an internal representation in cgroup.c. In any case, the
  546. * css_id space is not getting any smaller, and we don't have to necessarily
  547. * increase ours as well if it increases.
  548. */
  549. #define MEMCG_CACHES_MIN_SIZE 4
  550. #define MEMCG_CACHES_MAX_SIZE 65535
  551. /*
  552. * A lot of the calls to the cache allocation functions are expected to be
  553. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  554. * conditional to this static branch, we'll have to allow modules that does
  555. * kmem_cache_alloc and the such to see this symbol as well
  556. */
  557. struct static_key memcg_kmem_enabled_key;
  558. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  559. static void disarm_kmem_keys(struct mem_cgroup *memcg)
  560. {
  561. if (memcg_kmem_is_active(memcg)) {
  562. static_key_slow_dec(&memcg_kmem_enabled_key);
  563. ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
  564. }
  565. /*
  566. * This check can't live in kmem destruction function,
  567. * since the charges will outlive the cgroup
  568. */
  569. WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
  570. }
  571. #else
  572. static void disarm_kmem_keys(struct mem_cgroup *memcg)
  573. {
  574. }
  575. #endif /* CONFIG_MEMCG_KMEM */
  576. static void disarm_static_keys(struct mem_cgroup *memcg)
  577. {
  578. disarm_sock_keys(memcg);
  579. disarm_kmem_keys(memcg);
  580. }
  581. static void drain_all_stock_async(struct mem_cgroup *memcg);
  582. static struct mem_cgroup_per_zone *
  583. mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
  584. {
  585. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  586. return &memcg->nodeinfo[nid]->zoneinfo[zid];
  587. }
  588. struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
  589. {
  590. return &memcg->css;
  591. }
  592. static struct mem_cgroup_per_zone *
  593. page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
  594. {
  595. int nid = page_to_nid(page);
  596. int zid = page_zonenum(page);
  597. return mem_cgroup_zoneinfo(memcg, nid, zid);
  598. }
  599. static struct mem_cgroup_tree_per_zone *
  600. soft_limit_tree_node_zone(int nid, int zid)
  601. {
  602. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  603. }
  604. static struct mem_cgroup_tree_per_zone *
  605. soft_limit_tree_from_page(struct page *page)
  606. {
  607. int nid = page_to_nid(page);
  608. int zid = page_zonenum(page);
  609. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  610. }
  611. static void
  612. __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
  613. struct mem_cgroup_per_zone *mz,
  614. struct mem_cgroup_tree_per_zone *mctz,
  615. unsigned long long new_usage_in_excess)
  616. {
  617. struct rb_node **p = &mctz->rb_root.rb_node;
  618. struct rb_node *parent = NULL;
  619. struct mem_cgroup_per_zone *mz_node;
  620. if (mz->on_tree)
  621. return;
  622. mz->usage_in_excess = new_usage_in_excess;
  623. if (!mz->usage_in_excess)
  624. return;
  625. while (*p) {
  626. parent = *p;
  627. mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
  628. tree_node);
  629. if (mz->usage_in_excess < mz_node->usage_in_excess)
  630. p = &(*p)->rb_left;
  631. /*
  632. * We can't avoid mem cgroups that are over their soft
  633. * limit by the same amount
  634. */
  635. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  636. p = &(*p)->rb_right;
  637. }
  638. rb_link_node(&mz->tree_node, parent, p);
  639. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  640. mz->on_tree = true;
  641. }
  642. static void
  643. __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  644. struct mem_cgroup_per_zone *mz,
  645. struct mem_cgroup_tree_per_zone *mctz)
  646. {
  647. if (!mz->on_tree)
  648. return;
  649. rb_erase(&mz->tree_node, &mctz->rb_root);
  650. mz->on_tree = false;
  651. }
  652. static void
  653. mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  654. struct mem_cgroup_per_zone *mz,
  655. struct mem_cgroup_tree_per_zone *mctz)
  656. {
  657. spin_lock(&mctz->lock);
  658. __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  659. spin_unlock(&mctz->lock);
  660. }
  661. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  662. {
  663. unsigned long long excess;
  664. struct mem_cgroup_per_zone *mz;
  665. struct mem_cgroup_tree_per_zone *mctz;
  666. int nid = page_to_nid(page);
  667. int zid = page_zonenum(page);
  668. mctz = soft_limit_tree_from_page(page);
  669. /*
  670. * Necessary to update all ancestors when hierarchy is used.
  671. * because their event counter is not touched.
  672. */
  673. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  674. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  675. excess = res_counter_soft_limit_excess(&memcg->res);
  676. /*
  677. * We have to update the tree if mz is on RB-tree or
  678. * mem is over its softlimit.
  679. */
  680. if (excess || mz->on_tree) {
  681. spin_lock(&mctz->lock);
  682. /* if on-tree, remove it */
  683. if (mz->on_tree)
  684. __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  685. /*
  686. * Insert again. mz->usage_in_excess will be updated.
  687. * If excess is 0, no tree ops.
  688. */
  689. __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
  690. spin_unlock(&mctz->lock);
  691. }
  692. }
  693. }
  694. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  695. {
  696. int node, zone;
  697. struct mem_cgroup_per_zone *mz;
  698. struct mem_cgroup_tree_per_zone *mctz;
  699. for_each_node(node) {
  700. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  701. mz = mem_cgroup_zoneinfo(memcg, node, zone);
  702. mctz = soft_limit_tree_node_zone(node, zone);
  703. mem_cgroup_remove_exceeded(memcg, mz, mctz);
  704. }
  705. }
  706. }
  707. static struct mem_cgroup_per_zone *
  708. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  709. {
  710. struct rb_node *rightmost = NULL;
  711. struct mem_cgroup_per_zone *mz;
  712. retry:
  713. mz = NULL;
  714. rightmost = rb_last(&mctz->rb_root);
  715. if (!rightmost)
  716. goto done; /* Nothing to reclaim from */
  717. mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
  718. /*
  719. * Remove the node now but someone else can add it back,
  720. * we will to add it back at the end of reclaim to its correct
  721. * position in the tree.
  722. */
  723. __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
  724. if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
  725. !css_tryget(&mz->memcg->css))
  726. goto retry;
  727. done:
  728. return mz;
  729. }
  730. static struct mem_cgroup_per_zone *
  731. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  732. {
  733. struct mem_cgroup_per_zone *mz;
  734. spin_lock(&mctz->lock);
  735. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  736. spin_unlock(&mctz->lock);
  737. return mz;
  738. }
  739. /*
  740. * Implementation Note: reading percpu statistics for memcg.
  741. *
  742. * Both of vmstat[] and percpu_counter has threshold and do periodic
  743. * synchronization to implement "quick" read. There are trade-off between
  744. * reading cost and precision of value. Then, we may have a chance to implement
  745. * a periodic synchronizion of counter in memcg's counter.
  746. *
  747. * But this _read() function is used for user interface now. The user accounts
  748. * memory usage by memory cgroup and he _always_ requires exact value because
  749. * he accounts memory. Even if we provide quick-and-fuzzy read, we always
  750. * have to visit all online cpus and make sum. So, for now, unnecessary
  751. * synchronization is not implemented. (just implemented for cpu hotplug)
  752. *
  753. * If there are kernel internal actions which can make use of some not-exact
  754. * value, and reading all cpu value can be performance bottleneck in some
  755. * common workload, threashold and synchonization as vmstat[] should be
  756. * implemented.
  757. */
  758. static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
  759. enum mem_cgroup_stat_index idx)
  760. {
  761. long val = 0;
  762. int cpu;
  763. get_online_cpus();
  764. for_each_online_cpu(cpu)
  765. val += per_cpu(memcg->stat->count[idx], cpu);
  766. #ifdef CONFIG_HOTPLUG_CPU
  767. spin_lock(&memcg->pcp_counter_lock);
  768. val += memcg->nocpu_base.count[idx];
  769. spin_unlock(&memcg->pcp_counter_lock);
  770. #endif
  771. put_online_cpus();
  772. return val;
  773. }
  774. static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
  775. bool charge)
  776. {
  777. int val = (charge) ? 1 : -1;
  778. this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
  779. }
  780. static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
  781. enum mem_cgroup_events_index idx)
  782. {
  783. unsigned long val = 0;
  784. int cpu;
  785. for_each_online_cpu(cpu)
  786. val += per_cpu(memcg->stat->events[idx], cpu);
  787. #ifdef CONFIG_HOTPLUG_CPU
  788. spin_lock(&memcg->pcp_counter_lock);
  789. val += memcg->nocpu_base.events[idx];
  790. spin_unlock(&memcg->pcp_counter_lock);
  791. #endif
  792. return val;
  793. }
  794. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  795. struct page *page,
  796. bool anon, int nr_pages)
  797. {
  798. preempt_disable();
  799. /*
  800. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  801. * counted as CACHE even if it's on ANON LRU.
  802. */
  803. if (anon)
  804. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
  805. nr_pages);
  806. else
  807. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
  808. nr_pages);
  809. if (PageTransHuge(page))
  810. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  811. nr_pages);
  812. /* pagein of a big page is an event. So, ignore page size */
  813. if (nr_pages > 0)
  814. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
  815. else {
  816. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
  817. nr_pages = -nr_pages; /* for event */
  818. }
  819. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  820. preempt_enable();
  821. }
  822. unsigned long
  823. mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  824. {
  825. struct mem_cgroup_per_zone *mz;
  826. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  827. return mz->lru_size[lru];
  828. }
  829. static unsigned long
  830. mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
  831. unsigned int lru_mask)
  832. {
  833. struct mem_cgroup_per_zone *mz;
  834. enum lru_list lru;
  835. unsigned long ret = 0;
  836. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  837. for_each_lru(lru) {
  838. if (BIT(lru) & lru_mask)
  839. ret += mz->lru_size[lru];
  840. }
  841. return ret;
  842. }
  843. static unsigned long
  844. mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  845. int nid, unsigned int lru_mask)
  846. {
  847. u64 total = 0;
  848. int zid;
  849. for (zid = 0; zid < MAX_NR_ZONES; zid++)
  850. total += mem_cgroup_zone_nr_lru_pages(memcg,
  851. nid, zid, lru_mask);
  852. return total;
  853. }
  854. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  855. unsigned int lru_mask)
  856. {
  857. int nid;
  858. u64 total = 0;
  859. for_each_node_state(nid, N_MEMORY)
  860. total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  861. return total;
  862. }
  863. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  864. enum mem_cgroup_events_target target)
  865. {
  866. unsigned long val, next;
  867. val = __this_cpu_read(memcg->stat->nr_page_events);
  868. next = __this_cpu_read(memcg->stat->targets[target]);
  869. /* from time_after() in jiffies.h */
  870. if ((long)next - (long)val < 0) {
  871. switch (target) {
  872. case MEM_CGROUP_TARGET_THRESH:
  873. next = val + THRESHOLDS_EVENTS_TARGET;
  874. break;
  875. case MEM_CGROUP_TARGET_SOFTLIMIT:
  876. next = val + SOFTLIMIT_EVENTS_TARGET;
  877. break;
  878. case MEM_CGROUP_TARGET_NUMAINFO:
  879. next = val + NUMAINFO_EVENTS_TARGET;
  880. break;
  881. default:
  882. break;
  883. }
  884. __this_cpu_write(memcg->stat->targets[target], next);
  885. return true;
  886. }
  887. return false;
  888. }
  889. /*
  890. * Check events in order.
  891. *
  892. */
  893. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  894. {
  895. preempt_disable();
  896. /* threshold event is triggered in finer grain than soft limit */
  897. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  898. MEM_CGROUP_TARGET_THRESH))) {
  899. bool do_softlimit;
  900. bool do_numainfo __maybe_unused;
  901. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  902. MEM_CGROUP_TARGET_SOFTLIMIT);
  903. #if MAX_NUMNODES > 1
  904. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  905. MEM_CGROUP_TARGET_NUMAINFO);
  906. #endif
  907. preempt_enable();
  908. mem_cgroup_threshold(memcg);
  909. if (unlikely(do_softlimit))
  910. mem_cgroup_update_tree(memcg, page);
  911. #if MAX_NUMNODES > 1
  912. if (unlikely(do_numainfo))
  913. atomic_inc(&memcg->numainfo_events);
  914. #endif
  915. } else
  916. preempt_enable();
  917. }
  918. struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
  919. {
  920. return mem_cgroup_from_css(
  921. cgroup_subsys_state(cont, mem_cgroup_subsys_id));
  922. }
  923. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  924. {
  925. /*
  926. * mm_update_next_owner() may clear mm->owner to NULL
  927. * if it races with swapoff, page migration, etc.
  928. * So this can be called with p == NULL.
  929. */
  930. if (unlikely(!p))
  931. return NULL;
  932. return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
  933. }
  934. struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
  935. {
  936. struct mem_cgroup *memcg = NULL;
  937. if (!mm)
  938. return NULL;
  939. /*
  940. * Because we have no locks, mm->owner's may be being moved to other
  941. * cgroup. We use css_tryget() here even if this looks
  942. * pessimistic (rather than adding locks here).
  943. */
  944. rcu_read_lock();
  945. do {
  946. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  947. if (unlikely(!memcg))
  948. break;
  949. } while (!css_tryget(&memcg->css));
  950. rcu_read_unlock();
  951. return memcg;
  952. }
  953. /*
  954. * Returns a next (in a pre-order walk) alive memcg (with elevated css
  955. * ref. count) or NULL if the whole root's subtree has been visited.
  956. *
  957. * helper function to be used by mem_cgroup_iter
  958. */
  959. static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
  960. struct mem_cgroup *last_visited)
  961. {
  962. struct cgroup *prev_cgroup, *next_cgroup;
  963. /*
  964. * Root is not visited by cgroup iterators so it needs an
  965. * explicit visit.
  966. */
  967. if (!last_visited)
  968. return root;
  969. prev_cgroup = (last_visited == root) ? NULL
  970. : last_visited->css.cgroup;
  971. skip_node:
  972. next_cgroup = cgroup_next_descendant_pre(
  973. prev_cgroup, root->css.cgroup);
  974. /*
  975. * Even if we found a group we have to make sure it is
  976. * alive. css && !memcg means that the groups should be
  977. * skipped and we should continue the tree walk.
  978. * last_visited css is safe to use because it is
  979. * protected by css_get and the tree walk is rcu safe.
  980. */
  981. if (next_cgroup) {
  982. struct mem_cgroup *mem = mem_cgroup_from_cont(
  983. next_cgroup);
  984. if (css_tryget(&mem->css))
  985. return mem;
  986. else {
  987. prev_cgroup = next_cgroup;
  988. goto skip_node;
  989. }
  990. }
  991. return NULL;
  992. }
  993. static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
  994. {
  995. /*
  996. * When a group in the hierarchy below root is destroyed, the
  997. * hierarchy iterator can no longer be trusted since it might
  998. * have pointed to the destroyed group. Invalidate it.
  999. */
  1000. atomic_inc(&root->dead_count);
  1001. }
  1002. static struct mem_cgroup *
  1003. mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
  1004. struct mem_cgroup *root,
  1005. int *sequence)
  1006. {
  1007. struct mem_cgroup *position = NULL;
  1008. /*
  1009. * A cgroup destruction happens in two stages: offlining and
  1010. * release. They are separated by a RCU grace period.
  1011. *
  1012. * If the iterator is valid, we may still race with an
  1013. * offlining. The RCU lock ensures the object won't be
  1014. * released, tryget will fail if we lost the race.
  1015. */
  1016. *sequence = atomic_read(&root->dead_count);
  1017. if (iter->last_dead_count == *sequence) {
  1018. smp_rmb();
  1019. position = iter->last_visited;
  1020. if (position && !css_tryget(&position->css))
  1021. position = NULL;
  1022. }
  1023. return position;
  1024. }
  1025. static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
  1026. struct mem_cgroup *last_visited,
  1027. struct mem_cgroup *new_position,
  1028. int sequence)
  1029. {
  1030. if (last_visited)
  1031. css_put(&last_visited->css);
  1032. /*
  1033. * We store the sequence count from the time @last_visited was
  1034. * loaded successfully instead of rereading it here so that we
  1035. * don't lose destruction events in between. We could have
  1036. * raced with the destruction of @new_position after all.
  1037. */
  1038. iter->last_visited = new_position;
  1039. smp_wmb();
  1040. iter->last_dead_count = sequence;
  1041. }
  1042. /**
  1043. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  1044. * @root: hierarchy root
  1045. * @prev: previously returned memcg, NULL on first invocation
  1046. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  1047. *
  1048. * Returns references to children of the hierarchy below @root, or
  1049. * @root itself, or %NULL after a full round-trip.
  1050. *
  1051. * Caller must pass the return value in @prev on subsequent
  1052. * invocations for reference counting, or use mem_cgroup_iter_break()
  1053. * to cancel a hierarchy walk before the round-trip is complete.
  1054. *
  1055. * Reclaimers can specify a zone and a priority level in @reclaim to
  1056. * divide up the memcgs in the hierarchy among all concurrent
  1057. * reclaimers operating on the same zone and priority.
  1058. */
  1059. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  1060. struct mem_cgroup *prev,
  1061. struct mem_cgroup_reclaim_cookie *reclaim)
  1062. {
  1063. struct mem_cgroup *memcg = NULL;
  1064. struct mem_cgroup *last_visited = NULL;
  1065. if (mem_cgroup_disabled())
  1066. return NULL;
  1067. if (!root)
  1068. root = root_mem_cgroup;
  1069. if (prev && !reclaim)
  1070. last_visited = prev;
  1071. if (!root->use_hierarchy && root != root_mem_cgroup) {
  1072. if (prev)
  1073. goto out_css_put;
  1074. return root;
  1075. }
  1076. rcu_read_lock();
  1077. while (!memcg) {
  1078. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  1079. int uninitialized_var(seq);
  1080. if (reclaim) {
  1081. int nid = zone_to_nid(reclaim->zone);
  1082. int zid = zone_idx(reclaim->zone);
  1083. struct mem_cgroup_per_zone *mz;
  1084. mz = mem_cgroup_zoneinfo(root, nid, zid);
  1085. iter = &mz->reclaim_iter[reclaim->priority];
  1086. if (prev && reclaim->generation != iter->generation) {
  1087. iter->last_visited = NULL;
  1088. goto out_unlock;
  1089. }
  1090. last_visited = mem_cgroup_iter_load(iter, root, &seq);
  1091. }
  1092. memcg = __mem_cgroup_iter_next(root, last_visited);
  1093. if (reclaim) {
  1094. mem_cgroup_iter_update(iter, last_visited, memcg, seq);
  1095. if (!memcg)
  1096. iter->generation++;
  1097. else if (!prev && memcg)
  1098. reclaim->generation = iter->generation;
  1099. }
  1100. if (prev && !memcg)
  1101. goto out_unlock;
  1102. }
  1103. out_unlock:
  1104. rcu_read_unlock();
  1105. out_css_put:
  1106. if (prev && prev != root)
  1107. css_put(&prev->css);
  1108. return memcg;
  1109. }
  1110. /**
  1111. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  1112. * @root: hierarchy root
  1113. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  1114. */
  1115. void mem_cgroup_iter_break(struct mem_cgroup *root,
  1116. struct mem_cgroup *prev)
  1117. {
  1118. if (!root)
  1119. root = root_mem_cgroup;
  1120. if (prev && prev != root)
  1121. css_put(&prev->css);
  1122. }
  1123. /*
  1124. * Iteration constructs for visiting all cgroups (under a tree). If
  1125. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  1126. * be used for reference counting.
  1127. */
  1128. #define for_each_mem_cgroup_tree(iter, root) \
  1129. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  1130. iter != NULL; \
  1131. iter = mem_cgroup_iter(root, iter, NULL))
  1132. #define for_each_mem_cgroup(iter) \
  1133. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  1134. iter != NULL; \
  1135. iter = mem_cgroup_iter(NULL, iter, NULL))
  1136. void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
  1137. {
  1138. struct mem_cgroup *memcg;
  1139. rcu_read_lock();
  1140. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  1141. if (unlikely(!memcg))
  1142. goto out;
  1143. switch (idx) {
  1144. case PGFAULT:
  1145. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
  1146. break;
  1147. case PGMAJFAULT:
  1148. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
  1149. break;
  1150. default:
  1151. BUG();
  1152. }
  1153. out:
  1154. rcu_read_unlock();
  1155. }
  1156. EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
  1157. /**
  1158. * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
  1159. * @zone: zone of the wanted lruvec
  1160. * @memcg: memcg of the wanted lruvec
  1161. *
  1162. * Returns the lru list vector holding pages for the given @zone and
  1163. * @mem. This can be the global zone lruvec, if the memory controller
  1164. * is disabled.
  1165. */
  1166. struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
  1167. struct mem_cgroup *memcg)
  1168. {
  1169. struct mem_cgroup_per_zone *mz;
  1170. struct lruvec *lruvec;
  1171. if (mem_cgroup_disabled()) {
  1172. lruvec = &zone->lruvec;
  1173. goto out;
  1174. }
  1175. mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
  1176. lruvec = &mz->lruvec;
  1177. out:
  1178. /*
  1179. * Since a node can be onlined after the mem_cgroup was created,
  1180. * we have to be prepared to initialize lruvec->zone here;
  1181. * and if offlined then reonlined, we need to reinitialize it.
  1182. */
  1183. if (unlikely(lruvec->zone != zone))
  1184. lruvec->zone = zone;
  1185. return lruvec;
  1186. }
  1187. /*
  1188. * Following LRU functions are allowed to be used without PCG_LOCK.
  1189. * Operations are called by routine of global LRU independently from memcg.
  1190. * What we have to take care of here is validness of pc->mem_cgroup.
  1191. *
  1192. * Changes to pc->mem_cgroup happens when
  1193. * 1. charge
  1194. * 2. moving account
  1195. * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
  1196. * It is added to LRU before charge.
  1197. * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
  1198. * When moving account, the page is not on LRU. It's isolated.
  1199. */
  1200. /**
  1201. * mem_cgroup_page_lruvec - return lruvec for adding an lru page
  1202. * @page: the page
  1203. * @zone: zone of the page
  1204. */
  1205. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
  1206. {
  1207. struct mem_cgroup_per_zone *mz;
  1208. struct mem_cgroup *memcg;
  1209. struct page_cgroup *pc;
  1210. struct lruvec *lruvec;
  1211. if (mem_cgroup_disabled()) {
  1212. lruvec = &zone->lruvec;
  1213. goto out;
  1214. }
  1215. pc = lookup_page_cgroup(page);
  1216. memcg = pc->mem_cgroup;
  1217. /*
  1218. * Surreptitiously switch any uncharged offlist page to root:
  1219. * an uncharged page off lru does nothing to secure
  1220. * its former mem_cgroup from sudden removal.
  1221. *
  1222. * Our caller holds lru_lock, and PageCgroupUsed is updated
  1223. * under page_cgroup lock: between them, they make all uses
  1224. * of pc->mem_cgroup safe.
  1225. */
  1226. if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
  1227. pc->mem_cgroup = memcg = root_mem_cgroup;
  1228. mz = page_cgroup_zoneinfo(memcg, page);
  1229. lruvec = &mz->lruvec;
  1230. out:
  1231. /*
  1232. * Since a node can be onlined after the mem_cgroup was created,
  1233. * we have to be prepared to initialize lruvec->zone here;
  1234. * and if offlined then reonlined, we need to reinitialize it.
  1235. */
  1236. if (unlikely(lruvec->zone != zone))
  1237. lruvec->zone = zone;
  1238. return lruvec;
  1239. }
  1240. /**
  1241. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  1242. * @lruvec: mem_cgroup per zone lru vector
  1243. * @lru: index of lru list the page is sitting on
  1244. * @nr_pages: positive when adding or negative when removing
  1245. *
  1246. * This function must be called when a page is added to or removed from an
  1247. * lru list.
  1248. */
  1249. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  1250. int nr_pages)
  1251. {
  1252. struct mem_cgroup_per_zone *mz;
  1253. unsigned long *lru_size;
  1254. if (mem_cgroup_disabled())
  1255. return;
  1256. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  1257. lru_size = mz->lru_size + lru;
  1258. *lru_size += nr_pages;
  1259. VM_BUG_ON((long)(*lru_size) < 0);
  1260. }
  1261. /*
  1262. * Checks whether given mem is same or in the root_mem_cgroup's
  1263. * hierarchy subtree
  1264. */
  1265. bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
  1266. struct mem_cgroup *memcg)
  1267. {
  1268. if (root_memcg == memcg)
  1269. return true;
  1270. if (!root_memcg->use_hierarchy || !memcg)
  1271. return false;
  1272. return css_is_ancestor(&memcg->css, &root_memcg->css);
  1273. }
  1274. static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
  1275. struct mem_cgroup *memcg)
  1276. {
  1277. bool ret;
  1278. rcu_read_lock();
  1279. ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
  1280. rcu_read_unlock();
  1281. return ret;
  1282. }
  1283. bool task_in_mem_cgroup(struct task_struct *task,
  1284. const struct mem_cgroup *memcg)
  1285. {
  1286. struct mem_cgroup *curr = NULL;
  1287. struct task_struct *p;
  1288. bool ret;
  1289. p = find_lock_task_mm(task);
  1290. if (p) {
  1291. curr = try_get_mem_cgroup_from_mm(p->mm);
  1292. task_unlock(p);
  1293. } else {
  1294. /*
  1295. * All threads may have already detached their mm's, but the oom
  1296. * killer still needs to detect if they have already been oom
  1297. * killed to prevent needlessly killing additional tasks.
  1298. */
  1299. rcu_read_lock();
  1300. curr = mem_cgroup_from_task(task);
  1301. if (curr)
  1302. css_get(&curr->css);
  1303. rcu_read_unlock();
  1304. }
  1305. if (!curr)
  1306. return false;
  1307. /*
  1308. * We should check use_hierarchy of "memcg" not "curr". Because checking
  1309. * use_hierarchy of "curr" here make this function true if hierarchy is
  1310. * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
  1311. * hierarchy(even if use_hierarchy is disabled in "memcg").
  1312. */
  1313. ret = mem_cgroup_same_or_subtree(memcg, curr);
  1314. css_put(&curr->css);
  1315. return ret;
  1316. }
  1317. int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
  1318. {
  1319. unsigned long inactive_ratio;
  1320. unsigned long inactive;
  1321. unsigned long active;
  1322. unsigned long gb;
  1323. inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1324. active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
  1325. gb = (inactive + active) >> (30 - PAGE_SHIFT);
  1326. if (gb)
  1327. inactive_ratio = int_sqrt(10 * gb);
  1328. else
  1329. inactive_ratio = 1;
  1330. return inactive * inactive_ratio < active;
  1331. }
  1332. #define mem_cgroup_from_res_counter(counter, member) \
  1333. container_of(counter, struct mem_cgroup, member)
  1334. /**
  1335. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  1336. * @memcg: the memory cgroup
  1337. *
  1338. * Returns the maximum amount of memory @mem can be charged with, in
  1339. * pages.
  1340. */
  1341. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  1342. {
  1343. unsigned long long margin;
  1344. margin = res_counter_margin(&memcg->res);
  1345. if (do_swap_account)
  1346. margin = min(margin, res_counter_margin(&memcg->memsw));
  1347. return margin >> PAGE_SHIFT;
  1348. }
  1349. int mem_cgroup_swappiness(struct mem_cgroup *memcg)
  1350. {
  1351. struct cgroup *cgrp = memcg->css.cgroup;
  1352. /* root ? */
  1353. if (cgrp->parent == NULL)
  1354. return vm_swappiness;
  1355. return memcg->swappiness;
  1356. }
  1357. /*
  1358. * memcg->moving_account is used for checking possibility that some thread is
  1359. * calling move_account(). When a thread on CPU-A starts moving pages under
  1360. * a memcg, other threads should check memcg->moving_account under
  1361. * rcu_read_lock(), like this:
  1362. *
  1363. * CPU-A CPU-B
  1364. * rcu_read_lock()
  1365. * memcg->moving_account+1 if (memcg->mocing_account)
  1366. * take heavy locks.
  1367. * synchronize_rcu() update something.
  1368. * rcu_read_unlock()
  1369. * start move here.
  1370. */
  1371. /* for quick checking without looking up memcg */
  1372. atomic_t memcg_moving __read_mostly;
  1373. static void mem_cgroup_start_move(struct mem_cgroup *memcg)
  1374. {
  1375. atomic_inc(&memcg_moving);
  1376. atomic_inc(&memcg->moving_account);
  1377. synchronize_rcu();
  1378. }
  1379. static void mem_cgroup_end_move(struct mem_cgroup *memcg)
  1380. {
  1381. /*
  1382. * Now, mem_cgroup_clear_mc() may call this function with NULL.
  1383. * We check NULL in callee rather than caller.
  1384. */
  1385. if (memcg) {
  1386. atomic_dec(&memcg_moving);
  1387. atomic_dec(&memcg->moving_account);
  1388. }
  1389. }
  1390. /*
  1391. * 2 routines for checking "mem" is under move_account() or not.
  1392. *
  1393. * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
  1394. * is used for avoiding races in accounting. If true,
  1395. * pc->mem_cgroup may be overwritten.
  1396. *
  1397. * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
  1398. * under hierarchy of moving cgroups. This is for
  1399. * waiting at hith-memory prressure caused by "move".
  1400. */
  1401. static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
  1402. {
  1403. VM_BUG_ON(!rcu_read_lock_held());
  1404. return atomic_read(&memcg->moving_account) > 0;
  1405. }
  1406. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  1407. {
  1408. struct mem_cgroup *from;
  1409. struct mem_cgroup *to;
  1410. bool ret = false;
  1411. /*
  1412. * Unlike task_move routines, we access mc.to, mc.from not under
  1413. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  1414. */
  1415. spin_lock(&mc.lock);
  1416. from = mc.from;
  1417. to = mc.to;
  1418. if (!from)
  1419. goto unlock;
  1420. ret = mem_cgroup_same_or_subtree(memcg, from)
  1421. || mem_cgroup_same_or_subtree(memcg, to);
  1422. unlock:
  1423. spin_unlock(&mc.lock);
  1424. return ret;
  1425. }
  1426. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  1427. {
  1428. if (mc.moving_task && current != mc.moving_task) {
  1429. if (mem_cgroup_under_move(memcg)) {
  1430. DEFINE_WAIT(wait);
  1431. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  1432. /* moving charge context might have finished. */
  1433. if (mc.moving_task)
  1434. schedule();
  1435. finish_wait(&mc.waitq, &wait);
  1436. return true;
  1437. }
  1438. }
  1439. return false;
  1440. }
  1441. /*
  1442. * Take this lock when
  1443. * - a code tries to modify page's memcg while it's USED.
  1444. * - a code tries to modify page state accounting in a memcg.
  1445. * see mem_cgroup_stolen(), too.
  1446. */
  1447. static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
  1448. unsigned long *flags)
  1449. {
  1450. spin_lock_irqsave(&memcg->move_lock, *flags);
  1451. }
  1452. static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
  1453. unsigned long *flags)
  1454. {
  1455. spin_unlock_irqrestore(&memcg->move_lock, *flags);
  1456. }
  1457. #define K(x) ((x) << (PAGE_SHIFT-10))
  1458. /**
  1459. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  1460. * @memcg: The memory cgroup that went over limit
  1461. * @p: Task that is going to be killed
  1462. *
  1463. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  1464. * enabled
  1465. */
  1466. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  1467. {
  1468. struct cgroup *task_cgrp;
  1469. struct cgroup *mem_cgrp;
  1470. /*
  1471. * Need a buffer in BSS, can't rely on allocations. The code relies
  1472. * on the assumption that OOM is serialized for memory controller.
  1473. * If this assumption is broken, revisit this code.
  1474. */
  1475. static char memcg_name[PATH_MAX];
  1476. int ret;
  1477. struct mem_cgroup *iter;
  1478. unsigned int i;
  1479. if (!p)
  1480. return;
  1481. rcu_read_lock();
  1482. mem_cgrp = memcg->css.cgroup;
  1483. task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
  1484. ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
  1485. if (ret < 0) {
  1486. /*
  1487. * Unfortunately, we are unable to convert to a useful name
  1488. * But we'll still print out the usage information
  1489. */
  1490. rcu_read_unlock();
  1491. goto done;
  1492. }
  1493. rcu_read_unlock();
  1494. pr_info("Task in %s killed", memcg_name);
  1495. rcu_read_lock();
  1496. ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
  1497. if (ret < 0) {
  1498. rcu_read_unlock();
  1499. goto done;
  1500. }
  1501. rcu_read_unlock();
  1502. /*
  1503. * Continues from above, so we don't need an KERN_ level
  1504. */
  1505. pr_cont(" as a result of limit of %s\n", memcg_name);
  1506. done:
  1507. pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
  1508. res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
  1509. res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
  1510. res_counter_read_u64(&memcg->res, RES_FAILCNT));
  1511. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
  1512. res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
  1513. res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
  1514. res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
  1515. pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
  1516. res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
  1517. res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
  1518. res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
  1519. for_each_mem_cgroup_tree(iter, memcg) {
  1520. pr_info("Memory cgroup stats");
  1521. rcu_read_lock();
  1522. ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
  1523. if (!ret)
  1524. pr_cont(" for %s", memcg_name);
  1525. rcu_read_unlock();
  1526. pr_cont(":");
  1527. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  1528. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  1529. continue;
  1530. pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
  1531. K(mem_cgroup_read_stat(iter, i)));
  1532. }
  1533. for (i = 0; i < NR_LRU_LISTS; i++)
  1534. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1535. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1536. pr_cont("\n");
  1537. }
  1538. }
  1539. /*
  1540. * This function returns the number of memcg under hierarchy tree. Returns
  1541. * 1(self count) if no children.
  1542. */
  1543. static int mem_cgroup_count_children(struct mem_cgroup *memcg)
  1544. {
  1545. int num = 0;
  1546. struct mem_cgroup *iter;
  1547. for_each_mem_cgroup_tree(iter, memcg)
  1548. num++;
  1549. return num;
  1550. }
  1551. /*
  1552. * Return the memory (and swap, if configured) limit for a memcg.
  1553. */
  1554. static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
  1555. {
  1556. u64 limit;
  1557. limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  1558. /*
  1559. * Do not consider swap space if we cannot swap due to swappiness
  1560. */
  1561. if (mem_cgroup_swappiness(memcg)) {
  1562. u64 memsw;
  1563. limit += total_swap_pages << PAGE_SHIFT;
  1564. memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  1565. /*
  1566. * If memsw is finite and limits the amount of swap space
  1567. * available to this memcg, return that limit.
  1568. */
  1569. limit = min(limit, memsw);
  1570. }
  1571. return limit;
  1572. }
  1573. static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1574. int order)
  1575. {
  1576. struct mem_cgroup *iter;
  1577. unsigned long chosen_points = 0;
  1578. unsigned long totalpages;
  1579. unsigned int points = 0;
  1580. struct task_struct *chosen = NULL;
  1581. /*
  1582. * If current has a pending SIGKILL or is exiting, then automatically
  1583. * select it. The goal is to allow it to allocate so that it may
  1584. * quickly exit and free its memory.
  1585. */
  1586. if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
  1587. set_thread_flag(TIF_MEMDIE);
  1588. return;
  1589. }
  1590. check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
  1591. totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
  1592. for_each_mem_cgroup_tree(iter, memcg) {
  1593. struct cgroup *cgroup = iter->css.cgroup;
  1594. struct cgroup_iter it;
  1595. struct task_struct *task;
  1596. cgroup_iter_start(cgroup, &it);
  1597. while ((task = cgroup_iter_next(cgroup, &it))) {
  1598. switch (oom_scan_process_thread(task, totalpages, NULL,
  1599. false)) {
  1600. case OOM_SCAN_SELECT:
  1601. if (chosen)
  1602. put_task_struct(chosen);
  1603. chosen = task;
  1604. chosen_points = ULONG_MAX;
  1605. get_task_struct(chosen);
  1606. /* fall through */
  1607. case OOM_SCAN_CONTINUE:
  1608. continue;
  1609. case OOM_SCAN_ABORT:
  1610. cgroup_iter_end(cgroup, &it);
  1611. mem_cgroup_iter_break(memcg, iter);
  1612. if (chosen)
  1613. put_task_struct(chosen);
  1614. return;
  1615. case OOM_SCAN_OK:
  1616. break;
  1617. };
  1618. points = oom_badness(task, memcg, NULL, totalpages);
  1619. if (points > chosen_points) {
  1620. if (chosen)
  1621. put_task_struct(chosen);
  1622. chosen = task;
  1623. chosen_points = points;
  1624. get_task_struct(chosen);
  1625. }
  1626. }
  1627. cgroup_iter_end(cgroup, &it);
  1628. }
  1629. if (!chosen)
  1630. return;
  1631. points = chosen_points * 1000 / totalpages;
  1632. oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
  1633. NULL, "Memory cgroup out of memory");
  1634. }
  1635. static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
  1636. gfp_t gfp_mask,
  1637. unsigned long flags)
  1638. {
  1639. unsigned long total = 0;
  1640. bool noswap = false;
  1641. int loop;
  1642. if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
  1643. noswap = true;
  1644. if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
  1645. noswap = true;
  1646. for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
  1647. if (loop)
  1648. drain_all_stock_async(memcg);
  1649. total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
  1650. /*
  1651. * Allow limit shrinkers, which are triggered directly
  1652. * by userspace, to catch signals and stop reclaim
  1653. * after minimal progress, regardless of the margin.
  1654. */
  1655. if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
  1656. break;
  1657. if (mem_cgroup_margin(memcg))
  1658. break;
  1659. /*
  1660. * If nothing was reclaimed after two attempts, there
  1661. * may be no reclaimable pages in this hierarchy.
  1662. */
  1663. if (loop && !total)
  1664. break;
  1665. }
  1666. return total;
  1667. }
  1668. /**
  1669. * test_mem_cgroup_node_reclaimable
  1670. * @memcg: the target memcg
  1671. * @nid: the node ID to be checked.
  1672. * @noswap : specify true here if the user wants flle only information.
  1673. *
  1674. * This function returns whether the specified memcg contains any
  1675. * reclaimable pages on a node. Returns true if there are any reclaimable
  1676. * pages in the node.
  1677. */
  1678. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1679. int nid, bool noswap)
  1680. {
  1681. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1682. return true;
  1683. if (noswap || !total_swap_pages)
  1684. return false;
  1685. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1686. return true;
  1687. return false;
  1688. }
  1689. #if MAX_NUMNODES > 1
  1690. /*
  1691. * Always updating the nodemask is not very good - even if we have an empty
  1692. * list or the wrong list here, we can start from some node and traverse all
  1693. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1694. *
  1695. */
  1696. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1697. {
  1698. int nid;
  1699. /*
  1700. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1701. * pagein/pageout changes since the last update.
  1702. */
  1703. if (!atomic_read(&memcg->numainfo_events))
  1704. return;
  1705. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1706. return;
  1707. /* make a nodemask where this memcg uses memory from */
  1708. memcg->scan_nodes = node_states[N_MEMORY];
  1709. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1710. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1711. node_clear(nid, memcg->scan_nodes);
  1712. }
  1713. atomic_set(&memcg->numainfo_events, 0);
  1714. atomic_set(&memcg->numainfo_updating, 0);
  1715. }
  1716. /*
  1717. * Selecting a node where we start reclaim from. Because what we need is just
  1718. * reducing usage counter, start from anywhere is O,K. Considering
  1719. * memory reclaim from current node, there are pros. and cons.
  1720. *
  1721. * Freeing memory from current node means freeing memory from a node which
  1722. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1723. * hit limits, it will see a contention on a node. But freeing from remote
  1724. * node means more costs for memory reclaim because of memory latency.
  1725. *
  1726. * Now, we use round-robin. Better algorithm is welcomed.
  1727. */
  1728. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1729. {
  1730. int node;
  1731. mem_cgroup_may_update_nodemask(memcg);
  1732. node = memcg->last_scanned_node;
  1733. node = next_node(node, memcg->scan_nodes);
  1734. if (node == MAX_NUMNODES)
  1735. node = first_node(memcg->scan_nodes);
  1736. /*
  1737. * We call this when we hit limit, not when pages are added to LRU.
  1738. * No LRU may hold pages because all pages are UNEVICTABLE or
  1739. * memcg is too small and all pages are not on LRU. In that case,
  1740. * we use curret node.
  1741. */
  1742. if (unlikely(node == MAX_NUMNODES))
  1743. node = numa_node_id();
  1744. memcg->last_scanned_node = node;
  1745. return node;
  1746. }
  1747. /*
  1748. * Check all nodes whether it contains reclaimable pages or not.
  1749. * For quick scan, we make use of scan_nodes. This will allow us to skip
  1750. * unused nodes. But scan_nodes is lazily updated and may not cotain
  1751. * enough new information. We need to do double check.
  1752. */
  1753. static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
  1754. {
  1755. int nid;
  1756. /*
  1757. * quick check...making use of scan_node.
  1758. * We can skip unused nodes.
  1759. */
  1760. if (!nodes_empty(memcg->scan_nodes)) {
  1761. for (nid = first_node(memcg->scan_nodes);
  1762. nid < MAX_NUMNODES;
  1763. nid = next_node(nid, memcg->scan_nodes)) {
  1764. if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
  1765. return true;
  1766. }
  1767. }
  1768. /*
  1769. * Check rest of nodes.
  1770. */
  1771. for_each_node_state(nid, N_MEMORY) {
  1772. if (node_isset(nid, memcg->scan_nodes))
  1773. continue;
  1774. if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
  1775. return true;
  1776. }
  1777. return false;
  1778. }
  1779. #else
  1780. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1781. {
  1782. return 0;
  1783. }
  1784. static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
  1785. {
  1786. return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
  1787. }
  1788. #endif
  1789. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1790. struct zone *zone,
  1791. gfp_t gfp_mask,
  1792. unsigned long *total_scanned)
  1793. {
  1794. struct mem_cgroup *victim = NULL;
  1795. int total = 0;
  1796. int loop = 0;
  1797. unsigned long excess;
  1798. unsigned long nr_scanned;
  1799. struct mem_cgroup_reclaim_cookie reclaim = {
  1800. .zone = zone,
  1801. .priority = 0,
  1802. };
  1803. excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
  1804. while (1) {
  1805. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1806. if (!victim) {
  1807. loop++;
  1808. if (loop >= 2) {
  1809. /*
  1810. * If we have not been able to reclaim
  1811. * anything, it might because there are
  1812. * no reclaimable pages under this hierarchy
  1813. */
  1814. if (!total)
  1815. break;
  1816. /*
  1817. * We want to do more targeted reclaim.
  1818. * excess >> 2 is not to excessive so as to
  1819. * reclaim too much, nor too less that we keep
  1820. * coming back to reclaim from this cgroup
  1821. */
  1822. if (total >= (excess >> 2) ||
  1823. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1824. break;
  1825. }
  1826. continue;
  1827. }
  1828. if (!mem_cgroup_reclaimable(victim, false))
  1829. continue;
  1830. total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
  1831. zone, &nr_scanned);
  1832. *total_scanned += nr_scanned;
  1833. if (!res_counter_soft_limit_excess(&root_memcg->res))
  1834. break;
  1835. }
  1836. mem_cgroup_iter_break(root_memcg, victim);
  1837. return total;
  1838. }
  1839. /*
  1840. * Check OOM-Killer is already running under our hierarchy.
  1841. * If someone is running, return false.
  1842. * Has to be called with memcg_oom_lock
  1843. */
  1844. static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
  1845. {
  1846. struct mem_cgroup *iter, *failed = NULL;
  1847. for_each_mem_cgroup_tree(iter, memcg) {
  1848. if (iter->oom_lock) {
  1849. /*
  1850. * this subtree of our hierarchy is already locked
  1851. * so we cannot give a lock.
  1852. */
  1853. failed = iter;
  1854. mem_cgroup_iter_break(memcg, iter);
  1855. break;
  1856. } else
  1857. iter->oom_lock = true;
  1858. }
  1859. if (!failed)
  1860. return true;
  1861. /*
  1862. * OK, we failed to lock the whole subtree so we have to clean up
  1863. * what we set up to the failing subtree
  1864. */
  1865. for_each_mem_cgroup_tree(iter, memcg) {
  1866. if (iter == failed) {
  1867. mem_cgroup_iter_break(memcg, iter);
  1868. break;
  1869. }
  1870. iter->oom_lock = false;
  1871. }
  1872. return false;
  1873. }
  1874. /*
  1875. * Has to be called with memcg_oom_lock
  1876. */
  1877. static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1878. {
  1879. struct mem_cgroup *iter;
  1880. for_each_mem_cgroup_tree(iter, memcg)
  1881. iter->oom_lock = false;
  1882. return 0;
  1883. }
  1884. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1885. {
  1886. struct mem_cgroup *iter;
  1887. for_each_mem_cgroup_tree(iter, memcg)
  1888. atomic_inc(&iter->under_oom);
  1889. }
  1890. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1891. {
  1892. struct mem_cgroup *iter;
  1893. /*
  1894. * When a new child is created while the hierarchy is under oom,
  1895. * mem_cgroup_oom_lock() may not be called. We have to use
  1896. * atomic_add_unless() here.
  1897. */
  1898. for_each_mem_cgroup_tree(iter, memcg)
  1899. atomic_add_unless(&iter->under_oom, -1, 0);
  1900. }
  1901. static DEFINE_SPINLOCK(memcg_oom_lock);
  1902. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1903. struct oom_wait_info {
  1904. struct mem_cgroup *memcg;
  1905. wait_queue_t wait;
  1906. };
  1907. static int memcg_oom_wake_function(wait_queue_t *wait,
  1908. unsigned mode, int sync, void *arg)
  1909. {
  1910. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1911. struct mem_cgroup *oom_wait_memcg;
  1912. struct oom_wait_info *oom_wait_info;
  1913. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1914. oom_wait_memcg = oom_wait_info->memcg;
  1915. /*
  1916. * Both of oom_wait_info->memcg and wake_memcg are stable under us.
  1917. * Then we can use css_is_ancestor without taking care of RCU.
  1918. */
  1919. if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
  1920. && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
  1921. return 0;
  1922. return autoremove_wake_function(wait, mode, sync, arg);
  1923. }
  1924. static void memcg_wakeup_oom(struct mem_cgroup *memcg)
  1925. {
  1926. /* for filtering, pass "memcg" as argument. */
  1927. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1928. }
  1929. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1930. {
  1931. if (memcg && atomic_read(&memcg->under_oom))
  1932. memcg_wakeup_oom(memcg);
  1933. }
  1934. /*
  1935. * try to call OOM killer. returns false if we should exit memory-reclaim loop.
  1936. */
  1937. static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
  1938. int order)
  1939. {
  1940. struct oom_wait_info owait;
  1941. bool locked, need_to_kill;
  1942. owait.memcg = memcg;
  1943. owait.wait.flags = 0;
  1944. owait.wait.func = memcg_oom_wake_function;
  1945. owait.wait.private = current;
  1946. INIT_LIST_HEAD(&owait.wait.task_list);
  1947. need_to_kill = true;
  1948. mem_cgroup_mark_under_oom(memcg);
  1949. /* At first, try to OOM lock hierarchy under memcg.*/
  1950. spin_lock(&memcg_oom_lock);
  1951. locked = mem_cgroup_oom_lock(memcg);
  1952. /*
  1953. * Even if signal_pending(), we can't quit charge() loop without
  1954. * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
  1955. * under OOM is always welcomed, use TASK_KILLABLE here.
  1956. */
  1957. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1958. if (!locked || memcg->oom_kill_disable)
  1959. need_to_kill = false;
  1960. if (locked)
  1961. mem_cgroup_oom_notify(memcg);
  1962. spin_unlock(&memcg_oom_lock);
  1963. if (need_to_kill) {
  1964. finish_wait(&memcg_oom_waitq, &owait.wait);
  1965. mem_cgroup_out_of_memory(memcg, mask, order);
  1966. } else {
  1967. schedule();
  1968. finish_wait(&memcg_oom_waitq, &owait.wait);
  1969. }
  1970. spin_lock(&memcg_oom_lock);
  1971. if (locked)
  1972. mem_cgroup_oom_unlock(memcg);
  1973. memcg_wakeup_oom(memcg);
  1974. spin_unlock(&memcg_oom_lock);
  1975. mem_cgroup_unmark_under_oom(memcg);
  1976. if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
  1977. return false;
  1978. /* Give chance to dying process */
  1979. schedule_timeout_uninterruptible(1);
  1980. return true;
  1981. }
  1982. /*
  1983. * Currently used to update mapped file statistics, but the routine can be
  1984. * generalized to update other statistics as well.
  1985. *
  1986. * Notes: Race condition
  1987. *
  1988. * We usually use page_cgroup_lock() for accessing page_cgroup member but
  1989. * it tends to be costly. But considering some conditions, we doesn't need
  1990. * to do so _always_.
  1991. *
  1992. * Considering "charge", lock_page_cgroup() is not required because all
  1993. * file-stat operations happen after a page is attached to radix-tree. There
  1994. * are no race with "charge".
  1995. *
  1996. * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
  1997. * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
  1998. * if there are race with "uncharge". Statistics itself is properly handled
  1999. * by flags.
  2000. *
  2001. * Considering "move", this is an only case we see a race. To make the race
  2002. * small, we check mm->moving_account and detect there are possibility of race
  2003. * If there is, we take a lock.
  2004. */
  2005. void __mem_cgroup_begin_update_page_stat(struct page *page,
  2006. bool *locked, unsigned long *flags)
  2007. {
  2008. struct mem_cgroup *memcg;
  2009. struct page_cgroup *pc;
  2010. pc = lookup_page_cgroup(page);
  2011. again:
  2012. memcg = pc->mem_cgroup;
  2013. if (unlikely(!memcg || !PageCgroupUsed(pc)))
  2014. return;
  2015. /*
  2016. * If this memory cgroup is not under account moving, we don't
  2017. * need to take move_lock_mem_cgroup(). Because we already hold
  2018. * rcu_read_lock(), any calls to move_account will be delayed until
  2019. * rcu_read_unlock() if mem_cgroup_stolen() == true.
  2020. */
  2021. if (!mem_cgroup_stolen(memcg))
  2022. return;
  2023. move_lock_mem_cgroup(memcg, flags);
  2024. if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
  2025. move_unlock_mem_cgroup(memcg, flags);
  2026. goto again;
  2027. }
  2028. *locked = true;
  2029. }
  2030. void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
  2031. {
  2032. struct page_cgroup *pc = lookup_page_cgroup(page);
  2033. /*
  2034. * It's guaranteed that pc->mem_cgroup never changes while
  2035. * lock is held because a routine modifies pc->mem_cgroup
  2036. * should take move_lock_mem_cgroup().
  2037. */
  2038. move_unlock_mem_cgroup(pc->mem_cgroup, flags);
  2039. }
  2040. void mem_cgroup_update_page_stat(struct page *page,
  2041. enum mem_cgroup_page_stat_item idx, int val)
  2042. {
  2043. struct mem_cgroup *memcg;
  2044. struct page_cgroup *pc = lookup_page_cgroup(page);
  2045. unsigned long uninitialized_var(flags);
  2046. if (mem_cgroup_disabled())
  2047. return;
  2048. memcg = pc->mem_cgroup;
  2049. if (unlikely(!memcg || !PageCgroupUsed(pc)))
  2050. return;
  2051. switch (idx) {
  2052. case MEMCG_NR_FILE_MAPPED:
  2053. idx = MEM_CGROUP_STAT_FILE_MAPPED;
  2054. break;
  2055. default:
  2056. BUG();
  2057. }
  2058. this_cpu_add(memcg->stat->count[idx], val);
  2059. }
  2060. /*
  2061. * size of first charge trial. "32" comes from vmscan.c's magic value.
  2062. * TODO: maybe necessary to use big numbers in big irons.
  2063. */
  2064. #define CHARGE_BATCH 32U
  2065. struct memcg_stock_pcp {
  2066. struct mem_cgroup *cached; /* this never be root cgroup */
  2067. unsigned int nr_pages;
  2068. struct work_struct work;
  2069. unsigned long flags;
  2070. #define FLUSHING_CACHED_CHARGE 0
  2071. };
  2072. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  2073. static DEFINE_MUTEX(percpu_charge_mutex);
  2074. /**
  2075. * consume_stock: Try to consume stocked charge on this cpu.
  2076. * @memcg: memcg to consume from.
  2077. * @nr_pages: how many pages to charge.
  2078. *
  2079. * The charges will only happen if @memcg matches the current cpu's memcg
  2080. * stock, and at least @nr_pages are available in that stock. Failure to
  2081. * service an allocation will refill the stock.
  2082. *
  2083. * returns true if successful, false otherwise.
  2084. */
  2085. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  2086. {
  2087. struct memcg_stock_pcp *stock;
  2088. bool ret = true;
  2089. if (nr_pages > CHARGE_BATCH)
  2090. return false;
  2091. stock = &get_cpu_var(memcg_stock);
  2092. if (memcg == stock->cached && stock->nr_pages >= nr_pages)
  2093. stock->nr_pages -= nr_pages;
  2094. else /* need to call res_counter_charge */
  2095. ret = false;
  2096. put_cpu_var(memcg_stock);
  2097. return ret;
  2098. }
  2099. /*
  2100. * Returns stocks cached in percpu to res_counter and reset cached information.
  2101. */
  2102. static void drain_stock(struct memcg_stock_pcp *stock)
  2103. {
  2104. struct mem_cgroup *old = stock->cached;
  2105. if (stock->nr_pages) {
  2106. unsigned long bytes = stock->nr_pages * PAGE_SIZE;
  2107. res_counter_uncharge(&old->res, bytes);
  2108. if (do_swap_account)
  2109. res_counter_uncharge(&old->memsw, bytes);
  2110. stock->nr_pages = 0;
  2111. }
  2112. stock->cached = NULL;
  2113. }
  2114. /*
  2115. * This must be called under preempt disabled or must be called by
  2116. * a thread which is pinned to local cpu.
  2117. */
  2118. static void drain_local_stock(struct work_struct *dummy)
  2119. {
  2120. struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
  2121. drain_stock(stock);
  2122. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  2123. }
  2124. static void __init memcg_stock_init(void)
  2125. {
  2126. int cpu;
  2127. for_each_possible_cpu(cpu) {
  2128. struct memcg_stock_pcp *stock =
  2129. &per_cpu(memcg_stock, cpu);
  2130. INIT_WORK(&stock->work, drain_local_stock);
  2131. }
  2132. }
  2133. /*
  2134. * Cache charges(val) which is from res_counter, to local per_cpu area.
  2135. * This will be consumed by consume_stock() function, later.
  2136. */
  2137. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  2138. {
  2139. struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
  2140. if (stock->cached != memcg) { /* reset if necessary */
  2141. drain_stock(stock);
  2142. stock->cached = memcg;
  2143. }
  2144. stock->nr_pages += nr_pages;
  2145. put_cpu_var(memcg_stock);
  2146. }
  2147. /*
  2148. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  2149. * of the hierarchy under it. sync flag says whether we should block
  2150. * until the work is done.
  2151. */
  2152. static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
  2153. {
  2154. int cpu, curcpu;
  2155. /* Notify other cpus that system-wide "drain" is running */
  2156. get_online_cpus();
  2157. curcpu = get_cpu();
  2158. for_each_online_cpu(cpu) {
  2159. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  2160. struct mem_cgroup *memcg;
  2161. memcg = stock->cached;
  2162. if (!memcg || !stock->nr_pages)
  2163. continue;
  2164. if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
  2165. continue;
  2166. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  2167. if (cpu == curcpu)
  2168. drain_local_stock(&stock->work);
  2169. else
  2170. schedule_work_on(cpu, &stock->work);
  2171. }
  2172. }
  2173. put_cpu();
  2174. if (!sync)
  2175. goto out;
  2176. for_each_online_cpu(cpu) {
  2177. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  2178. if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
  2179. flush_work(&stock->work);
  2180. }
  2181. out:
  2182. put_online_cpus();
  2183. }
  2184. /*
  2185. * Tries to drain stocked charges in other cpus. This function is asynchronous
  2186. * and just put a work per cpu for draining localy on each cpu. Caller can
  2187. * expects some charges will be back to res_counter later but cannot wait for
  2188. * it.
  2189. */
  2190. static void drain_all_stock_async(struct mem_cgroup *root_memcg)
  2191. {
  2192. /*
  2193. * If someone calls draining, avoid adding more kworker runs.
  2194. */
  2195. if (!mutex_trylock(&percpu_charge_mutex))
  2196. return;
  2197. drain_all_stock(root_memcg, false);
  2198. mutex_unlock(&percpu_charge_mutex);
  2199. }
  2200. /* This is a synchronous drain interface. */
  2201. static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
  2202. {
  2203. /* called when force_empty is called */
  2204. mutex_lock(&percpu_charge_mutex);
  2205. drain_all_stock(root_memcg, true);
  2206. mutex_unlock(&percpu_charge_mutex);
  2207. }
  2208. /*
  2209. * This function drains percpu counter value from DEAD cpu and
  2210. * move it to local cpu. Note that this function can be preempted.
  2211. */
  2212. static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
  2213. {
  2214. int i;
  2215. spin_lock(&memcg->pcp_counter_lock);
  2216. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  2217. long x = per_cpu(memcg->stat->count[i], cpu);
  2218. per_cpu(memcg->stat->count[i], cpu) = 0;
  2219. memcg->nocpu_base.count[i] += x;
  2220. }
  2221. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  2222. unsigned long x = per_cpu(memcg->stat->events[i], cpu);
  2223. per_cpu(memcg->stat->events[i], cpu) = 0;
  2224. memcg->nocpu_base.events[i] += x;
  2225. }
  2226. spin_unlock(&memcg->pcp_counter_lock);
  2227. }
  2228. static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
  2229. unsigned long action,
  2230. void *hcpu)
  2231. {
  2232. int cpu = (unsigned long)hcpu;
  2233. struct memcg_stock_pcp *stock;
  2234. struct mem_cgroup *iter;
  2235. if (action == CPU_ONLINE)
  2236. return NOTIFY_OK;
  2237. if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
  2238. return NOTIFY_OK;
  2239. for_each_mem_cgroup(iter)
  2240. mem_cgroup_drain_pcp_counter(iter, cpu);
  2241. stock = &per_cpu(memcg_stock, cpu);
  2242. drain_stock(stock);
  2243. return NOTIFY_OK;
  2244. }
  2245. /* See __mem_cgroup_try_charge() for details */
  2246. enum {
  2247. CHARGE_OK, /* success */
  2248. CHARGE_RETRY, /* need to retry but retry is not bad */
  2249. CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
  2250. CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
  2251. CHARGE_OOM_DIE, /* the current is killed because of OOM */
  2252. };
  2253. static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  2254. unsigned int nr_pages, unsigned int min_pages,
  2255. bool oom_check)
  2256. {
  2257. unsigned long csize = nr_pages * PAGE_SIZE;
  2258. struct mem_cgroup *mem_over_limit;
  2259. struct res_counter *fail_res;
  2260. unsigned long flags = 0;
  2261. int ret;
  2262. ret = res_counter_charge(&memcg->res, csize, &fail_res);
  2263. if (likely(!ret)) {
  2264. if (!do_swap_account)
  2265. return CHARGE_OK;
  2266. ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
  2267. if (likely(!ret))
  2268. return CHARGE_OK;
  2269. res_counter_uncharge(&memcg->res, csize);
  2270. mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
  2271. flags |= MEM_CGROUP_RECLAIM_NOSWAP;
  2272. } else
  2273. mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
  2274. /*
  2275. * Never reclaim on behalf of optional batching, retry with a
  2276. * single page instead.
  2277. */
  2278. if (nr_pages > min_pages)
  2279. return CHARGE_RETRY;
  2280. if (!(gfp_mask & __GFP_WAIT))
  2281. return CHARGE_WOULDBLOCK;
  2282. if (gfp_mask & __GFP_NORETRY)
  2283. return CHARGE_NOMEM;
  2284. ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
  2285. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  2286. return CHARGE_RETRY;
  2287. /*
  2288. * Even though the limit is exceeded at this point, reclaim
  2289. * may have been able to free some pages. Retry the charge
  2290. * before killing the task.
  2291. *
  2292. * Only for regular pages, though: huge pages are rather
  2293. * unlikely to succeed so close to the limit, and we fall back
  2294. * to regular pages anyway in case of failure.
  2295. */
  2296. if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
  2297. return CHARGE_RETRY;
  2298. /*
  2299. * At task move, charge accounts can be doubly counted. So, it's
  2300. * better to wait until the end of task_move if something is going on.
  2301. */
  2302. if (mem_cgroup_wait_acct_move(mem_over_limit))
  2303. return CHARGE_RETRY;
  2304. /* If we don't need to call oom-killer at el, return immediately */
  2305. if (!oom_check)
  2306. return CHARGE_NOMEM;
  2307. /* check OOM */
  2308. if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
  2309. return CHARGE_OOM_DIE;
  2310. return CHARGE_RETRY;
  2311. }
  2312. /*
  2313. * __mem_cgroup_try_charge() does
  2314. * 1. detect memcg to be charged against from passed *mm and *ptr,
  2315. * 2. update res_counter
  2316. * 3. call memory reclaim if necessary.
  2317. *
  2318. * In some special case, if the task is fatal, fatal_signal_pending() or
  2319. * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
  2320. * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
  2321. * as possible without any hazards. 2: all pages should have a valid
  2322. * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
  2323. * pointer, that is treated as a charge to root_mem_cgroup.
  2324. *
  2325. * So __mem_cgroup_try_charge() will return
  2326. * 0 ... on success, filling *ptr with a valid memcg pointer.
  2327. * -ENOMEM ... charge failure because of resource limits.
  2328. * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
  2329. *
  2330. * Unlike the exported interface, an "oom" parameter is added. if oom==true,
  2331. * the oom-killer can be invoked.
  2332. */
  2333. static int __mem_cgroup_try_charge(struct mm_struct *mm,
  2334. gfp_t gfp_mask,
  2335. unsigned int nr_pages,
  2336. struct mem_cgroup **ptr,
  2337. bool oom)
  2338. {
  2339. unsigned int batch = max(CHARGE_BATCH, nr_pages);
  2340. int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2341. struct mem_cgroup *memcg = NULL;
  2342. int ret;
  2343. /*
  2344. * Unlike gloval-vm's OOM-kill, we're not in memory shortage
  2345. * in system level. So, allow to go ahead dying process in addition to
  2346. * MEMDIE process.
  2347. */
  2348. if (unlikely(test_thread_flag(TIF_MEMDIE)
  2349. || fatal_signal_pending(current)))
  2350. goto bypass;
  2351. /*
  2352. * We always charge the cgroup the mm_struct belongs to.
  2353. * The mm_struct's mem_cgroup changes on task migration if the
  2354. * thread group leader migrates. It's possible that mm is not
  2355. * set, if so charge the root memcg (happens for pagecache usage).
  2356. */
  2357. if (!*ptr && !mm)
  2358. *ptr = root_mem_cgroup;
  2359. again:
  2360. if (*ptr) { /* css should be a valid one */
  2361. memcg = *ptr;
  2362. if (mem_cgroup_is_root(memcg))
  2363. goto done;
  2364. if (consume_stock(memcg, nr_pages))
  2365. goto done;
  2366. css_get(&memcg->css);
  2367. } else {
  2368. struct task_struct *p;
  2369. rcu_read_lock();
  2370. p = rcu_dereference(mm->owner);
  2371. /*
  2372. * Because we don't have task_lock(), "p" can exit.
  2373. * In that case, "memcg" can point to root or p can be NULL with
  2374. * race with swapoff. Then, we have small risk of mis-accouning.
  2375. * But such kind of mis-account by race always happens because
  2376. * we don't have cgroup_mutex(). It's overkill and we allo that
  2377. * small race, here.
  2378. * (*) swapoff at el will charge against mm-struct not against
  2379. * task-struct. So, mm->owner can be NULL.
  2380. */
  2381. memcg = mem_cgroup_from_task(p);
  2382. if (!memcg)
  2383. memcg = root_mem_cgroup;
  2384. if (mem_cgroup_is_root(memcg)) {
  2385. rcu_read_unlock();
  2386. goto done;
  2387. }
  2388. if (consume_stock(memcg, nr_pages)) {
  2389. /*
  2390. * It seems dagerous to access memcg without css_get().
  2391. * But considering how consume_stok works, it's not
  2392. * necessary. If consume_stock success, some charges
  2393. * from this memcg are cached on this cpu. So, we
  2394. * don't need to call css_get()/css_tryget() before
  2395. * calling consume_stock().
  2396. */
  2397. rcu_read_unlock();
  2398. goto done;
  2399. }
  2400. /* after here, we may be blocked. we need to get refcnt */
  2401. if (!css_tryget(&memcg->css)) {
  2402. rcu_read_unlock();
  2403. goto again;
  2404. }
  2405. rcu_read_unlock();
  2406. }
  2407. do {
  2408. bool oom_check;
  2409. /* If killed, bypass charge */
  2410. if (fatal_signal_pending(current)) {
  2411. css_put(&memcg->css);
  2412. goto bypass;
  2413. }
  2414. oom_check = false;
  2415. if (oom && !nr_oom_retries) {
  2416. oom_check = true;
  2417. nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2418. }
  2419. ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
  2420. oom_check);
  2421. switch (ret) {
  2422. case CHARGE_OK:
  2423. break;
  2424. case CHARGE_RETRY: /* not in OOM situation but retry */
  2425. batch = nr_pages;
  2426. css_put(&memcg->css);
  2427. memcg = NULL;
  2428. goto again;
  2429. case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
  2430. css_put(&memcg->css);
  2431. goto nomem;
  2432. case CHARGE_NOMEM: /* OOM routine works */
  2433. if (!oom) {
  2434. css_put(&memcg->css);
  2435. goto nomem;
  2436. }
  2437. /* If oom, we never return -ENOMEM */
  2438. nr_oom_retries--;
  2439. break;
  2440. case CHARGE_OOM_DIE: /* Killed by OOM Killer */
  2441. css_put(&memcg->css);
  2442. goto bypass;
  2443. }
  2444. } while (ret != CHARGE_OK);
  2445. if (batch > nr_pages)
  2446. refill_stock(memcg, batch - nr_pages);
  2447. css_put(&memcg->css);
  2448. done:
  2449. *ptr = memcg;
  2450. return 0;
  2451. nomem:
  2452. *ptr = NULL;
  2453. return -ENOMEM;
  2454. bypass:
  2455. *ptr = root_mem_cgroup;
  2456. return -EINTR;
  2457. }
  2458. /*
  2459. * Somemtimes we have to undo a charge we got by try_charge().
  2460. * This function is for that and do uncharge, put css's refcnt.
  2461. * gotten by try_charge().
  2462. */
  2463. static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
  2464. unsigned int nr_pages)
  2465. {
  2466. if (!mem_cgroup_is_root(memcg)) {
  2467. unsigned long bytes = nr_pages * PAGE_SIZE;
  2468. res_counter_uncharge(&memcg->res, bytes);
  2469. if (do_swap_account)
  2470. res_counter_uncharge(&memcg->memsw, bytes);
  2471. }
  2472. }
  2473. /*
  2474. * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
  2475. * This is useful when moving usage to parent cgroup.
  2476. */
  2477. static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
  2478. unsigned int nr_pages)
  2479. {
  2480. unsigned long bytes = nr_pages * PAGE_SIZE;
  2481. if (mem_cgroup_is_root(memcg))
  2482. return;
  2483. res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
  2484. if (do_swap_account)
  2485. res_counter_uncharge_until(&memcg->memsw,
  2486. memcg->memsw.parent, bytes);
  2487. }
  2488. /*
  2489. * A helper function to get mem_cgroup from ID. must be called under
  2490. * rcu_read_lock(). The caller is responsible for calling css_tryget if
  2491. * the mem_cgroup is used for charging. (dropping refcnt from swap can be
  2492. * called against removed memcg.)
  2493. */
  2494. static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
  2495. {
  2496. struct cgroup_subsys_state *css;
  2497. /* ID 0 is unused ID */
  2498. if (!id)
  2499. return NULL;
  2500. css = css_lookup(&mem_cgroup_subsys, id);
  2501. if (!css)
  2502. return NULL;
  2503. return mem_cgroup_from_css(css);
  2504. }
  2505. struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
  2506. {
  2507. struct mem_cgroup *memcg = NULL;
  2508. struct page_cgroup *pc;
  2509. unsigned short id;
  2510. swp_entry_t ent;
  2511. VM_BUG_ON(!PageLocked(page));
  2512. pc = lookup_page_cgroup(page);
  2513. lock_page_cgroup(pc);
  2514. if (PageCgroupUsed(pc)) {
  2515. memcg = pc->mem_cgroup;
  2516. if (memcg && !css_tryget(&memcg->css))
  2517. memcg = NULL;
  2518. } else if (PageSwapCache(page)) {
  2519. ent.val = page_private(page);
  2520. id = lookup_swap_cgroup_id(ent);
  2521. rcu_read_lock();
  2522. memcg = mem_cgroup_lookup(id);
  2523. if (memcg && !css_tryget(&memcg->css))
  2524. memcg = NULL;
  2525. rcu_read_unlock();
  2526. }
  2527. unlock_page_cgroup(pc);
  2528. return memcg;
  2529. }
  2530. static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
  2531. struct page *page,
  2532. unsigned int nr_pages,
  2533. enum charge_type ctype,
  2534. bool lrucare)
  2535. {
  2536. struct page_cgroup *pc = lookup_page_cgroup(page);
  2537. struct zone *uninitialized_var(zone);
  2538. struct lruvec *lruvec;
  2539. bool was_on_lru = false;
  2540. bool anon;
  2541. lock_page_cgroup(pc);
  2542. VM_BUG_ON(PageCgroupUsed(pc));
  2543. /*
  2544. * we don't need page_cgroup_lock about tail pages, becase they are not
  2545. * accessed by any other context at this point.
  2546. */
  2547. /*
  2548. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  2549. * may already be on some other mem_cgroup's LRU. Take care of it.
  2550. */
  2551. if (lrucare) {
  2552. zone = page_zone(page);
  2553. spin_lock_irq(&zone->lru_lock);
  2554. if (PageLRU(page)) {
  2555. lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
  2556. ClearPageLRU(page);
  2557. del_page_from_lru_list(page, lruvec, page_lru(page));
  2558. was_on_lru = true;
  2559. }
  2560. }
  2561. pc->mem_cgroup = memcg;
  2562. /*
  2563. * We access a page_cgroup asynchronously without lock_page_cgroup().
  2564. * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
  2565. * is accessed after testing USED bit. To make pc->mem_cgroup visible
  2566. * before USED bit, we need memory barrier here.
  2567. * See mem_cgroup_add_lru_list(), etc.
  2568. */
  2569. smp_wmb();
  2570. SetPageCgroupUsed(pc);
  2571. if (lrucare) {
  2572. if (was_on_lru) {
  2573. lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
  2574. VM_BUG_ON(PageLRU(page));
  2575. SetPageLRU(page);
  2576. add_page_to_lru_list(page, lruvec, page_lru(page));
  2577. }
  2578. spin_unlock_irq(&zone->lru_lock);
  2579. }
  2580. if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
  2581. anon = true;
  2582. else
  2583. anon = false;
  2584. mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
  2585. unlock_page_cgroup(pc);
  2586. /*
  2587. * "charge_statistics" updated event counter. Then, check it.
  2588. * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
  2589. * if they exceeds softlimit.
  2590. */
  2591. memcg_check_events(memcg, page);
  2592. }
  2593. static DEFINE_MUTEX(set_limit_mutex);
  2594. #ifdef CONFIG_MEMCG_KMEM
  2595. static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
  2596. {
  2597. return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
  2598. (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
  2599. }
  2600. /*
  2601. * This is a bit cumbersome, but it is rarely used and avoids a backpointer
  2602. * in the memcg_cache_params struct.
  2603. */
  2604. static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
  2605. {
  2606. struct kmem_cache *cachep;
  2607. VM_BUG_ON(p->is_root_cache);
  2608. cachep = p->root_cache;
  2609. return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
  2610. }
  2611. #ifdef CONFIG_SLABINFO
  2612. static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
  2613. struct seq_file *m)
  2614. {
  2615. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  2616. struct memcg_cache_params *params;
  2617. if (!memcg_can_account_kmem(memcg))
  2618. return -EIO;
  2619. print_slabinfo_header(m);
  2620. mutex_lock(&memcg->slab_caches_mutex);
  2621. list_for_each_entry(params, &memcg->memcg_slab_caches, list)
  2622. cache_show(memcg_params_to_cache(params), m);
  2623. mutex_unlock(&memcg->slab_caches_mutex);
  2624. return 0;
  2625. }
  2626. #endif
  2627. static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
  2628. {
  2629. struct res_counter *fail_res;
  2630. struct mem_cgroup *_memcg;
  2631. int ret = 0;
  2632. bool may_oom;
  2633. ret = res_counter_charge(&memcg->kmem, size, &fail_res);
  2634. if (ret)
  2635. return ret;
  2636. /*
  2637. * Conditions under which we can wait for the oom_killer. Those are
  2638. * the same conditions tested by the core page allocator
  2639. */
  2640. may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
  2641. _memcg = memcg;
  2642. ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
  2643. &_memcg, may_oom);
  2644. if (ret == -EINTR) {
  2645. /*
  2646. * __mem_cgroup_try_charge() chosed to bypass to root due to
  2647. * OOM kill or fatal signal. Since our only options are to
  2648. * either fail the allocation or charge it to this cgroup, do
  2649. * it as a temporary condition. But we can't fail. From a
  2650. * kmem/slab perspective, the cache has already been selected,
  2651. * by mem_cgroup_kmem_get_cache(), so it is too late to change
  2652. * our minds.
  2653. *
  2654. * This condition will only trigger if the task entered
  2655. * memcg_charge_kmem in a sane state, but was OOM-killed during
  2656. * __mem_cgroup_try_charge() above. Tasks that were already
  2657. * dying when the allocation triggers should have been already
  2658. * directed to the root cgroup in memcontrol.h
  2659. */
  2660. res_counter_charge_nofail(&memcg->res, size, &fail_res);
  2661. if (do_swap_account)
  2662. res_counter_charge_nofail(&memcg->memsw, size,
  2663. &fail_res);
  2664. ret = 0;
  2665. } else if (ret)
  2666. res_counter_uncharge(&memcg->kmem, size);
  2667. return ret;
  2668. }
  2669. static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
  2670. {
  2671. res_counter_uncharge(&memcg->res, size);
  2672. if (do_swap_account)
  2673. res_counter_uncharge(&memcg->memsw, size);
  2674. /* Not down to 0 */
  2675. if (res_counter_uncharge(&memcg->kmem, size))
  2676. return;
  2677. if (memcg_kmem_test_and_clear_dead(memcg))
  2678. mem_cgroup_put(memcg);
  2679. }
  2680. void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
  2681. {
  2682. if (!memcg)
  2683. return;
  2684. mutex_lock(&memcg->slab_caches_mutex);
  2685. list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
  2686. mutex_unlock(&memcg->slab_caches_mutex);
  2687. }
  2688. /*
  2689. * helper for acessing a memcg's index. It will be used as an index in the
  2690. * child cache array in kmem_cache, and also to derive its name. This function
  2691. * will return -1 when this is not a kmem-limited memcg.
  2692. */
  2693. int memcg_cache_id(struct mem_cgroup *memcg)
  2694. {
  2695. return memcg ? memcg->kmemcg_id : -1;
  2696. }
  2697. /*
  2698. * This ends up being protected by the set_limit mutex, during normal
  2699. * operation, because that is its main call site.
  2700. *
  2701. * But when we create a new cache, we can call this as well if its parent
  2702. * is kmem-limited. That will have to hold set_limit_mutex as well.
  2703. */
  2704. int memcg_update_cache_sizes(struct mem_cgroup *memcg)
  2705. {
  2706. int num, ret;
  2707. num = ida_simple_get(&kmem_limited_groups,
  2708. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  2709. if (num < 0)
  2710. return num;
  2711. /*
  2712. * After this point, kmem_accounted (that we test atomically in
  2713. * the beginning of this conditional), is no longer 0. This
  2714. * guarantees only one process will set the following boolean
  2715. * to true. We don't need test_and_set because we're protected
  2716. * by the set_limit_mutex anyway.
  2717. */
  2718. memcg_kmem_set_activated(memcg);
  2719. ret = memcg_update_all_caches(num+1);
  2720. if (ret) {
  2721. ida_simple_remove(&kmem_limited_groups, num);
  2722. memcg_kmem_clear_activated(memcg);
  2723. return ret;
  2724. }
  2725. memcg->kmemcg_id = num;
  2726. INIT_LIST_HEAD(&memcg->memcg_slab_caches);
  2727. mutex_init(&memcg->slab_caches_mutex);
  2728. return 0;
  2729. }
  2730. static size_t memcg_caches_array_size(int num_groups)
  2731. {
  2732. ssize_t size;
  2733. if (num_groups <= 0)
  2734. return 0;
  2735. size = 2 * num_groups;
  2736. if (size < MEMCG_CACHES_MIN_SIZE)
  2737. size = MEMCG_CACHES_MIN_SIZE;
  2738. else if (size > MEMCG_CACHES_MAX_SIZE)
  2739. size = MEMCG_CACHES_MAX_SIZE;
  2740. return size;
  2741. }
  2742. /*
  2743. * We should update the current array size iff all caches updates succeed. This
  2744. * can only be done from the slab side. The slab mutex needs to be held when
  2745. * calling this.
  2746. */
  2747. void memcg_update_array_size(int num)
  2748. {
  2749. if (num > memcg_limited_groups_array_size)
  2750. memcg_limited_groups_array_size = memcg_caches_array_size(num);
  2751. }
  2752. static void kmem_cache_destroy_work_func(struct work_struct *w);
  2753. int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
  2754. {
  2755. struct memcg_cache_params *cur_params = s->memcg_params;
  2756. VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
  2757. if (num_groups > memcg_limited_groups_array_size) {
  2758. int i;
  2759. ssize_t size = memcg_caches_array_size(num_groups);
  2760. size *= sizeof(void *);
  2761. size += sizeof(struct memcg_cache_params);
  2762. s->memcg_params = kzalloc(size, GFP_KERNEL);
  2763. if (!s->memcg_params) {
  2764. s->memcg_params = cur_params;
  2765. return -ENOMEM;
  2766. }
  2767. s->memcg_params->is_root_cache = true;
  2768. /*
  2769. * There is the chance it will be bigger than
  2770. * memcg_limited_groups_array_size, if we failed an allocation
  2771. * in a cache, in which case all caches updated before it, will
  2772. * have a bigger array.
  2773. *
  2774. * But if that is the case, the data after
  2775. * memcg_limited_groups_array_size is certainly unused
  2776. */
  2777. for (i = 0; i < memcg_limited_groups_array_size; i++) {
  2778. if (!cur_params->memcg_caches[i])
  2779. continue;
  2780. s->memcg_params->memcg_caches[i] =
  2781. cur_params->memcg_caches[i];
  2782. }
  2783. /*
  2784. * Ideally, we would wait until all caches succeed, and only
  2785. * then free the old one. But this is not worth the extra
  2786. * pointer per-cache we'd have to have for this.
  2787. *
  2788. * It is not a big deal if some caches are left with a size
  2789. * bigger than the others. And all updates will reset this
  2790. * anyway.
  2791. */
  2792. kfree(cur_params);
  2793. }
  2794. return 0;
  2795. }
  2796. int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
  2797. struct kmem_cache *root_cache)
  2798. {
  2799. size_t size = sizeof(struct memcg_cache_params);
  2800. if (!memcg_kmem_enabled())
  2801. return 0;
  2802. if (!memcg)
  2803. size += memcg_limited_groups_array_size * sizeof(void *);
  2804. s->memcg_params = kzalloc(size, GFP_KERNEL);
  2805. if (!s->memcg_params)
  2806. return -ENOMEM;
  2807. INIT_WORK(&s->memcg_params->destroy,
  2808. kmem_cache_destroy_work_func);
  2809. if (memcg) {
  2810. s->memcg_params->memcg = memcg;
  2811. s->memcg_params->root_cache = root_cache;
  2812. } else
  2813. s->memcg_params->is_root_cache = true;
  2814. return 0;
  2815. }
  2816. void memcg_release_cache(struct kmem_cache *s)
  2817. {
  2818. struct kmem_cache *root;
  2819. struct mem_cgroup *memcg;
  2820. int id;
  2821. /*
  2822. * This happens, for instance, when a root cache goes away before we
  2823. * add any memcg.
  2824. */
  2825. if (!s->memcg_params)
  2826. return;
  2827. if (s->memcg_params->is_root_cache)
  2828. goto out;
  2829. memcg = s->memcg_params->memcg;
  2830. id = memcg_cache_id(memcg);
  2831. root = s->memcg_params->root_cache;
  2832. root->memcg_params->memcg_caches[id] = NULL;
  2833. mutex_lock(&memcg->slab_caches_mutex);
  2834. list_del(&s->memcg_params->list);
  2835. mutex_unlock(&memcg->slab_caches_mutex);
  2836. mem_cgroup_put(memcg);
  2837. out:
  2838. kfree(s->memcg_params);
  2839. }
  2840. /*
  2841. * During the creation a new cache, we need to disable our accounting mechanism
  2842. * altogether. This is true even if we are not creating, but rather just
  2843. * enqueing new caches to be created.
  2844. *
  2845. * This is because that process will trigger allocations; some visible, like
  2846. * explicit kmallocs to auxiliary data structures, name strings and internal
  2847. * cache structures; some well concealed, like INIT_WORK() that can allocate
  2848. * objects during debug.
  2849. *
  2850. * If any allocation happens during memcg_kmem_get_cache, we will recurse back
  2851. * to it. This may not be a bounded recursion: since the first cache creation
  2852. * failed to complete (waiting on the allocation), we'll just try to create the
  2853. * cache again, failing at the same point.
  2854. *
  2855. * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
  2856. * memcg_kmem_skip_account. So we enclose anything that might allocate memory
  2857. * inside the following two functions.
  2858. */
  2859. static inline void memcg_stop_kmem_account(void)
  2860. {
  2861. VM_BUG_ON(!current->mm);
  2862. current->memcg_kmem_skip_account++;
  2863. }
  2864. static inline void memcg_resume_kmem_account(void)
  2865. {
  2866. VM_BUG_ON(!current->mm);
  2867. current->memcg_kmem_skip_account--;
  2868. }
  2869. static void kmem_cache_destroy_work_func(struct work_struct *w)
  2870. {
  2871. struct kmem_cache *cachep;
  2872. struct memcg_cache_params *p;
  2873. p = container_of(w, struct memcg_cache_params, destroy);
  2874. cachep = memcg_params_to_cache(p);
  2875. /*
  2876. * If we get down to 0 after shrink, we could delete right away.
  2877. * However, memcg_release_pages() already puts us back in the workqueue
  2878. * in that case. If we proceed deleting, we'll get a dangling
  2879. * reference, and removing the object from the workqueue in that case
  2880. * is unnecessary complication. We are not a fast path.
  2881. *
  2882. * Note that this case is fundamentally different from racing with
  2883. * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
  2884. * kmem_cache_shrink, not only we would be reinserting a dead cache
  2885. * into the queue, but doing so from inside the worker racing to
  2886. * destroy it.
  2887. *
  2888. * So if we aren't down to zero, we'll just schedule a worker and try
  2889. * again
  2890. */
  2891. if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
  2892. kmem_cache_shrink(cachep);
  2893. if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
  2894. return;
  2895. } else
  2896. kmem_cache_destroy(cachep);
  2897. }
  2898. void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
  2899. {
  2900. if (!cachep->memcg_params->dead)
  2901. return;
  2902. /*
  2903. * There are many ways in which we can get here.
  2904. *
  2905. * We can get to a memory-pressure situation while the delayed work is
  2906. * still pending to run. The vmscan shrinkers can then release all
  2907. * cache memory and get us to destruction. If this is the case, we'll
  2908. * be executed twice, which is a bug (the second time will execute over
  2909. * bogus data). In this case, cancelling the work should be fine.
  2910. *
  2911. * But we can also get here from the worker itself, if
  2912. * kmem_cache_shrink is enough to shake all the remaining objects and
  2913. * get the page count to 0. In this case, we'll deadlock if we try to
  2914. * cancel the work (the worker runs with an internal lock held, which
  2915. * is the same lock we would hold for cancel_work_sync().)
  2916. *
  2917. * Since we can't possibly know who got us here, just refrain from
  2918. * running if there is already work pending
  2919. */
  2920. if (work_pending(&cachep->memcg_params->destroy))
  2921. return;
  2922. /*
  2923. * We have to defer the actual destroying to a workqueue, because
  2924. * we might currently be in a context that cannot sleep.
  2925. */
  2926. schedule_work(&cachep->memcg_params->destroy);
  2927. }
  2928. /*
  2929. * This lock protects updaters, not readers. We want readers to be as fast as
  2930. * they can, and they will either see NULL or a valid cache value. Our model
  2931. * allow them to see NULL, in which case the root memcg will be selected.
  2932. *
  2933. * We need this lock because multiple allocations to the same cache from a non
  2934. * will span more than one worker. Only one of them can create the cache.
  2935. */
  2936. static DEFINE_MUTEX(memcg_cache_mutex);
  2937. /*
  2938. * Called with memcg_cache_mutex held
  2939. */
  2940. static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
  2941. struct kmem_cache *s)
  2942. {
  2943. struct kmem_cache *new;
  2944. static char *tmp_name = NULL;
  2945. lockdep_assert_held(&memcg_cache_mutex);
  2946. /*
  2947. * kmem_cache_create_memcg duplicates the given name and
  2948. * cgroup_name for this name requires RCU context.
  2949. * This static temporary buffer is used to prevent from
  2950. * pointless shortliving allocation.
  2951. */
  2952. if (!tmp_name) {
  2953. tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
  2954. if (!tmp_name)
  2955. return NULL;
  2956. }
  2957. rcu_read_lock();
  2958. snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
  2959. memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
  2960. rcu_read_unlock();
  2961. new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
  2962. (s->flags & ~SLAB_PANIC), s->ctor, s);
  2963. if (new)
  2964. new->allocflags |= __GFP_KMEMCG;
  2965. return new;
  2966. }
  2967. static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
  2968. struct kmem_cache *cachep)
  2969. {
  2970. struct kmem_cache *new_cachep;
  2971. int idx;
  2972. BUG_ON(!memcg_can_account_kmem(memcg));
  2973. idx = memcg_cache_id(memcg);
  2974. mutex_lock(&memcg_cache_mutex);
  2975. new_cachep = cachep->memcg_params->memcg_caches[idx];
  2976. if (new_cachep)
  2977. goto out;
  2978. new_cachep = kmem_cache_dup(memcg, cachep);
  2979. if (new_cachep == NULL) {
  2980. new_cachep = cachep;
  2981. goto out;
  2982. }
  2983. mem_cgroup_get(memcg);
  2984. atomic_set(&new_cachep->memcg_params->nr_pages , 0);
  2985. cachep->memcg_params->memcg_caches[idx] = new_cachep;
  2986. /*
  2987. * the readers won't lock, make sure everybody sees the updated value,
  2988. * so they won't put stuff in the queue again for no reason
  2989. */
  2990. wmb();
  2991. out:
  2992. mutex_unlock(&memcg_cache_mutex);
  2993. return new_cachep;
  2994. }
  2995. void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
  2996. {
  2997. struct kmem_cache *c;
  2998. int i;
  2999. if (!s->memcg_params)
  3000. return;
  3001. if (!s->memcg_params->is_root_cache)
  3002. return;
  3003. /*
  3004. * If the cache is being destroyed, we trust that there is no one else
  3005. * requesting objects from it. Even if there are, the sanity checks in
  3006. * kmem_cache_destroy should caught this ill-case.
  3007. *
  3008. * Still, we don't want anyone else freeing memcg_caches under our
  3009. * noses, which can happen if a new memcg comes to life. As usual,
  3010. * we'll take the set_limit_mutex to protect ourselves against this.
  3011. */
  3012. mutex_lock(&set_limit_mutex);
  3013. for (i = 0; i < memcg_limited_groups_array_size; i++) {
  3014. c = s->memcg_params->memcg_caches[i];
  3015. if (!c)
  3016. continue;
  3017. /*
  3018. * We will now manually delete the caches, so to avoid races
  3019. * we need to cancel all pending destruction workers and
  3020. * proceed with destruction ourselves.
  3021. *
  3022. * kmem_cache_destroy() will call kmem_cache_shrink internally,
  3023. * and that could spawn the workers again: it is likely that
  3024. * the cache still have active pages until this very moment.
  3025. * This would lead us back to mem_cgroup_destroy_cache.
  3026. *
  3027. * But that will not execute at all if the "dead" flag is not
  3028. * set, so flip it down to guarantee we are in control.
  3029. */
  3030. c->memcg_params->dead = false;
  3031. cancel_work_sync(&c->memcg_params->destroy);
  3032. kmem_cache_destroy(c);
  3033. }
  3034. mutex_unlock(&set_limit_mutex);
  3035. }
  3036. struct create_work {
  3037. struct mem_cgroup *memcg;
  3038. struct kmem_cache *cachep;
  3039. struct work_struct work;
  3040. };
  3041. static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
  3042. {
  3043. struct kmem_cache *cachep;
  3044. struct memcg_cache_params *params;
  3045. if (!memcg_kmem_is_active(memcg))
  3046. return;
  3047. mutex_lock(&memcg->slab_caches_mutex);
  3048. list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
  3049. cachep = memcg_params_to_cache(params);
  3050. cachep->memcg_params->dead = true;
  3051. schedule_work(&cachep->memcg_params->destroy);
  3052. }
  3053. mutex_unlock(&memcg->slab_caches_mutex);
  3054. }
  3055. static void memcg_create_cache_work_func(struct work_struct *w)
  3056. {
  3057. struct create_work *cw;
  3058. cw = container_of(w, struct create_work, work);
  3059. memcg_create_kmem_cache(cw->memcg, cw->cachep);
  3060. /* Drop the reference gotten when we enqueued. */
  3061. css_put(&cw->memcg->css);
  3062. kfree(cw);
  3063. }
  3064. /*
  3065. * Enqueue the creation of a per-memcg kmem_cache.
  3066. */
  3067. static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
  3068. struct kmem_cache *cachep)
  3069. {
  3070. struct create_work *cw;
  3071. cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
  3072. if (cw == NULL) {
  3073. css_put(&memcg->css);
  3074. return;
  3075. }
  3076. cw->memcg = memcg;
  3077. cw->cachep = cachep;
  3078. INIT_WORK(&cw->work, memcg_create_cache_work_func);
  3079. schedule_work(&cw->work);
  3080. }
  3081. static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
  3082. struct kmem_cache *cachep)
  3083. {
  3084. /*
  3085. * We need to stop accounting when we kmalloc, because if the
  3086. * corresponding kmalloc cache is not yet created, the first allocation
  3087. * in __memcg_create_cache_enqueue will recurse.
  3088. *
  3089. * However, it is better to enclose the whole function. Depending on
  3090. * the debugging options enabled, INIT_WORK(), for instance, can
  3091. * trigger an allocation. This too, will make us recurse. Because at
  3092. * this point we can't allow ourselves back into memcg_kmem_get_cache,
  3093. * the safest choice is to do it like this, wrapping the whole function.
  3094. */
  3095. memcg_stop_kmem_account();
  3096. __memcg_create_cache_enqueue(memcg, cachep);
  3097. memcg_resume_kmem_account();
  3098. }
  3099. /*
  3100. * Return the kmem_cache we're supposed to use for a slab allocation.
  3101. * We try to use the current memcg's version of the cache.
  3102. *
  3103. * If the cache does not exist yet, if we are the first user of it,
  3104. * we either create it immediately, if possible, or create it asynchronously
  3105. * in a workqueue.
  3106. * In the latter case, we will let the current allocation go through with
  3107. * the original cache.
  3108. *
  3109. * Can't be called in interrupt context or from kernel threads.
  3110. * This function needs to be called with rcu_read_lock() held.
  3111. */
  3112. struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
  3113. gfp_t gfp)
  3114. {
  3115. struct mem_cgroup *memcg;
  3116. int idx;
  3117. VM_BUG_ON(!cachep->memcg_params);
  3118. VM_BUG_ON(!cachep->memcg_params->is_root_cache);
  3119. if (!current->mm || current->memcg_kmem_skip_account)
  3120. return cachep;
  3121. rcu_read_lock();
  3122. memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
  3123. if (!memcg_can_account_kmem(memcg))
  3124. goto out;
  3125. idx = memcg_cache_id(memcg);
  3126. /*
  3127. * barrier to mare sure we're always seeing the up to date value. The
  3128. * code updating memcg_caches will issue a write barrier to match this.
  3129. */
  3130. read_barrier_depends();
  3131. if (likely(cachep->memcg_params->memcg_caches[idx])) {
  3132. cachep = cachep->memcg_params->memcg_caches[idx];
  3133. goto out;
  3134. }
  3135. /* The corresponding put will be done in the workqueue. */
  3136. if (!css_tryget(&memcg->css))
  3137. goto out;
  3138. rcu_read_unlock();
  3139. /*
  3140. * If we are in a safe context (can wait, and not in interrupt
  3141. * context), we could be be predictable and return right away.
  3142. * This would guarantee that the allocation being performed
  3143. * already belongs in the new cache.
  3144. *
  3145. * However, there are some clashes that can arrive from locking.
  3146. * For instance, because we acquire the slab_mutex while doing
  3147. * kmem_cache_dup, this means no further allocation could happen
  3148. * with the slab_mutex held.
  3149. *
  3150. * Also, because cache creation issue get_online_cpus(), this
  3151. * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
  3152. * that ends up reversed during cpu hotplug. (cpuset allocates
  3153. * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
  3154. * better to defer everything.
  3155. */
  3156. memcg_create_cache_enqueue(memcg, cachep);
  3157. return cachep;
  3158. out:
  3159. rcu_read_unlock();
  3160. return cachep;
  3161. }
  3162. EXPORT_SYMBOL(__memcg_kmem_get_cache);
  3163. /*
  3164. * We need to verify if the allocation against current->mm->owner's memcg is
  3165. * possible for the given order. But the page is not allocated yet, so we'll
  3166. * need a further commit step to do the final arrangements.
  3167. *
  3168. * It is possible for the task to switch cgroups in this mean time, so at
  3169. * commit time, we can't rely on task conversion any longer. We'll then use
  3170. * the handle argument to return to the caller which cgroup we should commit
  3171. * against. We could also return the memcg directly and avoid the pointer
  3172. * passing, but a boolean return value gives better semantics considering
  3173. * the compiled-out case as well.
  3174. *
  3175. * Returning true means the allocation is possible.
  3176. */
  3177. bool
  3178. __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
  3179. {
  3180. struct mem_cgroup *memcg;
  3181. int ret;
  3182. *_memcg = NULL;
  3183. memcg = try_get_mem_cgroup_from_mm(current->mm);
  3184. /*
  3185. * very rare case described in mem_cgroup_from_task. Unfortunately there
  3186. * isn't much we can do without complicating this too much, and it would
  3187. * be gfp-dependent anyway. Just let it go
  3188. */
  3189. if (unlikely(!memcg))
  3190. return true;
  3191. if (!memcg_can_account_kmem(memcg)) {
  3192. css_put(&memcg->css);
  3193. return true;
  3194. }
  3195. ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
  3196. if (!ret)
  3197. *_memcg = memcg;
  3198. css_put(&memcg->css);
  3199. return (ret == 0);
  3200. }
  3201. void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
  3202. int order)
  3203. {
  3204. struct page_cgroup *pc;
  3205. VM_BUG_ON(mem_cgroup_is_root(memcg));
  3206. /* The page allocation failed. Revert */
  3207. if (!page) {
  3208. memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
  3209. return;
  3210. }
  3211. pc = lookup_page_cgroup(page);
  3212. lock_page_cgroup(pc);
  3213. pc->mem_cgroup = memcg;
  3214. SetPageCgroupUsed(pc);
  3215. unlock_page_cgroup(pc);
  3216. }
  3217. void __memcg_kmem_uncharge_pages(struct page *page, int order)
  3218. {
  3219. struct mem_cgroup *memcg = NULL;
  3220. struct page_cgroup *pc;
  3221. pc = lookup_page_cgroup(page);
  3222. /*
  3223. * Fast unlocked return. Theoretically might have changed, have to
  3224. * check again after locking.
  3225. */
  3226. if (!PageCgroupUsed(pc))
  3227. return;
  3228. lock_page_cgroup(pc);
  3229. if (PageCgroupUsed(pc)) {
  3230. memcg = pc->mem_cgroup;
  3231. ClearPageCgroupUsed(pc);
  3232. }
  3233. unlock_page_cgroup(pc);
  3234. /*
  3235. * We trust that only if there is a memcg associated with the page, it
  3236. * is a valid allocation
  3237. */
  3238. if (!memcg)
  3239. return;
  3240. VM_BUG_ON(mem_cgroup_is_root(memcg));
  3241. memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
  3242. }
  3243. #else
  3244. static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
  3245. {
  3246. }
  3247. #endif /* CONFIG_MEMCG_KMEM */
  3248. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3249. #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
  3250. /*
  3251. * Because tail pages are not marked as "used", set it. We're under
  3252. * zone->lru_lock, 'splitting on pmd' and compound_lock.
  3253. * charge/uncharge will be never happen and move_account() is done under
  3254. * compound_lock(), so we don't have to take care of races.
  3255. */
  3256. void mem_cgroup_split_huge_fixup(struct page *head)
  3257. {
  3258. struct page_cgroup *head_pc = lookup_page_cgroup(head);
  3259. struct page_cgroup *pc;
  3260. struct mem_cgroup *memcg;
  3261. int i;
  3262. if (mem_cgroup_disabled())
  3263. return;
  3264. memcg = head_pc->mem_cgroup;
  3265. for (i = 1; i < HPAGE_PMD_NR; i++) {
  3266. pc = head_pc + i;
  3267. pc->mem_cgroup = memcg;
  3268. smp_wmb();/* see __commit_charge() */
  3269. pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
  3270. }
  3271. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  3272. HPAGE_PMD_NR);
  3273. }
  3274. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  3275. /**
  3276. * mem_cgroup_move_account - move account of the page
  3277. * @page: the page
  3278. * @nr_pages: number of regular pages (>1 for huge pages)
  3279. * @pc: page_cgroup of the page.
  3280. * @from: mem_cgroup which the page is moved from.
  3281. * @to: mem_cgroup which the page is moved to. @from != @to.
  3282. *
  3283. * The caller must confirm following.
  3284. * - page is not on LRU (isolate_page() is useful.)
  3285. * - compound_lock is held when nr_pages > 1
  3286. *
  3287. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  3288. * from old cgroup.
  3289. */
  3290. static int mem_cgroup_move_account(struct page *page,
  3291. unsigned int nr_pages,
  3292. struct page_cgroup *pc,
  3293. struct mem_cgroup *from,
  3294. struct mem_cgroup *to)
  3295. {
  3296. unsigned long flags;
  3297. int ret;
  3298. bool anon = PageAnon(page);
  3299. VM_BUG_ON(from == to);
  3300. VM_BUG_ON(PageLRU(page));
  3301. /*
  3302. * The page is isolated from LRU. So, collapse function
  3303. * will not handle this page. But page splitting can happen.
  3304. * Do this check under compound_page_lock(). The caller should
  3305. * hold it.
  3306. */
  3307. ret = -EBUSY;
  3308. if (nr_pages > 1 && !PageTransHuge(page))
  3309. goto out;
  3310. lock_page_cgroup(pc);
  3311. ret = -EINVAL;
  3312. if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
  3313. goto unlock;
  3314. move_lock_mem_cgroup(from, &flags);
  3315. if (!anon && page_mapped(page)) {
  3316. /* Update mapped_file data for mem_cgroup */
  3317. preempt_disable();
  3318. __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
  3319. __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
  3320. preempt_enable();
  3321. }
  3322. mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
  3323. /* caller should have done css_get */
  3324. pc->mem_cgroup = to;
  3325. mem_cgroup_charge_statistics(to, page, anon, nr_pages);
  3326. move_unlock_mem_cgroup(from, &flags);
  3327. ret = 0;
  3328. unlock:
  3329. unlock_page_cgroup(pc);
  3330. /*
  3331. * check events
  3332. */
  3333. memcg_check_events(to, page);
  3334. memcg_check_events(from, page);
  3335. out:
  3336. return ret;
  3337. }
  3338. /**
  3339. * mem_cgroup_move_parent - moves page to the parent group
  3340. * @page: the page to move
  3341. * @pc: page_cgroup of the page
  3342. * @child: page's cgroup
  3343. *
  3344. * move charges to its parent or the root cgroup if the group has no
  3345. * parent (aka use_hierarchy==0).
  3346. * Although this might fail (get_page_unless_zero, isolate_lru_page or
  3347. * mem_cgroup_move_account fails) the failure is always temporary and
  3348. * it signals a race with a page removal/uncharge or migration. In the
  3349. * first case the page is on the way out and it will vanish from the LRU
  3350. * on the next attempt and the call should be retried later.
  3351. * Isolation from the LRU fails only if page has been isolated from
  3352. * the LRU since we looked at it and that usually means either global
  3353. * reclaim or migration going on. The page will either get back to the
  3354. * LRU or vanish.
  3355. * Finaly mem_cgroup_move_account fails only if the page got uncharged
  3356. * (!PageCgroupUsed) or moved to a different group. The page will
  3357. * disappear in the next attempt.
  3358. */
  3359. static int mem_cgroup_move_parent(struct page *page,
  3360. struct page_cgroup *pc,
  3361. struct mem_cgroup *child)
  3362. {
  3363. struct mem_cgroup *parent;
  3364. unsigned int nr_pages;
  3365. unsigned long uninitialized_var(flags);
  3366. int ret;
  3367. VM_BUG_ON(mem_cgroup_is_root(child));
  3368. ret = -EBUSY;
  3369. if (!get_page_unless_zero(page))
  3370. goto out;
  3371. if (isolate_lru_page(page))
  3372. goto put;
  3373. nr_pages = hpage_nr_pages(page);
  3374. parent = parent_mem_cgroup(child);
  3375. /*
  3376. * If no parent, move charges to root cgroup.
  3377. */
  3378. if (!parent)
  3379. parent = root_mem_cgroup;
  3380. if (nr_pages > 1) {
  3381. VM_BUG_ON(!PageTransHuge(page));
  3382. flags = compound_lock_irqsave(page);
  3383. }
  3384. ret = mem_cgroup_move_account(page, nr_pages,
  3385. pc, child, parent);
  3386. if (!ret)
  3387. __mem_cgroup_cancel_local_charge(child, nr_pages);
  3388. if (nr_pages > 1)
  3389. compound_unlock_irqrestore(page, flags);
  3390. putback_lru_page(page);
  3391. put:
  3392. put_page(page);
  3393. out:
  3394. return ret;
  3395. }
  3396. /*
  3397. * Charge the memory controller for page usage.
  3398. * Return
  3399. * 0 if the charge was successful
  3400. * < 0 if the cgroup is over its limit
  3401. */
  3402. static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
  3403. gfp_t gfp_mask, enum charge_type ctype)
  3404. {
  3405. struct mem_cgroup *memcg = NULL;
  3406. unsigned int nr_pages = 1;
  3407. bool oom = true;
  3408. int ret;
  3409. if (PageTransHuge(page)) {
  3410. nr_pages <<= compound_order(page);
  3411. VM_BUG_ON(!PageTransHuge(page));
  3412. /*
  3413. * Never OOM-kill a process for a huge page. The
  3414. * fault handler will fall back to regular pages.
  3415. */
  3416. oom = false;
  3417. }
  3418. ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
  3419. if (ret == -ENOMEM)
  3420. return ret;
  3421. __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
  3422. return 0;
  3423. }
  3424. int mem_cgroup_newpage_charge(struct page *page,
  3425. struct mm_struct *mm, gfp_t gfp_mask)
  3426. {
  3427. if (mem_cgroup_disabled())
  3428. return 0;
  3429. VM_BUG_ON(page_mapped(page));
  3430. VM_BUG_ON(page->mapping && !PageAnon(page));
  3431. VM_BUG_ON(!mm);
  3432. return mem_cgroup_charge_common(page, mm, gfp_mask,
  3433. MEM_CGROUP_CHARGE_TYPE_ANON);
  3434. }
  3435. /*
  3436. * While swap-in, try_charge -> commit or cancel, the page is locked.
  3437. * And when try_charge() successfully returns, one refcnt to memcg without
  3438. * struct page_cgroup is acquired. This refcnt will be consumed by
  3439. * "commit()" or removed by "cancel()"
  3440. */
  3441. static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
  3442. struct page *page,
  3443. gfp_t mask,
  3444. struct mem_cgroup **memcgp)
  3445. {
  3446. struct mem_cgroup *memcg;
  3447. struct page_cgroup *pc;
  3448. int ret;
  3449. pc = lookup_page_cgroup(page);
  3450. /*
  3451. * Every swap fault against a single page tries to charge the
  3452. * page, bail as early as possible. shmem_unuse() encounters
  3453. * already charged pages, too. The USED bit is protected by
  3454. * the page lock, which serializes swap cache removal, which
  3455. * in turn serializes uncharging.
  3456. */
  3457. if (PageCgroupUsed(pc))
  3458. return 0;
  3459. if (!do_swap_account)
  3460. goto charge_cur_mm;
  3461. memcg = try_get_mem_cgroup_from_page(page);
  3462. if (!memcg)
  3463. goto charge_cur_mm;
  3464. *memcgp = memcg;
  3465. ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
  3466. css_put(&memcg->css);
  3467. if (ret == -EINTR)
  3468. ret = 0;
  3469. return ret;
  3470. charge_cur_mm:
  3471. ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
  3472. if (ret == -EINTR)
  3473. ret = 0;
  3474. return ret;
  3475. }
  3476. int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
  3477. gfp_t gfp_mask, struct mem_cgroup **memcgp)
  3478. {
  3479. *memcgp = NULL;
  3480. if (mem_cgroup_disabled())
  3481. return 0;
  3482. /*
  3483. * A racing thread's fault, or swapoff, may have already
  3484. * updated the pte, and even removed page from swap cache: in
  3485. * those cases unuse_pte()'s pte_same() test will fail; but
  3486. * there's also a KSM case which does need to charge the page.
  3487. */
  3488. if (!PageSwapCache(page)) {
  3489. int ret;
  3490. ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
  3491. if (ret == -EINTR)
  3492. ret = 0;
  3493. return ret;
  3494. }
  3495. return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
  3496. }
  3497. void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
  3498. {
  3499. if (mem_cgroup_disabled())
  3500. return;
  3501. if (!memcg)
  3502. return;
  3503. __mem_cgroup_cancel_charge(memcg, 1);
  3504. }
  3505. static void
  3506. __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
  3507. enum charge_type ctype)
  3508. {
  3509. if (mem_cgroup_disabled())
  3510. return;
  3511. if (!memcg)
  3512. return;
  3513. __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
  3514. /*
  3515. * Now swap is on-memory. This means this page may be
  3516. * counted both as mem and swap....double count.
  3517. * Fix it by uncharging from memsw. Basically, this SwapCache is stable
  3518. * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
  3519. * may call delete_from_swap_cache() before reach here.
  3520. */
  3521. if (do_swap_account && PageSwapCache(page)) {
  3522. swp_entry_t ent = {.val = page_private(page)};
  3523. mem_cgroup_uncharge_swap(ent);
  3524. }
  3525. }
  3526. void mem_cgroup_commit_charge_swapin(struct page *page,
  3527. struct mem_cgroup *memcg)
  3528. {
  3529. __mem_cgroup_commit_charge_swapin(page, memcg,
  3530. MEM_CGROUP_CHARGE_TYPE_ANON);
  3531. }
  3532. int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
  3533. gfp_t gfp_mask)
  3534. {
  3535. struct mem_cgroup *memcg = NULL;
  3536. enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
  3537. int ret;
  3538. if (mem_cgroup_disabled())
  3539. return 0;
  3540. if (PageCompound(page))
  3541. return 0;
  3542. if (!PageSwapCache(page))
  3543. ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
  3544. else { /* page is swapcache/shmem */
  3545. ret = __mem_cgroup_try_charge_swapin(mm, page,
  3546. gfp_mask, &memcg);
  3547. if (!ret)
  3548. __mem_cgroup_commit_charge_swapin(page, memcg, type);
  3549. }
  3550. return ret;
  3551. }
  3552. static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
  3553. unsigned int nr_pages,
  3554. const enum charge_type ctype)
  3555. {
  3556. struct memcg_batch_info *batch = NULL;
  3557. bool uncharge_memsw = true;
  3558. /* If swapout, usage of swap doesn't decrease */
  3559. if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
  3560. uncharge_memsw = false;
  3561. batch = &current->memcg_batch;
  3562. /*
  3563. * In usual, we do css_get() when we remember memcg pointer.
  3564. * But in this case, we keep res->usage until end of a series of
  3565. * uncharges. Then, it's ok to ignore memcg's refcnt.
  3566. */
  3567. if (!batch->memcg)
  3568. batch->memcg = memcg;
  3569. /*
  3570. * do_batch > 0 when unmapping pages or inode invalidate/truncate.
  3571. * In those cases, all pages freed continuously can be expected to be in
  3572. * the same cgroup and we have chance to coalesce uncharges.
  3573. * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
  3574. * because we want to do uncharge as soon as possible.
  3575. */
  3576. if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
  3577. goto direct_uncharge;
  3578. if (nr_pages > 1)
  3579. goto direct_uncharge;
  3580. /*
  3581. * In typical case, batch->memcg == mem. This means we can
  3582. * merge a series of uncharges to an uncharge of res_counter.
  3583. * If not, we uncharge res_counter ony by one.
  3584. */
  3585. if (batch->memcg != memcg)
  3586. goto direct_uncharge;
  3587. /* remember freed charge and uncharge it later */
  3588. batch->nr_pages++;
  3589. if (uncharge_memsw)
  3590. batch->memsw_nr_pages++;
  3591. return;
  3592. direct_uncharge:
  3593. res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
  3594. if (uncharge_memsw)
  3595. res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
  3596. if (unlikely(batch->memcg != memcg))
  3597. memcg_oom_recover(memcg);
  3598. }
  3599. /*
  3600. * uncharge if !page_mapped(page)
  3601. */
  3602. static struct mem_cgroup *
  3603. __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
  3604. bool end_migration)
  3605. {
  3606. struct mem_cgroup *memcg = NULL;
  3607. unsigned int nr_pages = 1;
  3608. struct page_cgroup *pc;
  3609. bool anon;
  3610. if (mem_cgroup_disabled())
  3611. return NULL;
  3612. if (PageTransHuge(page)) {
  3613. nr_pages <<= compound_order(page);
  3614. VM_BUG_ON(!PageTransHuge(page));
  3615. }
  3616. /*
  3617. * Check if our page_cgroup is valid
  3618. */
  3619. pc = lookup_page_cgroup(page);
  3620. if (unlikely(!PageCgroupUsed(pc)))
  3621. return NULL;
  3622. lock_page_cgroup(pc);
  3623. memcg = pc->mem_cgroup;
  3624. if (!PageCgroupUsed(pc))
  3625. goto unlock_out;
  3626. anon = PageAnon(page);
  3627. switch (ctype) {
  3628. case MEM_CGROUP_CHARGE_TYPE_ANON:
  3629. /*
  3630. * Generally PageAnon tells if it's the anon statistics to be
  3631. * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
  3632. * used before page reached the stage of being marked PageAnon.
  3633. */
  3634. anon = true;
  3635. /* fallthrough */
  3636. case MEM_CGROUP_CHARGE_TYPE_DROP:
  3637. /* See mem_cgroup_prepare_migration() */
  3638. if (page_mapped(page))
  3639. goto unlock_out;
  3640. /*
  3641. * Pages under migration may not be uncharged. But
  3642. * end_migration() /must/ be the one uncharging the
  3643. * unused post-migration page and so it has to call
  3644. * here with the migration bit still set. See the
  3645. * res_counter handling below.
  3646. */
  3647. if (!end_migration && PageCgroupMigration(pc))
  3648. goto unlock_out;
  3649. break;
  3650. case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
  3651. if (!PageAnon(page)) { /* Shared memory */
  3652. if (page->mapping && !page_is_file_cache(page))
  3653. goto unlock_out;
  3654. } else if (page_mapped(page)) /* Anon */
  3655. goto unlock_out;
  3656. break;
  3657. default:
  3658. break;
  3659. }
  3660. mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
  3661. ClearPageCgroupUsed(pc);
  3662. /*
  3663. * pc->mem_cgroup is not cleared here. It will be accessed when it's
  3664. * freed from LRU. This is safe because uncharged page is expected not
  3665. * to be reused (freed soon). Exception is SwapCache, it's handled by
  3666. * special functions.
  3667. */
  3668. unlock_page_cgroup(pc);
  3669. /*
  3670. * even after unlock, we have memcg->res.usage here and this memcg
  3671. * will never be freed.
  3672. */
  3673. memcg_check_events(memcg, page);
  3674. if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
  3675. mem_cgroup_swap_statistics(memcg, true);
  3676. mem_cgroup_get(memcg);
  3677. }
  3678. /*
  3679. * Migration does not charge the res_counter for the
  3680. * replacement page, so leave it alone when phasing out the
  3681. * page that is unused after the migration.
  3682. */
  3683. if (!end_migration && !mem_cgroup_is_root(memcg))
  3684. mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
  3685. return memcg;
  3686. unlock_out:
  3687. unlock_page_cgroup(pc);
  3688. return NULL;
  3689. }
  3690. void mem_cgroup_uncharge_page(struct page *page)
  3691. {
  3692. /* early check. */
  3693. if (page_mapped(page))
  3694. return;
  3695. VM_BUG_ON(page->mapping && !PageAnon(page));
  3696. /*
  3697. * If the page is in swap cache, uncharge should be deferred
  3698. * to the swap path, which also properly accounts swap usage
  3699. * and handles memcg lifetime.
  3700. *
  3701. * Note that this check is not stable and reclaim may add the
  3702. * page to swap cache at any time after this. However, if the
  3703. * page is not in swap cache by the time page->mapcount hits
  3704. * 0, there won't be any page table references to the swap
  3705. * slot, and reclaim will free it and not actually write the
  3706. * page to disk.
  3707. */
  3708. if (PageSwapCache(page))
  3709. return;
  3710. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
  3711. }
  3712. void mem_cgroup_uncharge_cache_page(struct page *page)
  3713. {
  3714. VM_BUG_ON(page_mapped(page));
  3715. VM_BUG_ON(page->mapping);
  3716. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
  3717. }
  3718. /*
  3719. * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
  3720. * In that cases, pages are freed continuously and we can expect pages
  3721. * are in the same memcg. All these calls itself limits the number of
  3722. * pages freed at once, then uncharge_start/end() is called properly.
  3723. * This may be called prural(2) times in a context,
  3724. */
  3725. void mem_cgroup_uncharge_start(void)
  3726. {
  3727. current->memcg_batch.do_batch++;
  3728. /* We can do nest. */
  3729. if (current->memcg_batch.do_batch == 1) {
  3730. current->memcg_batch.memcg = NULL;
  3731. current->memcg_batch.nr_pages = 0;
  3732. current->memcg_batch.memsw_nr_pages = 0;
  3733. }
  3734. }
  3735. void mem_cgroup_uncharge_end(void)
  3736. {
  3737. struct memcg_batch_info *batch = &current->memcg_batch;
  3738. if (!batch->do_batch)
  3739. return;
  3740. batch->do_batch--;
  3741. if (batch->do_batch) /* If stacked, do nothing. */
  3742. return;
  3743. if (!batch->memcg)
  3744. return;
  3745. /*
  3746. * This "batch->memcg" is valid without any css_get/put etc...
  3747. * bacause we hide charges behind us.
  3748. */
  3749. if (batch->nr_pages)
  3750. res_counter_uncharge(&batch->memcg->res,
  3751. batch->nr_pages * PAGE_SIZE);
  3752. if (batch->memsw_nr_pages)
  3753. res_counter_uncharge(&batch->memcg->memsw,
  3754. batch->memsw_nr_pages * PAGE_SIZE);
  3755. memcg_oom_recover(batch->memcg);
  3756. /* forget this pointer (for sanity check) */
  3757. batch->memcg = NULL;
  3758. }
  3759. #ifdef CONFIG_SWAP
  3760. /*
  3761. * called after __delete_from_swap_cache() and drop "page" account.
  3762. * memcg information is recorded to swap_cgroup of "ent"
  3763. */
  3764. void
  3765. mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
  3766. {
  3767. struct mem_cgroup *memcg;
  3768. int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
  3769. if (!swapout) /* this was a swap cache but the swap is unused ! */
  3770. ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
  3771. memcg = __mem_cgroup_uncharge_common(page, ctype, false);
  3772. /*
  3773. * record memcg information, if swapout && memcg != NULL,
  3774. * mem_cgroup_get() was called in uncharge().
  3775. */
  3776. if (do_swap_account && swapout && memcg)
  3777. swap_cgroup_record(ent, css_id(&memcg->css));
  3778. }
  3779. #endif
  3780. #ifdef CONFIG_MEMCG_SWAP
  3781. /*
  3782. * called from swap_entry_free(). remove record in swap_cgroup and
  3783. * uncharge "memsw" account.
  3784. */
  3785. void mem_cgroup_uncharge_swap(swp_entry_t ent)
  3786. {
  3787. struct mem_cgroup *memcg;
  3788. unsigned short id;
  3789. if (!do_swap_account)
  3790. return;
  3791. id = swap_cgroup_record(ent, 0);
  3792. rcu_read_lock();
  3793. memcg = mem_cgroup_lookup(id);
  3794. if (memcg) {
  3795. /*
  3796. * We uncharge this because swap is freed.
  3797. * This memcg can be obsolete one. We avoid calling css_tryget
  3798. */
  3799. if (!mem_cgroup_is_root(memcg))
  3800. res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
  3801. mem_cgroup_swap_statistics(memcg, false);
  3802. mem_cgroup_put(memcg);
  3803. }
  3804. rcu_read_unlock();
  3805. }
  3806. /**
  3807. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  3808. * @entry: swap entry to be moved
  3809. * @from: mem_cgroup which the entry is moved from
  3810. * @to: mem_cgroup which the entry is moved to
  3811. *
  3812. * It succeeds only when the swap_cgroup's record for this entry is the same
  3813. * as the mem_cgroup's id of @from.
  3814. *
  3815. * Returns 0 on success, -EINVAL on failure.
  3816. *
  3817. * The caller must have charged to @to, IOW, called res_counter_charge() about
  3818. * both res and memsw, and called css_get().
  3819. */
  3820. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  3821. struct mem_cgroup *from, struct mem_cgroup *to)
  3822. {
  3823. unsigned short old_id, new_id;
  3824. old_id = css_id(&from->css);
  3825. new_id = css_id(&to->css);
  3826. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  3827. mem_cgroup_swap_statistics(from, false);
  3828. mem_cgroup_swap_statistics(to, true);
  3829. /*
  3830. * This function is only called from task migration context now.
  3831. * It postpones res_counter and refcount handling till the end
  3832. * of task migration(mem_cgroup_clear_mc()) for performance
  3833. * improvement. But we cannot postpone mem_cgroup_get(to)
  3834. * because if the process that has been moved to @to does
  3835. * swap-in, the refcount of @to might be decreased to 0.
  3836. */
  3837. mem_cgroup_get(to);
  3838. return 0;
  3839. }
  3840. return -EINVAL;
  3841. }
  3842. #else
  3843. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  3844. struct mem_cgroup *from, struct mem_cgroup *to)
  3845. {
  3846. return -EINVAL;
  3847. }
  3848. #endif
  3849. /*
  3850. * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
  3851. * page belongs to.
  3852. */
  3853. void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
  3854. struct mem_cgroup **memcgp)
  3855. {
  3856. struct mem_cgroup *memcg = NULL;
  3857. unsigned int nr_pages = 1;
  3858. struct page_cgroup *pc;
  3859. enum charge_type ctype;
  3860. *memcgp = NULL;
  3861. if (mem_cgroup_disabled())
  3862. return;
  3863. if (PageTransHuge(page))
  3864. nr_pages <<= compound_order(page);
  3865. pc = lookup_page_cgroup(page);
  3866. lock_page_cgroup(pc);
  3867. if (PageCgroupUsed(pc)) {
  3868. memcg = pc->mem_cgroup;
  3869. css_get(&memcg->css);
  3870. /*
  3871. * At migrating an anonymous page, its mapcount goes down
  3872. * to 0 and uncharge() will be called. But, even if it's fully
  3873. * unmapped, migration may fail and this page has to be
  3874. * charged again. We set MIGRATION flag here and delay uncharge
  3875. * until end_migration() is called
  3876. *
  3877. * Corner Case Thinking
  3878. * A)
  3879. * When the old page was mapped as Anon and it's unmap-and-freed
  3880. * while migration was ongoing.
  3881. * If unmap finds the old page, uncharge() of it will be delayed
  3882. * until end_migration(). If unmap finds a new page, it's
  3883. * uncharged when it make mapcount to be 1->0. If unmap code
  3884. * finds swap_migration_entry, the new page will not be mapped
  3885. * and end_migration() will find it(mapcount==0).
  3886. *
  3887. * B)
  3888. * When the old page was mapped but migraion fails, the kernel
  3889. * remaps it. A charge for it is kept by MIGRATION flag even
  3890. * if mapcount goes down to 0. We can do remap successfully
  3891. * without charging it again.
  3892. *
  3893. * C)
  3894. * The "old" page is under lock_page() until the end of
  3895. * migration, so, the old page itself will not be swapped-out.
  3896. * If the new page is swapped out before end_migraton, our
  3897. * hook to usual swap-out path will catch the event.
  3898. */
  3899. if (PageAnon(page))
  3900. SetPageCgroupMigration(pc);
  3901. }
  3902. unlock_page_cgroup(pc);
  3903. /*
  3904. * If the page is not charged at this point,
  3905. * we return here.
  3906. */
  3907. if (!memcg)
  3908. return;
  3909. *memcgp = memcg;
  3910. /*
  3911. * We charge new page before it's used/mapped. So, even if unlock_page()
  3912. * is called before end_migration, we can catch all events on this new
  3913. * page. In the case new page is migrated but not remapped, new page's
  3914. * mapcount will be finally 0 and we call uncharge in end_migration().
  3915. */
  3916. if (PageAnon(page))
  3917. ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
  3918. else
  3919. ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
  3920. /*
  3921. * The page is committed to the memcg, but it's not actually
  3922. * charged to the res_counter since we plan on replacing the
  3923. * old one and only one page is going to be left afterwards.
  3924. */
  3925. __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
  3926. }
  3927. /* remove redundant charge if migration failed*/
  3928. void mem_cgroup_end_migration(struct mem_cgroup *memcg,
  3929. struct page *oldpage, struct page *newpage, bool migration_ok)
  3930. {
  3931. struct page *used, *unused;
  3932. struct page_cgroup *pc;
  3933. bool anon;
  3934. if (!memcg)
  3935. return;
  3936. if (!migration_ok) {
  3937. used = oldpage;
  3938. unused = newpage;
  3939. } else {
  3940. used = newpage;
  3941. unused = oldpage;
  3942. }
  3943. anon = PageAnon(used);
  3944. __mem_cgroup_uncharge_common(unused,
  3945. anon ? MEM_CGROUP_CHARGE_TYPE_ANON
  3946. : MEM_CGROUP_CHARGE_TYPE_CACHE,
  3947. true);
  3948. css_put(&memcg->css);
  3949. /*
  3950. * We disallowed uncharge of pages under migration because mapcount
  3951. * of the page goes down to zero, temporarly.
  3952. * Clear the flag and check the page should be charged.
  3953. */
  3954. pc = lookup_page_cgroup(oldpage);
  3955. lock_page_cgroup(pc);
  3956. ClearPageCgroupMigration(pc);
  3957. unlock_page_cgroup(pc);
  3958. /*
  3959. * If a page is a file cache, radix-tree replacement is very atomic
  3960. * and we can skip this check. When it was an Anon page, its mapcount
  3961. * goes down to 0. But because we added MIGRATION flage, it's not
  3962. * uncharged yet. There are several case but page->mapcount check
  3963. * and USED bit check in mem_cgroup_uncharge_page() will do enough
  3964. * check. (see prepare_charge() also)
  3965. */
  3966. if (anon)
  3967. mem_cgroup_uncharge_page(used);
  3968. }
  3969. /*
  3970. * At replace page cache, newpage is not under any memcg but it's on
  3971. * LRU. So, this function doesn't touch res_counter but handles LRU
  3972. * in correct way. Both pages are locked so we cannot race with uncharge.
  3973. */
  3974. void mem_cgroup_replace_page_cache(struct page *oldpage,
  3975. struct page *newpage)
  3976. {
  3977. struct mem_cgroup *memcg = NULL;
  3978. struct page_cgroup *pc;
  3979. enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
  3980. if (mem_cgroup_disabled())
  3981. return;
  3982. pc = lookup_page_cgroup(oldpage);
  3983. /* fix accounting on old pages */
  3984. lock_page_cgroup(pc);
  3985. if (PageCgroupUsed(pc)) {
  3986. memcg = pc->mem_cgroup;
  3987. mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
  3988. ClearPageCgroupUsed(pc);
  3989. }
  3990. unlock_page_cgroup(pc);
  3991. /*
  3992. * When called from shmem_replace_page(), in some cases the
  3993. * oldpage has already been charged, and in some cases not.
  3994. */
  3995. if (!memcg)
  3996. return;
  3997. /*
  3998. * Even if newpage->mapping was NULL before starting replacement,
  3999. * the newpage may be on LRU(or pagevec for LRU) already. We lock
  4000. * LRU while we overwrite pc->mem_cgroup.
  4001. */
  4002. __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
  4003. }
  4004. #ifdef CONFIG_DEBUG_VM
  4005. static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
  4006. {
  4007. struct page_cgroup *pc;
  4008. pc = lookup_page_cgroup(page);
  4009. /*
  4010. * Can be NULL while feeding pages into the page allocator for
  4011. * the first time, i.e. during boot or memory hotplug;
  4012. * or when mem_cgroup_disabled().
  4013. */
  4014. if (likely(pc) && PageCgroupUsed(pc))
  4015. return pc;
  4016. return NULL;
  4017. }
  4018. bool mem_cgroup_bad_page_check(struct page *page)
  4019. {
  4020. if (mem_cgroup_disabled())
  4021. return false;
  4022. return lookup_page_cgroup_used(page) != NULL;
  4023. }
  4024. void mem_cgroup_print_bad_page(struct page *page)
  4025. {
  4026. struct page_cgroup *pc;
  4027. pc = lookup_page_cgroup_used(page);
  4028. if (pc) {
  4029. pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
  4030. pc, pc->flags, pc->mem_cgroup);
  4031. }
  4032. }
  4033. #endif
  4034. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  4035. unsigned long long val)
  4036. {
  4037. int retry_count;
  4038. u64 memswlimit, memlimit;
  4039. int ret = 0;
  4040. int children = mem_cgroup_count_children(memcg);
  4041. u64 curusage, oldusage;
  4042. int enlarge;
  4043. /*
  4044. * For keeping hierarchical_reclaim simple, how long we should retry
  4045. * is depends on callers. We set our retry-count to be function
  4046. * of # of children which we should visit in this loop.
  4047. */
  4048. retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
  4049. oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
  4050. enlarge = 0;
  4051. while (retry_count) {
  4052. if (signal_pending(current)) {
  4053. ret = -EINTR;
  4054. break;
  4055. }
  4056. /*
  4057. * Rather than hide all in some function, I do this in
  4058. * open coded manner. You see what this really does.
  4059. * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
  4060. */
  4061. mutex_lock(&set_limit_mutex);
  4062. memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4063. if (memswlimit < val) {
  4064. ret = -EINVAL;
  4065. mutex_unlock(&set_limit_mutex);
  4066. break;
  4067. }
  4068. memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4069. if (memlimit < val)
  4070. enlarge = 1;
  4071. ret = res_counter_set_limit(&memcg->res, val);
  4072. if (!ret) {
  4073. if (memswlimit == val)
  4074. memcg->memsw_is_minimum = true;
  4075. else
  4076. memcg->memsw_is_minimum = false;
  4077. }
  4078. mutex_unlock(&set_limit_mutex);
  4079. if (!ret)
  4080. break;
  4081. mem_cgroup_reclaim(memcg, GFP_KERNEL,
  4082. MEM_CGROUP_RECLAIM_SHRINK);
  4083. curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
  4084. /* Usage is reduced ? */
  4085. if (curusage >= oldusage)
  4086. retry_count--;
  4087. else
  4088. oldusage = curusage;
  4089. }
  4090. if (!ret && enlarge)
  4091. memcg_oom_recover(memcg);
  4092. return ret;
  4093. }
  4094. static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
  4095. unsigned long long val)
  4096. {
  4097. int retry_count;
  4098. u64 memlimit, memswlimit, oldusage, curusage;
  4099. int children = mem_cgroup_count_children(memcg);
  4100. int ret = -EBUSY;
  4101. int enlarge = 0;
  4102. /* see mem_cgroup_resize_res_limit */
  4103. retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
  4104. oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
  4105. while (retry_count) {
  4106. if (signal_pending(current)) {
  4107. ret = -EINTR;
  4108. break;
  4109. }
  4110. /*
  4111. * Rather than hide all in some function, I do this in
  4112. * open coded manner. You see what this really does.
  4113. * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
  4114. */
  4115. mutex_lock(&set_limit_mutex);
  4116. memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4117. if (memlimit > val) {
  4118. ret = -EINVAL;
  4119. mutex_unlock(&set_limit_mutex);
  4120. break;
  4121. }
  4122. memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4123. if (memswlimit < val)
  4124. enlarge = 1;
  4125. ret = res_counter_set_limit(&memcg->memsw, val);
  4126. if (!ret) {
  4127. if (memlimit == val)
  4128. memcg->memsw_is_minimum = true;
  4129. else
  4130. memcg->memsw_is_minimum = false;
  4131. }
  4132. mutex_unlock(&set_limit_mutex);
  4133. if (!ret)
  4134. break;
  4135. mem_cgroup_reclaim(memcg, GFP_KERNEL,
  4136. MEM_CGROUP_RECLAIM_NOSWAP |
  4137. MEM_CGROUP_RECLAIM_SHRINK);
  4138. curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
  4139. /* Usage is reduced ? */
  4140. if (curusage >= oldusage)
  4141. retry_count--;
  4142. else
  4143. oldusage = curusage;
  4144. }
  4145. if (!ret && enlarge)
  4146. memcg_oom_recover(memcg);
  4147. return ret;
  4148. }
  4149. unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
  4150. gfp_t gfp_mask,
  4151. unsigned long *total_scanned)
  4152. {
  4153. unsigned long nr_reclaimed = 0;
  4154. struct mem_cgroup_per_zone *mz, *next_mz = NULL;
  4155. unsigned long reclaimed;
  4156. int loop = 0;
  4157. struct mem_cgroup_tree_per_zone *mctz;
  4158. unsigned long long excess;
  4159. unsigned long nr_scanned;
  4160. if (order > 0)
  4161. return 0;
  4162. mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
  4163. /*
  4164. * This loop can run a while, specially if mem_cgroup's continuously
  4165. * keep exceeding their soft limit and putting the system under
  4166. * pressure
  4167. */
  4168. do {
  4169. if (next_mz)
  4170. mz = next_mz;
  4171. else
  4172. mz = mem_cgroup_largest_soft_limit_node(mctz);
  4173. if (!mz)
  4174. break;
  4175. nr_scanned = 0;
  4176. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
  4177. gfp_mask, &nr_scanned);
  4178. nr_reclaimed += reclaimed;
  4179. *total_scanned += nr_scanned;
  4180. spin_lock(&mctz->lock);
  4181. /*
  4182. * If we failed to reclaim anything from this memory cgroup
  4183. * it is time to move on to the next cgroup
  4184. */
  4185. next_mz = NULL;
  4186. if (!reclaimed) {
  4187. do {
  4188. /*
  4189. * Loop until we find yet another one.
  4190. *
  4191. * By the time we get the soft_limit lock
  4192. * again, someone might have aded the
  4193. * group back on the RB tree. Iterate to
  4194. * make sure we get a different mem.
  4195. * mem_cgroup_largest_soft_limit_node returns
  4196. * NULL if no other cgroup is present on
  4197. * the tree
  4198. */
  4199. next_mz =
  4200. __mem_cgroup_largest_soft_limit_node(mctz);
  4201. if (next_mz == mz)
  4202. css_put(&next_mz->memcg->css);
  4203. else /* next_mz == NULL or other memcg */
  4204. break;
  4205. } while (1);
  4206. }
  4207. __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
  4208. excess = res_counter_soft_limit_excess(&mz->memcg->res);
  4209. /*
  4210. * One school of thought says that we should not add
  4211. * back the node to the tree if reclaim returns 0.
  4212. * But our reclaim could return 0, simply because due
  4213. * to priority we are exposing a smaller subset of
  4214. * memory to reclaim from. Consider this as a longer
  4215. * term TODO.
  4216. */
  4217. /* If excess == 0, no tree ops */
  4218. __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
  4219. spin_unlock(&mctz->lock);
  4220. css_put(&mz->memcg->css);
  4221. loop++;
  4222. /*
  4223. * Could not reclaim anything and there are no more
  4224. * mem cgroups to try or we seem to be looping without
  4225. * reclaiming anything.
  4226. */
  4227. if (!nr_reclaimed &&
  4228. (next_mz == NULL ||
  4229. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  4230. break;
  4231. } while (!nr_reclaimed);
  4232. if (next_mz)
  4233. css_put(&next_mz->memcg->css);
  4234. return nr_reclaimed;
  4235. }
  4236. /**
  4237. * mem_cgroup_force_empty_list - clears LRU of a group
  4238. * @memcg: group to clear
  4239. * @node: NUMA node
  4240. * @zid: zone id
  4241. * @lru: lru to to clear
  4242. *
  4243. * Traverse a specified page_cgroup list and try to drop them all. This doesn't
  4244. * reclaim the pages page themselves - pages are moved to the parent (or root)
  4245. * group.
  4246. */
  4247. static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
  4248. int node, int zid, enum lru_list lru)
  4249. {
  4250. struct lruvec *lruvec;
  4251. unsigned long flags;
  4252. struct list_head *list;
  4253. struct page *busy;
  4254. struct zone *zone;
  4255. zone = &NODE_DATA(node)->node_zones[zid];
  4256. lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  4257. list = &lruvec->lists[lru];
  4258. busy = NULL;
  4259. do {
  4260. struct page_cgroup *pc;
  4261. struct page *page;
  4262. spin_lock_irqsave(&zone->lru_lock, flags);
  4263. if (list_empty(list)) {
  4264. spin_unlock_irqrestore(&zone->lru_lock, flags);
  4265. break;
  4266. }
  4267. page = list_entry(list->prev, struct page, lru);
  4268. if (busy == page) {
  4269. list_move(&page->lru, list);
  4270. busy = NULL;
  4271. spin_unlock_irqrestore(&zone->lru_lock, flags);
  4272. continue;
  4273. }
  4274. spin_unlock_irqrestore(&zone->lru_lock, flags);
  4275. pc = lookup_page_cgroup(page);
  4276. if (mem_cgroup_move_parent(page, pc, memcg)) {
  4277. /* found lock contention or "pc" is obsolete. */
  4278. busy = page;
  4279. cond_resched();
  4280. } else
  4281. busy = NULL;
  4282. } while (!list_empty(list));
  4283. }
  4284. /*
  4285. * make mem_cgroup's charge to be 0 if there is no task by moving
  4286. * all the charges and pages to the parent.
  4287. * This enables deleting this mem_cgroup.
  4288. *
  4289. * Caller is responsible for holding css reference on the memcg.
  4290. */
  4291. static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
  4292. {
  4293. int node, zid;
  4294. u64 usage;
  4295. do {
  4296. /* This is for making all *used* pages to be on LRU. */
  4297. lru_add_drain_all();
  4298. drain_all_stock_sync(memcg);
  4299. mem_cgroup_start_move(memcg);
  4300. for_each_node_state(node, N_MEMORY) {
  4301. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  4302. enum lru_list lru;
  4303. for_each_lru(lru) {
  4304. mem_cgroup_force_empty_list(memcg,
  4305. node, zid, lru);
  4306. }
  4307. }
  4308. }
  4309. mem_cgroup_end_move(memcg);
  4310. memcg_oom_recover(memcg);
  4311. cond_resched();
  4312. /*
  4313. * Kernel memory may not necessarily be trackable to a specific
  4314. * process. So they are not migrated, and therefore we can't
  4315. * expect their value to drop to 0 here.
  4316. * Having res filled up with kmem only is enough.
  4317. *
  4318. * This is a safety check because mem_cgroup_force_empty_list
  4319. * could have raced with mem_cgroup_replace_page_cache callers
  4320. * so the lru seemed empty but the page could have been added
  4321. * right after the check. RES_USAGE should be safe as we always
  4322. * charge before adding to the LRU.
  4323. */
  4324. usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
  4325. res_counter_read_u64(&memcg->kmem, RES_USAGE);
  4326. } while (usage > 0);
  4327. }
  4328. /*
  4329. * This mainly exists for tests during the setting of set of use_hierarchy.
  4330. * Since this is the very setting we are changing, the current hierarchy value
  4331. * is meaningless
  4332. */
  4333. static inline bool __memcg_has_children(struct mem_cgroup *memcg)
  4334. {
  4335. struct cgroup *pos;
  4336. /* bounce at first found */
  4337. cgroup_for_each_child(pos, memcg->css.cgroup)
  4338. return true;
  4339. return false;
  4340. }
  4341. /*
  4342. * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
  4343. * to be already dead (as in mem_cgroup_force_empty, for instance). This is
  4344. * from mem_cgroup_count_children(), in the sense that we don't really care how
  4345. * many children we have; we only need to know if we have any. It also counts
  4346. * any memcg without hierarchy as infertile.
  4347. */
  4348. static inline bool memcg_has_children(struct mem_cgroup *memcg)
  4349. {
  4350. return memcg->use_hierarchy && __memcg_has_children(memcg);
  4351. }
  4352. /*
  4353. * Reclaims as many pages from the given memcg as possible and moves
  4354. * the rest to the parent.
  4355. *
  4356. * Caller is responsible for holding css reference for memcg.
  4357. */
  4358. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  4359. {
  4360. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  4361. struct cgroup *cgrp = memcg->css.cgroup;
  4362. /* returns EBUSY if there is a task or if we come here twice. */
  4363. if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
  4364. return -EBUSY;
  4365. /* we call try-to-free pages for make this cgroup empty */
  4366. lru_add_drain_all();
  4367. /* try to free all pages in this cgroup */
  4368. while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
  4369. int progress;
  4370. if (signal_pending(current))
  4371. return -EINTR;
  4372. progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
  4373. false);
  4374. if (!progress) {
  4375. nr_retries--;
  4376. /* maybe some writeback is necessary */
  4377. congestion_wait(BLK_RW_ASYNC, HZ/10);
  4378. }
  4379. }
  4380. lru_add_drain();
  4381. mem_cgroup_reparent_charges(memcg);
  4382. return 0;
  4383. }
  4384. static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
  4385. {
  4386. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4387. int ret;
  4388. if (mem_cgroup_is_root(memcg))
  4389. return -EINVAL;
  4390. css_get(&memcg->css);
  4391. ret = mem_cgroup_force_empty(memcg);
  4392. css_put(&memcg->css);
  4393. return ret;
  4394. }
  4395. static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
  4396. {
  4397. return mem_cgroup_from_cont(cont)->use_hierarchy;
  4398. }
  4399. static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
  4400. u64 val)
  4401. {
  4402. int retval = 0;
  4403. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4404. struct cgroup *parent = cont->parent;
  4405. struct mem_cgroup *parent_memcg = NULL;
  4406. if (parent)
  4407. parent_memcg = mem_cgroup_from_cont(parent);
  4408. mutex_lock(&memcg_create_mutex);
  4409. if (memcg->use_hierarchy == val)
  4410. goto out;
  4411. /*
  4412. * If parent's use_hierarchy is set, we can't make any modifications
  4413. * in the child subtrees. If it is unset, then the change can
  4414. * occur, provided the current cgroup has no children.
  4415. *
  4416. * For the root cgroup, parent_mem is NULL, we allow value to be
  4417. * set if there are no children.
  4418. */
  4419. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  4420. (val == 1 || val == 0)) {
  4421. if (!__memcg_has_children(memcg))
  4422. memcg->use_hierarchy = val;
  4423. else
  4424. retval = -EBUSY;
  4425. } else
  4426. retval = -EINVAL;
  4427. out:
  4428. mutex_unlock(&memcg_create_mutex);
  4429. return retval;
  4430. }
  4431. static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
  4432. enum mem_cgroup_stat_index idx)
  4433. {
  4434. struct mem_cgroup *iter;
  4435. long val = 0;
  4436. /* Per-cpu values can be negative, use a signed accumulator */
  4437. for_each_mem_cgroup_tree(iter, memcg)
  4438. val += mem_cgroup_read_stat(iter, idx);
  4439. if (val < 0) /* race ? */
  4440. val = 0;
  4441. return val;
  4442. }
  4443. static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  4444. {
  4445. u64 val;
  4446. if (!mem_cgroup_is_root(memcg)) {
  4447. if (!swap)
  4448. return res_counter_read_u64(&memcg->res, RES_USAGE);
  4449. else
  4450. return res_counter_read_u64(&memcg->memsw, RES_USAGE);
  4451. }
  4452. /*
  4453. * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
  4454. * as well as in MEM_CGROUP_STAT_RSS_HUGE.
  4455. */
  4456. val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
  4457. val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
  4458. if (swap)
  4459. val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
  4460. return val << PAGE_SHIFT;
  4461. }
  4462. static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
  4463. struct file *file, char __user *buf,
  4464. size_t nbytes, loff_t *ppos)
  4465. {
  4466. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4467. char str[64];
  4468. u64 val;
  4469. int name, len;
  4470. enum res_type type;
  4471. type = MEMFILE_TYPE(cft->private);
  4472. name = MEMFILE_ATTR(cft->private);
  4473. switch (type) {
  4474. case _MEM:
  4475. if (name == RES_USAGE)
  4476. val = mem_cgroup_usage(memcg, false);
  4477. else
  4478. val = res_counter_read_u64(&memcg->res, name);
  4479. break;
  4480. case _MEMSWAP:
  4481. if (name == RES_USAGE)
  4482. val = mem_cgroup_usage(memcg, true);
  4483. else
  4484. val = res_counter_read_u64(&memcg->memsw, name);
  4485. break;
  4486. case _KMEM:
  4487. val = res_counter_read_u64(&memcg->kmem, name);
  4488. break;
  4489. default:
  4490. BUG();
  4491. }
  4492. len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
  4493. return simple_read_from_buffer(buf, nbytes, ppos, str, len);
  4494. }
  4495. static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
  4496. {
  4497. int ret = -EINVAL;
  4498. #ifdef CONFIG_MEMCG_KMEM
  4499. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4500. /*
  4501. * For simplicity, we won't allow this to be disabled. It also can't
  4502. * be changed if the cgroup has children already, or if tasks had
  4503. * already joined.
  4504. *
  4505. * If tasks join before we set the limit, a person looking at
  4506. * kmem.usage_in_bytes will have no way to determine when it took
  4507. * place, which makes the value quite meaningless.
  4508. *
  4509. * After it first became limited, changes in the value of the limit are
  4510. * of course permitted.
  4511. */
  4512. mutex_lock(&memcg_create_mutex);
  4513. mutex_lock(&set_limit_mutex);
  4514. if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
  4515. if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
  4516. ret = -EBUSY;
  4517. goto out;
  4518. }
  4519. ret = res_counter_set_limit(&memcg->kmem, val);
  4520. VM_BUG_ON(ret);
  4521. ret = memcg_update_cache_sizes(memcg);
  4522. if (ret) {
  4523. res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
  4524. goto out;
  4525. }
  4526. static_key_slow_inc(&memcg_kmem_enabled_key);
  4527. /*
  4528. * setting the active bit after the inc will guarantee no one
  4529. * starts accounting before all call sites are patched
  4530. */
  4531. memcg_kmem_set_active(memcg);
  4532. /*
  4533. * kmem charges can outlive the cgroup. In the case of slab
  4534. * pages, for instance, a page contain objects from various
  4535. * processes, so it is unfeasible to migrate them away. We
  4536. * need to reference count the memcg because of that.
  4537. */
  4538. mem_cgroup_get(memcg);
  4539. } else
  4540. ret = res_counter_set_limit(&memcg->kmem, val);
  4541. out:
  4542. mutex_unlock(&set_limit_mutex);
  4543. mutex_unlock(&memcg_create_mutex);
  4544. #endif
  4545. return ret;
  4546. }
  4547. #ifdef CONFIG_MEMCG_KMEM
  4548. static int memcg_propagate_kmem(struct mem_cgroup *memcg)
  4549. {
  4550. int ret = 0;
  4551. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  4552. if (!parent)
  4553. goto out;
  4554. memcg->kmem_account_flags = parent->kmem_account_flags;
  4555. /*
  4556. * When that happen, we need to disable the static branch only on those
  4557. * memcgs that enabled it. To achieve this, we would be forced to
  4558. * complicate the code by keeping track of which memcgs were the ones
  4559. * that actually enabled limits, and which ones got it from its
  4560. * parents.
  4561. *
  4562. * It is a lot simpler just to do static_key_slow_inc() on every child
  4563. * that is accounted.
  4564. */
  4565. if (!memcg_kmem_is_active(memcg))
  4566. goto out;
  4567. /*
  4568. * destroy(), called if we fail, will issue static_key_slow_inc() and
  4569. * mem_cgroup_put() if kmem is enabled. We have to either call them
  4570. * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
  4571. * this more consistent, since it always leads to the same destroy path
  4572. */
  4573. mem_cgroup_get(memcg);
  4574. static_key_slow_inc(&memcg_kmem_enabled_key);
  4575. mutex_lock(&set_limit_mutex);
  4576. ret = memcg_update_cache_sizes(memcg);
  4577. mutex_unlock(&set_limit_mutex);
  4578. out:
  4579. return ret;
  4580. }
  4581. #endif /* CONFIG_MEMCG_KMEM */
  4582. /*
  4583. * The user of this function is...
  4584. * RES_LIMIT.
  4585. */
  4586. static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
  4587. const char *buffer)
  4588. {
  4589. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4590. enum res_type type;
  4591. int name;
  4592. unsigned long long val;
  4593. int ret;
  4594. type = MEMFILE_TYPE(cft->private);
  4595. name = MEMFILE_ATTR(cft->private);
  4596. switch (name) {
  4597. case RES_LIMIT:
  4598. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  4599. ret = -EINVAL;
  4600. break;
  4601. }
  4602. /* This function does all necessary parse...reuse it */
  4603. ret = res_counter_memparse_write_strategy(buffer, &val);
  4604. if (ret)
  4605. break;
  4606. if (type == _MEM)
  4607. ret = mem_cgroup_resize_limit(memcg, val);
  4608. else if (type == _MEMSWAP)
  4609. ret = mem_cgroup_resize_memsw_limit(memcg, val);
  4610. else if (type == _KMEM)
  4611. ret = memcg_update_kmem_limit(cont, val);
  4612. else
  4613. return -EINVAL;
  4614. break;
  4615. case RES_SOFT_LIMIT:
  4616. ret = res_counter_memparse_write_strategy(buffer, &val);
  4617. if (ret)
  4618. break;
  4619. /*
  4620. * For memsw, soft limits are hard to implement in terms
  4621. * of semantics, for now, we support soft limits for
  4622. * control without swap
  4623. */
  4624. if (type == _MEM)
  4625. ret = res_counter_set_soft_limit(&memcg->res, val);
  4626. else
  4627. ret = -EINVAL;
  4628. break;
  4629. default:
  4630. ret = -EINVAL; /* should be BUG() ? */
  4631. break;
  4632. }
  4633. return ret;
  4634. }
  4635. static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
  4636. unsigned long long *mem_limit, unsigned long long *memsw_limit)
  4637. {
  4638. struct cgroup *cgroup;
  4639. unsigned long long min_limit, min_memsw_limit, tmp;
  4640. min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4641. min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4642. cgroup = memcg->css.cgroup;
  4643. if (!memcg->use_hierarchy)
  4644. goto out;
  4645. while (cgroup->parent) {
  4646. cgroup = cgroup->parent;
  4647. memcg = mem_cgroup_from_cont(cgroup);
  4648. if (!memcg->use_hierarchy)
  4649. break;
  4650. tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4651. min_limit = min(min_limit, tmp);
  4652. tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4653. min_memsw_limit = min(min_memsw_limit, tmp);
  4654. }
  4655. out:
  4656. *mem_limit = min_limit;
  4657. *memsw_limit = min_memsw_limit;
  4658. }
  4659. static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
  4660. {
  4661. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4662. int name;
  4663. enum res_type type;
  4664. type = MEMFILE_TYPE(event);
  4665. name = MEMFILE_ATTR(event);
  4666. switch (name) {
  4667. case RES_MAX_USAGE:
  4668. if (type == _MEM)
  4669. res_counter_reset_max(&memcg->res);
  4670. else if (type == _MEMSWAP)
  4671. res_counter_reset_max(&memcg->memsw);
  4672. else if (type == _KMEM)
  4673. res_counter_reset_max(&memcg->kmem);
  4674. else
  4675. return -EINVAL;
  4676. break;
  4677. case RES_FAILCNT:
  4678. if (type == _MEM)
  4679. res_counter_reset_failcnt(&memcg->res);
  4680. else if (type == _MEMSWAP)
  4681. res_counter_reset_failcnt(&memcg->memsw);
  4682. else if (type == _KMEM)
  4683. res_counter_reset_failcnt(&memcg->kmem);
  4684. else
  4685. return -EINVAL;
  4686. break;
  4687. }
  4688. return 0;
  4689. }
  4690. static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
  4691. struct cftype *cft)
  4692. {
  4693. return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
  4694. }
  4695. #ifdef CONFIG_MMU
  4696. static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
  4697. struct cftype *cft, u64 val)
  4698. {
  4699. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4700. if (val >= (1 << NR_MOVE_TYPE))
  4701. return -EINVAL;
  4702. /*
  4703. * No kind of locking is needed in here, because ->can_attach() will
  4704. * check this value once in the beginning of the process, and then carry
  4705. * on with stale data. This means that changes to this value will only
  4706. * affect task migrations starting after the change.
  4707. */
  4708. memcg->move_charge_at_immigrate = val;
  4709. return 0;
  4710. }
  4711. #else
  4712. static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
  4713. struct cftype *cft, u64 val)
  4714. {
  4715. return -ENOSYS;
  4716. }
  4717. #endif
  4718. #ifdef CONFIG_NUMA
  4719. static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
  4720. struct seq_file *m)
  4721. {
  4722. int nid;
  4723. unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
  4724. unsigned long node_nr;
  4725. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4726. total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
  4727. seq_printf(m, "total=%lu", total_nr);
  4728. for_each_node_state(nid, N_MEMORY) {
  4729. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
  4730. seq_printf(m, " N%d=%lu", nid, node_nr);
  4731. }
  4732. seq_putc(m, '\n');
  4733. file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
  4734. seq_printf(m, "file=%lu", file_nr);
  4735. for_each_node_state(nid, N_MEMORY) {
  4736. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  4737. LRU_ALL_FILE);
  4738. seq_printf(m, " N%d=%lu", nid, node_nr);
  4739. }
  4740. seq_putc(m, '\n');
  4741. anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
  4742. seq_printf(m, "anon=%lu", anon_nr);
  4743. for_each_node_state(nid, N_MEMORY) {
  4744. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  4745. LRU_ALL_ANON);
  4746. seq_printf(m, " N%d=%lu", nid, node_nr);
  4747. }
  4748. seq_putc(m, '\n');
  4749. unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
  4750. seq_printf(m, "unevictable=%lu", unevictable_nr);
  4751. for_each_node_state(nid, N_MEMORY) {
  4752. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  4753. BIT(LRU_UNEVICTABLE));
  4754. seq_printf(m, " N%d=%lu", nid, node_nr);
  4755. }
  4756. seq_putc(m, '\n');
  4757. return 0;
  4758. }
  4759. #endif /* CONFIG_NUMA */
  4760. static inline void mem_cgroup_lru_names_not_uptodate(void)
  4761. {
  4762. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  4763. }
  4764. static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
  4765. struct seq_file *m)
  4766. {
  4767. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4768. struct mem_cgroup *mi;
  4769. unsigned int i;
  4770. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  4771. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  4772. continue;
  4773. seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
  4774. mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
  4775. }
  4776. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
  4777. seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
  4778. mem_cgroup_read_events(memcg, i));
  4779. for (i = 0; i < NR_LRU_LISTS; i++)
  4780. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  4781. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  4782. /* Hierarchical information */
  4783. {
  4784. unsigned long long limit, memsw_limit;
  4785. memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
  4786. seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
  4787. if (do_swap_account)
  4788. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  4789. memsw_limit);
  4790. }
  4791. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  4792. long long val = 0;
  4793. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  4794. continue;
  4795. for_each_mem_cgroup_tree(mi, memcg)
  4796. val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
  4797. seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
  4798. }
  4799. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  4800. unsigned long long val = 0;
  4801. for_each_mem_cgroup_tree(mi, memcg)
  4802. val += mem_cgroup_read_events(mi, i);
  4803. seq_printf(m, "total_%s %llu\n",
  4804. mem_cgroup_events_names[i], val);
  4805. }
  4806. for (i = 0; i < NR_LRU_LISTS; i++) {
  4807. unsigned long long val = 0;
  4808. for_each_mem_cgroup_tree(mi, memcg)
  4809. val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
  4810. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
  4811. }
  4812. #ifdef CONFIG_DEBUG_VM
  4813. {
  4814. int nid, zid;
  4815. struct mem_cgroup_per_zone *mz;
  4816. struct zone_reclaim_stat *rstat;
  4817. unsigned long recent_rotated[2] = {0, 0};
  4818. unsigned long recent_scanned[2] = {0, 0};
  4819. for_each_online_node(nid)
  4820. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  4821. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  4822. rstat = &mz->lruvec.reclaim_stat;
  4823. recent_rotated[0] += rstat->recent_rotated[0];
  4824. recent_rotated[1] += rstat->recent_rotated[1];
  4825. recent_scanned[0] += rstat->recent_scanned[0];
  4826. recent_scanned[1] += rstat->recent_scanned[1];
  4827. }
  4828. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  4829. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  4830. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  4831. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  4832. }
  4833. #endif
  4834. return 0;
  4835. }
  4836. static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
  4837. {
  4838. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4839. return mem_cgroup_swappiness(memcg);
  4840. }
  4841. static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
  4842. u64 val)
  4843. {
  4844. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4845. struct mem_cgroup *parent;
  4846. if (val > 100)
  4847. return -EINVAL;
  4848. if (cgrp->parent == NULL)
  4849. return -EINVAL;
  4850. parent = mem_cgroup_from_cont(cgrp->parent);
  4851. mutex_lock(&memcg_create_mutex);
  4852. /* If under hierarchy, only empty-root can set this value */
  4853. if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
  4854. mutex_unlock(&memcg_create_mutex);
  4855. return -EINVAL;
  4856. }
  4857. memcg->swappiness = val;
  4858. mutex_unlock(&memcg_create_mutex);
  4859. return 0;
  4860. }
  4861. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  4862. {
  4863. struct mem_cgroup_threshold_ary *t;
  4864. u64 usage;
  4865. int i;
  4866. rcu_read_lock();
  4867. if (!swap)
  4868. t = rcu_dereference(memcg->thresholds.primary);
  4869. else
  4870. t = rcu_dereference(memcg->memsw_thresholds.primary);
  4871. if (!t)
  4872. goto unlock;
  4873. usage = mem_cgroup_usage(memcg, swap);
  4874. /*
  4875. * current_threshold points to threshold just below or equal to usage.
  4876. * If it's not true, a threshold was crossed after last
  4877. * call of __mem_cgroup_threshold().
  4878. */
  4879. i = t->current_threshold;
  4880. /*
  4881. * Iterate backward over array of thresholds starting from
  4882. * current_threshold and check if a threshold is crossed.
  4883. * If none of thresholds below usage is crossed, we read
  4884. * only one element of the array here.
  4885. */
  4886. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  4887. eventfd_signal(t->entries[i].eventfd, 1);
  4888. /* i = current_threshold + 1 */
  4889. i++;
  4890. /*
  4891. * Iterate forward over array of thresholds starting from
  4892. * current_threshold+1 and check if a threshold is crossed.
  4893. * If none of thresholds above usage is crossed, we read
  4894. * only one element of the array here.
  4895. */
  4896. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  4897. eventfd_signal(t->entries[i].eventfd, 1);
  4898. /* Update current_threshold */
  4899. t->current_threshold = i - 1;
  4900. unlock:
  4901. rcu_read_unlock();
  4902. }
  4903. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  4904. {
  4905. while (memcg) {
  4906. __mem_cgroup_threshold(memcg, false);
  4907. if (do_swap_account)
  4908. __mem_cgroup_threshold(memcg, true);
  4909. memcg = parent_mem_cgroup(memcg);
  4910. }
  4911. }
  4912. static int compare_thresholds(const void *a, const void *b)
  4913. {
  4914. const struct mem_cgroup_threshold *_a = a;
  4915. const struct mem_cgroup_threshold *_b = b;
  4916. return _a->threshold - _b->threshold;
  4917. }
  4918. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  4919. {
  4920. struct mem_cgroup_eventfd_list *ev;
  4921. list_for_each_entry(ev, &memcg->oom_notify, list)
  4922. eventfd_signal(ev->eventfd, 1);
  4923. return 0;
  4924. }
  4925. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  4926. {
  4927. struct mem_cgroup *iter;
  4928. for_each_mem_cgroup_tree(iter, memcg)
  4929. mem_cgroup_oom_notify_cb(iter);
  4930. }
  4931. static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
  4932. struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
  4933. {
  4934. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4935. struct mem_cgroup_thresholds *thresholds;
  4936. struct mem_cgroup_threshold_ary *new;
  4937. enum res_type type = MEMFILE_TYPE(cft->private);
  4938. u64 threshold, usage;
  4939. int i, size, ret;
  4940. ret = res_counter_memparse_write_strategy(args, &threshold);
  4941. if (ret)
  4942. return ret;
  4943. mutex_lock(&memcg->thresholds_lock);
  4944. if (type == _MEM)
  4945. thresholds = &memcg->thresholds;
  4946. else if (type == _MEMSWAP)
  4947. thresholds = &memcg->memsw_thresholds;
  4948. else
  4949. BUG();
  4950. usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
  4951. /* Check if a threshold crossed before adding a new one */
  4952. if (thresholds->primary)
  4953. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  4954. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  4955. /* Allocate memory for new array of thresholds */
  4956. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  4957. GFP_KERNEL);
  4958. if (!new) {
  4959. ret = -ENOMEM;
  4960. goto unlock;
  4961. }
  4962. new->size = size;
  4963. /* Copy thresholds (if any) to new array */
  4964. if (thresholds->primary) {
  4965. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  4966. sizeof(struct mem_cgroup_threshold));
  4967. }
  4968. /* Add new threshold */
  4969. new->entries[size - 1].eventfd = eventfd;
  4970. new->entries[size - 1].threshold = threshold;
  4971. /* Sort thresholds. Registering of new threshold isn't time-critical */
  4972. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  4973. compare_thresholds, NULL);
  4974. /* Find current threshold */
  4975. new->current_threshold = -1;
  4976. for (i = 0; i < size; i++) {
  4977. if (new->entries[i].threshold <= usage) {
  4978. /*
  4979. * new->current_threshold will not be used until
  4980. * rcu_assign_pointer(), so it's safe to increment
  4981. * it here.
  4982. */
  4983. ++new->current_threshold;
  4984. } else
  4985. break;
  4986. }
  4987. /* Free old spare buffer and save old primary buffer as spare */
  4988. kfree(thresholds->spare);
  4989. thresholds->spare = thresholds->primary;
  4990. rcu_assign_pointer(thresholds->primary, new);
  4991. /* To be sure that nobody uses thresholds */
  4992. synchronize_rcu();
  4993. unlock:
  4994. mutex_unlock(&memcg->thresholds_lock);
  4995. return ret;
  4996. }
  4997. static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
  4998. struct cftype *cft, struct eventfd_ctx *eventfd)
  4999. {
  5000. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  5001. struct mem_cgroup_thresholds *thresholds;
  5002. struct mem_cgroup_threshold_ary *new;
  5003. enum res_type type = MEMFILE_TYPE(cft->private);
  5004. u64 usage;
  5005. int i, j, size;
  5006. mutex_lock(&memcg->thresholds_lock);
  5007. if (type == _MEM)
  5008. thresholds = &memcg->thresholds;
  5009. else if (type == _MEMSWAP)
  5010. thresholds = &memcg->memsw_thresholds;
  5011. else
  5012. BUG();
  5013. if (!thresholds->primary)
  5014. goto unlock;
  5015. usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
  5016. /* Check if a threshold crossed before removing */
  5017. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  5018. /* Calculate new number of threshold */
  5019. size = 0;
  5020. for (i = 0; i < thresholds->primary->size; i++) {
  5021. if (thresholds->primary->entries[i].eventfd != eventfd)
  5022. size++;
  5023. }
  5024. new = thresholds->spare;
  5025. /* Set thresholds array to NULL if we don't have thresholds */
  5026. if (!size) {
  5027. kfree(new);
  5028. new = NULL;
  5029. goto swap_buffers;
  5030. }
  5031. new->size = size;
  5032. /* Copy thresholds and find current threshold */
  5033. new->current_threshold = -1;
  5034. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  5035. if (thresholds->primary->entries[i].eventfd == eventfd)
  5036. continue;
  5037. new->entries[j] = thresholds->primary->entries[i];
  5038. if (new->entries[j].threshold <= usage) {
  5039. /*
  5040. * new->current_threshold will not be used
  5041. * until rcu_assign_pointer(), so it's safe to increment
  5042. * it here.
  5043. */
  5044. ++new->current_threshold;
  5045. }
  5046. j++;
  5047. }
  5048. swap_buffers:
  5049. /* Swap primary and spare array */
  5050. thresholds->spare = thresholds->primary;
  5051. /* If all events are unregistered, free the spare array */
  5052. if (!new) {
  5053. kfree(thresholds->spare);
  5054. thresholds->spare = NULL;
  5055. }
  5056. rcu_assign_pointer(thresholds->primary, new);
  5057. /* To be sure that nobody uses thresholds */
  5058. synchronize_rcu();
  5059. unlock:
  5060. mutex_unlock(&memcg->thresholds_lock);
  5061. }
  5062. static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
  5063. struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
  5064. {
  5065. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  5066. struct mem_cgroup_eventfd_list *event;
  5067. enum res_type type = MEMFILE_TYPE(cft->private);
  5068. BUG_ON(type != _OOM_TYPE);
  5069. event = kmalloc(sizeof(*event), GFP_KERNEL);
  5070. if (!event)
  5071. return -ENOMEM;
  5072. spin_lock(&memcg_oom_lock);
  5073. event->eventfd = eventfd;
  5074. list_add(&event->list, &memcg->oom_notify);
  5075. /* already in OOM ? */
  5076. if (atomic_read(&memcg->under_oom))
  5077. eventfd_signal(eventfd, 1);
  5078. spin_unlock(&memcg_oom_lock);
  5079. return 0;
  5080. }
  5081. static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
  5082. struct cftype *cft, struct eventfd_ctx *eventfd)
  5083. {
  5084. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  5085. struct mem_cgroup_eventfd_list *ev, *tmp;
  5086. enum res_type type = MEMFILE_TYPE(cft->private);
  5087. BUG_ON(type != _OOM_TYPE);
  5088. spin_lock(&memcg_oom_lock);
  5089. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  5090. if (ev->eventfd == eventfd) {
  5091. list_del(&ev->list);
  5092. kfree(ev);
  5093. }
  5094. }
  5095. spin_unlock(&memcg_oom_lock);
  5096. }
  5097. static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
  5098. struct cftype *cft, struct cgroup_map_cb *cb)
  5099. {
  5100. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  5101. cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
  5102. if (atomic_read(&memcg->under_oom))
  5103. cb->fill(cb, "under_oom", 1);
  5104. else
  5105. cb->fill(cb, "under_oom", 0);
  5106. return 0;
  5107. }
  5108. static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
  5109. struct cftype *cft, u64 val)
  5110. {
  5111. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  5112. struct mem_cgroup *parent;
  5113. /* cannot set to root cgroup and only 0 and 1 are allowed */
  5114. if (!cgrp->parent || !((val == 0) || (val == 1)))
  5115. return -EINVAL;
  5116. parent = mem_cgroup_from_cont(cgrp->parent);
  5117. mutex_lock(&memcg_create_mutex);
  5118. /* oom-kill-disable is a flag for subhierarchy. */
  5119. if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
  5120. mutex_unlock(&memcg_create_mutex);
  5121. return -EINVAL;
  5122. }
  5123. memcg->oom_kill_disable = val;
  5124. if (!val)
  5125. memcg_oom_recover(memcg);
  5126. mutex_unlock(&memcg_create_mutex);
  5127. return 0;
  5128. }
  5129. #ifdef CONFIG_MEMCG_KMEM
  5130. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  5131. {
  5132. int ret;
  5133. memcg->kmemcg_id = -1;
  5134. ret = memcg_propagate_kmem(memcg);
  5135. if (ret)
  5136. return ret;
  5137. return mem_cgroup_sockets_init(memcg, ss);
  5138. }
  5139. static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
  5140. {
  5141. mem_cgroup_sockets_destroy(memcg);
  5142. memcg_kmem_mark_dead(memcg);
  5143. if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
  5144. return;
  5145. /*
  5146. * Charges already down to 0, undo mem_cgroup_get() done in the charge
  5147. * path here, being careful not to race with memcg_uncharge_kmem: it is
  5148. * possible that the charges went down to 0 between mark_dead and the
  5149. * res_counter read, so in that case, we don't need the put
  5150. */
  5151. if (memcg_kmem_test_and_clear_dead(memcg))
  5152. mem_cgroup_put(memcg);
  5153. }
  5154. #else
  5155. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  5156. {
  5157. return 0;
  5158. }
  5159. static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
  5160. {
  5161. }
  5162. #endif
  5163. static struct cftype mem_cgroup_files[] = {
  5164. {
  5165. .name = "usage_in_bytes",
  5166. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  5167. .read = mem_cgroup_read,
  5168. .register_event = mem_cgroup_usage_register_event,
  5169. .unregister_event = mem_cgroup_usage_unregister_event,
  5170. },
  5171. {
  5172. .name = "max_usage_in_bytes",
  5173. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  5174. .trigger = mem_cgroup_reset,
  5175. .read = mem_cgroup_read,
  5176. },
  5177. {
  5178. .name = "limit_in_bytes",
  5179. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  5180. .write_string = mem_cgroup_write,
  5181. .read = mem_cgroup_read,
  5182. },
  5183. {
  5184. .name = "soft_limit_in_bytes",
  5185. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  5186. .write_string = mem_cgroup_write,
  5187. .read = mem_cgroup_read,
  5188. },
  5189. {
  5190. .name = "failcnt",
  5191. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  5192. .trigger = mem_cgroup_reset,
  5193. .read = mem_cgroup_read,
  5194. },
  5195. {
  5196. .name = "stat",
  5197. .read_seq_string = memcg_stat_show,
  5198. },
  5199. {
  5200. .name = "force_empty",
  5201. .trigger = mem_cgroup_force_empty_write,
  5202. },
  5203. {
  5204. .name = "use_hierarchy",
  5205. .flags = CFTYPE_INSANE,
  5206. .write_u64 = mem_cgroup_hierarchy_write,
  5207. .read_u64 = mem_cgroup_hierarchy_read,
  5208. },
  5209. {
  5210. .name = "swappiness",
  5211. .read_u64 = mem_cgroup_swappiness_read,
  5212. .write_u64 = mem_cgroup_swappiness_write,
  5213. },
  5214. {
  5215. .name = "move_charge_at_immigrate",
  5216. .read_u64 = mem_cgroup_move_charge_read,
  5217. .write_u64 = mem_cgroup_move_charge_write,
  5218. },
  5219. {
  5220. .name = "oom_control",
  5221. .read_map = mem_cgroup_oom_control_read,
  5222. .write_u64 = mem_cgroup_oom_control_write,
  5223. .register_event = mem_cgroup_oom_register_event,
  5224. .unregister_event = mem_cgroup_oom_unregister_event,
  5225. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  5226. },
  5227. {
  5228. .name = "pressure_level",
  5229. .register_event = vmpressure_register_event,
  5230. .unregister_event = vmpressure_unregister_event,
  5231. },
  5232. #ifdef CONFIG_NUMA
  5233. {
  5234. .name = "numa_stat",
  5235. .read_seq_string = memcg_numa_stat_show,
  5236. },
  5237. #endif
  5238. #ifdef CONFIG_MEMCG_KMEM
  5239. {
  5240. .name = "kmem.limit_in_bytes",
  5241. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  5242. .write_string = mem_cgroup_write,
  5243. .read = mem_cgroup_read,
  5244. },
  5245. {
  5246. .name = "kmem.usage_in_bytes",
  5247. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  5248. .read = mem_cgroup_read,
  5249. },
  5250. {
  5251. .name = "kmem.failcnt",
  5252. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  5253. .trigger = mem_cgroup_reset,
  5254. .read = mem_cgroup_read,
  5255. },
  5256. {
  5257. .name = "kmem.max_usage_in_bytes",
  5258. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  5259. .trigger = mem_cgroup_reset,
  5260. .read = mem_cgroup_read,
  5261. },
  5262. #ifdef CONFIG_SLABINFO
  5263. {
  5264. .name = "kmem.slabinfo",
  5265. .read_seq_string = mem_cgroup_slabinfo_read,
  5266. },
  5267. #endif
  5268. #endif
  5269. { }, /* terminate */
  5270. };
  5271. #ifdef CONFIG_MEMCG_SWAP
  5272. static struct cftype memsw_cgroup_files[] = {
  5273. {
  5274. .name = "memsw.usage_in_bytes",
  5275. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  5276. .read = mem_cgroup_read,
  5277. .register_event = mem_cgroup_usage_register_event,
  5278. .unregister_event = mem_cgroup_usage_unregister_event,
  5279. },
  5280. {
  5281. .name = "memsw.max_usage_in_bytes",
  5282. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  5283. .trigger = mem_cgroup_reset,
  5284. .read = mem_cgroup_read,
  5285. },
  5286. {
  5287. .name = "memsw.limit_in_bytes",
  5288. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  5289. .write_string = mem_cgroup_write,
  5290. .read = mem_cgroup_read,
  5291. },
  5292. {
  5293. .name = "memsw.failcnt",
  5294. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  5295. .trigger = mem_cgroup_reset,
  5296. .read = mem_cgroup_read,
  5297. },
  5298. { }, /* terminate */
  5299. };
  5300. #endif
  5301. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  5302. {
  5303. struct mem_cgroup_per_node *pn;
  5304. struct mem_cgroup_per_zone *mz;
  5305. int zone, tmp = node;
  5306. /*
  5307. * This routine is called against possible nodes.
  5308. * But it's BUG to call kmalloc() against offline node.
  5309. *
  5310. * TODO: this routine can waste much memory for nodes which will
  5311. * never be onlined. It's better to use memory hotplug callback
  5312. * function.
  5313. */
  5314. if (!node_state(node, N_NORMAL_MEMORY))
  5315. tmp = -1;
  5316. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  5317. if (!pn)
  5318. return 1;
  5319. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  5320. mz = &pn->zoneinfo[zone];
  5321. lruvec_init(&mz->lruvec);
  5322. mz->usage_in_excess = 0;
  5323. mz->on_tree = false;
  5324. mz->memcg = memcg;
  5325. }
  5326. memcg->nodeinfo[node] = pn;
  5327. return 0;
  5328. }
  5329. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  5330. {
  5331. kfree(memcg->nodeinfo[node]);
  5332. }
  5333. static struct mem_cgroup *mem_cgroup_alloc(void)
  5334. {
  5335. struct mem_cgroup *memcg;
  5336. size_t size = memcg_size();
  5337. /* Can be very big if nr_node_ids is very big */
  5338. if (size < PAGE_SIZE)
  5339. memcg = kzalloc(size, GFP_KERNEL);
  5340. else
  5341. memcg = vzalloc(size);
  5342. if (!memcg)
  5343. return NULL;
  5344. memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
  5345. if (!memcg->stat)
  5346. goto out_free;
  5347. spin_lock_init(&memcg->pcp_counter_lock);
  5348. return memcg;
  5349. out_free:
  5350. if (size < PAGE_SIZE)
  5351. kfree(memcg);
  5352. else
  5353. vfree(memcg);
  5354. return NULL;
  5355. }
  5356. /*
  5357. * At destroying mem_cgroup, references from swap_cgroup can remain.
  5358. * (scanning all at force_empty is too costly...)
  5359. *
  5360. * Instead of clearing all references at force_empty, we remember
  5361. * the number of reference from swap_cgroup and free mem_cgroup when
  5362. * it goes down to 0.
  5363. *
  5364. * Removal of cgroup itself succeeds regardless of refs from swap.
  5365. */
  5366. static void __mem_cgroup_free(struct mem_cgroup *memcg)
  5367. {
  5368. int node;
  5369. size_t size = memcg_size();
  5370. mem_cgroup_remove_from_trees(memcg);
  5371. free_css_id(&mem_cgroup_subsys, &memcg->css);
  5372. for_each_node(node)
  5373. free_mem_cgroup_per_zone_info(memcg, node);
  5374. free_percpu(memcg->stat);
  5375. /*
  5376. * We need to make sure that (at least for now), the jump label
  5377. * destruction code runs outside of the cgroup lock. This is because
  5378. * get_online_cpus(), which is called from the static_branch update,
  5379. * can't be called inside the cgroup_lock. cpusets are the ones
  5380. * enforcing this dependency, so if they ever change, we might as well.
  5381. *
  5382. * schedule_work() will guarantee this happens. Be careful if you need
  5383. * to move this code around, and make sure it is outside
  5384. * the cgroup_lock.
  5385. */
  5386. disarm_static_keys(memcg);
  5387. if (size < PAGE_SIZE)
  5388. kfree(memcg);
  5389. else
  5390. vfree(memcg);
  5391. }
  5392. /*
  5393. * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
  5394. * but in process context. The work_freeing structure is overlaid
  5395. * on the rcu_freeing structure, which itself is overlaid on memsw.
  5396. */
  5397. static void free_work(struct work_struct *work)
  5398. {
  5399. struct mem_cgroup *memcg;
  5400. memcg = container_of(work, struct mem_cgroup, work_freeing);
  5401. __mem_cgroup_free(memcg);
  5402. }
  5403. static void free_rcu(struct rcu_head *rcu_head)
  5404. {
  5405. struct mem_cgroup *memcg;
  5406. memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
  5407. INIT_WORK(&memcg->work_freeing, free_work);
  5408. schedule_work(&memcg->work_freeing);
  5409. }
  5410. static void mem_cgroup_get(struct mem_cgroup *memcg)
  5411. {
  5412. atomic_inc(&memcg->refcnt);
  5413. }
  5414. static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
  5415. {
  5416. if (atomic_sub_and_test(count, &memcg->refcnt)) {
  5417. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  5418. call_rcu(&memcg->rcu_freeing, free_rcu);
  5419. if (parent)
  5420. mem_cgroup_put(parent);
  5421. }
  5422. }
  5423. static void mem_cgroup_put(struct mem_cgroup *memcg)
  5424. {
  5425. __mem_cgroup_put(memcg, 1);
  5426. }
  5427. /*
  5428. * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
  5429. */
  5430. struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
  5431. {
  5432. if (!memcg->res.parent)
  5433. return NULL;
  5434. return mem_cgroup_from_res_counter(memcg->res.parent, res);
  5435. }
  5436. EXPORT_SYMBOL(parent_mem_cgroup);
  5437. static void __init mem_cgroup_soft_limit_tree_init(void)
  5438. {
  5439. struct mem_cgroup_tree_per_node *rtpn;
  5440. struct mem_cgroup_tree_per_zone *rtpz;
  5441. int tmp, node, zone;
  5442. for_each_node(node) {
  5443. tmp = node;
  5444. if (!node_state(node, N_NORMAL_MEMORY))
  5445. tmp = -1;
  5446. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
  5447. BUG_ON(!rtpn);
  5448. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  5449. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  5450. rtpz = &rtpn->rb_tree_per_zone[zone];
  5451. rtpz->rb_root = RB_ROOT;
  5452. spin_lock_init(&rtpz->lock);
  5453. }
  5454. }
  5455. }
  5456. static struct cgroup_subsys_state * __ref
  5457. mem_cgroup_css_alloc(struct cgroup *cont)
  5458. {
  5459. struct mem_cgroup *memcg;
  5460. long error = -ENOMEM;
  5461. int node;
  5462. memcg = mem_cgroup_alloc();
  5463. if (!memcg)
  5464. return ERR_PTR(error);
  5465. for_each_node(node)
  5466. if (alloc_mem_cgroup_per_zone_info(memcg, node))
  5467. goto free_out;
  5468. /* root ? */
  5469. if (cont->parent == NULL) {
  5470. root_mem_cgroup = memcg;
  5471. res_counter_init(&memcg->res, NULL);
  5472. res_counter_init(&memcg->memsw, NULL);
  5473. res_counter_init(&memcg->kmem, NULL);
  5474. }
  5475. memcg->last_scanned_node = MAX_NUMNODES;
  5476. INIT_LIST_HEAD(&memcg->oom_notify);
  5477. atomic_set(&memcg->refcnt, 1);
  5478. memcg->move_charge_at_immigrate = 0;
  5479. mutex_init(&memcg->thresholds_lock);
  5480. spin_lock_init(&memcg->move_lock);
  5481. vmpressure_init(&memcg->vmpressure);
  5482. return &memcg->css;
  5483. free_out:
  5484. __mem_cgroup_free(memcg);
  5485. return ERR_PTR(error);
  5486. }
  5487. static int
  5488. mem_cgroup_css_online(struct cgroup *cont)
  5489. {
  5490. struct mem_cgroup *memcg, *parent;
  5491. int error = 0;
  5492. if (!cont->parent)
  5493. return 0;
  5494. mutex_lock(&memcg_create_mutex);
  5495. memcg = mem_cgroup_from_cont(cont);
  5496. parent = mem_cgroup_from_cont(cont->parent);
  5497. memcg->use_hierarchy = parent->use_hierarchy;
  5498. memcg->oom_kill_disable = parent->oom_kill_disable;
  5499. memcg->swappiness = mem_cgroup_swappiness(parent);
  5500. if (parent->use_hierarchy) {
  5501. res_counter_init(&memcg->res, &parent->res);
  5502. res_counter_init(&memcg->memsw, &parent->memsw);
  5503. res_counter_init(&memcg->kmem, &parent->kmem);
  5504. /*
  5505. * We increment refcnt of the parent to ensure that we can
  5506. * safely access it on res_counter_charge/uncharge.
  5507. * This refcnt will be decremented when freeing this
  5508. * mem_cgroup(see mem_cgroup_put).
  5509. */
  5510. mem_cgroup_get(parent);
  5511. } else {
  5512. res_counter_init(&memcg->res, NULL);
  5513. res_counter_init(&memcg->memsw, NULL);
  5514. res_counter_init(&memcg->kmem, NULL);
  5515. /*
  5516. * Deeper hierachy with use_hierarchy == false doesn't make
  5517. * much sense so let cgroup subsystem know about this
  5518. * unfortunate state in our controller.
  5519. */
  5520. if (parent != root_mem_cgroup)
  5521. mem_cgroup_subsys.broken_hierarchy = true;
  5522. }
  5523. error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
  5524. mutex_unlock(&memcg_create_mutex);
  5525. if (error) {
  5526. /*
  5527. * We call put now because our (and parent's) refcnts
  5528. * are already in place. mem_cgroup_put() will internally
  5529. * call __mem_cgroup_free, so return directly
  5530. */
  5531. mem_cgroup_put(memcg);
  5532. if (parent->use_hierarchy)
  5533. mem_cgroup_put(parent);
  5534. }
  5535. return error;
  5536. }
  5537. /*
  5538. * Announce all parents that a group from their hierarchy is gone.
  5539. */
  5540. static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
  5541. {
  5542. struct mem_cgroup *parent = memcg;
  5543. while ((parent = parent_mem_cgroup(parent)))
  5544. mem_cgroup_iter_invalidate(parent);
  5545. /*
  5546. * if the root memcg is not hierarchical we have to check it
  5547. * explicitely.
  5548. */
  5549. if (!root_mem_cgroup->use_hierarchy)
  5550. mem_cgroup_iter_invalidate(root_mem_cgroup);
  5551. }
  5552. static void mem_cgroup_css_offline(struct cgroup *cont)
  5553. {
  5554. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  5555. mem_cgroup_invalidate_reclaim_iterators(memcg);
  5556. mem_cgroup_reparent_charges(memcg);
  5557. mem_cgroup_destroy_all_caches(memcg);
  5558. }
  5559. static void mem_cgroup_css_free(struct cgroup *cont)
  5560. {
  5561. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  5562. kmem_cgroup_destroy(memcg);
  5563. mem_cgroup_put(memcg);
  5564. }
  5565. #ifdef CONFIG_MMU
  5566. /* Handlers for move charge at task migration. */
  5567. #define PRECHARGE_COUNT_AT_ONCE 256
  5568. static int mem_cgroup_do_precharge(unsigned long count)
  5569. {
  5570. int ret = 0;
  5571. int batch_count = PRECHARGE_COUNT_AT_ONCE;
  5572. struct mem_cgroup *memcg = mc.to;
  5573. if (mem_cgroup_is_root(memcg)) {
  5574. mc.precharge += count;
  5575. /* we don't need css_get for root */
  5576. return ret;
  5577. }
  5578. /* try to charge at once */
  5579. if (count > 1) {
  5580. struct res_counter *dummy;
  5581. /*
  5582. * "memcg" cannot be under rmdir() because we've already checked
  5583. * by cgroup_lock_live_cgroup() that it is not removed and we
  5584. * are still under the same cgroup_mutex. So we can postpone
  5585. * css_get().
  5586. */
  5587. if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
  5588. goto one_by_one;
  5589. if (do_swap_account && res_counter_charge(&memcg->memsw,
  5590. PAGE_SIZE * count, &dummy)) {
  5591. res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
  5592. goto one_by_one;
  5593. }
  5594. mc.precharge += count;
  5595. return ret;
  5596. }
  5597. one_by_one:
  5598. /* fall back to one by one charge */
  5599. while (count--) {
  5600. if (signal_pending(current)) {
  5601. ret = -EINTR;
  5602. break;
  5603. }
  5604. if (!batch_count--) {
  5605. batch_count = PRECHARGE_COUNT_AT_ONCE;
  5606. cond_resched();
  5607. }
  5608. ret = __mem_cgroup_try_charge(NULL,
  5609. GFP_KERNEL, 1, &memcg, false);
  5610. if (ret)
  5611. /* mem_cgroup_clear_mc() will do uncharge later */
  5612. return ret;
  5613. mc.precharge++;
  5614. }
  5615. return ret;
  5616. }
  5617. /**
  5618. * get_mctgt_type - get target type of moving charge
  5619. * @vma: the vma the pte to be checked belongs
  5620. * @addr: the address corresponding to the pte to be checked
  5621. * @ptent: the pte to be checked
  5622. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  5623. *
  5624. * Returns
  5625. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  5626. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  5627. * move charge. if @target is not NULL, the page is stored in target->page
  5628. * with extra refcnt got(Callers should handle it).
  5629. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  5630. * target for charge migration. if @target is not NULL, the entry is stored
  5631. * in target->ent.
  5632. *
  5633. * Called with pte lock held.
  5634. */
  5635. union mc_target {
  5636. struct page *page;
  5637. swp_entry_t ent;
  5638. };
  5639. enum mc_target_type {
  5640. MC_TARGET_NONE = 0,
  5641. MC_TARGET_PAGE,
  5642. MC_TARGET_SWAP,
  5643. };
  5644. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  5645. unsigned long addr, pte_t ptent)
  5646. {
  5647. struct page *page = vm_normal_page(vma, addr, ptent);
  5648. if (!page || !page_mapped(page))
  5649. return NULL;
  5650. if (PageAnon(page)) {
  5651. /* we don't move shared anon */
  5652. if (!move_anon())
  5653. return NULL;
  5654. } else if (!move_file())
  5655. /* we ignore mapcount for file pages */
  5656. return NULL;
  5657. if (!get_page_unless_zero(page))
  5658. return NULL;
  5659. return page;
  5660. }
  5661. #ifdef CONFIG_SWAP
  5662. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  5663. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  5664. {
  5665. struct page *page = NULL;
  5666. swp_entry_t ent = pte_to_swp_entry(ptent);
  5667. if (!move_anon() || non_swap_entry(ent))
  5668. return NULL;
  5669. /*
  5670. * Because lookup_swap_cache() updates some statistics counter,
  5671. * we call find_get_page() with swapper_space directly.
  5672. */
  5673. page = find_get_page(swap_address_space(ent), ent.val);
  5674. if (do_swap_account)
  5675. entry->val = ent.val;
  5676. return page;
  5677. }
  5678. #else
  5679. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  5680. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  5681. {
  5682. return NULL;
  5683. }
  5684. #endif
  5685. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  5686. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  5687. {
  5688. struct page *page = NULL;
  5689. struct address_space *mapping;
  5690. pgoff_t pgoff;
  5691. if (!vma->vm_file) /* anonymous vma */
  5692. return NULL;
  5693. if (!move_file())
  5694. return NULL;
  5695. mapping = vma->vm_file->f_mapping;
  5696. if (pte_none(ptent))
  5697. pgoff = linear_page_index(vma, addr);
  5698. else /* pte_file(ptent) is true */
  5699. pgoff = pte_to_pgoff(ptent);
  5700. /* page is moved even if it's not RSS of this task(page-faulted). */
  5701. page = find_get_page(mapping, pgoff);
  5702. #ifdef CONFIG_SWAP
  5703. /* shmem/tmpfs may report page out on swap: account for that too. */
  5704. if (radix_tree_exceptional_entry(page)) {
  5705. swp_entry_t swap = radix_to_swp_entry(page);
  5706. if (do_swap_account)
  5707. *entry = swap;
  5708. page = find_get_page(swap_address_space(swap), swap.val);
  5709. }
  5710. #endif
  5711. return page;
  5712. }
  5713. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  5714. unsigned long addr, pte_t ptent, union mc_target *target)
  5715. {
  5716. struct page *page = NULL;
  5717. struct page_cgroup *pc;
  5718. enum mc_target_type ret = MC_TARGET_NONE;
  5719. swp_entry_t ent = { .val = 0 };
  5720. if (pte_present(ptent))
  5721. page = mc_handle_present_pte(vma, addr, ptent);
  5722. else if (is_swap_pte(ptent))
  5723. page = mc_handle_swap_pte(vma, addr, ptent, &ent);
  5724. else if (pte_none(ptent) || pte_file(ptent))
  5725. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  5726. if (!page && !ent.val)
  5727. return ret;
  5728. if (page) {
  5729. pc = lookup_page_cgroup(page);
  5730. /*
  5731. * Do only loose check w/o page_cgroup lock.
  5732. * mem_cgroup_move_account() checks the pc is valid or not under
  5733. * the lock.
  5734. */
  5735. if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
  5736. ret = MC_TARGET_PAGE;
  5737. if (target)
  5738. target->page = page;
  5739. }
  5740. if (!ret || !target)
  5741. put_page(page);
  5742. }
  5743. /* There is a swap entry and a page doesn't exist or isn't charged */
  5744. if (ent.val && !ret &&
  5745. css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
  5746. ret = MC_TARGET_SWAP;
  5747. if (target)
  5748. target->ent = ent;
  5749. }
  5750. return ret;
  5751. }
  5752. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5753. /*
  5754. * We don't consider swapping or file mapped pages because THP does not
  5755. * support them for now.
  5756. * Caller should make sure that pmd_trans_huge(pmd) is true.
  5757. */
  5758. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  5759. unsigned long addr, pmd_t pmd, union mc_target *target)
  5760. {
  5761. struct page *page = NULL;
  5762. struct page_cgroup *pc;
  5763. enum mc_target_type ret = MC_TARGET_NONE;
  5764. page = pmd_page(pmd);
  5765. VM_BUG_ON(!page || !PageHead(page));
  5766. if (!move_anon())
  5767. return ret;
  5768. pc = lookup_page_cgroup(page);
  5769. if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
  5770. ret = MC_TARGET_PAGE;
  5771. if (target) {
  5772. get_page(page);
  5773. target->page = page;
  5774. }
  5775. }
  5776. return ret;
  5777. }
  5778. #else
  5779. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  5780. unsigned long addr, pmd_t pmd, union mc_target *target)
  5781. {
  5782. return MC_TARGET_NONE;
  5783. }
  5784. #endif
  5785. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  5786. unsigned long addr, unsigned long end,
  5787. struct mm_walk *walk)
  5788. {
  5789. struct vm_area_struct *vma = walk->private;
  5790. pte_t *pte;
  5791. spinlock_t *ptl;
  5792. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  5793. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  5794. mc.precharge += HPAGE_PMD_NR;
  5795. spin_unlock(&vma->vm_mm->page_table_lock);
  5796. return 0;
  5797. }
  5798. if (pmd_trans_unstable(pmd))
  5799. return 0;
  5800. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  5801. for (; addr != end; pte++, addr += PAGE_SIZE)
  5802. if (get_mctgt_type(vma, addr, *pte, NULL))
  5803. mc.precharge++; /* increment precharge temporarily */
  5804. pte_unmap_unlock(pte - 1, ptl);
  5805. cond_resched();
  5806. return 0;
  5807. }
  5808. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  5809. {
  5810. unsigned long precharge;
  5811. struct vm_area_struct *vma;
  5812. down_read(&mm->mmap_sem);
  5813. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  5814. struct mm_walk mem_cgroup_count_precharge_walk = {
  5815. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  5816. .mm = mm,
  5817. .private = vma,
  5818. };
  5819. if (is_vm_hugetlb_page(vma))
  5820. continue;
  5821. walk_page_range(vma->vm_start, vma->vm_end,
  5822. &mem_cgroup_count_precharge_walk);
  5823. }
  5824. up_read(&mm->mmap_sem);
  5825. precharge = mc.precharge;
  5826. mc.precharge = 0;
  5827. return precharge;
  5828. }
  5829. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  5830. {
  5831. unsigned long precharge = mem_cgroup_count_precharge(mm);
  5832. VM_BUG_ON(mc.moving_task);
  5833. mc.moving_task = current;
  5834. return mem_cgroup_do_precharge(precharge);
  5835. }
  5836. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  5837. static void __mem_cgroup_clear_mc(void)
  5838. {
  5839. struct mem_cgroup *from = mc.from;
  5840. struct mem_cgroup *to = mc.to;
  5841. /* we must uncharge all the leftover precharges from mc.to */
  5842. if (mc.precharge) {
  5843. __mem_cgroup_cancel_charge(mc.to, mc.precharge);
  5844. mc.precharge = 0;
  5845. }
  5846. /*
  5847. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  5848. * we must uncharge here.
  5849. */
  5850. if (mc.moved_charge) {
  5851. __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
  5852. mc.moved_charge = 0;
  5853. }
  5854. /* we must fixup refcnts and charges */
  5855. if (mc.moved_swap) {
  5856. /* uncharge swap account from the old cgroup */
  5857. if (!mem_cgroup_is_root(mc.from))
  5858. res_counter_uncharge(&mc.from->memsw,
  5859. PAGE_SIZE * mc.moved_swap);
  5860. __mem_cgroup_put(mc.from, mc.moved_swap);
  5861. if (!mem_cgroup_is_root(mc.to)) {
  5862. /*
  5863. * we charged both to->res and to->memsw, so we should
  5864. * uncharge to->res.
  5865. */
  5866. res_counter_uncharge(&mc.to->res,
  5867. PAGE_SIZE * mc.moved_swap);
  5868. }
  5869. /* we've already done mem_cgroup_get(mc.to) */
  5870. mc.moved_swap = 0;
  5871. }
  5872. memcg_oom_recover(from);
  5873. memcg_oom_recover(to);
  5874. wake_up_all(&mc.waitq);
  5875. }
  5876. static void mem_cgroup_clear_mc(void)
  5877. {
  5878. struct mem_cgroup *from = mc.from;
  5879. /*
  5880. * we must clear moving_task before waking up waiters at the end of
  5881. * task migration.
  5882. */
  5883. mc.moving_task = NULL;
  5884. __mem_cgroup_clear_mc();
  5885. spin_lock(&mc.lock);
  5886. mc.from = NULL;
  5887. mc.to = NULL;
  5888. spin_unlock(&mc.lock);
  5889. mem_cgroup_end_move(from);
  5890. }
  5891. static int mem_cgroup_can_attach(struct cgroup *cgroup,
  5892. struct cgroup_taskset *tset)
  5893. {
  5894. struct task_struct *p = cgroup_taskset_first(tset);
  5895. int ret = 0;
  5896. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
  5897. unsigned long move_charge_at_immigrate;
  5898. /*
  5899. * We are now commited to this value whatever it is. Changes in this
  5900. * tunable will only affect upcoming migrations, not the current one.
  5901. * So we need to save it, and keep it going.
  5902. */
  5903. move_charge_at_immigrate = memcg->move_charge_at_immigrate;
  5904. if (move_charge_at_immigrate) {
  5905. struct mm_struct *mm;
  5906. struct mem_cgroup *from = mem_cgroup_from_task(p);
  5907. VM_BUG_ON(from == memcg);
  5908. mm = get_task_mm(p);
  5909. if (!mm)
  5910. return 0;
  5911. /* We move charges only when we move a owner of the mm */
  5912. if (mm->owner == p) {
  5913. VM_BUG_ON(mc.from);
  5914. VM_BUG_ON(mc.to);
  5915. VM_BUG_ON(mc.precharge);
  5916. VM_BUG_ON(mc.moved_charge);
  5917. VM_BUG_ON(mc.moved_swap);
  5918. mem_cgroup_start_move(from);
  5919. spin_lock(&mc.lock);
  5920. mc.from = from;
  5921. mc.to = memcg;
  5922. mc.immigrate_flags = move_charge_at_immigrate;
  5923. spin_unlock(&mc.lock);
  5924. /* We set mc.moving_task later */
  5925. ret = mem_cgroup_precharge_mc(mm);
  5926. if (ret)
  5927. mem_cgroup_clear_mc();
  5928. }
  5929. mmput(mm);
  5930. }
  5931. return ret;
  5932. }
  5933. static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
  5934. struct cgroup_taskset *tset)
  5935. {
  5936. mem_cgroup_clear_mc();
  5937. }
  5938. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  5939. unsigned long addr, unsigned long end,
  5940. struct mm_walk *walk)
  5941. {
  5942. int ret = 0;
  5943. struct vm_area_struct *vma = walk->private;
  5944. pte_t *pte;
  5945. spinlock_t *ptl;
  5946. enum mc_target_type target_type;
  5947. union mc_target target;
  5948. struct page *page;
  5949. struct page_cgroup *pc;
  5950. /*
  5951. * We don't take compound_lock() here but no race with splitting thp
  5952. * happens because:
  5953. * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
  5954. * under splitting, which means there's no concurrent thp split,
  5955. * - if another thread runs into split_huge_page() just after we
  5956. * entered this if-block, the thread must wait for page table lock
  5957. * to be unlocked in __split_huge_page_splitting(), where the main
  5958. * part of thp split is not executed yet.
  5959. */
  5960. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  5961. if (mc.precharge < HPAGE_PMD_NR) {
  5962. spin_unlock(&vma->vm_mm->page_table_lock);
  5963. return 0;
  5964. }
  5965. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  5966. if (target_type == MC_TARGET_PAGE) {
  5967. page = target.page;
  5968. if (!isolate_lru_page(page)) {
  5969. pc = lookup_page_cgroup(page);
  5970. if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
  5971. pc, mc.from, mc.to)) {
  5972. mc.precharge -= HPAGE_PMD_NR;
  5973. mc.moved_charge += HPAGE_PMD_NR;
  5974. }
  5975. putback_lru_page(page);
  5976. }
  5977. put_page(page);
  5978. }
  5979. spin_unlock(&vma->vm_mm->page_table_lock);
  5980. return 0;
  5981. }
  5982. if (pmd_trans_unstable(pmd))
  5983. return 0;
  5984. retry:
  5985. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  5986. for (; addr != end; addr += PAGE_SIZE) {
  5987. pte_t ptent = *(pte++);
  5988. swp_entry_t ent;
  5989. if (!mc.precharge)
  5990. break;
  5991. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  5992. case MC_TARGET_PAGE:
  5993. page = target.page;
  5994. if (isolate_lru_page(page))
  5995. goto put;
  5996. pc = lookup_page_cgroup(page);
  5997. if (!mem_cgroup_move_account(page, 1, pc,
  5998. mc.from, mc.to)) {
  5999. mc.precharge--;
  6000. /* we uncharge from mc.from later. */
  6001. mc.moved_charge++;
  6002. }
  6003. putback_lru_page(page);
  6004. put: /* get_mctgt_type() gets the page */
  6005. put_page(page);
  6006. break;
  6007. case MC_TARGET_SWAP:
  6008. ent = target.ent;
  6009. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  6010. mc.precharge--;
  6011. /* we fixup refcnts and charges later. */
  6012. mc.moved_swap++;
  6013. }
  6014. break;
  6015. default:
  6016. break;
  6017. }
  6018. }
  6019. pte_unmap_unlock(pte - 1, ptl);
  6020. cond_resched();
  6021. if (addr != end) {
  6022. /*
  6023. * We have consumed all precharges we got in can_attach().
  6024. * We try charge one by one, but don't do any additional
  6025. * charges to mc.to if we have failed in charge once in attach()
  6026. * phase.
  6027. */
  6028. ret = mem_cgroup_do_precharge(1);
  6029. if (!ret)
  6030. goto retry;
  6031. }
  6032. return ret;
  6033. }
  6034. static void mem_cgroup_move_charge(struct mm_struct *mm)
  6035. {
  6036. struct vm_area_struct *vma;
  6037. lru_add_drain_all();
  6038. retry:
  6039. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  6040. /*
  6041. * Someone who are holding the mmap_sem might be waiting in
  6042. * waitq. So we cancel all extra charges, wake up all waiters,
  6043. * and retry. Because we cancel precharges, we might not be able
  6044. * to move enough charges, but moving charge is a best-effort
  6045. * feature anyway, so it wouldn't be a big problem.
  6046. */
  6047. __mem_cgroup_clear_mc();
  6048. cond_resched();
  6049. goto retry;
  6050. }
  6051. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  6052. int ret;
  6053. struct mm_walk mem_cgroup_move_charge_walk = {
  6054. .pmd_entry = mem_cgroup_move_charge_pte_range,
  6055. .mm = mm,
  6056. .private = vma,
  6057. };
  6058. if (is_vm_hugetlb_page(vma))
  6059. continue;
  6060. ret = walk_page_range(vma->vm_start, vma->vm_end,
  6061. &mem_cgroup_move_charge_walk);
  6062. if (ret)
  6063. /*
  6064. * means we have consumed all precharges and failed in
  6065. * doing additional charge. Just abandon here.
  6066. */
  6067. break;
  6068. }
  6069. up_read(&mm->mmap_sem);
  6070. }
  6071. static void mem_cgroup_move_task(struct cgroup *cont,
  6072. struct cgroup_taskset *tset)
  6073. {
  6074. struct task_struct *p = cgroup_taskset_first(tset);
  6075. struct mm_struct *mm = get_task_mm(p);
  6076. if (mm) {
  6077. if (mc.to)
  6078. mem_cgroup_move_charge(mm);
  6079. mmput(mm);
  6080. }
  6081. if (mc.to)
  6082. mem_cgroup_clear_mc();
  6083. }
  6084. #else /* !CONFIG_MMU */
  6085. static int mem_cgroup_can_attach(struct cgroup *cgroup,
  6086. struct cgroup_taskset *tset)
  6087. {
  6088. return 0;
  6089. }
  6090. static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
  6091. struct cgroup_taskset *tset)
  6092. {
  6093. }
  6094. static void mem_cgroup_move_task(struct cgroup *cont,
  6095. struct cgroup_taskset *tset)
  6096. {
  6097. }
  6098. #endif
  6099. /*
  6100. * Cgroup retains root cgroups across [un]mount cycles making it necessary
  6101. * to verify sane_behavior flag on each mount attempt.
  6102. */
  6103. static void mem_cgroup_bind(struct cgroup *root)
  6104. {
  6105. /*
  6106. * use_hierarchy is forced with sane_behavior. cgroup core
  6107. * guarantees that @root doesn't have any children, so turning it
  6108. * on for the root memcg is enough.
  6109. */
  6110. if (cgroup_sane_behavior(root))
  6111. mem_cgroup_from_cont(root)->use_hierarchy = true;
  6112. }
  6113. struct cgroup_subsys mem_cgroup_subsys = {
  6114. .name = "memory",
  6115. .subsys_id = mem_cgroup_subsys_id,
  6116. .css_alloc = mem_cgroup_css_alloc,
  6117. .css_online = mem_cgroup_css_online,
  6118. .css_offline = mem_cgroup_css_offline,
  6119. .css_free = mem_cgroup_css_free,
  6120. .can_attach = mem_cgroup_can_attach,
  6121. .cancel_attach = mem_cgroup_cancel_attach,
  6122. .attach = mem_cgroup_move_task,
  6123. .bind = mem_cgroup_bind,
  6124. .base_cftypes = mem_cgroup_files,
  6125. .early_init = 0,
  6126. .use_id = 1,
  6127. };
  6128. #ifdef CONFIG_MEMCG_SWAP
  6129. static int __init enable_swap_account(char *s)
  6130. {
  6131. /* consider enabled if no parameter or 1 is given */
  6132. if (!strcmp(s, "1"))
  6133. really_do_swap_account = 1;
  6134. else if (!strcmp(s, "0"))
  6135. really_do_swap_account = 0;
  6136. return 1;
  6137. }
  6138. __setup("swapaccount=", enable_swap_account);
  6139. static void __init memsw_file_init(void)
  6140. {
  6141. WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
  6142. }
  6143. static void __init enable_swap_cgroup(void)
  6144. {
  6145. if (!mem_cgroup_disabled() && really_do_swap_account) {
  6146. do_swap_account = 1;
  6147. memsw_file_init();
  6148. }
  6149. }
  6150. #else
  6151. static void __init enable_swap_cgroup(void)
  6152. {
  6153. }
  6154. #endif
  6155. /*
  6156. * subsys_initcall() for memory controller.
  6157. *
  6158. * Some parts like hotcpu_notifier() have to be initialized from this context
  6159. * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
  6160. * everything that doesn't depend on a specific mem_cgroup structure should
  6161. * be initialized from here.
  6162. */
  6163. static int __init mem_cgroup_init(void)
  6164. {
  6165. hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
  6166. enable_swap_cgroup();
  6167. mem_cgroup_soft_limit_tree_init();
  6168. memcg_stock_init();
  6169. return 0;
  6170. }
  6171. subsys_initcall(mem_cgroup_init);